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Abstract: Tolman VII solution [1] is an exact analytic solution to the Einstein field equations describing 1
the space-time of a static spherically symmetric distribution of matter. The solution has been shown =
to be capable of describing the interior of compact objects like neutron stars. Generalized [2] and 3
modified [3] versions of the solution are also available in the literature, which have been subsequently 4
developed to accommodate more realistic descriptions of neutron stars. The stability of the modified s
Tolman VII solution has recently been analyzed by Posada et al [4], who evaluated a critical value of 6
the adiabatic index above which the stellar configuration becomes unstable against radial oscillations. 7
In this paper, making use of the generalized version of the Tolman VII solution, we prescribe an
upper bound on the compactness (M/R) beyond which the star becomes unstable. Our investigation o
is based on the stability analysis of a star against radial oscillations developed by Chandrasekhar 1o
[5]. The analysis brings out to attention the role of a particular model parameter in the generalized 11
Tolman VII solution which can be linked to the inhomogeneity of the matter distribution vis-a-vis 12

equation of state (EOS). 13
Keywords: Compact star; Tidal force; Stability; Exact solution. 14
0. Introduction 15

Compact stars are unique research laboratories in the sky for gaining insight into 16
the nature of particle interactions in extreme conditions such as extreme density, pressure 17
and gravity. Compact stars exist either in binaries or in isolation. In the era of multi- 1s
messenger astronomy, electromagnetic and gravitational wave signals and ground-based 1o
high-energy laboratory experiments provide valuable information that can constrain the 2o
compact star equation of state (EOS). Keeping in mind the systematic errors that might 2
occur in the measurements of masses and radii of compact stars [6], an accurate estimation 22
of the mass and radius of a compact star is crucial for gaining insight into the EOS of =3
a compact star. Ideally, if the EOS is known, it is possible to numerically integrate the za
Tolman-Oppenheimer-Volkoff (TOV) equations to model a sequence of compact stars and  =s
the maximum compactness for any given EOS can be obtained from the M — R plot. An 2
alternative method to study compact stars is to develop meaningful exact solutions to =7
Einstein field equations describing spherically symmetric compact objects. It is noteworthy  =s
that while the exterior solution to a static spherically symmetric distribution of uncharged 2o
matter is unique (the Schwarzschild solution), an infinite class of solutions can be obtained 3o
for the interior matter distribution. Corresponding to the Schwarzschild exterior solution, s
an interior solution was obtained by Schwarzschild [7] himself, which describes the interior 32
geometry of a static spherically symmetric incompressible fluid distribution. Subsequently, s
numerous physically acceptable and well-behaved exact solutions have been developed 4
to model compact stars like neutron and quark stars. Tolman provided one such solution s
[1], which is essentially a two-parameter [M, p.] family of solutions where p, is the central 36
density. The analytic solution was obtained for a specific fall-off behaviour of the energy a7
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density. Recently, for better agreement with more realistic neutron star EOS, Jiang and s
Yagi [8] introduced an additional parameter « in the density profile thereby obtaininga s
three-parameter [M, p., «] family of solutions. 40

