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Abstract: Falls are extremely fatal to the elderly. The number of elderly who have experienced
falls has increased; several elderly stay alone or in poorly maintained elderly homes. These issues
make a low-cost fall detection system a necessity. There have been considerable improvements
in the Internet of Things(IoT) and Machine Learning(ML) algorithms. Varied data sets have been
collected across the world for fall detection. These data sets have very little in common regarding user
demographics, sensors used, Activities of Daily Living(ADL) and Falls. This paper presents a data
set with wide user demographics; we used various sensors – such as an accelerometer, gyroscope,
magnetometer and heart rate. We used wrist-worn sensors to collect data. In this paper, we present
a detailed analysis of the data set we collected using standard ML algorithms such as – Naïve
Bayes(NB), K Nearest Neighbor(KNN), Logistic Regression(LR), Random Forest(RF) and Support
Vector Machines(SVM). We analyzed the performance of these algorithms for variations in accuracy
with respect to age, gender, height, weight and health issues, and identified outliers by analyzing each
incorrect prediction. This paper provides the complete details of the data collection methodology
and the methods used for analysis and presents the results in complete detail.

Keywords: machine learning; geriatric fall detection; dataset; dew computing; end device; feature
extraction; supervised machine learning ; sensor data analytics

1. Introduction

According to WHO statistics [1], people are living longer, and the current population is expected
to live well into their sixties. Current statistics (1st October 2022) state the following.

1. The speed of ageing is increasing;
2. In the year 2020, people aged more than sixty years outnumbered young kids under the age of

five;
3. By 2050, the population of geriatrics is expected to double from 12% to 22%. People over 60 are

expected to be around 2.1 billion, and the number of people above 80 is expected to reach 426
million.

4. Two-thirds of the ageing population is expected to be in the low- and middle-income range.

The ageing process causes a decrease in physical and mental capacity, other than biological
variations, which are a natural part of ageing. With aging comes retirement and relocation. The elderly
are generally considered frail and dependent and, hence, are shunned. Many of them are forced to live
in a low-income retirement home. The changes in their health, financial and social conditions expose
them to health risks; they especially become more prone to accidents, including falls.
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United Nations has declared 2021 to 2030 as the “UN Decade of healthy ageing” and are
supporting the use of technology to improve the quality of life of the elderly.

With recent advances in healthcare systems, specifically with IoT and medical applications
integration, research in medical sensors and machine learning algorithms has been a considerable
boost.

Machine learning and Deep Learning(DL) have widely investigated topics in the case of geriatric
fall detection. To train the ML/DL algorithms, a large amount of data related to fall and non-fall
activities is required. Several public datasets for fall are available. The public datasets vary in terms
of (a) sensors used, (b) the number of volunteers, (c) demographics such as age, gender, and existing
health conditions, (d) activities performed (e) data gathering techniques. Several researchers [2] have
brought out the difficulty of comparing datasets. Therefore, it is also difficult to conclude why specific
ML/DL algorithms perform better when compared to others. Most public datasets do not provide the
details of data collection. The datasets used for fall detection have a set of ADLs and a set of fall data.
Public datasets do not always list the ADL activities, the type of falls, how often these activities were
performed and how long each activity lasted.

Two types of sensing methods are associated with fall detection (a) wearable and (b) ambient
sensors. The classification is based on the placement of the sensor. The sensors can be placed on the
body of the elderly or maybe placed in the environment around them. Body-worn sensors usually are
accelerometers, gyroscopes, and biometric sensors. Environmental sensors include image, vibration,
and audio sensors.
Several public datasets, such as Mobi Fall, K Fall, SiS Fall, and SmartFall, use body-worn sensors
primarily using accelerometer-based sensors. This paper concentrates on data collection using wearable
sensors, specifically IMU (Inertial Measurement Unit) sensors, gyroscopes, and magnetometers. Even
with body-worn sensors, there is a considerable variation in the data collected. This is due to the
positioning of the sensor on the body. The sensors maybe placed on the torso, thigh, or waist. Based on
the placement of the sensors, the data collected. Moreover, the performance of the ML algorithms vary.

In recent work, the authors in [3] have given a study of recent trends in Human activity recognition
(HAR) and human behaviour recognition (HBR) and how high-quality sensors like electrical, magnetic,
mechanical (kinetic), optical, acoustic, etc., are being used for the same.

Raw sensor data is not directly fed to the ML algorithms; sensor data is processed to extract the
relevant features; in the case of wearable sensors, these are usually statistical parameters – such as
average, mean, maximum, minimum, standard deviation, kurtosis, skew, etc. Public datasets only
have the extracted features available. Some have only raw accelerometer values; each public dataset
produces different accuracies when applying ML algorithms. This makes it difficult to recommend a
single ML algorithm for fall detection. Also, the accuracy of the ML algorithm cannot be coordinated
with the data points as no information regarding the volunteers and their characteristics are available.
Therefore, the following question remains to be answered while using public datasets. (A) What
is the reason for varying accuracies for the same ML algorithms across different datasets (B) Are
the volunteered demographics related to varying accuracies, and if so, how? (C) How much data is
required to train the algorithms to obtain good accuracies, especially since DL algorithms require a
large amount of data to converge (D) Can different datasets be used for training and testing, and how
will the accuracies of the ML algorithms will be affected. (E) What will be the actual accuracy obtained
when the system is used on the actual target users (i.e.) the elderly. The volunteers cannot be drawn
from the geriatric populations due to the health risk involved with falling.

Our paper presents a wrist-worn end device that is part of a more extensive IoT system. The
end device will collect data and execute the ML/DL algorithms to detect falls and alert healthcare
professionals. The ML algorithms are run on the end device to eliminate network latency and
connectivity-related issues, which are frequent in India; hence, fall alerts will never reach the health
authorities if the ML algorithms are run on the cloud. Only long-term health monitoring and analysis

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2023                   doi:10.20944/preprints202305.0917.v2

https://doi.org/10.20944/preprints202305.0917.v2


3 of 30

will be done on the cloud. This architecture is termed Dew Computing in IoT. The architecture of the
system used is shown in Figure 1.

