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Abstract: With the increasing utilization of intelligent mobile devices for online inspection of 

electrical equipment in smart grids, the limited computing power and storage capacity of these 

devices pose challenges for deploying large algorithm models and it’s hard to obtain a substantial 

number of images of electrical equipment in public. In this paper, we propose a novel distillation 

method that compresses the knowledge of teacher networks into a compact few-shot classification 

network, employing a global and local knowledge distillation strategy. Central to our method is 

exploiting the global and local relationship between the features exacted by the backbone of the 

teacher network and student network. We compare our method with recent state-of-the-art (SOTA) 

methods on three public datasets and achieve superior performance. Additionally, we contribute a 

new dataset, namely EEI-100, which is specifically designed for classification of electrical 

equipment. We validate our method on this dataset and demonstrate its exceptional prediction 

accuracy of 94.12% when utilizing only 5-shot images. 
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1. Introduction 

As an essential component of the power system, daily inspection of electrical equipment is 

imperative to ensure the secure and stable operation of the power system [1]. The conventional 

manual screening and analysis approach can no longer meet the escalating demand for image 

analysis of electrical equipment. With the advent of the smart grid, an increasing number of 

unmanned aerial vehicles (UAVs) are being deployed for online inspection. The application of 

artificial intelligence techniques for condition monitoring of electrical equipment can significantly 

enhance the efficiency of detection and maintenance. Image classification is a crucial prerequisite for 

equipment condition monitoring based on image information. For instance, to monitor the normalcy 

of electrical equipment such as transformers or insulators, their images must be initially 

distinguished. 

With the advancement of deep learning in image recognition applications, various classification 

and recognition methods for electrical equipment images based on deep convolutional neural 

network (CNN) have been proposed. However, deep CNN training often relies on large-scale labeled 

data, which is challenging to obtain for all categories of electrical equipment due to their safety and 

sensitivity. Therefore, this paper adopts the few-shot learning (FSL) method for electrical equipment 

image classification. The proposed approach involves randomly partitioning the power image 

dataset into a base class set and a new class set. The model backbone is trained on the base class set, 

and subsequently combined with the classifier to accomplish the recognition training of the new class, 

utilizing only a limited number of image samples. 

Furthermore, power inspection heavily relies on intelligent mobile devices, such as inspection 

robots and UAVs. However, due to the limited storage capacity of these devices, the classification 
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model's capacity must not be excessively large. Otherwise, it cannot be deployed on such mobile 

devices. To address these challenges, this paper presents a novel few-shot electrical image 

classification algorithm based on knowledge distillation. 

Knowledge distillation [2,3] is an efficient model compression method that compresses the 

knowledge of teacher networks into very small student networks. Early knowledge distillation 

methods that minimize the KL (Kullback-Leibler) divergence of predicted class probability 

distributions between student and teacher networks rely on the output of the last layer of the model 

and learn a limited amount of information. Recent work has begun to study the features of the middle 

layer of the distillation network, focusing on the learning of local features of the image. However, 

there are both differences in the global appearance and local details between electrical equipment, 

and the algorithm model must fully mine this information in the learning process in order to 

comprehensively represent the electrical equipment images and achieve higher classification 

precision. Therefore, this paper proposes a global and local knowledge distillation method for few-

shot classification of electrical equipment. 

1.1. Few-shot Classification 

In recent years, FSL has attracted researchers’ widespread attention in the field of computer 

vision and machine learning, and a large number of few-shot image classification algorithms have 

been proposed. Depending on the learning paradigm used, these methods can be broadly divided 

into two categories: meta-learning-based methods and transfer-based learning methods. 

Meta-learning is a promising approach that leverages episodic training to simulate the real test 

environment by randomly selecting several subtasks. This enables the acquisition of meta-knowledge 

that facilitates the rapid identification of new categories. Based on the type of meta-knowledge 

learned, meta-learning methods can be classified into optimization-based and metric-based methods. 

Optimization-based meta-learning methods employ a two-tier optimization process to learn the 

optimizer for quickly processing new tasks. A well-known example of such methods is Model-

Agnostic Meta-Learning (MAML) [4]. MAML obtains the optimal initialization parameters of the 

model through meta-training, enabling the model to adapt to new tasks after a few gradient updates. 

