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Abstract: The state estimation for lithium-ion battery cells has been the topic of many publications 1

concerning the different states of a battery cell. They often focus on a battery cell’s state of charge 2

(SOC) or state of health (SOH). Therefore this paper introduces a, on one hand, a new lithium-ion 3

battery data set with dynamic validation data over degradation and on the other hand a model-based 4

SOC and SOH estimation based on this dataset as a reference. An unscented Kalman filter-based 5

approach was used for SOC estimation and extended with a holistic ageing model to handle the SOH 6

estimation. The paper describes the dataset, the models, the parameterisation, the implementation 7

of the state estimations, and their validation using parts of the dataset resulting in a SOC and SOH 8

estimation over battery life. The results show that the dataset can be used to extract parameters, 9

design models based on it and validate with dynamically degraded battery cells. 10

Keywords: SOC; SOH; Dataset; Ageing; Model; Estimation 11

1. Introduction 12

For lithium-ion batteries in applications, it must be ensured that they are operated in a 13

safe operating area (SOA). The SOA includes boundaries for the voltage, the temperature, 14

and the current. [1,2] To support that, different battery states must be tracked during 15

operation. In addition, the battery management system should guarantee a reliable and 16

efficient operation to ensure a safe operation. Therefore, the BMS tasks include collecting 17

measurements of voltages, temperatures, and the system current to ensure the operation in 18

the SOA and the estimation of the battery states that support the task for a safe and efficient 19

operation. [3] The typical states the BMS estimates for lithium- batteries include the state of 20

charge (SOC), the state of function (SOF), state-of-health (SOH) and the remaining useful 21

life (RUL). Additional states are sometimes mentioned in the literature, such as the state of 22

balance or the state of temperature. This paper considers two of these battery cell states 23

because of their importance in a BMS. The state of charge (SOC) generally describes the 24

charge available in the battery cell compared to a fully charged cell. Therefore, the SOC 25

describes how long a battery cell may last with this charge and thus reflects in an electric 26

vehicle the remaining range similar to a fuel gauge in an internal combustion engine vehicle. 27

Electrochemically it describes the average lithium concentration of intercalated ions in the 28

negative electrode. This is why the SOC cannot be directly measured in an application. The 29

cell voltage includes the SOC to some extent, mainly the relation of OCV and SOC, but 30

the surface concentration of lithium ions influences it in contrast to the SOC. [1–6] Since 31

the SOC is essential for improving efficiency and influences battery cell ageing, it has to 32

be estimated. A further hindrance is that it highly depends on the actual capacity of the 33

battery cell, which is affected by the temperature, the state of ageing, and the current rate. 34
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[1] In addition to the general importance of the SOC, it is the foundation of other states. Its 35

mathematical description is as follows. 36

SOC =
Qremain

Cest
, (1)

where Qremain describes the concentration of the intercalated lithium ions in the structure of 37

the negative electrode, and CEst is the current maximum capacity (estimated or measured) 38

based on the temperature and the ageing state. 39

The SOH describes the degradation of the battery cell. It describes the battery cell
as 100% SOH when it is considered new. In most cases, the parameters used to describe
the SOH are the capacity and the internal battery cell internal resistance (IR). The initial
quantities of the capacity and IR can be either the nominal values gathered from the
datasheet or the measured parameters during the first check-up. When using the nominal
capacities, the SOH can be over 100% because of the production tolerances of the single
battery cells. A classic definition of the SOH is based on the ratio of the estimated and the
nominal or initial capacity

SOHC =
Cest

Cnom
. (2)

This definition is specifically useful when the application is mainly interested in the energy
capability of the battery cell. But it could be extended with the SOH that bases on the
battery cell’s internal resistance defined by

SOHR =

∣∣∣∣ Rest − REOL

Rnom − REOL

∣∣∣∣. (3)

Depending on the scaling and combination of the definitions, the SOH describing the end- 40

of-life could either be 80 % or 0 %. In this paper, it is 80 %. This work aims to show a new 41

dataset that is freely available. It introduces and describes the measurements conducted 42

(section 2) and the development steps of a state estimation approach for SOC (section 43

4) and SOH (section 5) used in multiple applications based on the measurements. The 44

parameterisation of the model used for the model-based approach for SOC and SOH 45

estimation is described (section 3) and will be validated on dynamically aged battery cell 46

data (section 7). Therefore the paper sums up the approach for developing state estimation 47

algorithms from the absolute beginning of the measurements to the modelling, algorithms, 48

and validation at the end. It delivers the possibility to benchmark other state estimation 49

algorithms in comparison to a common approach and allows for showing the advantages 50

or disadvantages of developed approaches. Furthermore, the dataset could be used to 51

develop new algorithms. That means the paper includes only a few new or improved steps 52

throughout the developed state estimation but in a highly condensed manner. A literature 53

review of the different SOC and SOH algorithms shows different categories of algorithms. 54

The categories derived are direct measurements, model-based approaches, data-driven 55

approaches, and hybrids of two or more categories. 56

1.1. Direct measurements for SOC and SOH estimation 57

Direct measurement approaches in battery cell state estimation describe measurements 58

that can be directly used to estimate a state. That could be specific parameters, just the 59

voltage, temperature, or current at specified points in time, depending on the state to be 60

estimated. 61

One typical measurement is the measurement of the OCV to use the relation of the 62

SOC and the OCV. The relation is measured before application for the battery cell and used 63

during runtime to estimate the SOC. [7] The OCV can be measured after hours without a 64

current, therefore in an application, the assumption, which is similar to the assumption for 65

doing the short-term incremental OCV measurement and the low current measurement, 66

that is, that the overpotential either after a short resting phase or during a low current 67

section is nearly equal to the true OCV is applied, because in many cases there are no long 68
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resting phases. Often there are still small currents to supply the control units. This kind 69

of SOC estimation is often used for calibration, to augment other algorithms, or under 70

laboratory conditions.[3] An analysis based on the relation of the OCV and the SOC that 71

slightly changes over degradation is used to estimate the SOH. The analysis is called ICA 72

and describes the differentiation of the charge over the voltage, leading to peaks in the 73

region of phase changes. That ICA is calculated from current measurements at constant 74

currents for a full or a partial discharge/charge cycle. The battery cells’ SOH can be 75

estimated by tracking the position, amplitude, and enveloped area. [7,8] Of course, the 76

change of these peaks has to be investigated before the application to know which change 77

belongs to which SOH. However, still, these measurements are only applicable in some 78

applications. 79

There is the well-known coulomb counting method. The coulomb counting approach 80

integrates the charged or discharged charge over time. That integrated value is divided 81

by the current capacity to estimate the SOC. In this case, the starting point, the starting 82

SOC, of the coulomb counting approach has to be known. The coulomb counting method 83

depends on the capacity, therefore on the SOH, and is influenced by the temperature and 84

the current rate. This method is prone to measurement errors since they are accumulated 85

over time. [3,7] Due to this disadvantage, it is often combined with the OCV measurement, 86

where it is possible to recalibrate the counter. Based on the coulomb counter, a cycle counter 87

could be established that counts the equivalent full cycles during usage. Therefore it is 88

extended such that it counts the charge in the charge direction or the absolute value of the 89

current in both the charging and discharging direction and is divided by either the capacity 90

or twice the capacity. To be able to use this information correctly, many measurements 91

have to be taken out to get the relation between the number of equivalent full cycles and 92

the SOH because the trajectory of the degradation depends on the stress factors like the 93

current rate, the temperature, the ∆DOD and the mean voltage. The measurement of 94

impedance or internal cell resistance is another method to estimate a state—especially the 95

SOH correlations with the increase of the internal cell resistance. Different methods are 96

used to measure the internal resistance. Sometimes the internal resistance is tried to be 97

identified at current changes during the application and filtering the results afterwards. 98

This approach is often not measuring the actual internal resistance because the sample rate 99

of the current and voltage measurement is too slow to get the internal resistance isolated. 100

