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Abstract: With the increasing utilization of intelligent mobile devices for online inspection of
electrical equipment in smart grids, the limited computing power and storage capacity of these
devices pose challenges for deploying large algorithm models and it’s hard to obtain a substantial
number of images of electrical equipment in public. In this paper, we propose a novel distillation
method that compresses the knowledge of teacher networks into a compact few-shot classification
network, employing a global and local knowledge distillation strategy. Central to our method is
exploiting the global and local relationship between the features exacted by the backbone of the
teacher network and student network. We compare our method with recent state-of-the-art (SOTA)
methods on three public datasets and achieve superior performance. Additionally, we contribute a
new dataset, namely EEI-100, which is specifically designed for classification of electrical
equipment. We validate our method on this dataset and demonstrate its exceptional prediction
accuracy of 94.12% when utilizing only 5-shot images.
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1. Introduction

As an essential component of the power system, daily inspection of electrical equipment is
imperative to ensure the secure and stable operation of the power system [1]. The conventional
manual screening and analysis approach can no longer meet the escalating demand for image
analysis of electrical equipment. With the advent of the smart grid, an increasing number of
unmanned aerial vehicles (UAVs) are being deployed for online inspection. The application of
artificial intelligence techniques for condition monitoring of electrical equipment can significantly
enhance the efficiency of detection and maintenance. Image classification is a crucial prerequisite for
equipment condition monitoring based on image information. For instance, to monitor the normalcy
of electrical equipment such as transformers or insulators, their images must be initially
distinguished.

With the advancement of deep learning in image recognition applications, various classification
and recognition methods for electrical equipment images based on deep convolutional neural
network (CNN) have been proposed. However, deep CNN training often relies on large-scale labeled
data, which is challenging to obtain for all categories of electrical equipment due to their safety and
sensitivity. Therefore, this paper adopts the few-shot learning (FSL) method for electrical equipment
image classification. The proposed approach involves randomly partitioning the power image
dataset into a base class set and a new class set. The model backbone is trained on the base class set,
and subsequently combined with the classifier to accomplish the recognition training of the new class,
utilizing only a limited number of image samples.

Furthermore, power inspection heavily relies on intelligent mobile devices, such as inspection
robots and UAVs. However, due to the limited storage capacity of these devices, the classification
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model's capacity must not be excessively large. Otherwise, it cannot be deployed on such mobile
devices. To address these challenges, this paper presents a novel few-shot electrical image
classification algorithm based on knowledge distillation.

Knowledge distillation [2,3] is an efficient model compression method that compresses the
knowledge of teacher networks into very small student networks. Early knowledge distillation
methods that minimize the KL (Kullback-Leibler) divergence of predicted class probability
distributions between student and teacher networks rely on the output of the last layer of the model
and learn a limited amount of information. Recent work has begun to study the features of the middle
layer of the distillation network, focusing on the learning of local features of the image. However,
there are both differences in the global appearance and local details between electrical equipment,
and the algorithm model must fully mine this information in the learning process in order to
comprehensively represent the electrical equipment images and achieve higher classification
precision. Therefore, this paper proposes a global and local knowledge distillation method for few-
shot classification of electrical equipment.

1.1. Few-shot Classification

In recent years, FSL has attracted researchers’ widespread attention in the field of computer
vision and machine learning, and a large number of few-shot image classification algorithms have
been proposed. Depending on the learning paradigm used, these methods can be broadly divided
into two categories: meta-learning-based methods and transfer-based learning methods.

