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Abstract: Tolman VII solution [1] is an exact analytic solution to the Einstein field equations describing 1

the space-time of a static spherically symmetric distribution of matter. The solution has been shown 2

to be capable of describing the interior of compact objects like neutron stars. Generalized [2] and 3

modified [3] versions of the solution are also available in the literature, which have been subsequently 4

developed to accommodate more realistic descriptions of neutron stars. The stability of the modified 5

Tolman VII solution has recently been analyzed by Posada et al [4], who evaluated a critical value of 6

the adiabatic index above which the stellar configuration becomes unstable against radial oscillations. 7

In this paper, making use of the generalized version of the Tolman VII solution, we prescribe an 8

upper bound on the compactness (M/R) beyond which the star becomes unstable. Our investigation 9

is based on the stability analysis of a star against radial oscillations developed by Chandrasekhar 10

[5]. The analysis brings out to attention the role of a particular model parameter in the generalized 11

Tolman VII solution which can be linked to the inhomogeneity of the matter distribution vis-a-vis 12

equation of state (EOS). 13

Keywords: Compact star; Tidal force; Stability; Exact solution. 14

0. Introduction 15

Compact stars are unique research laboratories in the sky for gaining insight into 16

the nature of particle interactions in extreme conditions such as extreme density, pressure 17

and gravity. Compact stars exist either in binaries or in isolation. In the era of multi- 18

messenger astronomy, electromagnetic and gravitational wave signals and ground-based 19

high-energy laboratory experiments provide valuable information that can constrain the 20

compact star equation of state (EOS). Keeping in mind the systematic errors that might 21

occur in the measurements of masses and radii of compact stars [6], an accurate estimation 22

of the mass and radius of a compact star is crucial for gaining insight into the EOS of 23

a compact star. Ideally, if the EOS is known, it is possible to numerically integrate the 24

Tolman-Oppenheimer-Volkoff (TOV) equations to model a sequence of compact stars and 25

the maximum compactness for any given EOS can be obtained from the M − R plot. An 26

alternative method to study compact stars is to develop meaningful exact solutions to 27

Einstein field equations describing spherically symmetric compact objects. It is noteworthy 28

that while the exterior solution to a static spherically symmetric distribution of uncharged 29

matter is unique (the Schwarzschild solution), an infinite class of solutions can be obtained 30

for the interior matter distribution. Corresponding to the Schwarzschild exterior solution, 31

an interior solution was obtained by Schwarzschild [7] himself, which describes the interior 32

geometry of a static spherically symmetric incompressible fluid distribution. Subsequently, 33

numerous physically acceptable and well-behaved exact solutions have been developed 34

to model compact stars like neutron and quark stars. Tolman provided one such solution 35

[1], which is essentially a two-parameter [M, ρc] family of solutions where ρc is the central 36

density. The analytic solution was obtained for a specific fall-off behaviour of the energy 37
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density. Recently, for better agreement with more realistic neutron star EOS, Jiang and 38

Yagi [8] introduced an additional parameter α in the density profile thereby obtaining a 39

three-parameter [M, ρc, α] family of solutions. 40

An essential physical requirement of any stellar description is its stability. Hence, 41

it becomes imperative to investigate the impact of the model parameters on the stability 42

of the configuration. Internal thermodynamic processes and/or external tidal forces can 43

influence the stability of a star. In a recent paper, Das et al [9] proposed a method to 44

estimate the Tidal Love Number (TLN) of a spherically symmetric relativistic star which 45

is a measure of tidal forces required to deform a star from its spherical distribution [10]. 46

The question we want to address is - what could be the maximum bound on stellar model 47

parameters beyond which the stellar configuration loses its equilibrium? Chandrasekhar 48

[5], in 1964, proposed a method to study the stability of a spherically symmetric stellar 49

configuration against radial oscillations. A catalogue to solve the dynamical equation 50

governing the stellar equilibrium under radial oscillations was later provided by Bardeen 51