So what is measured is a combination of the internal resistance and the impedance of active 101

electrochemical processes. More common is applying a current pulse to identify the internal 102

resistance [8,9]. Same here, the measured resistance might not be the internal resistance, 103

but it is part of it. The EIS measurement with a single frequency is possible to measure the 104

true internal resistance. More frequencies are applied to gain more information using, for 105

example, a multi-sine approach or just different frequencies as in a typical EIS measurement 106

[3,8]. Furthermore, typical EIS in applications is researched to get more information on the 107

battery cell impedance. Different electrochemical mechanisms can be analysed without 108

opening the cell by investigating the EIS. Therefore, it is very interesting to use EIS, since 109

it is a tool that could make a good diagnostic of ageing processes possible. [3,8,9] The 110

application of EIS measurement is very complex because it is susceptible to changes in the 111

measured system, which can be changes in the connection, temperature changes, and other 112

disturbing influences. Another measurement technique that might be used is based on the 113

joule effect. This approach analyses the generated heat and the rise of the temperature of 114

the battery cell to identify the internal resistance. However, a calorimeter is needed to track 115

temperature change and heat generation. [8,9] Other measurement equipment might be 116

used as well [8]. Of course, using a calorimeter as an online measurement tool is unsuitable. 117

1.2. Model-based SOC and SOH estimation 118

In general, model-based state estimation approaches depend on the model; that 119

could be that the approach only uses a model or combines an algorithm like a filter or 120

observer with a model. Using models directly to estimate the battery cell state is primarily 121
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not used for SOC estimation. Suppose coulomb counting or the OCV relation to the 122

SOC is considered model-based, then they are the only models for model-based SOC 123

estimation. It is another case for SOH or RUL estimation. The basic models used for direct 124

estimation are semi-empiric, empiric, and electrochemical ageing models used to estimate 125

the SOH. Empiric and semi-empiric models are developed based on ageing measurements 126

considering different stress factors. The model is fitted to the change of a parameter over 127

time or full cycle equivalents, i.e., the internal resistance or the capacity, and is used to 128

calculate the current SOH or RUL considering the cycles or the time at a specific stress 129

factor. A weighted coulomb counter based cycle counter can be used to track the influence 130

of the stress factors. The same approach can be used if the empiric model is replaced with 131

the degradation data saved in a characteristic map. [7,8,10] By using a more sophisticated 132

model like an electrochemical pseudo-two-dimensional model and using different ageing 133

improvements, the extrapolation ability and, therefore, the prediction ability is improved 134

for unseen data. In addition, the model can diagnose the ageing process. However, 135

due to their complexity and the involvement of many parameters and multiple partial 136

differential equations, they are unsuitable for online usage. Therefore the research focuses 137

on simplifications and parameterisation. [7,8] Every other model-based state estimation 138

approach includes a filter or observer. Filter and observer share that they use the same 139

general framework. They both rely on the model-based prediction (time update) of the 140

battery cell state and use the measurement to adjust the prediction (measurement update) 141

to the current behaviour of the battery cell. Filters that are often used belong to the Kalman 142

filter family, namely the extended Kalman filter or sigma-point Kalman filter, of which the 143

unscented Kalman filter is a part of. They use the general approach of making model-based 144

predictions and updating the prediction by measurement using the so-called Kalman gain. 145

The different modifications of the Kalman filter try to linearise the system around the 146

current working point using the derivative or an approximation. Known observers include 147

the Luenberger and the sliding mode observer. 148

1.3. Data-driven SOC and SOH estimation 149

The data-driven approaches contain machine learning approaches that describe a 150

group of algorithms capable of inferring a battery’s behaviour from raw data to build 151

a model that can predict the output or a state depending on the data without directly 152

programming it for this specific behaviour. The methods used for state estimation can be 153

categorised into methods that directly predict the output based on data and the methods 154

that iteratively predict the output, where the output could be a state, parameters, or 155

the voltage of the battery cell. Whether the prediction structure is direct or iterative 156

depends on the task and algorithm. An algorithm that makes point predictions can have a 157

direct structure, whereas an algorithm that predicts sequences or simulates something will 158

have an iterative structure. Depending on the output, they can be further distinguished 159

into algorithms that produce outputs with a measure of certainty/probability or not, 160

probabilistic or non-probabilistic methods. Machine learning approaches include neural 161

networks, autoregressive-moving average models and support vector machines. [7,11] The 162

algorithms used in this paper are model-based approaches often used in applications. Most 163

machine learning approaches are not applied in real applications. So far, only startups 164

use machine learning approaches for SOH estimation. To parameterise the ageing of the 165

battery cells, the degradation is interrupted by check-ups that consist of a capacity test, an 166

OCV measurement using an incremental approach with a short relaxation time instead 167

of a low current measurement and pulse tests for the parameterisation of the dynamic 168

parts of the battery cell model. In general, the concept for the state estimation consists of a 169

dynamic model describing the overpotentials and OCV, a model describing the ageing of 170

the parameters of the battery cell, an unscented Kalman filter to derive the SOC, and an 171

algorithm to derive the SOH from the ageing model. 172
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2. Measurements and Dataset 173

The dataset consists of 30 cells called HE4 from LG Chem aged in a hybrid ageing 174

manner, so no differentiation between calendar or cycle ageing was made. Still, the battery 175

cells were aged under different stress factors considering two temperatures (room tempera- 176

ture (23 °C, 25 °C and 45 °C), three different mean SOCs and three different DODs. Different 177

currents are not considered during constant current ageing. In addition, it includes two 178

cells aged under dynamic conditions at room temperature (23 °C). The following table 1 179

sums up the different stress factors and displays the stress factor matrix. 180

Table 1. Table of the different stress factors considered in the ageing measurements.

Temperature
[°C] ∆DOD SOCmean Number of Cells Cyclic Ageing

25 1 0.5 4 Constant current
25 0.3 0.35 4 Constant current
25 0.3 0.65 4 Constant current
45 1 0.5 4 Constant current
45 0.3 0.35 4 Constant current
45 0.3 0.65 4 Constant current
23 0.7 0.5 2 Constant current
23 0.3 0.5 2 Constant current
23 1 0.5 2 Dynamic profile

The ageing is frequently interrupted by a battery cell capacity test, every ten full cycle 181

equivalents, and less frequently by a full characterisation. During the ageing process, the 182

battery cells are cycled using constant current for charging and discharging, except for the 183

two dynamically aged cells. 184

The characterisation is taken out at the specific ageing temperature since the outer 185

mean SOC and DOD combinations are conducted at the two temperatures. The check-up 186

characterisations consist of a capacity test, a hybrid of an incremental open circuit voltage, 187

and a slightly adjusted hybrid pulse power characterisation (HPPC). Pre-tests have shown 188

that the influence of the HPPC on the OCV is neglectable. Furthermore, the incremental 189

method is an exact and time-efficient type of measuring the OCV and being able to do 190

additional analysis, namely the differential voltage analysis [12]. The increments in OCV 191

are based on every percent of the nominal capacity and the HPPC at every ten percent. The 192

measurement equipment used consists of a Neware battery cycler with a voltage range of 193

10 V and ±10 A and either a Memmert oven for the 45 °C or a temperature chamber from 194

Binder for the 25 °C measurements. The check-up is extended for the two dynamically aged 195

cells with a validation part, including dynamic discharges and constant current constant 196

voltage (CCCV) charging procedures. Figure 1 displays the used check-up and validation 197

extension. 198
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Figure 1. Voltage diagram of check-up procedure, including capacity test, hybrid OCV and HPPC
and the validation.

