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Article
The Quadratic Equation for the Quaternions: The
Closed Form Solution

Edward Solomon

Stony Brook University; EdwardKingSolomon@gmail.com

Abstract: In this paper we shall arrive at a simple Closed Form Solution that resolves the two roots
of following equations over the quaternions: f =%#2+b% + ¥d = —¢=x%2+b% + Zd+db =

(2—E5+ 3 — 02  such thay E=%+8; U=2(d+b); v=-(d—-b); f=w2+wy =i
E_)+1_7)E—172;W=E+1_5;}7=—217 ; left-handed form. _>=W2+§W =EZ—EI_5+1_7’E—172;W=
f—5;Z=+420 ; righthanded form. f =92y +7§ + 3 = Zf =2GZ)) +2F§) + Z2(F3) =
F24+bE + Xd , such that =7 ; b=7F - ;  d=3§ ;=% The entirc argument

centers around the expression —t + ¥t , which would ordinarily cancel out to zero over the reals and complex
numbers; however, for the quaternions, the expression —tv + vt produces a vector that is orthogonal to both
t and ¥ . In order to ensure to the referees that this is not a waste of their time, a calculator is provided below
for ]? = %24+ DX + %d. Enter the ]? vector in cells T2:W2; @ in cells J22M2  and b in cells O2R2. The
two roots appear in cells D2:G2 and D3:G3.

Keywords: 11Rxx Algebraic number theory; 11R11 Quadratic extensions; 11R16 Cubic and quartic
extensions
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Theorem 1 The Quadratic Equation , The General Depressed Case

Quadratic Quaternionic Calculator, Closed Form Solution

https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLq5qk-
935DVdkéyeh14Xp_OV3bVI2Zl/edit?usp=sharing

Let f=x%+%b+ad%

—¢=@+a)#+b)=#+xb+dx+db; —C=f+ab

We know that there exists a two dimensional basis in the four dimensional space of quaternions
that describes vectors @ and b. Namely the bisector of the roots (mistakenly known as the Axis of
Symmetry) and the straight line that is between the two roots and the bisector.

We shall define the bisector as u = %((3 +b ) as the first vector of the basis.

We now define the locator as ¥ = %(& -b )
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-
a %
S
AA <
_
=
EQ.1 i =—(d+b)
EQ.2 5=%(&—I;) , compelling d=u+v and b=1-7
EQ.3 Let t=X%+1u,therefore X=t—1u
EQ.4a —C=X2+Xb+dxi+db
EQ.5 —C= x? + XU —7v) + W+v)x +
W+?P)U—-7)
EQ.6 —¢= (i-m)° + (i-m)@-9 + @+d)(i-m) 4+
u+v)U-7)
EQ7 —¢= (P -tu—ut+u?) + (fu—-to—-u*+uv) + (UE-w?+vt—vu) +
(U? — uv + v — v?)
EQS8a = BB+ — 92 = (P4 )(E—7)
EQ.9a —C= 2 -0 + vt —v?
EQ.9b d=t2—tp + 9t s d=—¢+v2
This is the fundamental middle handed form, from WhICh we derive the solution.
EQ.10a Let wW=t+v suchthat t=w—7
EQ.11a —C= W —1)?2 - (w - D)% +v(W — D) — p?
EQ.12a —¢= (W? —Wv — oW+ 7v%) — (W0 — 92) + (Ww — 9?%) — v?
EQ.13a —C = W? — W0 — VW + ¥% — WU + U2 + vw — 1% — v?
EQ.14a —¢= w?—-2wv
EQ.15a —C = W? = 2w = wW — 27)
EQ.16a Let y=-2v¥
EQ.17a —C=w?2+wy =w(w+7y) . This is the second fundamental
form, the left-handed form.

EQ.9b —C=t?—ty +vt —¥>  (arestatement of EQ 9a)
EQ.10b Let Z={—17 suchthat t =2+ v, thence:

W=Z+20=2Z—7

Z=W-20=w+y
EQ.11b —C = (Z + v)? - Z+¥)v + v(EZ+v) —v?
EQ.12b —C=(Z2+ZV+DZ+ ¥2) + (—Z0 — V) + (+DZ + ¥?) — V2
EQ.13b —C=2>+20Z=2>—-9Z=(Z—y)Z . This is the third

fundamental form, the right-handed form.

1 2 2o -
However, before we can proceed to resolve the roots of d = t?—t¥ + ¥t , some general
definitions and lemmas are in order.
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Definition1 Orthogonal Imaginary Unit Vector Bases

EQ.1 —k and Aji=-V ; furthermorethat, ji=+k and fl=+7 .
EQ2 1 +/ and v = +i ; furthermore that, k

EQ3 Jjk =-1 and jv= —1 ; furthermore that, k
If, and only if:

ij =
k = =—7 and Vi=—j.
k =+7 and Vi=+1.