[11]. Many investigators have extensively used the method to examine the stability of 52

various stellar models. For example, the technique was used by Knutsen [12] to analyze 53

the stability of a sub-class of the Vaidya-Tikekar [13] solution describing a relativistic 54

superdense star. The method has also been extended to the case of an anisotropic stellar 55

body by Dev and Gleiser [14]. It has been observed that anisotropy in the core region 56

of a stellar configuration provides greater stability. Similarly, the stability of a general 57

relativistic stellar model describing compact stars like SAXJ1808.4 − 3658 was analyzed 58

by Sharma et al [15]. Stability analysis of isentropic subclass of Buchdahl’s exact solution 59

was carried out Negi [19] and it was reported that the solution is stable for all values of 60

M
R within the range 0 < M

R ≤ 0.20. Detailed analysis on the role of the adiabatic index on 61

stability was performed by Moustakidis [20]. Very recently, Posada et al [4] have analyzed 62

the dynamical stability of the modified Tolman VII solution [3] and obtained a critical value 63

of the adiabatic index at the onset of instability for specific values of the EOS parameter α 64

and compactness parameter c = M/R. 65

The current investigation aims to provide the maximum compactness bound of a 66

stellar configuration beyond which the star becomes unstable. Note that the Buchdahl 67

bound provides the maximum compactness of a relativistic star. For a homogeneous 68

distribution of matter, the bound provides M/R < 4/9 obtainable from the Schwarzschild 69

interior or Tolman III solutions. A more realistic description demands a departure from 70

homogeneity. Hence, we take up the modified Tolman VII solution. The modified Tolman 71

VII solution has an additional parameter which can be linked with the measure of departure 72

from homogeneity. The parameter can also be identified as a tool to fix a certain EOS. In 73

our work, using Chandrasekhar’s method, we intend to analyze the stability of a star for 74

different values of the EOS parameter. 75

The paper is organized as follows: In Sec. 1, we lay down field equations corresponding 76

to a static spherically symmetric relativistic compact star. The Tolman VII solution and its 77

modified version are briefly introduced in Sec. 2. In Sec. 3, we outline Chandrasekhar’s 78

method to study the stability of a stellar configuration. Physical analysis of our results is 79

compiled in Sec. 4. Some concluding remarks are made in Sec. 5. 80

1. Einstein field equations 81

We assume the line element describing the interior of a static, spherically symmetric 82

compact star in the standard form 83

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2). (1)

The matter distribution inside the star is assumed to be a perfect fluid described by the 84

energy-momentum tensor 85

Tµν = (ρ + p)uµuν + pgµν, (2)
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where, ρ is the energy density of the fluid, p the isotropic pressure and uµ is the 4-velocity 86

of the fluid. Using equations (1) and (2), we obtain the Einstein field equations 87

d
dr

(
e−λ − 1

r2

)
+

d
dr

(
e−λν′

2r

)
+ e(−λ−ν) d

dr

(
eνν′

2r

)
= 0, (3)

88

e−λ

(
ν′

r
+

1
r2

)
− 1

r2 = 8πp, (4)

89

dm(r)
dr

= 4πr2ρ, (5)

where a prime (′) denotes derivative with respect to radial coordinate r. The mass function 90

m(r) can be written in terms of the metric potential as 91

e−λ≡1 − 2m
r

. (6)

In the above and hereafter, we set G = 1 and c = 1. 92

2. Original and modified Tolman VII solutions 93

As the number of unknowns usually remains greater than the number of independent 94

field equations, it is possible to generate an infinite class of solutions. However, often 95

it is observed that not all the solutions become physically acceptable and well-behaved, 96

as shown by Delgaty and Lake[16] and Finch and Skea[17]. Even though the Tolman 97

VII solution fulfils most of the necessary conditions laid down in reference [16], a stellar 98

configuration obtainable using the Tolman VII solution has some limitations in terms of 99

its compatibility for a wide range of EOS. Raghoonundun and Hobill [2] developed a 100

generalized version of the Tolman VII solution, which can accommodate a broader range 101

of EOS. To get a more realistic description of a neutron star interior, Jiang and Yagi [3] also 102

developed an improved version of the Tolman VII solution. The following sub-sections 103

outline the Tolman VII solution and its subsequent modifications. 104

2.1. Original Tolman VII solution 105

A stellar model is usually constructed by assuming a particular equation of state (EOS) 106

and solving the equation of hydrostatic equilibrium, namely the Tolman-Oppenheimer- 107