For the dynamic ageing, the Federal Urban Driving Schedule was applied to a battery 199

cell of the same type, so the cell was CCCV charged and then discharged to 2.5V using 200

the FUDS repeatedly. This measurement was used to design dynamic parts of the ageing. 201

To generate these parts, the so-called Random Pulse Method was used to create profiles 202

of defined length, as explained in [13]. The general process comprises segmenting the 203

measured current profiles in charging and discharging pulses and saving them to a database. 204

Afterwards, the pulses are selected randomly and added to the profile. Even without actual 205

driving data, a dynamic profile with random pulse sequences is generated that is ready 206

to be used during the cyclic ageing of the cells. The cycling includes short cycles of 25%, 207

30%, 80%, and 95% DOD. These cycles are concatenated to sum up to about ten full cycle 208

equivalents followed by a capacity test (see Figure 2). 209
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Figure 2. Voltage diagram of dynamic cycling procedure, including a capacity test.
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3. Dynamic Model Description 210

The modelling of a system has multiple purposes. It supports the design, analysis, 211

verification, or validation of a system. In the case of BMS, it serves the purpose of analysing 212

the system in terms of diagnosing and prognosing the actual state of the battery system. 213

Different modelling approaches can be physio-chemical, equivalent circuits, or mathemati- 214

cal models. The data that can be measured is essential, and on the other hand, how efficient 215

is the computation of the model? 216

Depending on the purpose, the model differs by the information needed to build the 217

model. They are often divided into black box and white box models. Black box models 218

do not need any system knowledge to model the behaviour. Empirical or mathematical 219

models often represent them. In contrast, white box models are based on describing the 220

processes that lead to specific behaviour of the system. These models could consist of 221

multiple differential equations. In other words, white box models are based on knowledge, 222

whereas black box models are based on data to represent the system’s behaviour. The 223

hybrid of these models is called the grey box model and uses both the knowledge and 224

data-based approach to model the system’s behaviour. This approach helps model a system 225

where some parts of the internal processes are known and others are not. It is also used to 226

simplify a model to reduce its complexity and focus on parts where a diagnosis should be 227

possible. 228

In terms of battery models, the different categories of models lead to electrochemical 229

models (white box), data-driven models like neural networks (black box), or equivalent 230

circuit models with additional empirical models to reproduce the behaviour of battery cells. 231

The base of most electrochemical battery models is formed by the work by Doyle, 232

Fuller, and Newman described in [14]. They describe the model as having a one-dimensional 233

transport from the anode to the cathode, passing the polymer separator. Film formation at 234

the lithium/polymer interface is discarded to keep the complexity manageable. At the same 235

time, the transport is modelled via the concentrated solution theory leading to a binary 236

electrolyte and a polymer solvent with one phase. Therefore the transport in the electrolyte 237

is defined by the electrical conductivity, the transference number, and the diffusion coeffi- 238

cient. These parameters depend on the concentration and could lead to different physical 239

properties. By doing so, the transport phenomena could be handled by that approach.[14] 240

All in all, it is described such that it leads to a pseudo-two-dimensional problem based on 241

a one-dimensional problem on micro and macro scale [15]. Since the process is nonlinear 242

and pseudo-tow-dimensional, it results in an issue that is only numerically solvable and, 243

therefore, unsuitable for every task like parameter estimation [15]. 244

For further usage, the Doyle Fuller Newman model is simplified to form the so-called 245

single particle model, which assumes a uniform reaction rate across the electrodes and 246

neglects the electrolyte dynamics [16]. By these assumptions, the electrodes are modelled 247

as single particles [17]. Electrochemical models could be used in applications like SOH 248

estimation based on that simplification. Further improvements were made in research 249

to represent degradation based on solid electrolyte interface development, cracking, and 250

handling electrolyte dynamics [17–19]. However, they are still represented by complex 251

differential equations with many parameters. 252

Electrochemical models are mostly either single-particle models or pseudo-two-dimensional253

models mainly used for design and analysis because they need detailed information on 254

the battery structure, the materials, and the electrolyte [20]. They were also used for state 255

estimation in some cases [21,22]. Nevertheless, they are complex and lack usability when 256

the information on the battery cell is limited. 257

Data-driven models include every kind of mathematical model that could be used to 258

reproduce the behaviour of a battery cell. They could be built up from neural networks, 259

support vector machines, fuzzy logic-based, or others. These models are often called 260

black box models since they do not deliver an analytical insight. So their parameters 261

are not relatable to the system that should be modelled. However, they could have a 262

good performance computationally and error-wise. They could be used for monitoring, 263
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diagnostics, design, and understanding physical phenomena. Nevertheless, depending 264

on the application task, the correct data to train the model is needed, which could be 265

very time-consuming since the data-driven models tend to overfit the data and cannot 266

extrapolate the data to states beyond the training data. [6,23,24] The widely used equivalent 267

circuit models (ECM) can represent the dynamic behaviour resulting from the reaction’s 268

electrochemical processes during charge or discharge. Depending on the application, the 269

ECM is employed as a straightforward model that is computationally efficient. [25,26] 270

Two different approaches for ECM try to emulate the battery behaviour using mostly 271

common electrical components such as resistors, capacitors, and voltage sources. Their aim 272

differs to a small extent since one approach is completely empirical, and the other aims to 273

model the behaviour with electrochemical relations—the difference in generating lies in the 274

underlying measurements. ECM with electrochemical relations starts with electrochemical 275

impedance spectroscopy (EIS) measurements, and most empirical ECM starts with pulse 276

measurements. 277

The laboratory measurements during the testing included a capacity test, an OCV, 278

and pulse measurements. For electrochemical models, invasive measurements are needed. 279

Nevertheless, it is still possible to identify the parameters of an ECM and data-driven 280

models. 281

Overall, the ECM promises good computability, interpretability, and efficiency with a 282

reasonable amount of parameters, and furthermore, it is often used in combination with 283

model-based state estimation approaches. 284

The boundary conditions must be considered when designing an ECM for a specific 285

application. That means which measurements could be taken out, which data could be 286

collected, where the model should be used, and what is expected of the model. Following 287

the literature on the next steps of a BMS it is the online diagnostics of battery cells, identi- 288

fying which processes lead to the current behaviour of the cell. Hence, the literature on 289

modelling for BMS usage seeks for at least potent physics-based ECM [23] or even reduced 290

order models of electrochemical models [17,21,22]. For most physics-based ECMs, at least 291

EIS measurements are needed. Speaking of the boundary conditions in an application, the 292

most important for the model design and the parameter estimation are the measurements, 293

sampling rate, and resolution. Since no specific measurement schemes are taken out in an 294

application, the boundary conditions reduce furthermore to the resolution and rate. The 295

resolution in a BMS ranges from 8 bit to 16 bit, hence, theoretically for a measurement in 296

the range of 0 V to 5 V from 9.8 mV to 38 µV accuracy, but considering the noise from 16 mV 297

to 300 µV accuracy [27]. The sampling rate that is applied in electric vehicles depends 298

on whether it is a high-power application where a faster rate is needed or a high-energy 299

application where a slower rate is feasible. Nevertheless, the rates range from 1 s−1 to 10 s−1
300

[27]. Specifically looking at the sampling rate, the number of electrochemical processes that 301

could be investigated shrinks. Taking account of the sampling rate, the following figure 3 302

displays the electrochemical processes that could be modelled by showing the EIS, which 303

includes a small part of the charge transfer, the diffusion, and the change of crystalline 304

structure. This figure does not take the Nyquist-Shannon sampling theorem into account. 305
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Figure 3. Electrochemical impedance spectra considering the sample time.