Figure 1. Architectural model of wearable fall detection system.

This end-device is built around a powerful System on Chip (SoC) that is Qualcomm Snapdragon
820c [4]. The 820c chip has been developed specifically for wearable and IoT applications. We used
MAX30102 [5] Heart rate and SP02 sensor, MPU6500 [6], which gives 3-axis acceleration, 3-axis linear
acceleration and 3-axis gyroscope data and GY273 [7]Magnetometer chip for data collection. All the
sensors are interfaced to the SoC via the I2C interface using a Mezzanine board.
This device needs to be trained with a large dataset so that we can run compressed ML/DL algorithms
on it. The need for compressed algorithms is because running a full-scale algorithm will require a large
amount of memory that is not available on SoCs.[8] shows the high latency incurred when running ML
algorithms on SoCs. In order to train the system, we started with data collection, cleaning and analysis.
This paper elaborates on the process we have used for data collection, cleaning, feature extraction and
analysis of the data collected. Various ML algorithms were run on the data collected, and analysis
was done on various user characteristics and their impact on the ML models. Some of the features
considered were (a) Separate test and train data, (b) age, (c) gender (d) physical condition such as
height, weight, and any pre-existing health condition. This paper provides the result of the analysis.
Also, it addresses the issue of data collection and the impact of the data collected’s characteristics on
the ML algorithms’ performance.

2. Background of Work

“Inadvertently coming to rest on the ground, floor, or other lower levels, excluding intentional
change in position to rest in furniture, wall or objects”, is defined as a fall by WHO [1]. Falls can be
detected using multiple mechanisms and methods. This section gives a brief review of the research
done in terms of data collection and analysis done for fall detection in the elderly.

2.1. Sensors

The sensors that are used for fall detection can be classified into two categories (a) ambient sensors
(b) wearable. The classification is based on the position of the sensor with respect to the user.

2.1.1. Ambient Sensors

Image, Audio and Vibration sensors are the major sensors that fall under this category. Fall
detection using vibration sensors [9] is detailed. [10] describes a fall detection system that uses sound
sensors. Vibration sensors are usually piezo-electric based and pick up vibrations caused by the fall
of a person. The issue with using ambient sensors to detect vibration or audio samples is the large
amount of noise present that requires pre-processing of signals using appropriate filters. If the fall
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detection system is part of the IoT system, then the complexity of the end device will be extremely
high. Also, there is a possibility that soft falls may go undetected. Image Sensors [11] analyse images
captured every few seconds to find if any person has fallen, in most cases multiple camera frames will
be required. Multiple cameras can be placed in a single room and falls can be detected. Using multiple
cameras in every room where the elderly live, is not feasible; especially considering that most elderly
live on a restricted income.

All these sensors; vibration, acoustic and image are placed in and around the area where the
elderly live and hence, they are termed ambient sensors.

2.1.2. Wearable Sensors

Wearable sensors are primarily IMU sensors such as accelerometers, gyroscopes and
magnetometers. In some research work [12], GPS has also been used, while in the case of some,
biometric parameters such as heart rates, SpO2 and skin temperature, etc were used.

In many cases, smartphones that already have an IMU sensor or smartwatches equipped with IMU
sensors are used. GPS or biometric-based sensors in these devices are generally used for validations.

IMU sensors are made up of three different sensors (a) Accelerometers (b) Gyroscopes (c)
Magnetometers.

The accelerometers will experience sudden changes in value during a fall. Based on the position
of the sensors, in some cases wrist-worn, thigh-worn or torso worn; The amount of acceleration along
the 3 axes will vary. The gyroscope measures the angular velocity along with 3 axes. The integral
gives the angle of the person with respect to the ground. The third part of the IMU sensor, that is
the magnetometer provides the orientation with respect to the Earth’s magnetic field. In case of falls,
there will be a significant change in all these parameters. In some cases, heart rate sensors and skin
temperature sensors are used as they may supplement the IMU data. Heart rate may increase in
case of a fall, and so may the skin temperature. Wearable sensors are preferred over ambient sensors
since they can move with the elderly also now IMU sensors are an integral part of smartphones and
smartwatches which makes them an ideal choice; they are already available and will cost lesser even if
a new system was to be built around them.

2.2. Data-Sets

Generally, to train and test the ML/DL algorithms large amount of data is required. There are
multiple datasets available online, but they vary in terms of the type of sensors, manufacturer of
the sensors, demographics of the train and test volunteers, the types of ADLs and Falls monitor,
Sampling rate, duration of the data collected, number of volunteers and hence the number of data
samples. The format of the data may be in terms of simple digital data from sensors, acoustic signals,
or images. In the case of some datasets, raw data is available and in the case of some datasets, the
features extracted are available. The feature extraction technique may also differ. Different datasets
give different accuracies with different ML algorithms. Very little information is provided on why there
are variations in accuracies. Does variation in gender, age, height, weight, and previous health issues
affect accuracy is something that has not been analysed. Even when we run the ML/DL algorithms it
is very difficult to analyse the accuracies as very little information is provided about the volunteers
due to privacy issues. A table analysing various public datasets collected over the last few years is
provided in Table 1.
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Table 1. An analysis of various public datasets collected over the past few years.