Volkoff (TOV) equations for the assumed EOS. However, Tolman [1] adopted a different 108

technique to close the system (3)-(6). In this technique, one assumes a particular form of 109

one of the metric potentials given by 110

e−λ(r) = 1 − cζ2(5 − 3ζ2), (7)

where the parameter c = M
R represents the stellar compactness and ζ = r

R . The constant 111

R represents the stellar radius and M is the total mass enclosed within a radius R so that 112

m(R) = M. 113

The particular choice (7) of the metric potential λ(r) is equivalent to choosing an 114

energy density distribution inside the star as 115

ρ(r) = ρc(1 − ζ2), (8)

where ρc is the central energy density of the star. 116

Substitution of equation (8) in (5) and subsequent integration together with the regu- 117

larity requirement m(0) = 0 yield 118

m(r) = 4πρc

(
r3

3
− r5

5R2

)
, (9)
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where the central density ρc in terms of the total mass M and radius R is obtained in the 119

form 120

ρc =
15M
8πR3 . (10)

Making use of equation (7) in (3) and integrating, one determines the unknown metric 121

potential as 122

eν(r) = c1cos2ϕ, (11)

where 123

ϕ = c2 −
1
2

log

(
ζ2 − 5

6
+

√
e−λ

3c

)
. (12)

In equations (11) and (12), c1 and c2 are integration constants which can be determined 124

from the boundary conditions (continuity of metric functions across the boundary and 125

vanishing of pressure at the boundary) 126

eν(R) = 1 − 2M
R

, p(R) = 0, eλ(R) =
1

1 − 2M
R

, (13)

as 127

c1 = 1 − 5c
3

, (14)

128

c2 = arctan
√

c
3(1 − 2c)

+
1
2

log

(
1
6
+

√
1 − 2c

3c

)
. (15)

Substitution of equation (7) and (11) in (4), determines the isotropic pressure as 129

p =
1

4πR2 [
√

3ce−λtan ϕ − c
2
(5 − 3ζ2)]. (16)

Thus, we have a solution expressed in terms of total mass M and radius R. 130

2.2. Generalized Tolman VII solution 131

Raghoonundun and Hobill [2] extended the Tolman VII solution by considering the 132

energy density in a more generalized form 133

ρ̃(r) = ρc[1 − µ
( r

R

)2
], (17)

where µ is a free parameter representing ‘stiffness’ of the EOS of the star [18] whose 134

values may vary between 0 ≤ µ ≤ 1. Note that in the extreme case of µ = 0, we get 135

an incompressible fluid sphere model and µ = 1 corresponds to the original Tolman VII 136

solution. Interestingly, the µ = 0 case is similar to Schwarzschild’s incompressible fluid 137

sphere solution, which readily provides the maximum compactness bound m/R < 4/9. 138

With the energy density profile (17), equation (5) can be integrated and applying the 139

regularity requirement m(0) = 0, one obtains 140

˜m(r) = 4πρc

(
r3

3
− µ

r5

5R2

)
, (18)

where ˜m(r) is the mass function in this model. Since m̃(R) = M, we have 141

ρc =
15M

4πR3(5 − 3µ)
. (19)
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Using equations (3)-(6), one obtains the unknown metric potentials as 142

eλ̃ =
1

1 − ( 8πρc
3 )r2 + ( 8πµρc

5R2 )r4
=

1
1 − br2 + ar4 , (20)

143

e
ν̃(r)

2 = c̃1cos(ϕ̃ξ(r)) + c̃2 sin(ϕ̃ξ(r)), (21)

where ϕ̃ =
√

a
4 . 144

The isotropic pressure takes the form 145

8π p̃ =
4ϕ̃[c̃2cos(ϕ̃ξ)− c̃1sin(ϕ̃ξ)]

√
1 − br2 + ar4

c̃1cos(ϕ̃ξ) + c̃2sin(ϕ̃ξ)
− 4ar2 + 2b − 8πρ, (22)

with 146

ξ(r) =
2√
a

coth−1

(
1 +

√
1 − br2 + ar4

r2
√

a

)
. (23)

The integration constants c̃1 and c̃2 can be determined using the boundary conditions 147

(13) as 148

c̃1 = γ cos(ϕ̃ξR)−
α

ϕ̃
sin(ϕ̃ξR), (24)