In addition, the learning rate and gradient direction are also important factors for the optimizer [5,6]. 

However, these methods require storage and computation of higher-order derivatives, resulting in 

high memory and computational costs. On the other hand, metric-based methods use nonparametric 

classifiers as the basic learner, avoiding the aforementioned issues. The key factors of these methods 

are feature extraction and similarity measurement, which offer ample room for improvement. PARN 

[7] proposed a feature extractor which is learning an offset for each cell in the convolution kernel to 

extract more efficient features, building by deformable convolutional layers. CC+rot [8] improved the 

transfer ability of feature extractors by adopting auxiliary self-supervised tasks. Zhang et al. [9] used 

the pre-trained visual saliency detection model to segment the foreground and background of the 

image, and then extract the foreground and background features respectively. With the proven 

effectiveness of attention mechanisms in extracting discriminating features, several few-shot 

classification (FSC) tasks have adopted this method, including CAN [10], AWGIM [11], and CTM 

[12]. Additionally, in metric-based meta-learning methods, the measurement of similarity is also 

crucial. SEN [13] combines Euclidean distance and norm distance to improve the effectiveness of 

Euclidean distance measurement in high-dimensional spaces. FPN [14] calculated the reconstruction 

error between the support sample and the query sample as the similarity score. DN4 [15] and Deep 

EMD [16] obtain rich similarity measures directly on local features. 

Recent studies have indicated that FSC of transfer-learning method can attain comparable 

performance to that of meta-learning method with complex episodic training. Such methods typically 

combine pre-trained feature extractors on all base class datasets with arbitrary traditional classifiers 

to make classification decisions for query samples of unknown classes. Reference [17] showed that 

pre-training the entire base class dataset using the cross-entropy loss function, followed by fine-

tuning the pre-trained model using support samples of the visible class, can provide a powerful 

baseline for FSC tasks. Since then, several works have been proposed to improve the representation 
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performance of feature extractors. For example, Neg-Cosin [18] proposed to use the non-negative 

interval Cosine loss function to optimize the model, thereby increasing the distance between the 

training sample and its corresponding parametric prototype, which can effectively improve the 

generalization performance of the model. S2M2[19] used manifold mixing as an effective 

regularization method to improve the generalization performance of the model. Reference [20] and 

[21] used rotation prediction and mirror prediction as self-supervised tasks to add to the pre-training 

process, and experimental results show that self-supervised tasks are effective methods to improve 

feature representation performance. 

In conclusion, many recent works have emphasized the importance of feature representation, 

both meta-learning-based and transfer-learning-based methods tended to employ highly complex 

networks to enhance feature representation. Therefore, deploying these methods to real-world 

applications usually occupies high computing resources (storage space, computing power, etc.) and 

introduces high time delays, which cannot meet the actual needs of the classification tasks of electrical 

equipment images. Hence, in this study, we employ the knowledge distillation-based model 

compression algorithm to accomplish the task of few-shot image classification to reduce the model 

parameters. 

1.2. Knowledge Distillation Methods 

Knowledge distillation is one of the most effective model compression methods, which has 

garnered significant research interest in both industry and academia due to its simple training 

strategy and effective performance. It leverages the knowledge acquired by a teacher network with a 

large scale to guide the training of a small-scale student network, enabling the latter to achieve 

comparable performance despite having fewer parameters.  

Two key elements in current knowledge distillation methods can be summarized as: (1) the 

definition of effective knowledge types, (2) Effective transfer of knowledge from teacher networks to 

student networks. The classical knowledge distillation method minimizes the KL divergence of the 

predicted class probability distribution between the student and teacher networks. In order to make 

better use of the knowledge information contained in the teacher network, the follow-up work 

focuses more on how to better mine the feature knowledge hidden in the middle layer of the network. 

For example, AT [22] proposed to take the spatial attention of the hidden layer features of the teacher 

network as knowledge, and instructs the student network to imitate its attention feature map. 

Recently, the relationship between samples features has been proposed as a more effective 

knowledge. RKD [23] proposed a relational knowledge distillation method, which used distance and 

angle to measure the relationship between samples features, as a valid type of knowledge during 

distillation. Peng et al. [24] used the kernel function to obtain higher-order relationships between 

samples features as effective distillating knowledge. 