An essential physical requirement of any stellar description is its stability. Hence, «
it becomes imperative to investigate the impact of the model parameters on the stability 4=
of the configuration. Internal thermodynamic processes and/or external tidal forces can 43
influence the stability of a star. In a recent paper, Das et al [9] proposed a method to 4
estimate the Tidal Love Number (TLN) of a spherically symmetric relativistic star which 45
is a measure of tidal forces required to deform a star from its spherical distribution [10]. 46
The question we want to address is - what could be the maximum bound on stellar model 47
parameters beyond which the stellar configuration loses its equilibrium? Chandrasekhar s
[5], in 1964, proposed a method to study the stability of a spherically symmetric stellar 4
configuration against radial oscillations. A catalogue to solve the dynamical equation  so
governing the stellar equilibrium under radial oscillations was later provided by Bardeen =
[11]. Many investigators have extensively used the method to examine the stability of s
various stellar models. For example, the technique was used by Knutsen [12] to analyze s
the stability of a sub-class of the Vaidya-Tikekar [13] solution describing a relativistic ~ sa
superdense star. The method has also been extended to the case of an anisotropic stellar s
body by Dev and Gleiser [14]. It has been observed that anisotropy in the core region se
of a stellar configuration provides greater stability. Similarly, the stability of a general =7
relativistic stellar model describing compact stars like SAX]1808.4 — 3658 was analyzed s
by Sharma et al [15]. Stability analysis of isentropic subclass of Buchdahl’s exact solution s
was carried out Negi [19] and it was reported that the solution is stable for all values of  «o
% within the range 0 < % < 0.20. Detailed analysis on the role of the adiabatic indexon e
stability was performed by Moustakidis [20]. Very recently, Posada et al [4] have analyzed e
the dynamical stability of the modified Tolman VII solution [3] and obtained a critical value s
of the adiabatic index at the onset of instability for specific values of the EOS parameter & s
and compactness parameter c = M/R. o5

The current investigation aims to provide the maximum compactness bound of a s
stellar configuration beyond which the star becomes unstable. Note that the Buchdahl -
bound provides the maximum compactness of a relativistic star. For a homogeneous
distribution of matter, the bound provides M/R < 4/9 obtainable from the Schwarzschild s
interior or Tolman III solutions. A more realistic description demands a departure from 7
homogeneity. Hence, we take up the modified Tolman VII solution. The modified Tolman 7
VII solution has an additional parameter which can be linked with the measure of departure
from homogeneity. The parameter can also be identified as a tool to fix a certain EOS.In 7
our work, using Chandrasekhar’s method, we intend to analyze the stability of a star for 7
different values of the EOS parameter. 75

The paper is organized as follows: In Sec. 1, we lay down field equations corresponding 7
to a static spherically symmetric relativistic compact star. The Tolman VII solution and its 7
modified version are briefly introduced in Sec. 2. In Sec. 3, we outline Chandrasekhar’s 7
method to study the stability of a stellar configuration. Physical analysis of our resultsis 7

compiled in Sec. 4. Some concluding remarks are made in Sec. 5. 80

1. Einstein field equations 81

We assume the line element describing the interior of a static, spherically symmetric e

compact star in the standard form 83
ds? = —e"d 4+ M) ar? 4 12(d6? + sin® 0d¢?). 1)

The matter distribution inside the star is assumed to be a perfect fluid described by the =
energy-momentum tensor 85

Tyv = (P + P)uyuv + pP8uv, ()
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where, p is the energy density of the fluid, p the isotropic pressure and u# is the 4-velocity  ss

of the fluid. Using equations (1) and (2), we obtain the Einstein field equations 87
d fe!—1 d (e ™ (ca-v) d [V

dr<r2 >+dr< o >+e dr(Zr)_O’ )

, 1 1 88
AV —

e <T+1’2> 71’72 —87Tp, (4)
d 89

n;’(/r) = 471r%)p, (5)
where a prime (') denotes derivative with respect to radial coordinate r. The mass function o
m(r) can be written in terms of the metric potential as 01

2m
“A—

=1-—. 6

e ; ©)
In the above and hereafter, weset G =landc = 1. 02
2. Original and modified Tolman VII solutions 03

As the number of unknowns usually remains greater than the number of independent o4
field equations, it is possible to generate an infinite class of solutions. However, often o5
it is observed that not all the solutions become physically acceptable and well-behaved, 6
as shown by Delgaty and Lake[16] and Finch and Skea[17]. Even though the Tolman o
VII solution fulfils most of the necessary conditions laid down in reference [16], a stellar  os
configuration obtainable using the Tolman VII solution has some limitations in terms of oo
its compatibility for a wide range of EOS. Raghoonundun and Hobill [2] developed a 100
generalized version of the Tolman VII solution, which can accommodate a broader range 102
of EOS. To get a more realistic description of a neutron star interior, Jiang and Yagi [3] also 102
developed an improved version of the Tolman VII solution. The following sub-sections o3
outline the Tolman VII solution and its subsequent modifications. 108