149

c̃2 = γ sin(ϕ̃ξR) +
α

ϕ̃
cos(ϕ̃ξR). (25)

The advantage of this solution is that the stiffness parameter µ can be suitably adjusted 150

according to the requirement of a given EOS. Consequently, in this paper, we intend to take 151

up this solution to analyze how the stiffness factor µ vis-a-vis EOS influences the stability 152

of a stellar composition. 153

2.3. Improved Tolman VII solution 154

Jiang and Yagi [3] have separately proposed an improved version of the Tolman VII 155

solution for a more realistic description of neutron star interiors. In their approach, the 156

energy density is assumed to be of the form 157

ρ(r) = ρc[1 − αζ2 + (α − 1)ζ4], (26)

where ρc is the central density, R is the stellar radius, α is a free parameter which should 158

be fixed so that the condition ρ(R) = 0 is always satisfied. Note that α → 1 represents the 159

original Tolman VII solution. 160

Posada et al [4] examined the dynamical stability of stellar configurations using this 161

particular solution. Hence, we shall restrict our analysis to the case of generalized Tolman 162

VII solution only. 163

3. Stability: Chandrasekhar’s method 164

Chandrasekhar, in 1964, introduced the variational method to analyze the stability of 165

a spherically symmetric star against radial oscillations. To obtain an upper bound on the 166

physical variables beyond which instability might develop, in our calculation, we follow 167

the same technique as proposed by Chandrasekhar. In this approach, for a spherically 168

symmetric radially oscillating star, one assumes the line element in the standard form 169

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2(dθ2 + sin2 θdϕ2), (27)

where 170

ν(r, t) = ν0(r) + δν(r, t), (28)

λ(r, t) = λ0(r) + δλ(r, t), (29)
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are functions of r and t. In (28) and (29), ν0(r) and λ0(r) represent metric potentials 171

corresponding to the equilibrium configuration and δν(r, t) and δλ(r, t) represent functions 172

due to perturbations from the equilibrium configuration. The physical variables like energy 173

density and pressure are accordingly written as 174

ρ(r, t) = ρ0(r) + δρ(r, t), (30)

p(r, t) = p0(r) + δp(r, t). (31)

The radial perturbation of the fluid from its equilibrium position is assumed to be of the 175

form 176

δr =
un(r)

r2 e
ν0(r)

2 eiωnt, (32)

where un(r) is the amplitude of nth mode of radial oscillation and ωn is the characteristic 177

frequency of oscillation. 178

The dynamical equation governing the stellar oscillation can be expressed in standard 179

Sturm-Liouville’s differential equation form 180

P(r)
d2un(r)

dr2 +
dP
dr

+ [Q(r) + ωn
2W(r)]un(r) = 0, (33)

where, 181

P(r) = γp0e
(λ0+3ν0)

2 r−2, (34)

182

Q(r) = e
(λ0+3ν0)

2

[
p′0

2

r2(p0 + ρ0)
−

4p′0
r3 − 8πp0

r2 (ρ0 + p0)e2λ0

]
, (35)

and 183

W(r) = e
(3λ0+ν0)

2 r−2(ρ0 + p0). (36)

For the fundamental mode of oscillations, the pulsation equation takes the form 184

ω2
0

∫ R

0
exp
[

1
2
(3λ0 + ν0)

]
(p0 + ρ0)

u2
0

r2 dr =∫ R

0
exp
(

1
2
(3ν0 + λ0)

)(
p0 + ρ0

r2

)
([−2

r
+

dν0

dr
− 1

4
(

dν0

dr
)2 + 8πp0exp(λ0)]u2

+
dp0

dρ0

(
du0

dr

)2
)dr, (37)

where the adiabatic index is defined as

γ =
p + ρ

p
dp
dρ

.