Meta-learning is a promising approach that leverages episodic training to simulate the real test
environment by randomly selecting several subtasks. This enables the acquisition of meta-knowledge
that facilitates the rapid identification of new categories. Based on the type of meta-knowledge
learned, meta-learning methods can be classified into optimization-based and metric-based methods.
Optimization-based meta-learning methods employ a two-tier optimization process to learn the
optimizer for quickly processing new tasks. A well-known example of such methods is Model-
Agnostic Meta-Learning (MAML) [4]. MAML obtains the optimal initialization parameters of the
model through meta-training, enabling the model to adapt to new tasks after a few gradient updates.
In addition, the learning rate and gradient direction are also important factors for the optimizer [5,6].
However, these methods require storage and computation of higher-order derivatives, resulting in
high memory and computational costs. On the other hand, metric-based methods use nonparametric
classifiers as the basic learner, avoiding the aforementioned issues. The key factors of these methods
are feature extraction and similarity measurement, which offer ample room for improvement. PARN
[7] proposed a feature extractor which is learning an offset for each cell in the convolution kernel to
extract more efficient features, building by deformable convolutional layers. CC+rot [8] improved the
transfer ability of feature extractors by adopting auxiliary self-supervised tasks. Zhang et al. [9] used
the pre-trained visual saliency detection model to segment the foreground and background of the
image, and then extract the foreground and background features respectively. With the proven
effectiveness of attention mechanisms in extracting discriminating features, several few-shot
classification (FSC) tasks have adopted this method, including CAN [10], AWGIM [11], and CTM
[12]. Additionally, in metric-based meta-learning methods, the measurement of similarity is also
crucial. SEN [13] combines Euclidean distance and norm distance to improve the effectiveness of
Euclidean distance measurement in high-dimensional spaces. FPN [14] calculated the reconstruction
error between the support sample and the query sample as the similarity score. DN4 [15] and Deep
EMD [16] obtain rich similarity measures directly on local features.

Recent studies have indicated that FSC of transfer-learning method can attain comparable
performance to that of meta-learning method with complex episodic training. Such methods typically
combine pre-trained feature extractors on all base class datasets with arbitrary traditional classifiers
to make classification decisions for query samples of unknown classes. Reference [17] showed that
pre-training the entire base class dataset using the cross-entropy loss function, followed by fine-
tuning the pre-trained model using support samples of the visible class, can provide a powerful
baseline for FSC tasks. Since then, several works have been proposed to improve the representation
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performance of feature extractors. For example, Neg-Cosin [18] proposed to use the non-negative
interval Cosine loss function to optimize the model, thereby increasing the distance between the
training sample and its corresponding parametric prototype, which can effectively improve the
generalization performance of the model. S2M2[19] used manifold mixing as an effective
regularization method to improve the generalization performance of the model. Reference [20] and
[21] used rotation prediction and mirror prediction as self-supervised tasks to add to the pre-training
process, and experimental results show that self-supervised tasks are effective methods to improve
feature representation performance.

In conclusion, many recent works have emphasized the importance of feature representation,
both meta-learning-based and transfer-learning-based methods tended to employ highly complex
networks to enhance feature representation. Therefore, deploying these methods to real-world
applications usually occupies high computing resources (storage space, computing power, etc.) and
introduces high time delays, which cannot meet the actual needs of the classification tasks of electrical
equipment images. Hence, in this study, we employ the knowledge distillation-based model
compression algorithm to accomplish the task of few-shot image classification to reduce the model
parameters.

1.2. Knowledge Distillation Methods

Knowledge distillation is one of the most effective model compression methods, which has
garnered significant research interest in both industry and academia due to its simple training
strategy and effective performance. It leverages the knowledge acquired by a teacher network with a
large scale to guide the training of a small-scale student network, enabling the latter to achieve
comparable performance despite having fewer parameters.

Two key elements in current knowledge distillation methods can be summarized as: (1) the
definition of effective knowledge types, (2) Effective transfer of knowledge from teacher networks to
student networks. The classical knowledge distillation method minimizes the KL divergence of the
predicted class probability distribution between the student and teacher networks. In order to make
better use of the knowledge information contained in the teacher network, the follow-up work
focuses more on how to better mine the feature knowledge hidden in the middle layer of the network.
For example, AT [22] proposed to take the spatial attention of the hidden layer features of the teacher
network as knowledge, and instructs the student network to imitate its attention feature map.
Recently, the relationship between samples features has been proposed as a more effective
knowledge. RKD [23] proposed a relational knowledge distillation method, which used distance and
angle to measure the relationship between samples features, as a valid type of knowledge during
distillation. Peng et al. [24] used the kernel function to obtain higher-order relationships between
samples features as effective distillating knowledge.