Although the model compression methods based on feature relation knowledge mentioned 

above can effectively improve the performance of small-capacity student networks, the current work 

only focuses on the local relationship between individual sample features, ignoring the global 

relationship between samples features. Therefore, this paper proposes a method based on global and 

local knowledge distillation and applies it to the task of FSC of electrical equipment images. 

1.3. Electrical Images Classification 

Image-based equipment condition monitoring has been proven to be effective in enhancing the 

working life of equipment and providing early failure warning. In recent years, machine learning has 

made significant progress in the field of image classification for electrical equipment. Bogdann 

presented a machine learning method for determining the state of each switch by analyzing images 

of the switches in power distribution substations [25].Zhang implemented FINet based on improved 

YOLOv5 to inspect the insulators and their defects for ensuring the safety and stability of power 

system [26].To address few fault cases and deficient monitoring information in transformer 

diagnostic tasks, Xu provides an improved few-shot learning method based on approximation space 
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and belief functions [27]. Yi proposed a label distribution CNNs classifier to estimate the aging time 

of the conductor morphology of high-voltage transmission line [28].  

It is noteworthy that the majority of the aforementioned investigations have concentrated on a 

restricted range of electrical apparatus. These models necessitate a substantial quantity of training 

data to guarantee optimal performance. Nevertheless, acquiring adequate electrical equipment 

images in a practical setting may prove to be challenging, and the proportion of labeled samples is 

minimal. To a certain extent, the classification of electrical equipment images does not truly belong 

to a big data problem. Rather, it belongs to FSL domains. 

In this paper, we propose three main contributions: 

1. We present a novel distillation approach that compresses the knowledge of teacher networks 

into a compact student network, enabling efficient few-shot classification. The incorporation of 

global and local relationship strategies during the distillation process effectively directs the 

student network towards achieving performance levels akin to those of the teacher network. 

2. We contribute a new dataset that contains 100 classes of electrical equipment with 4000 images. 

The dataset contains a wide range of various electrical equipment, including power generation 

equipment, distribution equipment, industrial electrical equipment, and household electrical 

equipment. 

3. We demonstrate the effectiveness of our proposed method by validating it on three public 

datasets and comparing it with the SOTA methods on the electrical image dataset we introduced. 

Our proposed method outperforms all other methods and achieves the best performance.  

2. Methodology 

2.1. Problem Definition 

In few-shot image classification tasks, given a certain size of image dataset I, it is randomly 

divided into three subsets: Itrain, Ival and Itest . Itrain is used as the base dataset for pre-training the 

classification model. Assuming that the pre-training set has Cb categories, the mth image sample is 

denoted as xm, and its corresponding label is ym. Ival is used for validation, while Itest is used as the new 

class dataset for testing the trained model. For Ival and Itest, multiple N-way-K-shot subtasks are 

randomly sampled, with each task consisting of a support sample set (IS) and a query sample set (IQ). 

IS is constructed by randomly selecting N categories from Ival or Itest, and then randomly selecting K 

samples from each category. The set of the nth category is denoted as 
1

{( , )}
K

kn k k
yII 

  , and the kth 

image in the nth category is denoted as Ik. IQ is composed of Q samples randomly selected from each 

residual sample category, denoted as 
1

{ }
Q

qQ qII 
 , where Iq denotes the qth query sample. Therefore, 

the problem of few-shot image classification can be described as using the model trained on the base 

class dataset and the support sample set to make classification decisions for query samples. 
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2.2. FSC Network based on Global and Local Knowledge Distillation 

 

Figure 1. Network architecture of our proposed method. The input pairs that produce activations in 

the pre-trained teacher network produce similar activations in the student network. Global and local 

distillation bridges the gap between the feature representation of the student and teacher. 

We propose a novel few-shot electrical image classification algorithm based on knowledge 

distillation. Figure 1 shows the overall architecture of our network. We first trained a high-

performance teacher network through self-supervised learning, and then guided the training of the 

student network by the teacher network. To fully utilize the prior knowledge of the teacher network, 

we designed a knowledge distillation method based on global and local relationships. This method 

can transfer the global and local features of the images extracted by the teacher network to the student 

network, enabling the compact student network to learn more effective features about the images 

and achieve better image classification. 