A relativistic stellar model will be stable against radial oscillations if the fundamental 185

frequency of oscillation is real and positive. In the following section, we shall perform 186

numerical integration of equation(37) for specific stellar configurations to evaluate values 187

of the fundamental frequencies. 188

To solve (37), we assume a trial solution with the following boundary conditions: 189

1. Fluid at the star’s centre is not displaced during radial oscillation which implies 190

u0 ≈ r3 as r → 0. (38)

2. The Lagrangian change in pressure (∆p) at the surface (r = R) must vanish which 191

implies 192

du0

dr
→ 0 as r → R. (39)
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In our calculation, we choose the trial function as 193

u0 = re
ν0(r)

2 (40)

which satisfies the boundary conditions (38) and (39). 194

4. Stability range for generalized Tolman VII solution 195

To evaluate the maximum compactness bound, using generalized Tolman VII solution, 196

we numerically integrate of equation (37) for specific stellar configurations and evaluate the 197

values of the fundamental frequencies (ω2
0). For a given radius and fixed value of the EOS 198

parameter µ, we keep increasing the total mass till the fundamental frequency becomes a 199

negative quantity. The procedure determines the maximum compactness bound (M/R) 200

beyond which the configuration becomes unstable. We would like to point out here that 201

our procedure cannot be used to determine the frequency for µ = 0 case. However, for 202

other values of 0 < µ < 1, ω2
0 can be determined as shown in Table (A1). 203

The subsequent maximum central density can also be determined using the relation

ρc =
15M

4πR3(5 − 3µ)
.

The results have been compiled in the Table (A1). In the table, the bold values indicate the 204

maximum bounds. In Table 1, we have compiled the values of the maximum compactness 205

bound for a wide range of values of 0 < µ < 1. We note that the maximum compactness 206

bound decreases as the inhomogeneity vis-a-vis the EOS parameter (µ) increases. However, 207

the central density increases with increasing values of µ. In (1), we have shown the 208

permissible compactness bound for different µ. Similarly, in (2), we have graphically shown 209

the permissible values of the central density for a star of a given radius (we have assumed 210

R = 10 km) by considering different values of µ. In figure (3), we have plotted the values 211

of the fundamental frequencies ω0 for different µ. Interestingly, the values of ω0 shift 212

closer to zero with increasing values of µ. Since µ has the interpretation of departure from 213

homogeneous matter distribution, this implies that the most stable configuration is the 214

homogeneously distributed star. 215

5. Discussion 216

Our analysis shows that a departure from homogeneous matter distribution, character- 217

ized by the model parameter µ that appears in the Tolman VII solution, plays a crucial role 218

in fixing the maximum compactness bound beyond which the star becomes dynamically 219

unstable. Obviously, the most compact object has a homogeneous distribution of matter. 220

As inhomogeneity in the matter distribution develops, the upper bound on compactness 221

decreases. The subsequent maximum central density, in contrast, increases. It is to be 222

stressed that the critical bound for the generalized Tolman VII solutions never exceeds 223

the Buchdahl bound M/R < 4/9. In our calculation, the maximum compactness bound 224

was obtained in two different ways: (i) For a given radius, the total mass was increased 225

till the configuration became unstable and (ii) for a fixed mass star, the boundary was 226

decreased till the configuration became unstable. In both the cases, we obtained the same 227

compactness bound, as expected. We trust that this procedure has never been adopted in 228

earlier analyses. 229

In the Tolman VII solution, since the parameters µ can also be linked with EOS, our 230

results clearly show an intricate relationship between the maximum compactness bound 231

and the EOS. Whether such an observation can help us in constraining the compact star 232

EOS is a matter of further investigation and will be taken up elsewhere. 233
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Table 1. Variation of critical bound on compactness (M/R)max and maximum value of central
density(ρc) with in-homogeneous parameter (µ) .

µ ( M
R )critical

central
density(ρc)(gm − cm−3)

0.05 0.44368 1.47342 × 1015

0.08 0.443179 1.49958 × 1015

0.1 0.442839 1.5176 × 1015

0.2 0.440922 1.61401 × 1015

0.3 0.438621 1.72307 × 1015

0.4 0.435789 1.847 × 1015

0.5 0.432234 1.98906 × 1015

0.6 0.427691 2.15267 × 1015

0.7 0.421717 2.34219 × 1015

0.8 0.41362 2.56227 × 1015

0.9 0.402336 2.81747 × 1015

1 0.386193 3.11014 × 1015

R=10 km

Ζ = re
Ν

2

stable region

unstable region

0.0 0.2 0.4 0.6 0.8 1.0

0.39

0.40

0.41

0.42

0.43

0.44

Μ

HM R
L cr

iti
ca

l

Figure 1. Upper bound on the maximum compactness bound for different values of µ in the
generalized Tolman VII solution.