Z3

1. Let Z=2zyq+ 2z +2y) +Z3I_€ ; et a=ATAN2(§—2) ; let B =ATAN2 ; et
1

z2+22
M =z} +z% + 273
1 = +1 (cosa)(cosB) + j(sina)(cospB) + k(sinB) . This is Lambda in respect to Z.
i= —1 (sina) + j(cosa) + 0Kk . This is Mu in respect to Z.
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This rigid body rotation of ...

a. T=11+0j+0k to A

b. j=0l+1j+0k to /i

. k=01+0j+1k to ¥

which maintains the relative spatial property that v i = I=—iv; [-7] 4V = [+1]4gV , such
that:
6. Z=2zyd+MI+0i+0W=2,G+2z7T +2] +2;k

Definition 6 Hypercomplex Chiral Orthogonal Basis Conversion, For the Quaternions

EQIf  R=cod+ i+ e+ csk =dof+did+doji +dsV;  co=d,
Since co = dy , we are only concerned with the imaginary bases, thus:
EQ.2f J=F—cod) =1l +cof + ek = dyd + dyji + dsV

We already know that:

3

1. a=ATAN2(Z); p=ATAN2
‘1 c?+c?

= +1 (cosa)(cospB) + j(sina)(cospB) + ksinf
—1 (sina) + j(cosp) + 0k
4. vV =—-1(cosa)(sinB) + j(sina)(sinB) + Ecosﬁ
Let us rename the above as:
EQ.3f A= Vl,li + YLZj + Y1,3IE
EQA4f [i=y,1T+ V22 +V23k
EQS5f vV =y3:0+ Y3, + V3,3]_<)
Which yields the system of three linear equations:
EQ.5f  dyy11T+ dyya T+ dsys l = il
EQ.6f d1)’1,2]:+ dz)’z,z]:'" d3Y3,2j_)= Cz]_)
EQ.7f  dyyi3k +dyy,3k +dsysk = c3k

EQS8f Let I be a 3x3 real matrix whose pairwise entries are equal to Ymmn-

@

1
i

EQof Let C be a 1x3 real column matrix whose entries are c;,c, and c; respectively.
EQ10f Let D =I''C , which is also a 1x3 real column matrix

Then d,,d,,d; are the respective entries of D  from top to bottom.

Theorem 7 The Lambda Choice Quaternion Eraser

Statement One 0= —f% + B whenboth £ and  are on the same Great
Circle of 1 .

Statement Two o il + a,¥ = —t¥ + 3t when both £ and ¥ are not on the same Great
Circle and a,fi + a,¥ is orthogonal to both £ and #.
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Proof:

EQ.1 Let B=1oG + 114 , establishing U as the reference frame,
compelling the orthogonal basis {4, fi, 7}, then:

EQ.2 Let £ =ty + tyd + tofi + t3V

EQ.3 ~0 + 0t = —(toq + tyd + tofl + t39)(vod + 1) + (VoG + v14)(tod + t14 +
tofl + t3V)

EQ.4 0 = (—tod — t0) (VoG + 1:24) + (VoG + v14) (+toG + t,1) ,
since they commute upon the same Great Circle.

EQ.5 — 5 + T = (—tyil — ts9)(voG + v14) + (vog + v, 4) (F il + t5V)

EQ.6 —t0 + Dt = (—tyvofl — tyvyV — tzvV + tavy i) + (Ey Vil + tavoV — tovg ¥ +
t3v1 i) ) ; } ;

EQ.7 —tv + Ut = 2(tzv i — tov,V) , such that —tv + vt is orthogonal to ¥ ,
vanishing t, and t; and v, .

Q.E.D.

Likewise we could establish £ as the reference frame via: t= tr0q + t2,1ZZ , compelling the

orthogonal basis {ZZ, fi2,V,}, and the expression

—t¥ + ¥t will result in vector that is also orthogonal to £, vanishing the real part and 1, part
of y , leaving only /i, and v, as the remaining dimensions.

Regardless of which reference frame we choose, we know that (—£% + %t ) is orthogonal to
both £ and ¥ , and, by definition, anything in the form of

M (p,cos6 + v,sinf) is strictly orthogonal to ¥ ; however, not everything in form of
M (fycos6 + V,sin8) is strictly orthogonal to £ .