Ref Year
Dataset

used
Sensor used

Sensor
placement

Methodology
Performance parameter

and details

[13] 2011
UCI

dataset

3-Axes
accelerometer,

2-axis
gyroscope

Chest, thigh

Comparison of
ML algorithms

for fall detection
using single node

and two nodes

Accuracy of classification
= 99.8% with two

nodes(one on waist and
one on knee). Naïve

Bayes gaves the worst
result, others gave

comparable

[14] 2012
Generated

from
experiments

Accelerometer
Smartphones
carried along
with the user

Comparison of
SVM, SMLR,
Naive Bayes,

decision trees,
kNN, and

regularized
logistic regression
for fall detection

Support vector machines
and regularized logistic
regression were able to
identify a fall with 98%

accuracy and classify the
type of fall (trips, left

lateral, slips, right lateral)
with 99% accuracy.

Naïve Bayes reported the
least accuracy

[15] 2014
Generated

from
experiments

Accelerometer
gyroscope

and
magnetometers

6 different
positions on

the body

Comparison of
k-NN, classifier,

LSM, SVM,BDM,
DTW and ANN

algorithms

k-NN classifier and LSM
gave above 99% for

sensitivity, specificity,
and accuracy

[16] 2014
Generated

from
experiments

Accelerometer
Smartphones
carried along
with the user

Accelerometer
data from

wearable sensors
to generate

alarms for falls,
combined with

context
recognition using

sensors in an
apartment, for

inferring regular
ADLs, using

Bayesian
networks

Provides statistical
information regarding
the fall risk probability

for a subject

[17] 2015

Publicly
available
activity

recognition
dataset

Accelerometer,
gyroscope

Smartphone

Comparison of
Naive Bayes

classifier, decision
trees, random

forests, classifiers
based on
ensemble

learning (random
committee), and

lazy learning (IBk)
algorithms for

activity detection
carried along
with the user

Naive Bayes classifier
performs reasonably well
for a large dataset, with
79% accuracy, and it is

fastest in terms of
building the model

taking only 5.76 seconds
Random forests are

better in terms of both
accuracy and model

building time, with 96.3%
accuracy and 14.65

seconds model building
time. k-Means clustering

performs poorly with
60% classification

accuracy and 582 seconds
model building time
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Ref Year
Dataset

used
Sensor used

Sensor
placement

Methodology
Performance parameter

and details

[18] 2016
Generated

from
experiments

3-Axis
Accelerometer

Not specified

Comparison of
decision tree,
decision tree

ensemble, kNN,
neural networks,
MLP algorithms

for soft fall
detection

Decision tree ensemble
was able to detect soft
falls at more than 0.9

AUC

[19] 2016
MobiFall
dataset

Accelerometer,
gyroscope

User’s trouser
pocket

Comparison of
Naive Bayes, LSM,
ANN, SVM, kNN
algorithms for fall

detection

k-NN, ANN, SVM had
the best

accuracy—results for
kNN: Accuracy = 87.5%

Sensitivity = 90.70%
Specificity = 83.78%

[20]
[21]

2016
Generated

from
experiments

3-Axis
Accelerometer

Smartwatch
Threshold-based

analysis of
acceleration

Accuracy = 96.01%

[21] 2016
Generated

from
experiments

3-Axis
Accelerometer

Different parts
of the body

Bayesian
framework for

feature selection,
Naive-Bayes, C4.5

Better accuracy with
improved classification
than Naive-Bayes and

C4.5

[22] 2017
Generated

from
experiments

Accelerometer
gyroscope

Smart - Vest

Kalman filter for
noise reduction,
sliding window,

and Bayes network
classifier for fall

detection

With Kalman filter
Accuracy = 95.67%,
Sensitivity = 99.0%
Specificity = 95.0%

[23] 2017
Generated

from
experiments

3-Axis
Accelerometer

Smartphone

Combination of
threshold-based
and ML-based

algorithms—K-Star,
Naive Bayes, J48

Energy saving = 62%
compared with(ML only)

techniques Sensitivity
=77% (thresholding

only), 82% (ML only),
86% (hybrid) Specificity
= 99.8% (thresholding
only), 98% (ML only),

99.5% (hybrid) Accuracy
= 88.4% (thresholding
only), 90% (ML only),

92.75% (hybrid)

[24] 2017
Generated

from
experiments

3-Axis
Accelerometer

Waist

Combination of
threshold-based

and
knowledge-based

approach based on
SVM to detect a

fall event

Using a knowledge
based algorithm:
Sensitivity = 99.79%
Specificity = 98.74%
Precision = 99.05%
Accuracy = 99.33%

[25] 2017
MobiFall
dataset

3-Axis
Accelerometer

Not specified

Comparison of
multilevel fuzzy
minmax neural
network, MLP,

KNN, SVM, PCA
for fall detection

Multilevel fuzzy
min-max neural network

gave best results:
Sensitivity = 97.29%
Specificity = 98.70%
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Ref Year
Dataset

used
Sensor used

Sensor
placement

Methodology
Performance parameter

and details

[26] 2017
FARSEEING

dataset
3-Axis

Accelerometer

5 locations on
the upper

body, neck,
chest, waist,

right side, and
left side

Sensor orientation
calibration

algorithm to
resolve issues
arising out of

misplaced sensor
locations and

misaligned sensor
orientations, HMM

classifiers

Sensitivity = 99.2%
(experimental dataset),
100% (real-world fall

dataset)

[27]
[28]