Although the model compression methods based on feature relation knowledge mentioned
above can effectively improve the performance of small-capacity student networks, the current work
only focuses on the local relationship between individual sample features, ignoring the global
relationship between samples features. Therefore, this paper proposes a method based on global and
local knowledge distillation and applies it to the task of FSC of electrical equipment images.

1.3. Electrical Images Classification

Image-based equipment condition monitoring has been proven to be effective in enhancing the
working life of equipment and providing early failure warning. In recent years, machine learning has
made significant progress in the field of image classification for electrical equipment. Bogdann
presented a machine learning method for determining the state of each switch by analyzing images
of the switches in power distribution substations [25].Zhang implemented FINet based on improved
YOLOVS5 to inspect the insulators and their defects for ensuring the safety and stability of power
system [26].To address few fault cases and deficient monitoring information in transformer
diagnostic tasks, Xu provides an improved few-shot learning method based on approximation space
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and belief functions [27]. Yi proposed a label distribution CNNs classifier to estimate the aging time

of the conductor morphology of high-voltage transmission line [28].

It is noteworthy that the majority of the aforementioned investigations have concentrated on a
restricted range of electrical apparatus. These models necessitate a substantial quantity of training
data to guarantee optimal performance. Nevertheless, acquiring adequate electrical equipment
images in a practical setting may prove to be challenging, and the proportion of labeled samples is
minimal. To a certain extent, the classification of electrical equipment images does not truly belong
to a big data problem. Rather, it belongs to FSL domains.

In this paper, we propose three main contributions:

1. We present a novel distillation approach that compresses the knowledge of teacher networks
into a compact student network, enabling efficient few-shot classification. The incorporation of
global and local relationship strategies during the distillation process effectively directs the
student network towards achieving performance levels akin to those of the teacher network.

2. We contribute a new dataset that contains 100 classes of electrical equipment with 4000 images.
The dataset contains a wide range of various electrical equipment, including power generation
equipment, distribution equipment, industrial electrical equipment, and household electrical
equipment.

3. We demonstrate the effectiveness of our proposed method by validating it on three public
datasets and comparing it with the SOTA methods on the electrical image dataset we introduced.
Our proposed method outperforms all other methods and achieves the best performance.

2. Methodology

2.1. Problem Definition

In few-shot image classification tasks, given a certain size of image dataset /, it is randomly
divided into three subsets: liain, fvar and Iiest . Irain is used as the base dataset for pre-training the
classification model. Assuming that the pre-training set has C, categories, the mt image sample is
denoted as x,, and its corresponding label is y,. I,a/is used for validation, while /.y is used as the new
class dataset for testing the trained model. For .4 and Il.s, multiple N-way-K-shot subtasks are
randomly sampled, with each task consisting of a support sample set (Is) and a query sample set (Ip).
Is is constructed by randomly selecting N categories from /, Or iy, and then randomly selecting K
samples from each category. The set of the nt" category is denoted as [, ={(/1,»,)};, ,and the k
image in the nt category is denoted as . Ip is composed of Q samples randomly selected from each

residual sample category, denoted as [, =1{/ q}qQ=1 , where I, denotes the q query sample. Therefore,

the problem of few-shot image classification can be described as using the model trained on the base
class dataset and the support sample set to make classification decisions for query samples.
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2.2. FSC Network based on Global and Local Knowledge Distillation
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Figure 1. Network architecture of our proposed method. The input pairs that produce activations in
the pre-trained teacher network produce similar activations in the student network. Global and local
distillation bridges the gap between the feature representation of the student and teacher.

We propose a novel few-shot electrical image classification algorithm based on knowledge
distillation. Figure 1 shows the overall architecture of our network. We first trained a high-
performance teacher network through self-supervised learning, and then guided the training of the
student network by the teacher network. To fully utilize the prior knowledge of the teacher network,
we designed a knowledge distillation method based on global and local relationships. This method
can transfer the global and local features of the images extracted by the teacher network to the student
network, enabling the compact student network to learn more effective features about the images
and achieve better image classification.