However, the most important takeaway is that —t% + U = 2(t3vyi — t,v;¥) , meaning
the real part of ¥, which is v, has no effect; thus, the equation d=72—t3+ Bt remains equal to J, no
matter the real parts of either t or ¥, nor the lambda part of t, thus to,t1 and v, are erased from  existence,
allowing us to reduce the equation to (let M and N be positive reals):

Theorem 8 The Right Triangle Theorem

Thence, the expression: d=t2—1to+vt geometrically compels d to be the hypotenuse of a
right triangle, since —t¥ + ¥t is orthogonal to both £ and its square, as both £ and 2 lay upon the
same Great Circle.

Although there exists an entire family of right triangles that share d as the hypotenuse, there
are only two congruent right triangles within this family that satisfy £.

EQ.1 d=82—to0+9t; D=veG+vid, = {4y ¥}, which is
the orthogonal basis in respect to v.

EQ.2 —tv + ¥t = afi, + BV,

EQ.3 fycos6 + V,sinf is orthogonal to (—i,sinf + v,cosf) by definition. We shall
choose this orthogonality to generate the family of solutions.

EQ.4 fycos + v,sinf is orthogonal to (+fi,sind —v,cosf) by definition. We
discard this orthogonality in favor of the former.

EQ.S5 d= doG+ didy+ dojl, + daV,

EQ.6 t= tod + Ay + G, +  tiV,

EQ.7 2= (t2—t2—t2—t2)§ + 2totsdy + 260ta0, +
2tt3Vy ;5 do= (65—t —t7 —t3); di =2ty

EQ.8 Let f = dyji, + dsv,

EQ9 Let g =G (+i,cosf +V,sinB) = (—tV +0) = +2t3vyd, — 26,01V, = Xi, + YV,

EQ.10 Let 2 = h = H (—jl,sinf + V,cosp) =
+2totoil, + 2totsV, = Wi, + zV,

EQ.11 f=Gg +Hh

EQ.12 d,fl, = +Gii,cos0 — Hil,sin0 = +2tv, i, + 2totyil, = X, + Wi,
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EQ.13 d;Vv, = +GV,sind + Hv,cos0 = —2t,v,V, + 2tytsV, = yv, + 2V,

EQ14 P=d-§ = f=tli-g

The above relationship provides us with enough information to brute the roots of the quadratic
equation by simply comparing every value of the angular argument of f against the real number
magnitude of error from the return on dina preliminary search, and then converge rapidly upon the roots via
bisection.

In fact, it was by empirical observation of the roots (using the above rapidly convergent
algorithm) that I was able to resolve the closed form solution. We shall first simplify the quadratic

equation further in lieu of those empirical results.

Theorem 9 The Orthogonal Basis Rotation Theorem; The Relative Frame Theorem

EQ.1 Let d = dyoG + dy Ay + dyfi, + dsV, = A(Gcosa +
Lysina) + Q(fi,cosp + V,sing); 0 =/d2 + d2

EQ.2a Uy = +i,cos¢p + V,sing

EQ.2b v, = —fl,sing + V,cos¢

EQ.3 d = dyoG + dy Ay + dyfi, + d3V, = A(Gcosa +

/T,,sina) + 0, + 07,

We are able to perform this basis conversion because all we did was rotate {fi,, V,,} about /T,, ;
hence, (/T,,, fi,,V,) preserves the multiplicative relationships 171 expected in the original basis. In
fact, there is no preferred frame of reference for the f and V axes for an Observer on the Great
Circle of 1, only 1 is absolute from the Observer’s perspective. The Observer is free to rotate the
{iiy,V,} axes in any manner that simplifies the existing problem.

Thus, in the equation d=8 -t + vt , the ¥ variable establishes 1 , and the d variables
establishes [i, and V,.

Theorem 10 The Fully Depressed Case of the Quadratic Equation

We now combine Theorems 14 and 15 to yield the fully depressed case of the quadratic

equation.

EQ.1a d=t*—t5+ 0t =2 —t(vyd + NA) +
(vod + NZ)?: , where 1, isin respect to .

EQ1b d = 2 — {(N7) + (NA)E

EQ.1c d =dyd + di ]+ wyfiy + w7V, , where
(fiy, V) is the initial orthogonal basis in respect to v .

EQ.2a Let 0 =,/ w?+ w?

EQ.2b Let ¢ = ATANZ (“2)

1

EQ.2¢c Let iy = +il,cos¢p + V,sing

EQ.2d Let V, = —l,sing + V,cosp

EQ.2¢ Let d = dod + dyd + Qiiy + 07,

EQ.3a F=t0G + tyd + tyfly + tay

EQ.3b 12 = (62 — t2 — t2 — t2)4 + 26ty A + 2t0tyf, + 2totsV;

EQ.3c ~£(NX) + (NA)t = 2Nt3ji, — 2Nt,v, (Lambda Choice Quaternion Eraser)

EQ.4a do = (t2 —t? —t —t2)

EQ.4b dy = 2tyty

EQ.4c 0 = 2tyt, + 2Nt,

EQ.4d 0= 2t0t3 - 2Nt2
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Lemma 11 The Mu Part and Nu Part Equivalence.