2017
Generated

from
experiments

3-Axis
Accelerometer

Chest

LWT based
frequency domain

analysis and
SVM-based time

domain analysis of
RMS of

acceleration

Accuracy = 100%
Sensitivity = 100%
Specificity = 100%

[29] 2017
Generated

from
experiments

3-Axis
accelerometer,

3-axis
gyroscope

Waist

Back propagation
neural network
(BPNN) for fall

detection

Accuracy = 98.2%
Precision = 98.3%
Sensitivity= 95.1%
Specificity= 99.4%

[30] 2017
Generated

from
experiments

Accelerometer,
radar, depth

camera
Wrist

Ensemble
subspace

discriminant,
linear discriminant,

kNN, SVM

Overall accuracy of
ensemble classifier was
the highest, after fusion
of radar, accelerometer,

and camera = 91.3%.
This is an improvement
of 11.2% compared to
radar-only and 16.9%

compared to
accelerometer-only

results

[31] 2017
Public

datasets
3-Axis

accelerometer
Not specified

CNN-based
analysis on time

series
accelerometer data

converted to
images

Accuracy = 92.3%

[32] 2017
Generated

from
experiments

Accelerometer,
gyroscope,
proximity
sensor and
compass

Right, left,
and front
pockets

SVM, decision tree,
kNN, discriminant

analysis

Highest accuracy = 99%
for SVM

[33] 2010
Generated

from
experiments

3-Axis
accelerometer

Chest, thigh
Naive-Bayes, SVM,

OneR, C4.5 (J48),
neural networks

Naive-Bayes gave best
results Accuracy = 100%

[34] 2017
Generated

from
experiments

Accelerometer
(MobiAct
dataset)

Not
applicable

ENN+ kNN
(where ENN was
applied to remove

outliers), ANN,
SVM, and J48

For ENN+ kNN:
Sensitivity = 95.52%
Specificity = 97.07%
Precision = 91.83%

[35] 2018
Generated

from
experiments

Triaxial
gyroscope

Waist Decision tree
Accuracy = 99.52%

Precision = 99.3% Recall
= 99.5%

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2023                   doi:10.20944/preprints202305.0917.v2

https://doi.org/10.20944/preprints202305.0917.v2


8 of 30

Ref Year
Dataset

used
Sensor used

Sensor
placement

Methodology
Performance parameter

and details

[36] 2018

Cogent
dataset,
SisFall
dataset

3D
accelerometer

, 3D
gyroscope-

Cogent
dataset

Accelerometer,
gyroscope

(SisFall)
dataset

Chest, waist

Event-ML,
classification and

regression tree
(CART), kNN,

logistic regression,
SVM

Better precision and
F-scores with Event-ML

than FOSW and
FNSW-based approaches

[37] 2018

SisFall
dataset,

generated
from

experiments

3-Axis
accelerometer

Chest/thigh,
waist

SVM, kNN, Naïve-
Bayes, decision

tree

Accuracy and sensitivity
of SVM were the highest

(97.6% and 98.3%,
respectively) for both

datasets.

[38] 2018
UMA

Datasheet

Accelerometer,
gyroscope,

magnetometer

Wrist, waist,
chest, ankle

kNN, Naive-Bayes,
SVM, ANN,
decision tree

Without risk
categorization: 81% for
decision tree With risk
categorization: 85% for

decision tree

[39] 2018

SisFall
dataset

original and
manually
labelled

3-Axis
accelerometer

Not specified RNN

Highest accuracy
reported for fall

detection: 83.68% (before
manual labelling), 98.33%
(after manual labelling)

[40] 2018
Generated

from
experiments

Accelerometer,
gyroscope,

magnetometer
Near the waist kNN Accuracy = 99.4%

[41] 2018
Generated

from
Experiments

3-Axis
accelerometer

Waist Decision tree
Accuracy = 91.67%
Precision = 93.75%

[42] 2018
SiSFall
dataset

3-Axis
accelerometer

Waist RNN with LSTM
Highest accuracy after

hyperparameter
Optimization(97.16%)

[43] 2018
Generated

from
experiments

Depth camera,
accelerometer

Waist CNN
Accuracy of fall detection

= 100%

[44] 2018
Generated

from
experiments

Accelerometer,
gyroscope,

magnetometer
Hip

SVM, random
forest

Without sensor fusion:
Accelerometer

[45] 2019
Public

datasets
Accelerometer,

gyroscope
Chest, thigh

ANN, kNN,
QSVM, ensemble
bagged tree (EBT)

Extraction of new
features from

acceleration and angular
velocity improved the

accuracy of all 4
classifiers. Accuracy of

EBT was highest (97.7%)

[46] 2019
SisFall
dataset

Accelerometer,
gyroscope

Waist
kNN, SVM,

random forest

Accuracy for fall
detection was the highest

for kNN (99.8%).
Accuracy for recognizing

fall activities was the
highest for random forest

(96.82%)
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Ref Year
Dataset

used
Sensor used

Sensor
placement

Methodology
Performance

parameter and
details

[47] 2019
Public

datasets
Accelerometer Not specified

CNN-based models for
feature extraction

Highest accuracy
reported = 99.86%

[48] 2020
SiSfall
dataset

Two triaxle
accelrometers

and
gyroscope

Wrist

The XGBoost was
implemented on

spyder software with a
75-25 train-test split

Overall accuracy
using XGBoost =

94.6%

[49] 2020
SiSFall
dataset

Accelerometer
and

Gyroscope
sensors

inbuilt with
Smartphone

Carrying
smartphone
on hand or

pockets

Features were extracted
from raw data and

person’s correlation
was implemented, on
the features RF,ANN,

SVM and Boosted
decision tree was

implemented

Accuracies Random
Forest = 99.7% ANN
= 99.2% SVM = 98.5%
Boosted decision tree

= 99.9%.