2.1. Original Tolman VII solution 105

A stellar model is usually constructed by assuming a particular equation of state (EOS) 106
and solving the equation of hydrostatic equilibrium, namely the Tolman-Oppenheimer- o7
Volkoff (TOV) equations for the assumed EOS. However, Tolman [1] adopted a different 1os
technique to close the system (3)-(6). In this technique, one assumes a particular form of 10s
one of the metric potentials given by 110

e M) =1-c?(5-37%), )
where the parameter ¢ = % represents the stellar compactness and { = . The constant 111
R represents the stellar radius and M is the total mass enclosed within a radius R so that 12

m(R) = M. 113

The particular choice (7) of the metric potential A(r) is equivalent to choosing an e

energy density distribution inside the star as 115
p(r) = pe(1-2%), ®

where p, is the central energy density of the star. 116

Substitution of equation (8) in (5) and subsequent integration together with the regu- 17

larity requirement m(0) = 0 yield 118

3 5
m(r) = 4rmpc (g - 5rR2>, )
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where the central density p, in terms of the total mass M and radius R is obtained in the

form
15M

Pe = §nR3
Making use of equation (7) in (3) and integrating, one determines the unknown metric
potential as

(10)

e’ = 10082, (11)

where
5 e~

cpcz—log<§2—+ 3c> (12)

In equations (11) and (12), ¢; and c; are integration constants which can be determined
from the boundary conditions (continuity of metric functions across the boundary and
vanishing of pressure at the boundary)

2M 1
eMMﬂ—?nmmzawmzyi% (13)
as 5
c
=1-= 14
1= 3 (14)
c 1 1 1-2c
= — + =1 - . 1
¢p = arctan 3(1_2({~)—|—20g<6—|— 3 ) (15)
Substitution of equation (7) and (11) in (4), determines the isotropic pressure as
P= 1y R2 [V3ce~Man¢ — - 5 32%)]. (16)

Thus, we have a solution expressed in terms of total mass M and radius R.

2.2. Generalized Tolman VII solution

Raghoonundun and Hobill [2] extended the Tolman VII solution by considering the
energy density in a more generalized form

r

p)=p1 - (%), 17)

where y is a free parameter representing ‘stiffness’ of the EOS of the star [18] whose
values may vary between 0 < y < 1. Note that in the extreme case of y = 0, we get
an incompressible fluid sphere model and y# = 1 corresponds to the original Tolman VII
solution. Interestingly, the y = 0 case is similar to Schwarzschild’s incompressible fluid
sphere solution, which readily provides the maximum compactness bound m/R < 4/9.

With the energy density profile (17), equation (5) can be integrated and applying the
regularity requirement m(0) = 0, one obtains

. r r°
m(r) :47TPc<3 _VSRZ)' (18)
where m(r) is the mass function in this model. Since 7(R) = M, we have

15M

Pe = nR3(G —3p)" 19)

127

141
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Using equations (3)-(6), one obtains the unknown metric potentials as 142
3 1 1
A
e = 8 X 8 X = ’ (20)
1— (%3e)r2 (878 1—br? +art
o) ) 5 o y 143
e 2 = c¢cos(Ppg(r)) + & sin(Ppé(r)), (21)
where ¢ = \/% . 148
The isotropic pressure takes the form 145
4¢|c H&) — ¢1sin(PE)]V1 — br? 4
871p = Plercos(9¢) — Grsin(@OIVL —bredart b oy 87tp, 22)
c1cos(pE) + Gasin(Pg)
with 146
2 a1+ V1=br2 4 art
= — coth . 23
£ = —co ( o )

The integration constants ¢j and ¢, can be determined using the boundary conditions 1ar
(13) as 148

¢ = ycos(§lr) - %sin(écm, (24)

& = ysin(§r) + %COS(J)CR)- (25)