EQ5a 0= 2t0t3 - 2Nt2
EQSb 0= t0t3 - Ntz
EQ.5C to = %
3

EQ.6a N = Ztotz + 2Nt3
EQ.6b Q - 2Nt3 = Ztotz
EQ.6¢ t, = 22N

2t,

Nt _ Q-2Nt3

EQ.7a raiaiars
EQ.7b 2NtZ = Oty — 2Nt

2 _ DL5-2NG
EQ.7c 1§ = L 2G|

Lemma 12 The Real Part and Nu Part Equivalence.

EQ.la 0 = 2t0t3 - ZNtZ
Ele 0 = t0t3 - Ntz
EQ.2a t, = %
EQ.Zb .{2 = Ztotz + 2Nt3
EQ.2¢ 02 — 2Nty = 2tyt,
EQ.2d t, = 22Nt
2t
tots _ 2—2Nt3
EQ3a R
EQ.3b 2t3t; = AN — 2N?%t,
2 _ ON-2N?t3
EQ.3c ty = BT
EQ.3d LRP— L

t2 ~ QN-2N2tg

Lemma 13 The Lambda Part Identity

EQ.]. dl = 2t0t1
dy
EQ.2 t, =—
Q 1= o0
2 _d? a3} 2t3 _ 2d%t;
EQ.3 ti =—==— =
atd 4 \ON-2NZ%t3 40ON—-8N2t3
Lemma 14 The Real Part Identity
— (42 2 2 2
EQ.1 do=(t§ —tf —t; — t3)
2
— (42 _ 91 2 2
EQ.2 do—(t0—4—t(2)—t2—t3)
EQ3 d. = (!2N—2N2t3 _2dft3  0pt3-2Ntf tz)
’ 0 2ts 40N-8N2ts 2N 3
QN-2N?t 2d?t Nt3—2Nt2
EQ.4 do = o2 _ (% 3+t§)
2t3 40QN—-8N2t3 2N
EQ5 d. = ON-2N%t;  2dft3 (nt3)
) 0 2t5 40N-8N2t, 2N
EQ6 d. = ON2-2N3t3-0tf  2dits
) 0 2Nty 40ON-8N2t5
EQ.7 d. = ON2-2N3t3-0tf  2Ntg ( 2d%t, )
) 0 2Ntz 2Nt; \4QN—-8N2t;
EQ.8 d. = ON?2N3t3-0tf 4Nd?t?
’ 0 2Nts 80N2t3—16N3t2
EQ.9 d. = (40N-8N2%t3) (nN2—2N3t3—m§) _ 4Nd?t?
! 0 ™ (40N-8N2t3) 2Nts 80N2t3—-16N3t2
EQ.10 d. = 402N3-80ON*t;-402NtZ—-80ON*t3+16N°t3+80N%t5 —4Nd?t2
’ 0= 80ON2t;—16N3t2
243 5 2 2 2 4 23
EQ.11 dy = +80N2t3+(16N°—4NdZ-40%N)t5-160QN*t3+40%N

80N2t3-16N3t2
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EQ.12 8QN?dyt; — 16N3dyt2 = +80QN?t3 + (16N> — 4Nd? — 40?N)t? — 16QN*t; +
40?%N3

EQ.13 0 = 80QN2%t3 + (16N5 — 4Nd? — 40%N)t2 — 1602N*t; + 40%N3 — 802N2d,t; +
16N3d,t2

EQ.14 0 = 8AN?t3 + (16N° + 16N3d, — 4Nd? — 40%N)t2 — (16N* + 82QN?d,)t; +
40?N?3

EQ.15 0 = 20N?t3 + (4N° + 4N3d, — Nd? — 02N)t? — (4QN* + 2QN?%d)t; + 2?N3

EQ.16 0 = 20Nt3 + (4N* + 4N2d, — d? — 02)t? — (40QN3 + 20Nd,)t; + 22N?

EQ.17 0=At3+Bt;+Ct;+D

EQ.17a A =+420N

EQ.17b B = +4N* + 4N2d, — d? — ?

EQ.17¢ C = —40N3 — 20Nd,

EQ.17d D = +0%N?

Definition 15 Cardano’s Theorem: The Real Cubic Identity of the Nu Part
We now use the Cardano Method to depress the Cubic of the Nu Part.

EQ.1 0=At; +Bt;+Ct;+D
EQ.2 0=0+pl+q

= B
EQ.3 {=t;+ 3

3AC-B
- e
EQ.5 = w Completing Cardano’s depression of the Cubic. We
27A

now implement Vieta’s Substitution:

Definition 16 Vieta’s Theorem: The Resolution of the Nu Part.