R = 10 km

stable region

unstable region

0.0 0.2 0.4 0.6 0.8 1.0
1.5

2.0

2.5

3.0

Μ

Ρ
c

Hgm
-

cm
-

3
L´

10
15

Figure 2. Maximum central density for different values of µ in generalized Tolman VII solution (We
have assumed R = 10 km.
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u0 = re
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2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.00
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Μ
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2

Figure 3. Fundamental frequency (ω2
0) vs µ.
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Table A1. Maximum value of compactness and central density beyond which the stellar configuration
becomes dynamically unstable in case of generalized Tolman VII solution (the radius is kept fixed at
R = 10 km).

µ mass (M) (M⊙) compactness(M/R) central density
(gm cm−3)

fundamental
frequency (ω2)

0.1
1.4 0.2065 7.07653 × 1014 4.8565 × 1027947

2 0.295 1.01093 × 1015 3.9433 × 1027947

3 0.4425 1.5164 × 1015 9.5059 × 1027942

3.0023 0.442839 1.51756 × 1015 0.0623434
3.0024 0.442854 1.51761 × 1015 −3.26707 × 1027940

3.1 0.45725 1.56095 × 1015 −2.1733 × 1027946

0.2
2 0.295 1.07986 × 1015 2.0657 × 1027947

2.5 0.36875 1.34982 × 1015 9.6396 × 1027946

2.9 0.42775 1.5658 × 1015 5.99432 × 1027945

2.9893 0.440922 1.61401 × 1015 0.02638
2.9894 0.440937 1.61407 × 1015 −1.05644 × 1027940

3 0.4425 1.61979 × 1015 −1.014897 × 1027944

0.3
1.4 0.2065 8.11212×1014 1.8833×1027947

2.9 0.42775 1.68037×1015 2.6774×1027945

2.9737 0.438621 1.72307×1015 0.0144451
2.9738 0.438636 1.72313×1015 -1.5379×1027940

3 0.4425 1.73831×1015 -3.8904×1027944

0.4
1.4 0.2065 8.75255×1014 1.53455×27947
2.9 0.42775 1.81303×1015 1.07555×1027945

2.9545 0.435789 1.8471×1015 0.00852387
2.9546 0.435804 1.84716×1015 -1.3072×1027940

3 0.4425 1.87555×1015 -8.1674×1027944

0.5
1.4 0.2065 9.50277×1014 1.3409×1027947

2.9 0.42775 1.96843×1015 2.6063×1027944

2.9304 0.432234 1.98906×1015 0.00502046
2.9305 0.432249 1.98912×1015 -5.661×1027939

3 0.4425 2.03631×1015 -1.4×1027945

0.6
1.4 0.2065 1.03937×1015 1.2275×1027947

2.5 0.36875 1.85601×1015 2.76626×1027946

2.8996 0.427691 2.15267×1015 0.00274282
2.8997 0.427706 2.15275×1015 -5.1203×1027939

3 0.4425 2.22721×1015 -2.15474×1027945

0.7
1.4 0.2065 1.14689×1015 1.1629×1027947

2.5 0.36875 2.04801×1015 2.1053×1027946

2.8591 0.421717 2.34219×1015 0.00118629
2.8592 0.421732 2.34227×1015 -4.79113×1027939

3 0.4425 2.45761×1015 -3.02642×1027945

0.8
1.4 0.2065 1.27922×1015 1.1314×1027947

2.5 0.36875 2.28432×1015 1.48715×1027946

2.8042 0.41362 2.56227×1015 0.00011319
2.8043 0.413634 2.56237×1015 -1.503217×1027939

3 0.4425 2.74118×1015 -3.64167×1027945

0.9
2.5 0.36875 2.58227×1015 8.6052×1027945

2.7277 0.402336 2.81747×1015 0.00057973
2.7278 0.402351 2.81757×1015 -9.95436×1027938

1
2.5 0.36875 3.09873×1015 2.5302×1027945

2.6183 0.386199 3.11014×1015 0.000892158
2.6184 0.386214 3.11026×1015 -2.72408×1027939

3 0.4425 3.56354×1015 -2.33445×1027945
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