2.2.1. Pre-train of Teacher Network 

The teacher model consists of a backbone convolutional neural network and two linear 

classifiers. The backbone network fθ(•) is used for feature extraction of images, one classifier Lw(•) is 

used for predicting the base class of image samples, and the other classifier Lr(•) is used for predicting 

the rotation category in self-supervised tasks. Additionally, each classifier is followed by a Softmax 

layer. M image samples are randomly selected from the base class dataset, and each image is rotated 

at 0°, 90°, 180°, and 270°, with its corresponding rotation label as ˆ
my = [0,1,2,3]. 

When image xm is fed into the teacher network, the d-dimensional feature representation fθ(xm) is 

extracted by the backbone network. The classification scores of the base class prediction classifier and 

the rotation prediction classifier for the features are expressed as Sb and Sr, as shown in Equation (1): 

Furthermore, the aforementioned classification scores are transformed into base class and 

rotation class prediction probabilities through a Softmax layer, as shown in Equation (2): 
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where Sbc denotes the cth element of the score vector Sb, Srr denotes the rth element of the score vector 

Sr, Cb denotes the number of base class labels, and ( )mmp cy x and ˆ( )mm
p ry x  are the probability 

output values of the base classifier and the rotation classifier, respectively. The cross-entropy loss 

function and the self-supervised loss function are calculated to obtain the training loss function, as 

shown in Equation (3):  

 

 

 

where ymc denotes the cth element of the one-hot encoded vector of ym, and ˆ
mry denotes the cth element 

of the one-hot encoded vector of ˆ
my . Based on the loss function in Equation (3), the parameters of 

the teacher network are optimized to complete the pre-training process. 

2.2.2. Global and Local Knowledge Distillation 

Firstly, a student network is constructed, which consists of a backbone neural network BФ(•) 

composed of a small number of convolutional layers and a linear classifier CH(•). Next, a batch of M 

images randomly selected from the base dataset Itrain is inputted into both the teacher network and 

the student network. The mth image is represented by feature maps ( )t
m mfz I  and ( )s

mm B Iz   

obtained from the backbone of the teacher network and the student network, respectively. Finally, 

the features are fed into the linear classifier to obtain the output value of the student network, as 

shown in Equation (4): 

Furthermore, the above output classification scores are transformed into classification prediction 

probabilities through the Softmax layer, as shown in Equation (5): 

 

 

 

 

where Smc denotes the cth element of the score vector Sm. 

The equation for calculating the cross-entropy loss function between the output values of a 

student network and the true labels is shown in Equation (6): 

 

 

 

In order to enable students to learn the representation of global features of images by the teacher 

network through online learning, we adopt the maximum mean discrepancy between the feature 

spaces of the two networks as the global loss function, which is calculated by Equation (7): 

 

 

 

In addition, we calculate the Euclidean distance between each sample feature in the two 

networks as the local loss function, and its calculation formula is shown in Equation (8): 

4

1 1 1 1

ˆ ˆ( , , ) log ( ) log ( ),
bM MC

m mmc m mr m
m c m r

L w r p c p ry y y yx x
   

       (3)

( ).s
mm HC zS   (4)

1

( ) ,
mc

b

mc

ms m C

c

Se
cp y x

Se


 



 
(5)

1

1 1

( , ) log ( ).
bM C

mmc s m
m c

H cy p yl x
 

    (6)

M M

2 ' ' '2 2 2
1 ' 1 1 ' 1 1 ' 1

1 1 1
( , ) .

M M

M M M M
t t T s T s Ts t

m mm m m m
m m m m m m

H z z z zl z z
M


     

      (7)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2023                    



 

 

 

 

In summary, the total loss function for the student network is shown in Equation (9). Based on 

Equation (9), the student network is trained, and the parameters in the network are updated until 

optimal, thereby completing the knowledge distillation process from the teacher network to the 

student network. 