Different ECMs are still usable, considering the impedance spectra and sampling rate. 306

They can be of fractional order or can include multiple RC elements. These models can 307

be lumped. Since the main focus of the paper is not the modelling, the model used is a 308

typical two-RC model with an OCV part. This type of model is an often used model when 309

a model-based state estimation approach is followed [28,29] even of a lower order [30,31]. 310

Overall the two RC model is able to model the EIS of a lithium-ion battery. Therefore, it is 311

suitable to be used as a model for the SOC estimation and the representation of the battery 312

cell in case of dynamic battery cell behaviour. 313

3.1. Dynamic Model Equations and Discretisation 314

This section states the model equations and their discretisation for the dynamic battery 315

cell model. The model is displayed in figure 4. The differential equation describing the 316

model could be established by using Kirchhof’s and Ohm’s laws and considering that 317

τ = R · C. 318

Figure 4. Battery model with two RC elements

U(t) = UOC(t) + U0(t) + U1(t) + U2(t) (4)

U(t) = UOC(t) + R0i(t) + R1i(t)− τ1
dU1(t)

dt
+ R2i(t)− τ2

dU2(t)
dt

(5)

For the next step to get to the equations needed, the differential equation is Laplace 319

transformed using the law of linearity and leads to 320

U(s) = UOC(s) + R0i(s) +
R1

1 + τ1s
i(s) +

R2

1 + τ2s
i(s). (6)
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By applying the bilinear transformation

s =
2
T

1 − z−1

1 + z−1 (7)

and discretising every term on its own leads to the following results. 321

Z{UOC(s)} = UOC(z) (8)

Z{U0(s)} = Z{R0i(s)} = R0i(z) (9)

Z{U1(s)} = Z{ R1

1 + τ1s
i(s)}

=
R1

1 + 2
T τ1

i(z) +
R1

1 + 2
T τ1

i(z)z−1 −
1 − 2

T τ1

1 + 2
T τ1

U1(z)z−1. (10)

Z{U2(s)} = Z{ R2

1 + τ2s
i(s)}

=
R2

1 + 2
T τ2

i(z) +
R2

1 + 2
T τ2

i(z)z−1 −
1 − 2

T τ2

1 + 2
T τ2

U2(z)z−1 (11)

By using these equations and transforming them to the discrete-time domain and
formulating them in state space leads to the model that state estimation algorithms could
handle

SOC(k)
U1(k)
U2(k)

 =


1 0 0

0 1− 2
T τ1

1+ 2
T τ1

0

0 0 1− 2
T τ2

1+ 2
T τ2


SOC(k − 1)

U1(k − 1)
U2(k − 1)

+


1

CN
0

R1
1+ 2

T τ1

R1
1+ 2

T τ1
R2

1+ 2
T τ2

R2
1+ 2

T τ2

 (12)

U(k) = UOC(SOC(k)) + U1(k) + U2(k) + R0i(k). (13)

3.2. Parameterisation 322

The parameterisation is the process of extracting the model’s parameters from the 323

measurements. To be able to extract the parameters, every ageing cycle is frequently 324

interrupted by a check-up. Every check-up is preprocessed to get the measurement’s 325

capacity, the OCV, and the pulses out. Before preprocessing, measurements are imported 326

and formatted into a universal format because only the import function has to be changed 327

if the saved measurement file changes. The capacity is calculated from the 1C discharging; 328

a CCCV charge precedes that. Another CCCV charge follows this discharge and the hybrid 329

test phase of the incremental OCV and the HPPC pulse test. The OCV in the charging and 330

discharging direction can be estimated from the hybrid phase. See figure 1 for an example 331

of the check-up. During the preprocessing, the check-up data in a standardized import 332

data format is separated into different parts, starting from the OCV voltages extracted from 333

the hybrid part from the resting phase of the incremental OCV to the relaxations of the 334

HPPC pulses that are used to determine the dynamic parameters of the battery model, the 335

battery internal resistance, the resistances of the RC elements and its time constants. By 336

using the pulse relaxation, the change of OCV does not have to be included because there 337

is none during the relaxation. Furthermore, the capacity is directly extracted from the 1C 338

discharging, and the validation is extracted as well if present. The validation part is only 339

present for the cells aged under dynamic regimes. 340

3.2.1. Open circuit Voltage Modelling 341

The OCV is a central part of the model since it describes the midterm behaviour of a 342

battery if the battery behaviour is segmented into short-term, dynamic behaviour, mid-term, 343

OCV behaviour, and long-term, described by the ageing behaviour. There are different 344
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approaches to modelling the OCV in the literature, ranging from tables to empirical models 345

like polynomials or more electrochemical-based models [32–35]. For more information 346

on different models for OCV modelling, please refer, for example, to Pillai et al. [35]. To 347

model the OCV, a table-based approach will be used, which can lead to a stable and easy 348

method to represent the OCV when sampled correctly. The used approach is based on the 349

inflection point method described by Sundaresan et al. [32]. A few changes were added to 350

the sampling to improve the performance. The following steps were followed to sample 351

the measured OCV curve: 352

1. Calculation of the signed curvature of the OCV according to Narula [36]

κ =
x′′y′ − x′y′′

((x′)2 + (y′)2)3/2 (14)

2. Find roots of the curvature to segment the OCV. Therefore calculate

κ(x) = 0 (15)

to get the roots. Add the first measurement point and roots to the samples.

samples = [x(0), κroots, x(end)] (16)

3. Delete inner samples if the section range is lower than 5% of the SOC for minimum 353

section size. 354

4. Allocate samples equally to the sections. 355

5. If there are still samples left: 356

(a) Calculate the error and curvature peaks per section 357

(b) Add a sample to the section with the highest error 358

(c) Distribute samples equidistantly in sections 359

(d) Go to 5 360

6. Finished sampling the OCV 361

The main differences to Sundaresan et al. [32] is the formula for calculating the 362

curvature and the steps to distribute the samples, despite the equal distribution. Because 363

the approach described in the literature could lead to many samples in just two sections, 364

even if other sections would benefit from additional samples, this distribution depends on 365

the number of excess samples after the equal distribution. If there are no samples left, the 366

step of distributing the excess samples is not conducted. The following figure 5 displays 367

the result of the sampling compared to the measurement. 368
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Figure 5. Sampling result of an OCV measurement.

3.2.2. Dynamic Parameter Identification 369

The battery model’s dynamic parameters are the battery cells’ ohmic resistance, the 370

resistances belonging to the RC elements, and the time constants. The time constants instead 371

of the RC capacities are used because they are more simple for identifying boundaries, and 372

the distribution of relaxation times could be easily used for start parameter estimation. The 373

relaxation of the HPPC part of the check-up is used to identify the parameters. Identifying 374

the parameters is divided into the preprocessing of the relaxation, the start parameter 375

estimation and the fitting itself. The relaxation consists of switching from the current pulse 376

to the relaxation and the complete relaxation. The measurement is checked for doubled 377

data points and NaNs during preprocessing. Afterwards, the relaxation is freed from the 378

OCV by subtracting the last voltage of the relaxation. Because the relaxation is 1800 s long 379

and sampled with 0.1 s, it consists of many samples, and many of these samples are part 380

of the relaxed voltage. Many samples in this area work during the fitting process as a 381

weighting since the faster processes should be fitted as well, and the relaxation is resampled. 382

Logarithmic resampling was used to have more samples at the beginning of the relaxation 383

and fewer at the end. 384

Estimating start parameters is essential; the better the start parameters, the better the 385

fit. In this case, estimating the start parameters is relatively complex. The overall process 386

consists of different steps starting with the estimation of the ohmic series resistance using 387

R0 =
U(t = 0.3 s)− U(t = 0 s)
I(t = 0.3 s)− I(t = 0 s)

. (17)

Then the next step includes estimating the resistances and time constants of the
RC elements. The step includes calculating the so-called distribution of relaxation times
(DRT) to get meaningful parameters. Since no electrochemical impedance spectroscopy
was measured, the DRT is estimated by overfitting the relaxation with 5 RC elements,
calculating the impedance spectra using the fitted parameters and the impedance equation,
and calculating the DRT using the package pyDRTtools by Wan et al. [37]. The DRT is
evaluated for local peaks, whether they lie in the range of the boundaries used for fitting
the parameters later on. If they lie in the range of one of the ranges of the time constants,
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the time constant is used as starting parameter of the specific RC element time constant.
The resistance corresponding to the respective time constant is calculated by

URC,1 = Upp(t = 0)− Upp(t = 5τRC,1) (18)

RRC,1 = URC,1/Ipulse,t=0 (19)

for the first and the other RC elements

URC,n = Upp(t = 5τRC,n−1)− Upp(t = 5τRC,n) (20)

RRC,1 = URC,n/Ipulse(t = 0). (21)

where Upp is the preprocessed measured relaxation voltage, RRC,n the resistance and 388

τRC,n the time constant of the n-th RC element. At this point, the start parameter estimation 389

is finished. For robustness, the start parameters for time constants are the mean of their 390

boundaries if no peak in the region of the boundaries is found. 391

Now the data is fitted using the lmfit package by Newville et al. [38] applying the 392

minimizer with the Nelder-Mead algorithm. Only the parameters of the RC elements are 393

fitted, and the ohmic resistance is kept constant throughout the fitting process. Because 394

the fitting is done on a relaxation process, the fitted model has to include the starting 395

voltage of the RC elements because instead of having 0 V at the RC element, the capacity is 396

pre-charged by the current pulse before. Therefore the discrete equation for a single RC 397

element itself is as follows. 398

U[k]RC,n = e
−t[k]
τRC,n U[k − 1]RC,n + RRC,n I[k]

(
1 − e

−t[k]
τRC,n

)
, k = [1, size(t)] (22)

U[k]RC,n = RRC,n I[k](1 − e
−tpulse
τRC,n ) , k = 0 (23)

See figure 6 for a start parameter result and a fitting result. 399
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Figure 6. Result of the start parameter estimation and the fitting.