=w-=2
EQ.1 {=w—o- 3
— 3 __P
EQ.2 0=w’+gq Py
EQ.3 0=W6+qw3—%
EQ.4 y=w?3
3
EQ.5 O:yz+qy—12’—7
—_a, |2 P
EQ.6 y=—st|T+5
3
EQ.7 w= [-14 £y , either sign of the square root shall suffice.
2 4 27
LI
EQ8 t3 + a =w 3w
EQ.9 ty=——tw—2

34 3w
We now use the identities from t; to yield ty,t; and ¢,.

_ QN-2N?tg
EQ.10 to=+ / T
N

EQ.11 t, = 2‘1710

_ 0t3-2NtZ
EQ.12 t, == ’ 2

Of course, we have a serious dilemma. Which of the three real roots do we accept for t;? Which
sign of the above squares do we choose in  unison? Only the polar form of solution will elucidate which
root of t3 to accept, and then how to produce tgy, t; and t; .
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Theorem 17 The Offset Circle Theorem

For the moment, let us suppose we know which cubic root to select as t3, then we now examine
the following relationship: % = % . This equation informs us that the coordinate t,fi, +
3 2
t3v, lays upon a circle, with a radius of 2, offset from the originby + 2
4N 4N

Let tyfi, + t3v, = M(ji,cos0 + V,sinf) , then the Law of Cosines reveals that:

2)? 23)? 2)?
EQ.1 M? = (E) j(ﬁ) -2 (ﬁ) 0526
EQ.2 M% =2 (%) (1 — cos26)
EQ.3 M= (%) sinf , upholding the Law of Sines.
We now examine the relationship t, = %
3

_ Mcos6
EQ4 to = Msinf
EQ.5 to = Ncotf

=4 _d
EQ.6 t, = 200 — 2N tand
EQ7 do = (t§ —tf -t — t)

2
EQ.8 dy = N2cot?0 — 2L tan?0 — M?cos?0 — M2sin6
4N? )
EQ.9 dy = N2cot?0 — %tanze — M?(cos?6 + sin?0) ; M?=
(%22) sin?0; (cos?6 + sin?0) =1

EQ.10 dy = N?cot?0 — ﬁ (ditan®6 + N?%sin?0) , which leads to a nasty

degree six equation with 6 pairs of conjugate solutions for 6.

Before we proceed, the below image is the geometric appearance of the question at hand in fi,, v,
space.

In the following wurl link, q is Omega, N is N, and t is theta:
https://www.desmos.com/calculator/q2bfcbs7wq

desmos

1© 10 @+

i N A o 0

.-z

= 1.3437
Y im0 < (5 s st
& t=065
@ =q

=43

¥ = ()e{ i) os() << o) ;
I S R . mﬁ?ﬂ SfMC

However, when we yield the roots of the cubic to produce t; we can solve for theta without any
of the hassle that the polar form introduces.

EQ.ll tzﬁz + t3172 = M(ﬁZCOSQ + 1_/)251'119)
EQ.12 t; = Msiné
= (2 ¢in2
EQ.13 ty = (5) sin6
EQ.14 2% — sin%0 ; /% = sinf
Q Q
EQ.15 0 = Arcsine (+ ’21:;3> . We know to take the positive root, since the

(t,t3) coordinate resides in the first quadrant, since both magnitude variables, N and (2, are
positive by definition, forcing the red circle (in the above image) in the upper two quadrants. We
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also both angles for the Atcsine function. This is not because we cannot tesolve the ambiguity; rather, both

6 solutions fulfill d = £2 — t% + Bt simultaneously. Hence:
EQ.16 0, = Arcsine <+ /21:2—%>, 0, = (m —6,) ; yielding the empirically

observed form: £ = t;¥, + VP2 , where ¥ hasno ¥, part.
With both values of theta known, we simply use the identities above to yield t,t;,t;

d 0] .
EQ17a tO,l = NCOt@l; tl,l = Zt_l’ t2,1 = (5) Sln91C0891
0,1
d 0] .
EQ.17b to‘z = NCOt@l, t1,2 = Toll; tz)z = (ﬁ) Sl‘n9260592 ) t0’1 = _t0,2 5 tl,l = _tl,Z ) tz‘l =

Q.E.D.