 

2.2.3. Few-shot Evaluation 

After completing the knowledge distillation task in Section 2.2.2, the base classifiers in the 

student network are first removed. Then, the parameters of the backbone neural network BФ(•) are 

fixed, and features are extracted from both the support and query samples. Finally, based on N-way-

K-shot method, the query samples are classified using Equation (10), where the features of the kth 

support sample and the qth query sample are denoted as BФ(Ik) and BФ(Iq), respectively, and gφ{•} is a 

classifier with parameters φ. Any traditional classifier can be used to complete the classification 

prediction task. 

 

 

3. Experiments 

Firstly, we invested a substantial amount of time in constructing a dataset, namely EEI-100 

(electrical equipment image of 100 classes). Next, to assess the effectiveness of our proposed method, 

we performed ablation experiments on three public datasets and compared it with other few-shot 

image classification methods. Finally, we evaluated our method against SOTA approaches on EEI-

100 dataset, showcasing the superior performance of our approach. 

3.1. EEI-100 Dataset 

EEI-100 contains 100 classes of electrical equipment with 4000 images. The majority of the images 

were obtained through on-site collection, with a small number of images sourced from online 

platforms. To the best of our knowledge, this is one of the first datasets specifically designed for 

classification of electrical equipment. This dataset is an extension of our previous EEI-40 [29]. It 

includes substation equipment, distribution station equipment and common electrical equipment, 

ranging from large-scale equipment such as heavy-duty transformers to small-scale equipment such 

as circuit breakers. A few images from the proposed dataset illustrated in Figure 2. More images 

illustrated in Appendix A. 
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(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 2. Some images of EEI-100 dataset. They represent different electrical equipment. (a)Wind 

power tower; (b)Heavy-duty transformer; (c)Heavy-duty distribution cabinet; (d)Energy storage 

battery pack; (e)Electrical insulator; (f) Split-core current transformer; (g) Three-phase moto; (h) 

Heavy-duty circuit breaker; (i) Contactor; (j) Cooling fan; (k) Electric energy meter; (l)Dragline board. 

3.2. Experiments on Public Datasets 

We evaluate our knowledge distillation method on three widely used public datasets, namely 

MiniImageNet, CIFAR-FS, and CUB. These datasets are commonly adopted for comparing 

distillation methods. We report the classification accuracy results of our method compared with well-

known methods. 

3.2.1. Experiment Setup 

The experiments are conducted on a workstation equipped with NVIDIA 3090Ti GPU and 

implemented using Pytorch software. To ensure a fair comparison with current few-shot image 

classification methods, a commonly used 4-layer CNN and ResNet12 are adopted as the student 

network and teacher network, respectively. During the training phase, we use the SGD optimizer to 

optimize our models in all experiments, where the momentum is set to 0.9 and weight decay is set to 

5×10-4. We train for 100 epochs, with an initial learning rate of 0.025, which is reduced by half after 

60 epochs. In the testing phase, we conduct 5-way-1-shot and 5-way-5-shot tests. Specifically, we 

randomly perform 2000 classification subtasks on the testing dataset. In each subtask, 15 images are 

randomly selected from each class as query images for testing. The evaluation criterion for the 

algorithm's classification performance is the average accuracy of all subtasks, and the standard 

deviation of the accuracy under a 95% confidence interval should also be provided. 

Please note that we also conducted a similar experiment on the 1080Ti GPU and achieved 

comparable performance. This significantly alleviates the economic burden associated with model 

training. Leveraging a 4-layer CNN architecture, the student model occupies a mere 2MB in size, 

which is approximately 50 times smaller than the teacher model. This lightweight model can be 

deployed on diverse edge processors, substantially lowering the hardware requirements for its 

implementation. 

3.2.2. Parametric Analysis Experiment 

It can be seen from Equation (9) that α1 and α2 are important hyperparameters in the process of 

distilling the student network.  

Initially, we conducted experiments in which we temporarily ignored the influence of global 

knowledge by setting α1 to 0. Through this analysis, we observed that α2 near 1 yielded the best model 

performance.  

Building upon this observation, we proceeded to fix α2 at 1, and the value of parameter α1 was 

varied with a step size of 0.1 within the range of [0,1]. The test accuracy of the student network under 

different values of α1 is shown in Fig. 3(a) and (b). The results indicate that the model performance is 
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optimal when the value of α1 is 0.5. Therefore, the value of α1 was set to 0.5, and then α2 was varied 

with a step size of 0.01 within the range of [0,0.1]. The test accuracy of the student network under 

different values of α2 is shown in Fig. 3(c) and (d). The results reveal that the optimal value for α2 is 

0.1. 