[50] 2020
Generated

from
experimentation

All IMU
sensors and
heart-rate

sensor

Wrist

Mean and median was
calculated from Raw

dataset and ANN,
KNN, XGB, NB and

Random Forest

Accuracy on mean
and median

ANN = 85.69% KNN
= 94.3% XGB = 85.3%
NV = 66% Random

Forest = 99.7%

[51] 2021

Combination
of

experimentally
Generated

and
publicly
available

datset

IMU Based
sensor on

wristwatch
and

smartphones

Wrist, waist
pelvis

SVM,KNN and ANN
was implemented

SVM (wrist
placement) = 91.3%
(waist placement) =

98% KNN (Wrist
placement) = 99%

(waist placement) =
99.8% ANN (Wrist

placement) = 95.25%
(Waist placement) =

92.96%

[52] 2021
UR Fall,

MOBIFALL,
UP Fall

Accelerometer,
magnetometer,

gyroscope,
ECG sensor

MOBIFALL =
trouser,

pocket Up Fall
= wrist, ankle

Ur Fall =
pelvis

Feature extraction was
performed on the raw
dataset and basic ML

methods like
RF,SVM,KNN,LR,BB

and DT were
implemented

UR Fall dataset =
99%(RF) UP Fall

dataset = 99%(LR)
MOBIFALL dataset =

99%(for nearly all
mentioned
algorithm)

[53] 2022
Generated

from
experiments

Accelerometer
and

gyroscope
sensor

Wrist

Data augmentation to
solve the imbalance of
data set, classification
was done by BiLSTM

model

Combined sensor
accuracy

KNN = 74.70% RF =
75.64% SVM = 73.74%

BiLSTM = 97.35%

[54] 2022
Generated

from
experiments

Image based,
External

placement
Camera based

Multiple images were
captured of the

subject’s skeletal
orientation, Standard

deviation was
calculated and fed into
KNN based classifier

Overall accuracy of
95% was obtained

[55] 2022

SisFall,
DaLiaC,

UMAFall
and

Epilepsy

IMU based
sensors

Wrist and
Waist

placement

Multiple algorithms
were run like ANN,
SVM, Decision Trees,

Naïve Bayes and Deep
learning based

Overall accuracy
obtained by the

classifier was 92.5%
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3. Data Collection Methodology

There are multiple datasets available as described in the background section. There are multiple
issues with the datasets:

• Very few public datasets with readings from multiple sensors are available. Most public datasets
only have linear acceleration data.

• Very few datasets available that have a wide diversity in terms of age, gender, height, weight
and health issues

• Even in datasets where there is diversity, no information is available on the ratio of gender, age,
height or weight

• The number of volunteers is usually less. In most cases, less than 20.
• The list of ADLs and falls is not completely provided
• The details of how long each activity lasted are not available.
• The data collection methodology is not described
• The details of the sensors used are not provided; hence using multiple datasets becomes a major

issue as they cannot be fused together.

3.1. Requirement for a new Dataset

Most datasets, such as Mobi Fall, UCI Fall, or SiS Fall, are either from the United States or
European population-based. Also, datasets such as SmartWatch, SmartFall and Notch which we
have used in our previous works, cover similar demographics. In other research works, the datasets
are generally from China, which has a vast ageing population. At the time of publication of this
paper, only one dataset is available from India [56]. This dataset is limited in terms of volunteers and
activities performed, and the volunteers’ age range is restricted from 20 to 22 years. The models are
heavily overfitted and gave an accuracy of 97% on the basic ML algorithms using just three statistical
parameters, i.e. mean, median and Standard deviation. We needed a dataset that reflected the Indian
population because several characteristics of Indians are entirely different from the European and
World population. If we analyze some of the characteristics like

1. Height – While the average world height of men is 5ft 9in, and women are 5ft 4 in, in India, the
average height is 5ft 5in for the male population and just 5ft for the female population. In the
case of certain European countries where the conditions of living and access to proper nutrition
are good, the average height is even higher.

2. Weight – While the World average of men is 89 kg and women is 77 kg, in India, the average
weight of men is 65 kg and women are 55 kg.

3. Lifestyles – While the European or the US population regularly exercise, regular exercise and
diet ensure that the muscular and skeletal frame remains unaffected due to gradual ageing.
However, In India, it is only in the last few years that exercise and diet have become a current
trend. While we may have a healthy elderly population 40-45 years later, the ageing population
is prone to significant changes in their skeletal and muscular frames. Hunchbacks are common
among people even in their 50s in India [57]. The current elderly population in India is heavily
dependent upon their male children for support. In the absence of financial aid, the elderly
continue to work with existing health issues or are dependent on Government-run facilities
which are overpopulated and understaffed. This necessitates the use of technology to monitor
their health. Also, the level of literacy in the current ageing population of India is poor.

Our research involves building a low-cost device described in the introduction section, capable of
detecting Falls and sounding alarms with or without network connectivity. The device not only collects
data but also analyzes the data using ML algorithms to make required predictions. To train our device,
we collected data from a wide range of Indian males and females.

In this work, the data was collected using our custom hardware worn on the wrist. As described
in the Background of Work section, several works use multiple nodes placed across the body. Some of
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these devices are placed on the torso, some on the thigh and some on the ankle. We do not recommend
placing the device on the torso, especially considering the frailty of the elderly in India, also several of
them have a hunchback and might find the device extremely restricting. Placing it on the thigh would
mean frequent removal or realignment whenever they wish to use the washroom, being a common
place where a significant number of falls occur. This leaves us with ankle-based systems, which give
very poor accuracies when the chest or waist sensors do not support them.

A low-power device that would require charging once a week and can be worn on the wrist would
be highly convenient for the elderly. Hospitals and old age homes also use wrist-based tags. The device
has been designed to be extremely lightweight and easily adjustable to varying wrist dimensions.

Though attempts have been made to compare datasets, not more than three or four [2] datasets
are compared, and only certain statistical parameters are analysed. Besides, all these comparisons
are made based only on accelerometer data. Due to these existing issues, we have collected our own
data; this section gives the details of the volunteers diversity, the sensors and the data collection
methodology. We also provide the details of the features extracted that are to be used by the various
ML algorithms. The datasets are available at "https://shamanx86.github.io/fall_detection_data/".

Table 2 shows the comparison of various datasets that use accelerometers placed across the
body.All the data are time-series data. It can be seen from the Table 2 that the BITS-2 dataset has the
second maximum number of instances and covers a wide range of ADLs and Falls. This dataset has
the maximum number of instances using custom wrist-based sensors only. As described earlier, our
device is wrist-worn and all our sensors have been calibrated and their accuracies have been verified
for wrist-based output.