2.2.1. Pre-train of Teacher Network

The teacher model consists of a backbone convolutional neural network and two linear
classifiers. The backbone network fy(¢) is used for feature extraction of images, one classifier L,(*) is
used for predicting the base class of image samples, and the other classifier L,(*) is used for predicting
the rotation category in self-supervised tasks. Additionally, each classifier is followed by a Softmax
layer. M image samples are randomly selected from the base class dataset, and each image is rotated

at 0°,90°, 180°, and 270°, with its corresponding rotation label as _)’> w=10,1,2,3].

When image x, is fed into the teacher network, the d-dimensional feature representation fs(x») is
extracted by the backbone network. The classification scores of the base class prediction classifier and
the rotation prediction classifier for the features are expressed as S and S,, as shown in Equation (1):

Sy= Lo(f Jxm)
{sr = L(f o). )

Furthermore, the aforementioned classification scores are transformed into base class and
rotation class prediction probabilities through a Softmax layer, as shown in Equation (2):

oSe
p,=clx)==
S
c=1
S,
p (G =rlxn)=——0,
3 S,

r=1
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where S;. denotes the cth element of the score vector Sy, S, denotes the rth element of the score vector

S,, Cpdenotes the number of base class labels, and p(y,=c |xm) and p(); m T |xm) are the probability
output values of the base classifier and the rotation classifier, respectively. The cross-entropy loss
function and the self-supervised loss function are calculated to obtain the training loss function, as
shown in Equation (3):

M Cy M 4
L(O,w,r)= ZZ wlogp(y, =clx,) =2 > 9, logp(P,=r|x.). ()

m=1 c=1 m=1 r=1

where y,.c denotes the cth element of the one-hot encoded vector of y,, and j denotes the ct element
of the one-hot encoded vector of J . Based on the loss function in Equation (3), the parameters of

the teacher network are optimized to complete the pre-training process.

2.2.2. Global and Local Knowledge Distillation

Firstly, a student network is constructed, which consists of a backbone neural network B(*)
composed of a small number of convolutional layers and a linear classifier Ci(¢). Next, a batch of M
images randomly selected from the base dataset /;ix is inputted into both the teacher network and

the student network. The m® image is represented by feature maps z,=f(I,) and . =B L)

obtained from the backbone of the teacher network and the student network, respectively. Finally,
the features are fed into the linear classifier to obtain the output value of the student network, as
shown in Equation (4):

Sn=0Culzun) 4)

Furthermore, the above output classification scores are transformed into classification prediction
probabilities through the Softmax layer, as shown in Equation (5):

e (‘
Py, =clxn) =7,
| Cy Sm (5)

where S, denotes the cth element of the score vector S,,.

The equation for calculating the cross-entropy loss function between the output values of a
student network and the true labels is shown in Equation (6):

L) ==Y . logp (v, =c|xn). 6)

m=1 c=1

In order to enable students to learn the representation of global features of images by the teacher
network through online learning, we adopt the maximum mean discrepancy between the feature
spaces of the two networks as the global loss function, which is calculated by Equation (7):

1 M M . 1 M M .
1(¢,H) = Zszzm MDD IET NP I DN )
m=1m'=1 M m=1 m'=1 M m=1m'=1

In addition, we calculate the Euclidean distance between each sample feature in the two
networks as the local loss function, and its calculation formula is shown in Equation (8):
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In summary, the total loss function for the student network is shown in Equation (9). Based on
Equation (9), the student network is trained, and the parameters in the network are updated until
optimal, thereby completing the knowledge distillation process from the teacher network to the
student network.

L(¢’H):ll(¢sH)+a112(¢5H)+062l3(¢sH)- (9)

2.2.3. Few-shot Evaluation

After completing the knowledge distillation task in Section 2.2.2, the base classifiers in the
student network are first removed. Then, the parameters of the backbone neural network Bo(*) are
fixed, and features are extracted from both the support and query samples. Finally, based on N-way-
K-shot method, the query samples are classified using Equation (10), where the features of the kt
support sample and the q™ query sample are denoted as B«(1;) and B«(1,), respectively, and g,{*} is a
classifier with parameters ¢. Any traditional classifier can be used to complete the classification
prediction task.