Additionally, after completing the search for α1 and α2 within their respective ranges, we 

extended our exploration beyond the boundaries of [0,1] and [0,0.1]. However, we found that no 

values outside of these ranges yielded superior results. 

  

(a) (b) 

  

(c) (d) 

Figure 3. Test experiments under different values of α1 and α2 on three public datasets. (a) 1-shot test 

accuracy under different values of α1 ; (b) 5-shot test accuracy under different values of α1 ; (c) 1-shot 

test accuracy under different values of α2 ; (d) 5-shot test accuracy under different values of  α2;.  

3.2.3. Ablation Studies 

The innovation of this work lies in proposing a knowledge distillation algorithm for global and 

local relationships. In order to verify the effectiveness of the proposed method, detailed ablation 

experiments are conducted on three public datasets. The knowledge distillation algorithms using 

only global and local relationships are denoted as Global and Local, respectively, and their fusion is 

denoted as Global-Local. The classification accuracies of these methods on 5-way-1-shot and 5-way-

5-shot tasks are shown in Table 1.  

Table 1. Results (％) of ablation experiment 

Method Backbone 
MiniImageNet CIFAR-FS CUB 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

Global Conv4 57.32±0.84 72.90±0.64 66.40±0.93 80.44±0.67 70.20±0.93 83.88±0.57 

Local Conv4 57.65±0.83 73.06±0.64 66.63±0.93 80.64±0.67 70.12±0.93 83.66±0.57 

Global-

Local 
Conv4 57.86±0.83 73.38±0.62 67.04±0.91 80.84±0.68 70.44±0.92 84.19±0.56 

The results in the table indicate that for both 5-way-1-shot and 5-way-5-shot tasks on all datasets, 

the classification accuracy of Global-Local is consistently higher than that of Global and Local. The 
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experiments demonstrate that global and local relationships are complementary, and their fusion can 

extract richer image features. Therefore, the knowledge distillation algorithm based on global and 

local relationships can further improve the performance of knowledge distillation. 

3.2.4. Classification Experiment Compared with Existing Methods 

This paper compares our method with the SOTA methods in recent years, which are mainly 

divided into two categories: meta-learning-based methods and transfer learning-based methods. The 

comparison results with these methods are shown in Table 2. 

Table 2. Comparison results (％) of the experiment on three public datasets 

Method Backbone 
MiniImageNet CIFAR-FS CUB 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

Meta-learning 

Relational Conv4 50.44±0.82 65.32±0.70 55.00±1.00 69.30±0.80 62.45± 0.98 76.11± 0.69 

MetaOpt 

SVM 
Conv4 52.87±0.57 68.76±0.48 -* - - - 

PN+rot Conv4 53.63±0.43 71.70±0.36 - - - - 

CovaMNet Conv4 51.19±0.76 67.65± 0.63 - - 52.42±0.76 63.76±0.64 

DN4 Conv4 51.24±0.74 71.02±0.64 - - 46.84±0.81 74.92±0.64 

MeTAL Conv4 52.63±0.37 70.52±0.29 - -   

HGNN Conv4 55.63±0.20 72.48±0.16 - - 69.02±0.22 83.20±0.15 

DSFN Conv4 50.21±0.64 72.20±0.51 - - - - 

PSST Conv4 - - 64.37±0.33 80.42± 0.32 - - 

Transfer-learning 

Baseline++ Conv4 48.24±0.75 66.43±0.63 - - 60.53±0.83 79.34±0.61 

Neg-Cosine Conv4 52.84±0.76 70.41±0.66 - - - - 

SKD Conv4 48.14 66.36 - - - - 

CGCS Conv4 55.53±0.20 72.12±0.16 - - - - 

Our method Conv4 57.86±0.83 73.38±0.62 67.04±0.91 80.84±0.68 70.44±0.92 84.19±0.56 

* - indicates that the method described in the literature was not evaluated on certain datasets. 