Table 2. Various dataset comparision.

Dataset Voulenteers ADLs Falls trials Instances Age-range Sensor
Placement

Sensors
Used

UCI 17 16 20 5 3060
Not
available

Head,chest
,waist,wrist
,thigh,ankle

3-axis accelerometer

Glasgow
University

16 7 3 2 320
23-58
years

Smartphones
in pockets

Smarthphone sensors
Depth camera,
Doppler radar

UMA Fall 17 8 3 3 561
Not
available

Wrist,waist
,thigh,Chest
,ankle

3-axis Accelerometer
3-axis Magnetometer

Mobi Fall 11 9 4 3 429
22-32
years

Smartphones
in pockets

3-axis Accelerometer
3-axis Gyroscopes

Tfall 10 continuous 8 1
Not
available

23-50
years

Smartphones
in pockets

3-axis Accelerometer
3-axis Gyroscopes

SiS Fall 38 19 15 5 6460
23-50
years

waist 3-axis Accelerometer
3-axis Gyroscopes

SmartWatch 7 4 4 10 280
21-55
years

wrist 3-axis accelerometer

Notch 7 7 4 1 91
20-35
years

wrist 3-axis accelerometer

BITS-1 10 14 6 3 600
20-22
years

wrist
3-axis Accelerometer
3-axis Magnetometer
3-axis Gyroscope
Heart rate

BITS-2 41 16 8 5 4920
22-50
years

wrist
3-axis Accelerometer
3-axis Magnetometer
3-axis Gyroscope
Heart rate
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3.2. Volunteers statistics

• No of volunteers: 41
• Age range: 18-50
• Number of female volunteers: 14.
• Weight: 50 Kg – 120 Kg.
• Height: 4ft 11 inches – 6ft 4 inches.
• Existing Health issues: High blood pressure, Diabetes, Hypertension Claustrophobia, there

were some volunteers who were prone to panic attacks, sinusitis, sinus tachycardia, thyroid,
malnutrition, hypochondria, extreme anxiety, low blood pressure, prostate, and early sign of
arthritis.

The device that was used to collect the data was a prototype that was developed by us using
a Qualcomm Snapdragon 820c SoC interfaced with medical-grade IMU(inertial measurement unit)
sensors and a Heart- rate sensor. Figure 2. shows the diagram of the prototype of the device.

Figure 2. Prototype of the wearable device used to collect data

Table 3 gives the ADLs activities and Table 4 the Falls activities performed by the volunteers.
The duration was precisely calculated using the inbuilt timer of the SoC, and the sensor values were
captured using the same timer. This ensured that an exact sensor window of 2 minutes or 30 seconds,
depending on the activity, was exactly followed. The activities that violated the time windows were
cleaned and re-performed. The activities and the Falls have been selected based on the kind of impact
the ADLs and the Falls will have on the sensors. Also, some of the ADLs, such as climbing up and
climbing down, may result in a Fall. The Falls were sampled from a literature survey, and the most
common falls that are experienced by the elderly were chosen for our research [58].

Table 3. List of Activities of Daily living(ADLs) performed by volunteers

Activities of Daily Living (all activities had been performed with 5 trails each)
Stationary movement duration Standard movement duration Sporting movements duration

Slowly sitting on chair 30 seconds Walking slow 2 minutes Walking quickly 2 minutes
Rapidly sitting on chair 30 seconds climbing up slowly 2 minutes Jogging 2 minutes
Nearly sitting on chair
and getting up

30 seconds climbing down slowly 2 minutes Jumping 30 seconds

Swinging hands 2 minutes Lying on back and
getting up slowly

30 seconds climbing up fast 2 minutes

Lying on Bed 2 minutes Lying on back and
getting up quickly

30 seconds climbing down fast 2 minutes

transition from
sideways to one’s
back while lying

30 seconds
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Table 4. List of Fall activities performed by volunteers

Hard and Soft Falls (all activities had been performed with 5 trails each)
Hard Falls duration Soft Falls duration

Forward Fall landing on
Knee

40 seconds Forward Fall 40 seconds

Seated on Bed and
falling on ground

40 seconds Right Fall 40 seconds

Forward Fall body
weight on hand

40 seconds Left Fall 40 seconds

Backward fall from
seated position

40 seconds Grabbing while falling 40 seconds

For convenience, the complete details of each volunteer are provided in Table 5. To maintain the
privacy of the volunteers, user-ids are assigned.The volunteer statistics have been summarised in Table
6

The data was collected by asking the volunteers to perform the falls within an anechoic chamber
over a period of three months; each volunteer spent roughly six hours performing the various activities.
In the case of female volunteers, all activities and performances were supervised by a female faculty.
As the anechoic chamber is padded with a thick sponge, during the falls, the volunteers landed on the
soft material, and hence they were not injured. As a result, all falls ended up being soft falls. While the
falls were performed inside the anechoic chamber, ADLs were performed under real-life situations,
so climbing up for 2 minutes means a volunteer kept on climbing for 2 minutes. For this, we used a
multi-storeyed building. Before every activity was performed, it was verified whether the volunteer’s
heart rate had returned to their baseline values.

This was necessary since some of the activities, like climbing up and down the stairs, Jogging
and Jumping, ended up increasing the heart rates of the volunteers. All volunteers had signed a
no-objection certificate with two witnesses before performing the experiments. This was necessary to
satisfy the ethics committee of BITS Pilani.

We coded the device to collect data from the sensors and transfer it directly into a csv file. A csv
file was created for every activity for each user. Hence, we had a total of 24 csv files per user for 41
users in total.

In the next section, we describe how the data was cleaned, processed and extracted from the csv
files.