These processes are applied to every check-up and the extracted relaxations. 400

4. SOC Estimation 401

The Kalman filters are a widespread family of filters used for state estimation. The 402

general Kalman filter is the simplest of the filters. It recursively uses the system described 403
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Figure 7. Steps of the Kalman Filter.

in state space and the measurements to estimate the state. By weighting the prediction and 404

the measurement, the Kalman filter can account for noise, variations in the measurement, 405

and inaccuracies of the used model. Since it is based on the Bayesian filter, it considers 406

the state to be a normal Gaussian distribution described by its mean and the variance 407

or covariance matrix for multiple dimensions. So, by using the model for the prediction, 408

a Gaussian distribution is estimated based on its last state and the model’s behaviour 409

described by the state space equations. Uncertainties are added to account for model 410

and measurement imperfections. The measurement represents another Gaussian distri- 411

bution, and by multiplying the prediction with the measurement, a new distribution can 412

be calculated. By extracting the so-called Kalman Gain, the new state could be estimated. 413

Figure 7 summarises the mentioned steps. The Kalman filter is not feasible for battery state 414

estimation since it only operates with a linear system, which is not the case for battery 415

models and leads to errors during estimation. Different variants have been developed. 416

[3,7–9] 417

The Extended Kalman filter (EKF) is one variant that linearizes the current mean and 418

the covariance with a Taylor series approximation in every step to nullify the nonlinearities. 419

In general, the EKF uses the same framework of time update and measurement update 420

but calculates each time the Jacobian matrix of partial derivatives of the nonlinear state 421

equation for the state and the process noise and Jacobian matrix of partial derivatives of 422

the measurement equation for the state and the measurement noise. The problem with 423

this kind of linearization is that the distributions of random variables are no longer normal 424

after the nonlinear transformation. Often the EKF is used to estimate the SOC using an 425

ECM or the SOH based on estimating the capacity and internal resistance. [9,31,39,40] 426

Another variant of approaches summarized under Sigma Point Kalman filter (SPKF) 427

handles the nonlinear problem using a statistical approach. So, the SPKF uses multiple 428

Sigma-Points depending on the dimensions of the state vector. For these points, the 429

time and measurement update is calculated, which means they are all transformed, and 430

afterwards, they are all used to estimate the current state vector. The advantage is that this 431

filter does not calculate Jacobians or Hessians without losing information and precision. 432

SPKF are differentiated based on the selection rule of the Sigma-Points in central difference 433

Kalman filter, unscented Kalman filter or cubature Kalman filter. [3,9,23,31,40,41] In general, 434

the UKF follows the same process as other filters, including the prediction and update 435

step. Of course, these steps can be further divided into smaller substeps. Its name is 436

derived from the unscented transform, an approach used for the statistical calculations 437

of random variables that undergo a nonlinear transformation. Instead of calculating the 438
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Jacobian and Hessian matrices, the UKF uses discrete samples, called sigma points, that are 439

projected through the transformation. By using weights, the mean and the covariance can 440

be calculated. [42,43] The general process is described here: 441

1. Initialization of the mean and the covariance with expectations, where x is the state
vector.

x̂0 = E[x0] (24)

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ] (25)

2. Prediction of the current state, including sampling and weight calculation. 442

(a) Calculate the sigma points based on the mean x̂k−1, depending on the di-
mension of the state vector and mean N using the composite scaling factor
λ:

Xk−1,i =


x̂k−1 , i = 0
x̂k−1 +

√
(N + λ)Pk−1 , i = 1, ...N

x̂k−1 −
√
(N + λ)Pk−1 , i = N + 1, ...2N

(26)

where the scaling factor is

λ = αβ(N + κ)− N (27)

with α determining the spread of the samples, β depends on the expected type 443

of distribution, where for Gaussian β = 2, and κ being the scaling factor that’s 444

usually equal to 3 − N. 445

(b) Transform the samples using the model system equation (F) and the input (u)

X ∗
k = F(Xk−1, uk−1). (28)

(c) Calculate the predicted mean x̂−k and covariance based on the samples by
using the weights Wm,i for the mean and Wc,i for the covariance in addition to
the process noise covariance Rp

x̂−k =
2N

∑
i=0

Wm,iX ∗
k (29)

P−
k =

2N

∑
i=0

Wc,i(X ∗
k − x̂−k )(X

∗
k − x̂−k )

T + Rp (30)

and augment samples with additive noise

Xk,i =


X ∗

k,i , i = 0,
X ∗

k,i,0 +
√
(N + λ)Rp , i = 1, ...N,

X ∗
k,i,0 −

√
(N + λ)Rp , i = N + 1, ...2N.

(31)

(d) Calculate the output with the output equation of the model (H) using the
samples and calculate its mean with the weights:

Yk = H(Xk), (32)

ŷ−k =
2N

∑
i=0

Wm,iYk,i (33)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                   doi:10.20944/preprints202305.0621.v1

https://doi.org/10.20944/preprints202305.0621.v1


Version April 20, 2023 submitted to Batteries 16 of 27

3. The Measurement update calculates the new state of the model using the prediction, 446

the Kalman gain, and the measurement of the output. Furthermore, the measurement 447

noise is added. 448

(a) Calculate the Kalman gain:

Pyy,k =
2N

∑
i=0

Wc,i(Yk,i − ŷ−k )(Yk,i − ŷ−k )
T + Rm (34)

Pxy,k =
2N

∑
i=0

Wc,i(Xk,i − x̂−k )(Yk,i − ŷ−k )
T (35)

K = Pxy,kP−1
yy,k. (36)

(b) Calculate the state and covariance of the state of the model using the Kalman
gain and the measurement of the output (yk):

x̂k = x̂−k +K(yk − ŷ−k ) (37)

Pk = P−
k −KPyy,kKT

k . (38)

(c) After the calculation of the current state, it is shifted to be the old state (x̂k−1), 449

and the same is done for the covariance (Pk−1). Now, start all over again with 450

the prediction steps and so forth. 451

These process steps are applied to the model described in section 3 to estimate the internal 452

cells of the model consisting of the SOC and the overpotentials of the two RC elements. 453

Now the state estimation consists of the SOC estimation based on the model using the UKF. 454

It is extended by a SOH estimation based on an ageing model. 455

5. SOH Estimation 456

As for the SOC estimation, the SOH estimation can be grouped into direct mea- 457

surements, model-based and data-driven approaches. Direct measurements for the SOH 458

estimation consider an analysis based on the relation of the OCV and the SOC, where 459

the identification of slight changes over the degradation is used to estimate the SOH. The 460

analysis is called incremental capacity analysis (ICA) and describes the differentiation 461

of the charge over the voltage that leads to peaks in the region of phase changes. That 462

ICA is calculated from current measurements at constant currents for a full or a partial 463

discharge/charge cycle. The battery cells’ SOH can be estimated by tracking the position, 464

amplitude, and enveloped area. [7,8] Of course, the change of these peaks has to be investi- 465

gated prior to the application to know which change belongs to which SOH. Another direct 466

approach is the so-called cycle counter. Based on the coulomb counter, a cycle counter could 467

be established that counts the equivalent full cycles during usage. Therefore it is extended 468

such that it only counts the charge in the charge direction or the absolute value of the 469

current in both the charging and discharging direction and is divided by either the capacity 470

or two times the capacity. To be able to use this information correctly, many measurements 471

have to be conducted to get the relation between a number of equivalent full cycles and the 472