According to the results in Table 2, the following observations can be made: 

1. On the MiniImageNet dataset, our proposed method achieves the best classification 

performance. Compared with the best performing method in the meta-learning-based category, 

HGNN, our method outperforms it by 2.23% and 0.9% on 1-shot and 5-shot classification tasks, 

respectively. In the transfer learning-based category, compared with the best performing 

method, CGCS, our method outperforms it by 2.33% and 1.26% on 1-shot and 5-shot 

classification tasks, respectively. 

2. On the CIFAR-FS dataset, our proposed method also achieves the top performance. Our method 

outperforms the best performing method, PSST, by 2.67% and 0.42% on 1-shot and 5-shot 

classification tasks, respectively. 

3. On the CUB-200-2011 dataset, our proposed method achieves the highest classification 

performance. Our method outperforms the best performing method, HGNN, by 1.42% and 

0.99% on 1-shot and 5-shot classification tasks, respectively. 

 

3.3. Experiments on EEI-100 Dataset 
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Furthermore, we compare the performance of our proposed method with the SOTA methods on 

EEI-100 dataset. The experimental process employs the same parameter selection strategy as before. 

3.3.1. Parametric Analysis Experiment 

By following the approach outlined in Section 3.2.2, the values of parameters α1 and α2 are 

determined to optimize the performance of the model on EEI-100. Experimental results show that α1 

has the optimal value of 0.6 within the range of [0.1,1], as illustrated in Figure 4(a). Similarly, α2 has 

the optimal value of 0.1 within the range of [0.01,0.1], as illustrated in Figure 4(b). 

Figure 4. Test experiments under different values of α1 and α2 on EEI-100 dataset. (a) 1-shot and 

5-shot test accuracy under different values of α1; (b) 1-shot and 5-shot test accuracy under different 

values of α2. 

3.3.2. Comparison Experiment with Existing Methods 

To demonstrate the superiority of our proposed method in the classification of electrical 

equipment images, this section presents a comparative experiment with three existing methods, 

namely CGCS, Neg-Cosine, and HGNN, on the EEI-100 dataset. These three methods have recently 

achieved good performance on public datasets. The classification accuracy of the test set is presented 

in Table 3. Specifically, our method achieves the highest classification accuracy (up to 94.12％) 

compared with the other methods. 

Table 3. Comparison results (％) of the experiment on EEI-100 dataset 

Method 1-shot 5-shot  

CGCS 72.85±0.68 89.68±0.27  

Neg-Cosine 74.57±0.63 90.54±0.25  

HGNN 75.61±0.62 93.54±0.24  

Our method 75.80±0.67 94.12±0.20  

4. Conclusion and Future Work 

In conclusion, this paper presents a novel few-shot electrical image classification algorithm 

based on knowledge distillation. By leveraging the few-shot learning method and employing global 

and local knowledge distillation, our algorithm achieves high classification accuracy with only a 

limited number of image samples. The results obtained on the newly introduced EEI-100 dataset 

demonstrate that our method achieves a remarkable prediction accuracy of 94.12% using just 5-shot 

images. 

The lightweight and high-performance nature of our model enables its practical application in 

the online inspection of electrical equipment in smart grids, effectively enhancing the efficiency of 

detection and maintenance in the power system. Furthermore, the training and deployment of our 

model do not impose significant hardware requirements, making it accessible to a wide range of 

researchers. 

  

(a) (b) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 June 2023                    



 

As future work, we plan to explore a pre-training method to separate the foreground and 

background, as different backgrounds may negatively affect distillation. Additionally, we plan to use 

a multi-stage fusion of global and local features during the distillation process. This can provide a 

better understanding of the underlying structure of the complex model and the relationship between 

different stages of the models. 
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Appendix A 

In this appendix, more images of the EEI-100 dataset proposed by us are presented. However, we regret to 

inform that due to the fact that some image data were collected in specific scenarios, the device information in 

the pictures cannot be disclosed. Therefore, we are unable to fully release the entire dataset here. 

Abbreviations 

SOTA    State-of-the-art 

UAV     Unmanned aerial vehicle  

CNN     Convolutional neural network  

FSL      Few-shot learning 

FSC      Few-shot classification 
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Appendix A   Few images of EEI-100 dataset 
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