Table 5. Voulenteer statistics and their physical data

Subject id Gender Height (cm) Weight (kg) Age Heart rate Health conditions

1 Male 167.64 65 25 114 Sinus Tachycardia

2 Male 193.04 98 41 82 High Blood Pressure, Overweight

3 Female 152.4 62.5 46 79 no existing health issues

4 female 157.48 50 23 110 multiple Allergies

5 female 170.18 62 20 97 no existing health issues

6 Male 165.1 100 24 84 Obese

7 Male 162.56 62 24 65 no existing health issues

8 Male 172.72 74.5 24 78 no existing health issues

9 Male 165.1 80 26 70 Overweight

10 Female 157.48 68 38 87 no existing health issues

11 Female 165.1 81 37 98 Thyroid, Overweight

12 Male 170.18 63.5 21 60 no existing health issues

13 Male 170.18 65 25 85 no existing health issues

14 Male 154.94 80 21 100 Obese

15 Female 157.48 80 25 105 Obese
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Table 5. Cont.

Subject id Gender Height (cm) Weight (kg) Age Heart rate Health conditions

16 Female 157.48 55 24 110 no existing health issues

17 Female 162.56 74 25 103 no existing health issues

18 Female 162.56 70 23 86 no existing health issues

19 Female 157.48 79 21 104 Obese

20 Female 160.02 56 20 76 Hypochondria and extreme anxiety

21 Female 157.48 66 37 90 no existing health issues

22 Male 182.88 60 20 93 no existing health issues

23 Male 175.26 55 21 60 no existing health issues

24 Male 172.72 65.5 20 84 no existing health issues

25 Male 170.18 63.5 21 90 no existing health issues

26 Male 167.64 61 20 73 no existing health issues

27 Male 167.64 53 21 55 Low BP

28 Male 167.64 56 22 71 no existing health issues

29 Male 167.64 74 21 77 no existing health issues

30 Male 165.1 75 42 80 Early sign of Arthritis

31 Male 162.56 50 44 80 no existing health issues

32 Female 157.48 61 20 85 no existing health issues

33 Female 157.48 50 22 109 Sinusoitis

34 Male 180.34 68 38 93 Genetic Diabetes

35 Male 162.56 60 25 75 no existing health issues

36 Male 167.64 78 26 82 no existing health issues

37 Male 180.34 78 47 90 Diabetes and High Pressure

38 Male 165.1 71 41 75 High Blood Pressure

39 Male 152.4 60 37 70 no existing health issues

40 Male 157.48 62 37 62 no existing health issues

41 Male 182.88 120 29 95 High Blood Pressure, Obese

Table 6. Summary of the volunteer statistics.

Sr no. Parameter Values and Nos

1 Gender
Male = 27

Female = 14

2 Age-range

20-30 years = 29
30-40 years = 6
>40 years = 6

3 Weight-range

50 Kg – 65 Kg = 21
65 Kg – 80 Kg = 16
80 Kg – 100 Kg = 3
100 Kg – 120 Kg = 1

4 Height Range

5ft – 5ft 5in = 23
5ft 5in – 6ft = 16

>6ft = 2

5 Health Issues

No. of subjects with health issues = 17
No. of subjects without health issues = 24

Health Conditions of subjects:
Sinus Tachycardia, High Blood Pressure, Overweight, Folic acid allergy, Obese, Thyroid,

Hypochondria, extreme anxiety Low Blood Pressure, Prostrate, Sinusitis and Genetic Diabetes
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4. Experimental methodology

4.1. Pre-Procesing of Raw Data

Data from each user for each activity was recorded on different comma-separated value(.csv) files.
There were over 6480 CSV files. Each file was examined for blank entries and abnormal values, and
those files were eliminated. Basic pre-processing also included removing data using data imputation
using the last observation carried forward (LOCF). So, though we had more than 41 volunteers, only
data from 41 volunteers were considered after cleaning.

Improving performance metrics of the ML models not only requires data pre-processing but also
feature engineering and selection. Several of the researchers used windowing and feature extraction
[59] [60] [61]. We have observed from the existing literature that ML classifiers are usually applied to
single feature comparison [62] [63] [64].

The data set was partitioned into two sets, one containing IMU Features only and the other
consisting of IMU and Heart-rate features. Each was split into training and testing datasets using the
standard 70-30 split. We ran the algorithms with Raw data on Qualcomm Snapdragon 820c SoC. The
SoC could not even converge for simple instance-based ML algorithms such as KNN; hence, we had to
go in for feature extraction.

4.2. Feature Extraction

Feature engineering includes features scaling, feature extraction and selection. We did not apply
feature scaling as the data was within the minimum-maximum range expected from the sensor. Feature
extraction can be accomplished manually or by using automated methods. Training ML/DL directly
with Raw data results in high data rates and information redundancies, leading to low accuracies.

Several types of features can be extracted from time-series data, and the most common among
them is time-domain features, in contrast to frequency-domain features. Our data is time series data
since its value changes over time. There are multiple statistical parameters. Since we were running the
feature extraction on an 820c SoC and planned to immediately use the feature to make a prediction
on the ML algorithm while running the same on the SoC. We used only the basic parameters such
as mean, median, maximum, minimum, variance, and standard deviation. We also added kurtosis
and Skew to the set of features. The RMS values of each parameter were calculated then we applied
statistical feature extraction. In order to amplify the extracted information, the information was broken
up into different segments, and then feature extraction was performed. A window size of 20 which
mapped to a window interval of 5 seconds, gave us the best results. All points in the window had
equal weightage. Subsequently, feature extraction was performed for every window.

In this paper, we have not used feature selection. However, some statistical parameters, such as
quarantine, histogram and EDFC, did not give us productive results and were time-consuming on the
SoC. Hence, they were not used. Our later experiments, which are not included in this paper, with
feature selection, showed that only three parameters, mean, minimum and standard deviation were the
statistical parameters that gave the most productive results with minimum latency. Data pruning is not
included in this work, as we used feature selection and data pruning techniques only with ensemble
algorithms. Here we are using the basic ML algorithms to understand how user characteristics affect
the accuracy of the results.