SOH, because the trajectory of the degradation highly depends on the stress factors like 473

the current rate, the temperature, the ∆DOD, and the mean voltage. Another approach 474

is to use the relation of the internal resistance with the ageing processes and derives the 475

SOH based on the measurement of the internal resistance either from EIS measurements or 476

pulses. The next group of methods includes the model-based approach, divided into direct 477

and indirect approaches, where direct models that are used for the direct estimation are, 478

for example, semi-empiric, empiric, and electrochemical ageing models used to estimate 479

the SOH. Empiric and semi-empiric models are developed based on ageing measurements 480

that consider different stress factors. The model is fitted to the change of a parameter over 481

time, or full cycle equivalents, i.e., the internal resistance or the capacity, and is used to 482
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calculate the current SOH or RUL considering the cycles or the time at a specific stress 483

factor. A weighted coulomb counter-based cycle counter can be used to track the influence 484

of stress factors. The same approach can be used if the empiric model is replaced with 485

the degradation data saved in a characteristic map. [7,8,10] By using a more sophisticated 486

model like an electrochemical pseudo-two-dimensional model and using different ageing 487

improvements, the extrapolation ability and, therefore, the prediction ability is improved 488

for unseen data. In addition, the model could be able to diagnose the ageing process. How- 489

ever, due to their complexity and the involvement of many parameters and multiple partial 490

differential equations, they are unsuitable for online usage. Therefore the research focuses 491

on simplifications and parameterisation. [7,8] Model-based approaches that incorporate 492

models are, in most cases, observers and filters. The model is used to predict the measure- 493

ment, where the model’s state consists of its parameters and not its SOC or overpotential. 494

[6,6,9,31,39] In the group of data-driven approaches, some parts of the direct models can be 495

used since they rely highly on the data or machine learning approaches like the support 496

vector machine or the neural networks. These algorithms can be used to directly estimate 497

the SOH based on measurements like EIS or charge profiles that are measured during the 498

application.[3,7,8,44] A much more specialised approach for sequential data is the recursive 499

neural network (RNN). One central part of an RNN is parameter sharing, meaning that 500

parameters are shared between multiple parts of the model. The second central part is 501

that the network has connections to results in the past. Therefore, the present values of 502

a variable can influence future values of its own. Different approaches are considered to 503

be RNNs. [45] These models are often used for RUL prediction and capacity degradation 504

prediction in general. 505

For this work, the decision falls to the direct model-based approach, where an ageing 506

model is designed based on the measurements made and a cycle counter to access the 507

model. This approach is common and sometimes extended with a filter or observer. The 508

following sections describe the processing of the raw ageing data to combined data sets 509

and, from there, the ageing model and its usage in combination with the cycle counter. 510

5.1. Aging data processing 511

The fitting of the relaxations of each check-up leads to the identified dynamic pa- 512

rameters for various SOCs at different ageing states of each cell. For every stress factor 513

combination, at least two cells were used. For every check-up, parameters for charging 514

and discharging direction are collected from the HPPC parts’ relaxations during the dis- 515

charging and charging measurement of the incremental OCV. These data sets of each cell 516

are combined as if it is one cell’s data. At first, the charging and discharging values of the 517

parameters are combined and sampled to a fixed grid of SOCs. This is conducted in two 518

steps, at first, the data is fitted using a polynomial of the fifth degree, and then the model is 519

sampled with the original SOCs to be interpolated/extrapolated to the fixed grid of SOCs. 520

The fit of a polynomial is useful because the SOCs of the parameters in the charging and 521

discharging direction differ, so by fitting a polynomial instead of calculating the mean, the 522

step of bringing both to a fixed grid at this point is skipped, and a kind of trend line is 523

estimated. The measurements represent the parameters for charging and discharging direc- 524

tions, and the colour changes with the SOC. However, the polynomial of a relatively high 525

degree compared to the number of samples leads to problems resembling the behaviour 526

outside the given SOCs. By combining the fit and the extrapolation, the estimate outside 527

the given SOCs is more conservative. Another solution to the extrapolation can be the 528

clipping of the characteristic map. An example of the result of this process is displayed in 529

figure 8. 530
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Figure 8. Result of the combination of charging and discharging parameter values using fitting and
extrapolation. Different colours of measurements represent the SOC the parameter is estimated at.

The points belong to parameters estimated in charging and discharging direction.

A similar approach combines the capacities of the cells aged under the same stress 531

factors over the full cycle equivalents (FCE). After combining the parameters for charging 532

and discharging direction, the parameters can be displayed as a 3D map over SOC and 533

SOH. The following steps combine the maps of the different cells aged with the same stress 534

factors, resulting in maps with a fixed SOC and SOH, which makes it easier for later usage. 535

During this process, the maps of the group of battery cells are fitted using the lmfit package 536

by defining a multidimensional polynomial. As before, this process eliminates the step of 537

bringing all maps to the same fixed SOH values (see figure 9). 538
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Figure 9. Result of the combination of different cells using a multidimensional polynomial fit.

At this point, the data of the cells that share the same stress factors are combined into 539

a single data set. The following steps include the design of the ageing model based on the 540

data and how the degradation-based change is combined with the battery model. 541
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5.2. Aging model 542

The ageing model, in general, is kept very simple. A simple way to implement a model 543

is to create characteristic maps and access these maps with the extracted stress factors to 544

get the parameters’ change. The previously preprocessed data is further processed to get to 545

the characteristic maps. For the characteristic map of the capacity, the data of the capacities 546

are normalised to the first value of each dataset for each stress factor combination so that 547

the graph corresponds to the SOH over the FCE as shown in figure 10. 548
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Figure 10. Resulting characteristic map for the capacities.

A similar approach is used for the other parameters, where at each ageing state, the 549

mean is calculated and normalised to its initial value. The parameters, consisting of RC 550

resistances and time constants τ instead of the capacities, besides the battery cells’ internal 551

resistance, do not follow a specific trend. This is why the other parameters’ change is often 552

neglected, and the modelling focuses on changing the internal resistance and the battery 553

cell capacity. 554
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Figure 11. Resulting characteristic map for the dynamic parameters.

These characteristic maps are used to calculate the parameters’ change during degra-
dation for the aggregated stress factors. These maps are combined with a simple method to
extract the stress factors during runtime to calculate the change and add it to the change
of the specific parameter. The feature extraction is done by calculating the minimum and
maximum SOC for the DOD, and the mean temperature and by summing up the SOC and
calculating the mean for a specified window based on the calculation of FCE. Wrapping
everything up for the ageing model consists of the continuous calculation of the FCE and
stress factors that are fed into the characteristic map of the SOH over the FCE to get the
change of SOH and the current SOH as follows

∆SOH = SOH(SOCmean, T, DOD, FCE[k])− SOH(SOCmean, T, DOD, FCE[k − 1]) (39)

SOH[k] = SOH[k − 1] + ∆SOH. (40)

The calculated SOH[k] and the SOH[k-1] of the last update are used to get the change of
the dynamic parameters P

∆P = P(SOCmean, T, DOD, SOH[k])− P(SOCmean, T, DOD, SOH[k − 1]) (41)

P[k] = P[k − 1] + ∆P. (42)

By normalising the maps and calculating the change in the parameters, the battery 555

model can be initialised with parameter maps that describe the behaviour of the parameters 556

for different temperatures and SOCs. These initial maps are not normalised for the basic 557

parameterisation. Therefore, the degradation of the parameters is included as a factor of 558

the initial maps. 559
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6. System Overview 560

This section summarises the different pieces used to predict the SOC and the SOH. 561

The system starts with the measurements, where the current is used to predict the states 562

of the system by using the battery model and the voltage to update the states inside the 563

UKF. The battery model depends on the different parameters of the dynamic model; these 564

parameters depend on the SOH, the temperature and the SOC. Therefore, to get to the 565

SOH, the measurements and the SOC are analysed to get the features that describe the 566

stress factors during ageing in the feature extractor. It calculates the full cycle equivalents 567

based on the current. The condensed stress factors are forwarded into the ageing model, 568

which works on one side as a parameter model, describing the SOC and temperature- 569

dependent behaviour. On the other hand, the ageing model describes the SOH based on 570

stress factors. Updating the parameters is done in every iteration for SOC and temperature 571

dependencies and when it is issued by the feature extractor for the SOH dependence. By 572

running iteratively through the measurements of the SOC, the features and the SOH are 573

estimated for every sample. Figure 12 displays a schematic of the system. 574
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Update

Battery Model
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Current

Feature Extractor
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Parameter Updates
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SOH

State

Figure 12. Schematic overview of the system depicting the UKF, the ageing model and the feature
extractor.