P, =8, ABAIN Y BAI}- (10)

3. Experiments

Firstly, we invested a substantial amount of time in constructing a dataset, namely EEI-100
(electrical equipment image of 100 classes). Next, to assess the effectiveness of our proposed method,
we performed ablation experiments on three public datasets and compared it with other few-shot
image classification methods. Finally, we evaluated our method against SOTA approaches on EEI-
100 dataset, showcasing the superior performance of our approach.

3.1. E£/-100 Dataset

EEI-100 contains 100 classes of electrical equipment with 4000 images. The majority of the images
were obtained through on-site collection, with a small number of images sourced from online
platforms. To the best of our knowledge, this is one of the first datasets specifically designed for
classification of electrical equipment. This dataset is an extension of our previous EEI-40 [29]. It
includes substation equipment, distribution station equipment and common electrical equipment,
ranging from large-scale equipment such as heavy-duty transformers to small-scale equipment such
as circuit breakers. A few images from the proposed dataset illustrated in Figure 2. More images
illustrated in Appendix A.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 June 2023

Figure 2. Some images of EEI-100 dataset. They represent different electrical equipment. (a)Wind
power tower; (b)Heavy-duty transformer; (c)Heavy-duty distribution cabinet; (d)Energy storage
battery pack; (e)Electrical insulator; (f) Split-core current transformer; (g) Three-phase moto; (h)
Heavy-duty circuit breaker; (i) Contactor; (j) Cooling fan; (k) Electric energy meter; (I)Dragline board.

3.2. Experiments on Public Datasets

We evaluate our knowledge distillation method on three widely used public datasets, namely
MinilmageNet, CIFAR-FS, and CUB. These datasets are commonly adopted for comparing
distillation methods. We report the classification accuracy results of our method compared with well-
known methods.

3.2.1. Experiment Setup

The experiments are conducted on a workstation equipped with NVIDIA 3090Ti GPU and
implemented using Pytorch software. To ensure a fair comparison with current few-shot image
classification methods, a commonly used 4-layer CNN and ResNet12 are adopted as the student
network and teacher network, respectively. During the training phase, we use the SGD optimizer to
optimize our models in all experiments, where the momentum is set to 0.9 and weight decay is set to
5x10-4. We train for 100 epochs, with an initial learning rate of 0.025, which is reduced by half after
60 epochs. In the testing phase, we conduct 5-way-1-shot and 5-way-5-shot tests. Specifically, we
randomly perform 2000 classification subtasks on the testing dataset. In each subtask, 15 images are
randomly selected from each class as query images for testing. The evaluation criterion for the
algorithm's classification performance is the average accuracy of all subtasks, and the standard
deviation of the accuracy under a 95% confidence interval should also be provided.

Please note that we also conducted a similar experiment on the 1080Ti GPU and achieved
comparable performance. This significantly alleviates the economic burden associated with model
training. Leveraging a 4-layer CNN architecture, the student model occupies a mere 2MB in size,
which is approximately 50 times smaller than the teacher model. This lightweight model can be
deployed on diverse edge processors, substantially lowering the hardware requirements for its
implementation.

3.2.2. Parametric Analysis Experiment

It can be seen from Equation (9) that a1 and a2 are important hyperparameters in the process of
distilling the student network.

Initially, we conducted experiments in which we temporarily ignored the influence of global
knowledge by setting a1 to 0. Through this analysis, we observed that a2 near 1 yielded the best model
performance.

Building upon this observation, we proceeded to fix a2 at 1, and the value of parameter a1 was
varied with a step size of 0.1 within the range of [0,1]. The test accuracy of the student network under
different values of a1 is shown in Fig. 3(a) and (b). The results indicate that the model performance is
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optimal when the value of a1 is 0.5. Therefore, the value of a1 was set to 0.5, and then a2 was varied
with a step size of 0.01 within the range of [0,0.1]. The test accuracy of the student network under
different values of a2 is shown in Fig. 3(c) and (d). The results reveal that the optimal value for az is
0.1.