—ty2; t31 =1t3,.
Theorem 18 Which Root Theorem

We shall use the randomly generated components of f = %2+ %b+d% seen below to
demonstrate that all three roots of t3 are valid by symmetry.

i = —6.198§ T+ j+
= +6.472q — 7.6287+ 5.019] + 1.531k
f = —8.2997" + 5.9527 + 6.088] + 2.996k

¥, = +1.1457138¢q + 1.53977907 + 1.6404340] — 0.1822954k

LS Q
| &

%, = —1.41971387 — 4.19860257 — 3.0201749] — 2.0290342k
The resultant equation d=t2-tB+9t; 0= ; N =
ci = —87.5983675q + 36.54510607 + 70.9961880;] — 44.7808970E = —87.5983675q +

7.899693689711 + 0fi; + 07,
# = —6.335000004 + 337550007 + 1.00050005 + 3.4690000k
—6.335000004 + N1+ 0 + 0,
i = 0g + 0.68294481137 + 0.2024252062] + 0.7018621094k
fi; = 04 + 0.34152704977 + 0.7608650002] — 0.551764194k
v, = 0¢ — 0.64571329487 + 0.6165293888] + 0.4504951205k
Has the roots, accepting the angular argument of 6, = 1.316874331 radians; 6, =m —0; =
1.824718323radians
£, = +1.282713777q + 3.0792893281 + 2.243471181}i, + 8.644566873,
t, = —1.282713777q — 3.0792893281 — 2.2434711814, + 8.644566873V,

Theta 1
1.316874331

1.092856303

0.9368974962 -0.2802512416

The three roots for t; are as follows:

0, = Arcsine <+ ’2Nt3) = (E -
N 2

Theta 2 Lambda Frame t0q t1 lambda 2 mu2 3 nu2

1.824718323 A Root 1 1.282713777 3.079289328 2243471181 8.644566873

Root 2 -1.282713777 -3.079289328 -2.243471181 8.644366873

t; = +10.08356777, + 8.644566873, —2.585822472

i),

, 0+

tO,l = NCOt@l; tl,l = Z—;tan@, t2,1 = (%) Sin@lcosel; t2,1 = (%) Sin@lz .

t(],l = 0 + ; tl,l = H t2,1 = 0 + H t3'1 = fOI'
T .
G- )

t(],l = + 5 tl,l = 5 t2,1 = + 0 5 t3'1 = fOI‘

tO,l = 0 ) tl,l = ) tz'l = 0 + ) t3'1 = fOI‘
0+

dy = —87.5983675 = (1.4407()2  — (—2.74160)% — (2.93926{)% — (10.08356)>

—2.0756 + 7.5163 + 8.6392 — 101.6781
dy = —87.5983675 = (1.28277)?

—(3.07928)2 — (2.24347)% — (8.64456)2

= +1.6454 — 9.4819 — 5.0332 — 74.7284
d, = —87.5983675 = (—10.5639i)% — (0.37389i)? — (5.52678i)? — (—2.58582)2

—111.59 + 0.1397 + 30.545 — 6.68646
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d, = 7.89969 = 2t,t, = 2(0 + 1.4407i)(0 — 2.74161) = 2(1.28277)(3.07928)
=2(0 — 10.5639)(0 + 0.37389i)

d, =91.2081 = Q = 2tyt, + 2Nt; =  2(1.4407:)(2.93926i) + 2(4.9425)(10.0835)
= —8.4691 +99.6753
d, = 91.2081 = 0 = 2tyt, + 2Nt; =  2(1.28277)(2.24347) + 2(4.9425)(8.64456)

= +5.7557 +85.4514
d, = 91.2081 = 2 = 2tyt, + 2Nt3 = 2(—10.5639i)(5.52678i) + 2(4.9425)(—2.58582)
= +116.7687 — 25.5608
0 = 2tyts + 2Nt, =  2(1.4407)(10.0835) — 2(4.9425)(2.93926i) = 29.054i — 29.054i
0 =2tyts + 2Nt, =  2(1.28277)(8.64456) — 2(4.9425)(2.24347) = 22.177i —22.177i
0 = 2¢tyts + 2Nt, = 2(—10.5639:)(—2.58582) — 2(4.9425)(5.52678i) = 54.632i — 54.632i
That is, all three Arcsine arguments of t; produce the same d vector after recombination. In
other words, a Quadratic Equation over the Quaternions has one pair of roots with four real
coefficients, and two pairs of roots with three purely imaginary coefficients for g, A, fi, and one pure
real coefficient for ,.
However, the geometric meaning of complex coefficients remains unclear. For now, we accept
the guaranteed real argument for 6, Q.ED.

Theorem 19 The Closed Form Solution for a General Quadratic Equation for the Quaternions.