The advantage of this solution is that the stiffness parameter y can be suitably adjusted  so
according to the requirement of a given EOS. Consequently, in this paper, we intend to take s
up this solution to analyze how the stiffness factor y vis-a-vis EOS influences the stability is2
of a stellar composition. 153

2.3. Improved Tolman VII solution 158

Jiang and Yagi [3] have separately proposed an improved version of the Tolman VII  1ss
solution for a more realistic description of neutron star interiors. In their approach, the 1se
energy density is assumed to be of the form 157

p(r) = pe[l — aZ® + (x — 1)7%, (26)

where p. is the central density, R is the stellar radius, « is a free parameter which should s
be fixed so that the condition p(R) = 0 is always satisfied. Note that « — 1 represents the 1s
original Tolman VII solution. 160

Posada et al [4] examined the dynamical stability of stellar configurations using this e
particular solution. Hence, we shall restrict our analysis to the case of generalized Tolman  1e
VII solution only. 163

3. Stability: Chandrasekhar’s method 164

Chandrasekhar, in 1964, introduced the variational method to analyze the stability of 1es
a spherically symmetric star against radial oscillations. To obtain an upper bound on the  1es
physical variables beyond which instability might develop, in our calculation, we follow 167
the same technique as proposed by Chandrasekhar. In this approach, for a spherically ies

symmetric radially oscillating star, one assumes the line element in the standard form 169
ds? = —e"UDde? + AD a2 4 42(d6% + sin® 0dg?), (27)

where 170
v(r,t) = wv(r)+ov(rt), (28)

Ar,t) = Ag(r) +6A(r, 1), (29)
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are functions of r and t. In (28) and (29), vy(r) and A¢(r) represent metric potentials in
corresponding to the equilibrium configuration and ov(r, t) and dA(r, t) represent functions 172
due to perturbations from the equilibrium configuration. The physical variables like energy 17s

density and pressure are accordingly written as 174

p(rt) = po(r)+p(rt), (30)

plrt) = polr) +op(r.t). (31)
The radial perturbation of the fluid from its equilibrium position is assumed to be of the 17
form 176

vo(r) .

or = unrgr) ez et (32)
where 1, (r) is the amplitude of nth mode of radial oscillation and wy, is the characteristic 17
frequency of oscillation. 178
The dynamical equation governing the stellar oscillation can be expressed in standard  17e
Sturm-Liouville’s differential equation form 180

duy(r) dP

P2l 4 9P 100 + oW () un(r) = 0, &S

where, 181
(Ag+3vp)

P(r)=poe 2 12, (34)

Q(T) B e(AOJESVO) LOZ B 47% B 87TP0( + )62/\0 (35) -
- 2lpotps) 1 2 TR '
and (3hg-110) 183
0v0) _

W(r)=e 2 r2(pg+ po)- (36)

For the fundamental mode of oscillations, the pulsation equation takes the form 184

2 R 1 M%
wo/o exp| (340 +v0)| (po + po) 7 dr =

R 1 p0+p0 2 dVO ]. dVO 2 2
[ v (5004 a0 ) (252 ) (=2 + G2 - (G2 + Smpoesp(ra)ln

dpo duo 2

where the adiabatic index is defined as

_ptrpdp
pdp
A relativistic stellar model will be stable against radial oscillations if the fundamental 1es

frequency of oscillation is real and positive. In the following section, we shall perform iss
numerical integration of equation(37) for specific stellar configurations to evaluate values s

of the fundamental frequencies. 188

To solve (37), we assume a trial solution with the following boundary conditions: 189

1. Fluid at the star’s centre is not displaced during radial oscillation which implies 190
up~r> as r—0. (38)

2. The Lagrangian change in pressure (Ap) at the surface (r = R) must vanish which 1
implies 192

dlxl()
W—>O as r— R. (39)
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In our calculation, we choose the trial function as 103
v (r)
ug = re g (40)
which satisfies the boundary conditions (38) and (39). 104
4. Stability range for generalized Tolman VII solution 195