7. Results and Discussion 575

The validation of the whole system consisting of implemented models and algorithms 576

is realised by iterating the data of the dynamically cycled cells. That means starting with 577

the first check-up and alternating through check-up and cycling data. To do so without 578

taking too much time, the data was resampled with a sampling rate of 1 s and the updating 579

of the feature extractor was set to every two full cycle equivalents. The extraction result is 580

displayed in 13. 581

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                   doi:10.20944/preprints202305.0621.v1

https://doi.org/10.20944/preprints202305.0621.v1


Version April 20, 2023 submitted to Batteries 22 of 27

0 50 100 150 200 250 300 350 400
FCE

0.4

0.6

0.8

SO
C m

ea
n

0 50 100 150 200 250 300 350 400
FCE

0.50

0.75

1.00

DO
D

0 50 100 150 200 250 300 350 400
FCE

22

24

26

Te
m

p 
[°

C]

0 50 100 150 200 250 300 350 400
FCE

0.8

0.9

1.0

SO
H s

im

Figure 13. Features extracted over laboratory battery life. Check-ups are marked with an underlying
grey area.

The figure displays the degradation process of the battery cell. Check-ups are marked 582

with an underlying grey area. During the degradation, the mean of the SOC is around 50 % 583

and transitions to about 65 %. Whereas the ∆DOD switches between 50 %, 80 % and full 584

cycles. Smaller cycles are included, but since the feature extractor updates every two full 585

cycle, equivalents the system is experiencing in this duration of bigger cycles, the small 586

cycles are neglected. The temperature is in general, about 25 °C and increases minimally 587

over degradation. During the degradation process, the SOH estimation error increases over 588

time. That is an expected behaviour since the ageing model does not represent dynamic 589

ageing, and the feature extractor does not capture the stress factors of smaller stress cycles. 590

The absolute error in the SOH rises to 1.2 % at the end. The 1C capacity measured during 591

the check-ups is used as a reference for the SOH. The evolution of the SOH in comparison 592

to the reference and its absolute error is displayed in 14. 593
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Figure 14. Comparison of the estimated SOH and the reference SOH

The error of the ageing model is included in the SOC estimation since the model for 594

the internal state prediction of UKF uses the capacity to calculate the current state vector, 595

including the SOC. This circumstance leads to an increasing error in the SOC estimation 596

of the degradation of the battery cell. Therefore, the SOC and SOH errors correlate as the 597

Pearson correlation coefficient confirms with 0.76 (see figure 15). The RMSE of the SOC 598

is calculated for the dynamic sections of check-ups because a SOC reference based on the 599

measured capacity of the corresponding check-up can be used. 600

0.860.880.900.920.940.960.981.00
SOHref

0.020

0.025

0.030

0.035

0.040

RM
SE

(S
OC

)

Pearson Correlation Coefficient = 0.75

0.000

0.005

0.010

0.015

0.020

0.025

0.030

RM
SE

(S
OH

)
RMSE(SOC)
Trend(RMSE(SOC))
RMSE(SOH)
Trend(RMSE(SOH))

Figure 15. RMSE of the estimated SOC and SOH with their trendline and Pearson correlation
coefficient

Interpreting the diagram leads to the conclusion that the error will rise faster with 601

further degradation. It may then reach the limit of the implemented UKF. Nevertheless, the 602

error of the SOC estimation is minimal, with about 4 % at its maximum. A regression plot is 603

generated to analyse the performance of the SOC estimation. The regression plot displays 604

the performance of the estimated SOC (SOCsim) in contrast to the reference SOC (see figure 605

16). When a marker is above the diagonal line, the SOC is overestimated. Otherwise, it is 606

underestimated. For visibility reasons, the SOC was resampled, only plotting every 300th 607

estimate. 608
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Figure 16. Regression plot of the SOC for different ageing states

The diagram shows that over ageing, the SOC estimation is increasing, but especially 609

in the range of the 20 % to 60 % SOC, the estimation has more outliers. Outliers might 610

result from the change of the OCV over ageing, which is not part of the model because it 611

was neglected during the system development. In addition to more outliers, estimation 612

overestimates the SOC with increasing degradation. The overestimation results from 613

underestimating the degradation, leading to a higher SOH than the reference. Since the 614

measurement segments start fully charged, the cell discharges slower than the reference 615

suggests resulting in the overestimation of the SOC. 616

Compared to other algorithms used in the literature, the system performs comparably 617

to other implementations. In general, the RMSE lies in the range of about 1 % to 2 % SOC 618

in literature. The paper of Yang et al. [46] includes a survey for multiple approaches. 619

However, many approaches are tested in relatively simple circumstances where the cell is 620

cycled with constant currents or schedules like the Urban Dynamic Driving Schedule that 621

consists of multiple constant current pulses. There is only sparse literature where the SOC 622

estimation is applied to the whole battery cell life and a cell life with dynamic profiles. 623

8. Conclusions 624

Overall the paper includes all the steps to set up a general common approach for 625

SOC and SOH estimation with a few additions like another discretisation of the model, an 626

enhanced OCV sampling method, a specific parameterisation of the relaxation of the pulses 627

and a simple feature extraction. In contrast to the literature, this paper includes all the 628

steps from measurements to modelling, parameterisation, ageing modelling and bringing 629

it together with the feature extraction to run through a whole battery degradation process. 630

The degradation consists of dynamic cyclic ageing and the check-ups in between, leading 631

to the opportunity to analyse the influence of the SOH estimation on the SOC estimation 632

and the performance of the approaches considering dynamic load profiles. 633
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Abbreviations 643

The following abbreviations are used in this manuscript: 644

645

BMS Battery Management System
CCCV Constant Current Constant Voltage
DOD Depth of Discharge
DRT Distribution of Relaxation Times
ECM Equivalent Circuit Model
EIS Electrochemical Impedance Spectroscopy
EKF Extended Kalman Filter
FCE Full Cycle Equivalent
FUDS Federal Urban Driving Schedule
HPPC Hybrid Pulse Power Characterisation
ICA Incremental Capacity Analysis
IR Internal Resistance
OCV Open Circuit Voltage
RMSE Root Mean Square Error
RNN Recursive Neural Network
RUL Remaining Useful Life
SOC State of Charge
SOH State of Health
SOF State of Function
SPKF Sigma Point Kalman Filter
UKF Unscented Kalman Filter

646

References 647

1. Park, S.; et. al.; Review of state-of-the-art battery state estimation technologies for battery 648

management systems of stationary energy storage systems JPE 2020, 20, 1526 - 1540. 649

2. Ungurean, L.; et. al.; Battery state of health estimation: a structured review of models, methods 650

and commercial devices Int. J. Energy Res. 2017, 41, 151–181. 651

3. Ali, M. U.; et al.; Towards a Smarter Battery Management System for Electric Vehicle Applica- 652

tions: A Critical Review of Lithium-Ion Battery State of Charge Estimation Energies 2019, 12, 653

446. 654

4. Kirchev, A.; et al.; Battery Management and Battery Diagnostics Electrochemical Energy Storage 655

for Renewable Sources and Grid Balancing: Elsevier 2015, 411–435. 656

5. Vezzini, A.; et al.; Lithium-Ion Battery Management Lithium-Ion Batteries: Elsevier 2014, 345 - 360. 657

6. Wang, Y.; et al.; A comprehensive review of battery modeling and state estimation approaches 658

for advanced battery management systems.Renewable and Sustainable Energy Reviews 2020, 131, 659