We now combine all of the steps to solve original query:

EQ.1 f—*2+25+a£

EQ.2 Let —¢=f+db

EQ.3 a=£2+f5+af+af)

EQ.4 i=-(d+b)

EQ.5 Qﬁ=%(&—b) )

EQ.6 Let t=X+1u ,therefore X=t—1u

EQ.7 —5=Ez—fﬁ+vt—v

EQ.8 Let d=—C+ D% =dyoG +dyol + dyof + dsok

EQ.9 d=12—to+v¢

EQ.10 U =10p0q + V1ol + Vz0] + v3yoﬁ

EQ.11 a = ATAN2 (:—j)

EQ.12 B = ATAN2 | —=

EQ.13 1 =47 (cosa)(cosB) + j(sina)(cospB) + E(sinﬁ) =Yl + Y1) + ]/1‘3]_()
EQ.14 i = —1 (sina) + j(cosa) + 0k =Yyl + Voo + y2,3E
EQ.15 %, = =1 (cosa)(sinB) + J(sina)(sinB) + k(cosp) = Yaal+Vaa) + y3‘3l_c)
EQ.16 Let T be a 3x3 real matrix whose pairwise entries are equal to ¥;, .

EQ.17 Let A be a 1x3 real column matrix whose entries are v;4,v,, and v;, respectively.
EQ.18 Let B be a 1x3 real column matrix whose entries are d, o, d,, and dz, respectively.

EQ.19 LetV=rA, whichisalsoa 1x3 real column matrix, let it the results be named N, 0,0 .
N is our first primary variable.
EQ.20 Let D =I'B , which is also a 1x3 real column matrix, let it the results be named

dl,l’ d2,1' d3,1
We do not require the inverse Gamma Matrix for this process.
I' Gamma Matrix A Matrix B Matrix

I'A = V Matrix I'B = D Matrix


https://doi.org/10.20944/preprints202304.1241.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2023 doi:10.20944/preprints202304.1241.v2

EQ.21 ¢ = ATAN2 (%) 0= |2, +d2,

EQ.22 fy = +fiicosgp + Vysing = +i(—sina cosp — cosa sinf sing) + j(+cosa cos¢p +
sina sinf sing) + E(cosﬁ sing)

EQ23  ji, = T+ po + psk

EQ.24 V, = —fjiysing + V;cos¢p = +i(+sina sing — cosa sinf cos¢p) + j(—cosa sing +
sina sinf cos¢) + E(cos[f cosp)

EQ.25 ¥, = v, + vy + sk

EQ26 #= %(a —b)=veod + N1 +0ff; +0V;, =wve0d+N1 + 0, + 0¥,

EQ.27 (z = do]o(_i + dl,lll_) + dz,lﬁl + d3’1171 = do'o(_i + dl_l/_i + nﬁz + 0’[72
EQ.28 A= +20N
EQ.29 B = +4’N4 + 4’N2do‘o - d%,l - .{22
EQ.30 C = —40N? — 20Nd,,
EQ.31 D = +02N?
EQ.32 0= At} +Bt?+Ct;+D
EQ.33 0=y +pl+gq
B
EQ.34 (=t
3AC-B
EQ.35 =2 2
_ 2B°-9ABC+27A°D
EQ.36 -
EQ.37 —w-
— 3 __p
EQ38  0=witq- s

EQ.39 0=wbé+qw3— 12)—7
EQ.40 y=w3

EQ.41 0=y*+qy—>
=y [ P
EQ.42 y=—st |T+5
3
EQ.43 w= [— % + q4—2 + g , either sign of the square root shall suffice, and any cube root

will suffice.

EQ.44 h+=w-2
EQ.45 t; = — 2 +w—L2 . Allroots will be real.
34 3w
EQ.46 0 = Arcsin (+ 21}’;3> . If 6 is a complex number, then 1 is the

imaginary unit.

We evaluate 6 for all three roots of t; and select the real-valued argument. Hopefully
someone will elucidate the meaning of the complex arguments in due time, for I dare not feign
knowledge of their geometric interpretation.

2 - >d - n . - 0] . - g
EQ.47 t; = +dNcotf + Aﬁ tanf + i, (ﬁ) sinfcos6 + V, (ﬁ) sin?0 = to1q + ty 1A+
tz1ly + t31V,
2 - >d - n . - n . - g
EQ.48 t, = —GNcotf — Aﬁ tanf — i, (ﬁ) sinfcos6 + V, (ﬁ) Sin%0 = to,q + t1,A +

ta2ly + t32V;


https://doi.org/10.20944/preprints202304.1241.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2023 doi:10.20944/preprints202304.1241.v2

13

The above two equations are the roots in the proper orthogonal basis of L, iy, V5 , however we
must now convert back to 7,7,k .
EQ.49 to1q + tiud + taafly +ts1Vs = tosq + tial + tas) + task

EQ.50 tos = to1

EQ.51 t13 =t11V11 Tt +131Vs

EQ.52 t23 = t11V12 T Eo1M2 + 3172

EQ.53 tz_,)3 =t11V13 T izl T i31V3 .