To evaluate the maximum compactness bound, using generalized Tolman VII solution, s
we numerically integrate of equation (37) for specific stellar configurations and evaluate the 1o
values of the fundamental frequencies (w%). For a given radius and fixed value of the EOS 108
parameter y, we keep increasing the total mass till the fundamental frequency becomesa 100
negative quantity. The procedure determines the maximum compactness bound (M/R) 200
beyond which the configuration becomes unstable. We would like to point out here that 20
our procedure cannot be used to determine the frequency for y = 0 case. However, for 202
other valuesof 0 < p < 1, w(z) can be determined as shown in Table (A1). 203

The subsequent maximum central density can also be determined using the relation

1M
Pe = 4nR3(5 — 3"

The results have been compiled in the Table (A1). In the table, the bold values indicate the  zoa
maximum bounds. In Table 1, we have compiled the values of the maximum compactness 205
bound for a wide range of values of 0 < u < 1. We note that the maximum compactness zo6
bound decreases as the inhomogeneity vis-a-vis the EOS parameter (u) increases. However, zo7
the central density increases with increasing values of . In (1), we have shown the =20
permissible compactness bound for different y. Similarly, in (2), we have graphically shown  ze
the permissible values of the central density for a star of a given radius (we have assumed 210
R =10 km) by considering different values of y. In figure (3), we have plotted the values 21
of the fundamental frequencies wy for different y. Interestingly, the values of wq shift 21
closer to zero with increasing values of p. Since i has the interpretation of departure from 21
homogeneous matter distribution, this implies that the most stable configuration is the 21
homogeneously distributed star. 215

5. Discussion 216

Our analysis shows that a departure from homogeneous matter distribution, character- i~
ized by the model parameter y that appears in the Tolman VII solution, plays a crucial role z1.
in fixing the maximum compactness bound beyond which the star becomes dynamically 210
unstable. Obviously, the most compact object has a homogeneous distribution of matter. 220
As inhomogeneity in the matter distribution develops, the upper bound on compactness 22
decreases. The subsequent maximum central density, in contrast, increases. It is to be 222
stressed that the critical bound for the generalized Tolman VII solutions never exceeds 223
the Buchdahl bound M/R < 4/9. In our calculation, the maximum compactness bound 224
was obtained in two different ways: (i) For a given radius, the total mass was increased 22
till the configuration became unstable and (ii) for a fixed mass star, the boundary was 226
decreased till the configuration became unstable. In both the cases, we obtained the same 227
compactness bound, as expected. We trust that this procedure has never been adopted in  zzs
earlier analyses. 220

In the Tolman VII solution, since the parameters y can also be linked with EOS, our 230
results clearly show an intricate relationship between the maximum compactness bound  2s:
and the EOS. Whether such an observation can help us in constraining the compact star 232
EOS is a matter of further investigation and will be taken up elsewhere. 233
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Table 1. Variation of critical bound on compactness (M/R)mqx and maximum value of central
density(p.) with in-homogeneous parameter (y) .

M central

H (?)criticul density(pc)(gm _ cm*3)
0.05 0.44368 1.47342 x 10%°
0.08 0.443179 1.49958 x 1012
0.1 0.442839 1.5176 x 1015
0.2 0.440922 1.61401 x 10%°
0.3 0.438621 1.72307 x 101°
0.4 0.435789 1.847 x 1015
0.5 0.432234 1.98906 x 10%°
0.6 0.427691 2.15267 x 1015
0.7 0.421717 2.34219 x 1015
0.8 0.41362 2.56227 x 1015
0.9 0.402336 2.81747 x 1015

1 0.386193 3.11014 x 1015

0.44 unstable region 1
R=10 km
043+ { = rez ]
8 042 stable region ]
;2;3‘
= %om! ]
0.40 | 1
0.39 1
0.0 0.2 0.4 0.6 0.8 1.0

7

Figure 1. Upper bound on the maximum compactness bound for different values of y in the
generalized Tolman VII solution.