Additionally, after completing the search for a1 and a2 within their respective ranges, we
extended our exploration beyond the boundaries of [0,1] and [0,0.1]. However, we found that no
values outside of these ranges yielded superior results.
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Figure 3. Test experiments under different values of an and o on three public datasets. (a) 1-shot test
accuracy under different values of a; (b)5-shot test accuracy under different values of o ; (c) 1-shot
test accuracy under different values of a ; (d) 5-shot test accuracy under different values of ;.

3.2.3. Ablation Studies

The innovation of this work lies in proposing a knowledge distillation algorithm for global and
local relationships. In order to verify the effectiveness of the proposed method, detailed ablation
experiments are conducted on three public datasets. The knowledge distillation algorithms using
only global and local relationships are denoted as Global and Local, respectively, and their fusion is
denoted as Global-Local. The classification accuracies of these methods on 5-way-1-shot and 5-way-
5-shot tasks are shown in Table 1.

Table 1. Results (%5) of ablation experiment

MinilmageNet CIFAR-FS CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Global Conv4 57.32+0.84 72.90+0.64 66.40+0.93 80.44+0.67 70.20+0.93 83.88+0.57
Local Conv4 57.65+0.83 73.06+0.64 66.63+0.93 80.64+0.67 70.12+0.93 83.66+0.57
Global-
Local

Method Backbone

Conv4 57.86+0.83 73.38+0.62 67.04+0.91 80.84+0.68 70.44+0.92 84.19+0.56

The results in the table indicate that for both 5-way-1-shot and 5-way-5-shot tasks on all datasets,
the classification accuracy of Global-Local is consistently higher than that of Global and Local. The
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experiments demonstrate that global and local relationships are complementary, and their fusion can
extract richer image features. Therefore, the knowledge distillation algorithm based on global and
local relationships can further improve the performance of knowledge distillation.

3.2.4. Classification Experiment Compared with Existing Methods

This paper compares our method with the SOTA methods in recent years, which are mainly
divided into two categories: meta-learning-based methods and transfer learning-based methods. The
comparison results with these methods are shown in Table 2.

Table 2. Comparison results (%) of the experiment on three public datasets

Method Backbone MinilmageNet CIFAR-FS CUB
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Meta-learning
Relational ~ Conv4 50.44+0.82 65.324+0.70 55.00£1.00 69.30+0.80 62.45+0.98 76.11+ 0.69
Mgz;ﬁpt Convd 52.87+0.57 68.76£048 -+ - - :
PN+rot Conv4 53.63+0.43 71.70+0.36 - - - -
CovaMNet Conv4 51.194+0.76 67.65+ 0.63 - - 52.4240.76 63.76+0.64
DN4 Conv4 51.24+0.74 71.02+0.64 - - 46.84+0.81 74.92+0.64
MeTAL Conv4 52.63+0.37 70.52+0.29 - -
HGNN Conv4 55.63+0.20 72.48+0.16 - - 69.02+0.22 83.20+0.15
DSFN Conv4 50.214+0.64 72.20+0.51 - - - -
PSST Conv4 - - 64.37+0.33 80.42+ 0.32 - -
Transfer-learning
Baseline++ Conv4 48.24+0.75 66.43+0.63 - - 60.53+0.83 79.34+0.61
Neg-Cosine Conv4 52.84+0.76 70.41+0.66 - - - -
SKD Conv4 48.14 66.36 - - - -
CGCSs Conv4 55.53+0.20 72.12+0.16 - - - -
Our method Conv4 57.86+0.83 73.38+0.62 67.04+0.91 80.84+0.68 70.44+0.92 84.19+0.56

* - indicates that the method described in the literature was not evaluated on certain datasets.

According to the results in Table 2, the following observations can be made:

1. On the MinilmageNet dataset, our proposed method achieves the best classification
performance. Compared with the best performing method in the meta-learning-based category,
HGNN, our method outperforms it by 2.23% and 0.9% on 1-shot and 5-shot classification tasks,
respectively. In the transfer learning-based category, compared with the best performing
method, CGCS, our method outperforms it by 2.33% and 1.26% on 1-shot and 5-shot
classification tasks, respectively.