110015. 660

7. Hu, X.; et al.; State estimation for advanced battery management: Key challenges and future 661

trends Renewable and Sustainable Energy Reviews 2019, 114, 109344. 662

8. Ge, M.-F.; et al.; A review on state of health estimations and remaining useful life prognostics of 663

lithium-ion batteries Measurement 2021, 174, 109057. 664

9. Berecibar, M.; et al.; Critical review of state of health estimation methods of Li-ion batteries for 665

real applications. Renewable and Sustainable Energy Reviews 2016, 56, 572–587. 666

10. Baghdadi, I.; et al.; Lithium battery aging model based on Dakin’s degradation approach. Journal 667

of Power Sources 2016, 325, 273–285. 668

11. Li, Y.; et al.; Data-driven health estimation and lifetime prediction of lithium-ion batteries: A 669

review. Renewable and Sustainable Energy Reviews 2019, 109254. 670

12. Petzl, M.; et al.; Advancements in OCV Measurement and Analysis for Lithium-Ion Batter- 671

iesIEEE Transactions on Energy Conversion 2013, 28, 675. 672

13. Kellner, Q.; et al.; Battery cycle life test development for high-performance electric vehicle 673

applicationsJournal of Energy Storage 2018, 15, 228. 674

14. Doyle, M.; et al.; Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion675

Cell.J. Electrochem. Soc. 1993, 140, 1526–1533. 676

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                   doi:10.20944/preprints202305.0621.v1

https://doi.org/10.20944/preprints202305.0621.v1


Version April 20, 2023 submitted to Batteries 26 of 27

15. Richardson, M.; et al.; Generalised single particle models for high-rate operation of graded 677

lithium-ion electrodes: Systematic derivation and validation.Electrochimica Acta 2020, 339, 678

135862. 679

16. Howey, D. A.; et al., UKACC 12th International Conference on Control (CONTROL), Piscataway, 680

5-7 Sept. 2018. 681

17. Li, J.; et al.; A Single Particle Model for Lithium-Ion Batteries with Electrolyte and Stress- 682

Enhanced Diffusion Physics.J. Electrochem. Soc. 2017, 164, A874-A883. 683

18. Pang, H.; et al.; Parameter identification and systematic validation of an enhanced single-particle 684

model with aging degradation physics for Li-ion batteries.Electrochimica Acta 2019, 307, 474–487. 685

19. Lotfi, N.; et al., American Control Conference, Seattle, USA, 24-26 May 2017. 686

20. Laue, V.; et al.; Practical identifiability of electrochemical P2D models for lithium-ion batter- 687

ies.Electrochimica Acta 2021, 51, 1253–1265. 688

21. Moura, S. J.; et al.; Battery State Estimation for a Single Particle Model With Electrolyte Dynam- 689

ics.IEEE Trans. Contr. Syst. Technol. 2017, 25, 453–468. 690

22. Moura, S. J.; et al.; Battery Adaptive Observer for a Single-Particle Model With Intercalation- 691

Induced Stress.IEEE Trans. Contr. Syst. Technol. 2020, 28, 1363–1377. 692

23. Krewer, U.; et al.; Review—Dynamic Models of Li-Ion Batteries for Diagnosis and Operation: A 693

Review and Perspective.J. Electrochem. Soc. 2018, 165, A3656-A3673. 694

24. Saidani, F.; et al.; Lithium-ion battery models: a comparative study and a model-based powerline 695

communication.Adv. Radio Sci. 2017, 15, 83–91. 696

25. Lai, X.; et al.; A comparative study of different equivalent circuit models for estimating state-of- 697

charge of lithium-ion batteries.Electrochimica Acta 2018, 259, 566–577. 698

26. Madani, S. S.; et al.; A Review of Different Electric Equivalent Circuit Models and Parameter 699

Identification Methods of Lithium-Ion Batteries.ECS Trans. 2018, 87, 23–37. 700

27. Andrea, D., Lithium-ion batteries and applications. A practical and comprehensive guide to lithium-ion 701

batteries and arrays, from toys to towns; Artech House: Boston, USA, 2020. 702

28. Wu, J.; et al., SOC Estimation of Li-ion Battery by Adaptive Dual Kalman Filter under Typical Working 703

Conditions.; 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, 704

China, 7-9 Sept. 2019. 705

29. How, Dickson N. T.; et al.; A State of Charge Estimation for Lithium-Ion Batteries Using 706

Model-Based and Data-Driven Methods: A ReviewIEEE Access 2019 7 136116-136136 707

30. Fleischer, C.; et al.; On-line adaptive battery impedance parameter and state estimation consid- 708

ering physical principles in reduced order equivalent circuit battery models part 2. Parameter 709

and state estimation.Journal of Power Sources 2014, 262, 457–482. 710

31. Klee Barillas, J.; et al.; A comparative study and validation of state estimation algorithms for 711

Li-ion batteries in battery management systems.Applied Energy 2015, 155, 455–462. 712

32. Sundaresan, S.; et al.; Tabular Open Circuit Voltage Modelling of Li-Ion Batteries for Robust 713

SOC EstimationEnergies 2022, 15. 714

33. Lavigne, L.; et al.; Lithium-ion Open Circuit Voltage (OCV) curve modelling and its ageing 715

adjustmentJournal of Power Sources 2016, 324 694. 716

34. Yu, Q.-Q.; et al.; A Comparative Study on Open Circuit Voltage Models for Lithium-ion Batter- 717

iesCHINESE JOURNAL OF MECHANICAL ENGINEERING 2018, 31. 718

35. Pillai, P.; et al.; Open-Circuit Voltage Models for Battery Management Systems: A ReviewEnergies 719

2022, 15 6803. 720

36. Narula, M.; Curve Curvature in Pythonurl: https://www.delftstack.com/howto/numpy/curvature- 721

formula-numpy/ 2022. 722

37. Wan, T. H.; et al.; Influence of the discretization methods on the distribution of relaxation times 723

deconvolution: implementing radial basis functions with DRTtools.Electrochimica Acta 2015, 184 724

483-499 . 725

38. Newville, M.; et al.; lmfit/lmfit-py: 1.1.0Zenodo 2022, version: 1.1.0 . 726

39. Welch, B; An Introduction to Kalman FilterUniversity of North Carolina 2006 727

40. Wang, Zuolu; et al.; A review on online state of charge and state of health estimation for 728

lithium-ion batteries in electric vehiclesEnergy Reports 2021 7 5141-5161 729

41. Ren, Hongbin; et al.; A comparative study of lumped equivalent circuit models of a lithium 730

battery for state of charge predictionInternational Journal of Energy Research 2019 731

42. Brown, R. G.; et al.; Introduction to Random Signals and Applied Kalman Filtering: with 732

MATLAB® ExercisesJohn Wiley and Sons, Inc. 2012 733

43. Haykin, S.; et al.; Kalman Filtering and Neural NetworksJohn Wiley and Sons, Inc. 2001 734

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                   doi:10.20944/preprints202305.0621.v1

https://doi.org/10.20944/preprints202305.0621.v1


Version April 20, 2023 submitted to Batteries 27 of 27

44. Li, Yang; et al.; A physics-based distributed-parameter equivalent circuit model for lithium-ion 735

batteriesElectrochimica Acta 2019 299 451-469 736

45. Goodfellow, Ian; et al.; Deep Learning 2016 737

46. Yang, Bo; et al.; Classification, summarization and perspectives on state-of-charge estimation of 738

lithium-ion batteries used in electric vehicles: A critical comprehensive surveyJournal of Energy 739

Storage 2021 740

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                   doi:10.20944/preprints202305.0621.v1

https://doi.org/10.20944/preprints202305.0621.v1

	Introduction
	Direct measurements for SOC and SOH estimation
	Model-based SOC and SOH estimation
	Data-driven SOC and SOH estimation

	Measurements and Dataset
	Dynamic Model Description
	Dynamic Model Equations and Discretisation
	Parameterisation
	Open circuit Voltage Modelling
	Dynamic Parameter Identification


	SOC Estimation
	SOH Estimation
	Aging data processing
	Aging model

	System Overview
	Results and Discussion
	Conclusions
	References