30r ]
R=10km
n
3
X 25¢ ]
@ unstable region
IS
T
£
2 stable region
© 20t €9 1
15k ‘ ‘ ‘ ‘ a
0.0 0.2 04 0.6 0.8 10

Figure 2. Maximum central density for different values of y in generalized Tolman VII solution (We
have assumed R = 10 km.
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Figure 3. Fundamental frequency (w(z)) VS J.
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Table A1. Maximum value of compactness and central density beyond which the stellar configuration
becomes dynamically unstable in case of generalized Tolman VII solution (the radius is kept fixed at

R =10 km).
U mass (M) (M) compactness(M/R) Ce:g;:lcifilg; ty ff:;;l;?:;ttzg)
1.4 0.2065 7.07653 x 1014 4.8565 x 1027947
0.1 2 0.295 1.01093 x 10%° 3.9433 x 1027947
3 0.4425 1.5164 x 101 9.5059 x 1027942
3.0023 0.442839 1.51756 x 101° 0.0623434
3.0024 0.442854 151761 x 10%° —3.26707 x 1027940
3.1 0.45725 1.56095 x 1012 —2.1733 x 1027946
2 0.295 1.07986 x 10%° 2.0657 x 1027947
0.2 25 0.36875 1.34982 x 10%° 9.6396 x 1027946
29 0.42775 1.5658 x 1012 5.99432 x 1027945
2.9893 0.440922 1.61401 x 1015 0.02638
2.9894 0.440937 1.61407 x 10%° —1.05644 x 1027940
3 0.4425 1.61979 x 1012 —1.014897 x 1027944
1.4 0.2065 8.11212x 104 1.8833x 1027947
0.3 2.9 0.42775 1.68037 x 101> 2.6774x10%7945
2.9737 0.438621 1.72307 x 1015 0.0144451
2.9738 0.438636 1.72313x101° -1.5379 x 1027940
3 0.4425 1.73831x 1015 -3.8904 x 1027944
1.4 0.2065 8.75255x 1014 1.53455 % 27947
0.4 29 0.42775 1.81303x 1013 1.07555 x 1027945
2.9545 0.435789 1.8471x10%° 0.00852387
2.9546 0.435804 1.84716x 1015 -1.3072 x 1027940
3 0.4425 1.87555x 1012 -8.1674 x 1027944
14 0.2065 9.50277 x 1014 1.3409 x 1027947
0.5 2.9 0.42775 1.96843x 1012 2.6063 x 1027944
2.9304 0.432234 1.98906 x 1015 0.00502046
2.9305 0.432249 1.98912x 101> -5.661x 1027939
3 0.4425 2.03631x10%° -1.4x10%7945
1.4 0.2065 1.03937x101° 1.2275x 1027947
0.6 25 0.36875 1.85601 x 1015 2.76626 x 1027946
2.8996 0.427691 2.15267x101° 0.00274282
2.8997 0.427706 2.15275x10%° -5.1203x 1027939
3 0.4425 2.22721x10% -2.15474 x10%7945
14 0.2065 1.14689x 1015 1.1629 x 1027947
0.7 25 0.36875 2.04801x10% 2.1053 x 1027946
2.8591 0.421717 2.34219x10%° 0.00118629
2.8592 0.421732 2.34227x101° -4.79113x10%79%9
3 0.4425 2.45761x10%° -3.02642 x 1027945
1.4 0.2065 1.27922 x 101> 1.1314 x 1027947
0.8 25 0.36875 2.28432x10%° 1.48715x 1027946
2.8042 0.41362 2.56227 x101° 0.00011319
2.8043 0.413634 2.56237x10%° -1.503217 x 1027939
3 0.4425 2.74118x10% -3.64167 x 1027945
25 0.36875 258227 x 1015 8.6052 x 1027945
0.9 2.7277 0.402336 2.81747x101° 0.00057973
2.7278 0.402351 2.81757x10%° -9.95436x 1027938
25 0.36875 3.09873x10%° 2.5302 x 1027945
1 2.6183 0.386199 3.11014x10%° 0.000892158
2.6184 0.386214 3.11026x 101 -2.72408 x 1027939

3 0.4425 3.56354x10%° -2.33445 x 1027945
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