EQ.54 to2q * tipd + tapfly +t32V, = toaG +tial + tpa) +taak

EQ.55 tos = to2

EQ.56 t14 = t12V11 T la201 T 132V,

EQ.57 t24 = t12V12 T tolly 135V

EQ.58 t24 = t12V13 T ta2H3 +13,5V3

Recall that f = ¥ + 4 and therefore X¥=t—1 and that 1 = %(a + E)

EQ59 & =X +1 = to3q +ty i+ tys] +ty3k

EQ.60 &, = %y + 1 = tsq + ty 4l + tya] + t34k

EQ.61 U=y + usl + uyf + usk

EQ.62 % = (tos —uo)d + (t13 —uy )T+ (tz3 —ua)j + (ts3 — u3)E
EQ.63 Xy = (tos —uo)q + (tra — ug)T+ (b0 — ua)j + (E34 — uz)k

The above two equations satisfy the original query f =%+ Xb+dZ% , proving that all
Quadratic Equations over the Quaternions adhere to the same closed form solution.
Q.ED.

Appendix B: The M-th Root of N-Unity for Class of Algebraic Hypercomplex Numbers of Even
Dimensions, The Great Circle Theorem

Assuming that we are in a Hypercomplex Space that is Cayley Algebraic, then let "'VZ be the
function that returns the m** principal root unity for X.

EQ.11d Let ¢ be the observation vector.

EQ.12d Let D be the set of pairwise orthogonal imaginary unit vectors, |D| =n and n
must be odd, such that |[D U { g }| is even.

EQ.13d Let # = agd + Y2="  a,d, such that Vz,a, € R

EQ.14d Let f = +X¥7Z7 «aZ , which is the real number magnitude of the imaginary part
of X .

EQ.15d Let y = +yJ/a3 + X2Z% a2 , which is the real number magnitude of X .

EQ.16d Let 1= %(5& —a,q ) , compelling 1 to be a unit vector.

EQ.17d Let 7 = %ao , giving us the ratio between the magnitudes of the real part and the
imaginary part.

EQ.18d Let 6 = ATAN?2 G) = ACOTAN2(7) , that is, the four-quadrant arccotagent of 7.

EQ.19d % = y(gcos6 + AsinB)

EQ.20d VX = (%/y) (ﬁcos (9+2nm) + Asin (9+121nm)) ,Vm,n) €EZ,m<n

n
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Appendix B2: Corollary: The Square Root of a Quaternion, The Well Defined Positive and
Negative Square Roots

For a quaternion X = aoG + ay1 + a,] + ask , the square root is given by:
EQ.21d

1 +Ja? + az + a?
+/z = <+\/a§ +a? +a?+ ag) Geos| 0+ ATAN2 (%
0

1

. Lo 1 +Ja? +ai + a?
—  (F-—ayd)sin| 0+oATANZ (L2 TS
+Jat +at + a3 2

20

> 2 2 2 2 > 1
—\/; =|+ |a;tai ta; +as qcos| m +§ATAN2

<+,/af +ai + a%)

*o

1 . oo 1 +af +ai + al
+——— (X —ayq )sin| m+ -ATAN2| ———=
Wt ra 2 B

Appendix C: The Quadratic Equation , The Trivial Case of Symmetric Roots, For All
Hypercomplex Dimensions

EQ.1le —C=%2+X%y+Jy% canbe readily solved for X even if € and j are not on the
same Great Circle.

EQ2e Let ¢=(X+¥), suchthat ¥ = (f-)

- N 5\2 - 5\ > S -
EQ3e —C= (E-7) +(@E-9)y+9(E-3)
EQde —C=(22-ty —Ji+3)+ (53 -7+ (Fi-52)
EQ5e  —C =% —y2
EQ.6e 2=y2-C
EQ.7e E=+y2-C S @+ =+ -C
EQ.8e = -3+ [y2-C

2

EQ.9¢ 6=(—37i ;72—5> +<—37J_r 372—5)37+37<—37i 372—5>+5
QED

It is our goal to transform the earlier equation, —¢ = W2 + Wy , into the Symmetric Case via a
series of additional substitutions.
The Symmetric Case occurs when —C=#+ (Y oy + [F 14p)% .

Statements and Declarations: I have nothing to declare.

Quadpratic Quaternionic Calculator, Closed Form Solution
https://docs.google.com/spreadsheets/d/1X8sKNNuxFq5HLg5qk-
93SDVdkéyeh14Xp_OV3bVI2Z]I/edit?usp=sharing

G ) E F G H 1 J K L M N o P Q R B T u v
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