2. Onthe CIFAR-FS dataset, our proposed method also achieves the top performance. Our method
outperforms the best performing method, PSST, by 2.67% and 0.42% on 1-shot and 5-shot
classification tasks, respectively.

3. On the CUB-200-2011 dataset, our proposed method achieves the highest classification
performance. Our method outperforms the best performing method, HGNN, by 1.42% and
0.99% on 1-shot and 5-shot classification tasks, respectively.

3.3. Experiments on EEI-100 Dataset
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Furthermore, we compare the performance of our proposed method with the SOTA methods on
EEI-100 dataset. The experimental process employs the same parameter selection strategy as before.

3.3.1. Parametric Analysis Experiment

By following the approach outlined in Section 3.2.2, the values of parameters a1 and a2 are
determined to optimize the performance of the model on EEI-100. Experimental results show that a1
has the optimal value of 0.6 within the range of [0.1,1], as illustrated in Figure 4(a). Similarly, a2 has
the optimal value of 0.1 within the range of [0.01,0.1], as illustrated in Figure 4(b).
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Figure 4. Test experiments under different values of oz and a on EEI-100 dataset. (a) 1-shot and
5-shot test accuracy under different values of a; (b) 1-shot and 5-shot test accuracy under different
values of ae.

3.3.2. Comparison Experiment with Existing Methods

To demonstrate the superiority of our proposed method in the classification of electrical
equipment images, this section presents a comparative experiment with three existing methods,
namely CGCS, Neg-Cosine, and HGNN, on the EEI-100 dataset. These three methods have recently
achieved good performance on public datasets. The classification accuracy of the test set is presented
in Table 3. Specifically, our method achieves the highest classification accuracy (up to 94.12%)
compared with the other methods.

Table 3. Comparison results (%) of the experiment on EEI-100 dataset

Method 1-shot 5-shot
CGCS 72.85+0.68 89.68+0.27
Neg-Cosine 74.57+0.63 90.54+0.25
HGNN 75.61+0.62 93.54+0.24
Our method 75.80+0.67 94.12+0.20

4. Conclusion and Future Work

In conclusion, this paper presents a novel few-shot electrical image classification algorithm
based on knowledge distillation. By leveraging the few-shot learning method and employing global
and local knowledge distillation, our algorithm achieves high classification accuracy with only a
limited number of image samples. The results obtained on the newly introduced EEI-100 dataset
demonstrate that our method achieves a remarkable prediction accuracy of 94.12% using just 5-shot
images.

The lightweight and high-performance nature of our model enables its practical application in
the online inspection of electrical equipment in smart grids, effectively enhancing the efficiency of
detection and maintenance in the power system. Furthermore, the training and deployment of our
model do not impose significant hardware requirements, making it accessible to a wide range of
researchers.
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As future work, we plan to explore a pre-training method to separate the foreground and
background, as different backgrounds may negatively affect distillation. Additionally, we plan to use
a multi-stage fusion of global and local features during the distillation process. This can provide a
better understanding of the underlying structure of the complex model and the relationship between
different stages of the models.

Author Contributions: Conceptualization, B.Z. and J.G.; methodology, B.Z.; software, C.Y.; validation, B.Z. and
J.Z.; formal analysis, B.Z.; investigation, X.Z.; resources, ].Z.; data curation, X.Z.; writing—original draft
preparation, B.Z.; writing—review and editing, ].G.

Funding: This research was supported in part by the National Natural Science Foundation of China under Grant
No. U2066203 and No. 61973178, and in part by the Key Research & Development Program of Jiangsu Province
under Grant No. BE2021063.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset proposed in this paper can be obtained from the author with a
reasonable request.

Conflicts of Interest: The authors declare no conflict of interest in preparing this article.

Appendix A

In this appendix, more images of the EEI-100 dataset proposed by us are presented. However, we regret to
inform that due to the fact that some image data were collected in specific scenarios, the device information in
the pictures cannot be disclosed. Therefore, we are unable to fully release the entire dataset here.

Abbreviations

SOTA State-of-the-art

UAV Unmanned aerial vehicle
CNN Convolutional neural network
FSL Few-shot learning

FSC Few-shot classification
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Appendix A Few images of EEI-100 dataset