In any ML-based system, whether health care or any other application such as NLP, Image analysis,
etc. The train and the test data would be sourced from a completely different set of users. In the case of
Geriatric Fall detection, the models are trained on a different set of users and used on a different set of
users. While training, we used volunteers who are in a lesser age range, have lesser health issues and
probably have a better lifestyle compared to the end-user of the fall detection device we built. In this
paper, we tried to analyze the effect of specific user characteristics such as height, weight, gender, and
pre-existing health conditions and their effect on the performance of the ML model. For instance, most

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2023                   doi:10.20944/preprints202305.0917.v2

https://doi.org/10.20944/preprints202305.0917.v2


16 of 30

volunteers (66%) were male, whereas the end user may be predominantly female, having been trained
on a predominantly male population; even if an algorithm gives an accuracy of 97% in detecting falls,
will this be maintained when the users are predominantly female? Indian ageing statistics [58] show
that more than 70% of the elderly living alone in either poor conditions or in government-run elderly
homes are single women who have lost their spouse and do not have any other family support. These
women are the final target of the device we will use. Hence the device is low-cost and easy to use. The
ease of use is essential as many of the elderly population in India currently have a low literacy level.
It is not only gender, but other parameters also affect the accuracy and behaviour of the algorithms,
especially height and weight, when considering IMU sensors. Referring to the table-6 in the previous
section, the average heart rate is expected to be between 60-100 beats per minute; if we observe the
baseline heart rate and reconfirm using medical grade sensors, there were users whose baseline heart
rate was more significant than 100 bpm(8 out of 41), this considering the healthy population. The
heart rate would be even more erratic with the elderly. How the heart rate affects the ML model’s
performance is another question we are trying to answer in this paper. The paper’s aim is not to
analyze the ML model but rather to analyze the effect of the user parameters on the productivity of the
ML model. Will the device we have developed continue to perform when used by the target audience,
or will its accuracy be very low as we train using completely different user demographics? This is the
main reason why the experiment was conducted.

4.3. ML Algorithms

In order to analyze the effect of user characteristics on the behaviour of ML algorithms, we used
five common ML algorithms. Our aim is not to evaluate the ML algorithms but rather to study the
effect of user characteristics on the performance of the ML models. After going through multiple
literatures, we went in for the most commonly used supervised ML algorithms (a) Naïve Bayes [65] (b)
KNN [66] (c) Logistic regression [67] (d) Random Forest [68] (e)SVM(Suppport vector machine) [69].

Even though the Random forest is an ensemble algorithm, its complexity is comparatively lesser
than AdaBoost or XGBoost. In AdaBoost, latencies are very high and hence difficult to converge in
820c, whereas XGBoost requires good computational power. Each of our users had 112 features for
each activity which would have made the implementation of XGBoost extremely complex. Supervised
learning can be used in a classification problem or a regression problem. Mostly, in healthcare, it tends
to be a classification problem, especially in the case of our research, activity is to be classified as a fall
or a non-fall. Commonly used supervised algorithms are

4.3.1. Decision Tree(Random Forest)

is a technique for approximating discrete value target function, representing the learnt function
as a decision tree [70]. A decision tree classifies instances by sorting them from root to some leaf
nodes based on features. While using a decision tree, the focus is on deciding which feature is the
best classifier at each node level. Classification of instances starts at the root node, called the decision
node. Based on the value of the decision node, the tree traverses down along the edge, corresponding
to the value of the output that a feature will generate. This continues until the leaf node is reached.
Several algorithms are available to implement decision trees. The most common are classification and
regression trees, iterative dichotomised-3 (ID3) [71], Automatic interaction detection, and CHAID.

The decision trees fall under an Ensemble method termed Bagging; Random forest is an extension
of Bagging as it utilizes bagging and feature randomness to create an uncorrelated forest of decision
trees. Random forest algorithms have three primary hyperparameters (i) maximum depth, (ii)the
number of trees, and (iii) the number of features.

We tried for different values of maximum depth. If the number of splits is too small, the model
under fits the data, and if it becomes too high, the model overfits. . Usually, the values 3, 5 and 7 are
preferred, and the fourth option is “None”. If “None” is used, nodes are expanded till all leaves are
pure or until all leaves contain less than minimum_samples_split, which is also one of the parameters
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programable in random forest. We got the best result when this parameter was set to 2. The best
result was obtained when the maximum depth was set to “None”. We also varied the number of trees,
starting from 50 to 200. The best result was obtained at 170 trees. We also varied the max_features
parameter. It has three possible values “sqrt”, “log2”, and “None”. When “None” is used, the number
of max_features will be equal to the number of features which in our case is 121. We obtained the best
result for sqrt, and hence parameter was set to “sqrt”.

4.3.2. Naïve Bayes

Naïve Bayes (NB)uses Bayes theorem of probability. Bayes theorem calculates the posterior
probability of an event X, given some prior probability of event Y, represented by

P(X/Y) = [P(Y/X) ∗ P(X)]/P(Y) (1)

Naïve Bayes classifier falls under the category of simple probabilistic classifiers. Bayes theorem
assumes independence among the features, which is not the case for the data we use to classify falls
[72][73].

4.3.3. Support Vector Nachine

Support Vector Machine(SVM) is used for classification and regression. It works on the principal
calculating a margin. In this algorithm, every data item is plotted as a point in n – dimension space
when n is the number of features in our dataset. It classifies the data into different classes by finding a
line(hyperplane) which separates the training datasets into classes. It maximises the distance between
the nearest data point (in both classes) and the hyperplane [74].

In SVM, the programmable parameters are the Kernel, Gamma and Regularization parameter
“C”. The Kernel can be either “linear”, “poly”,” RBF”, or “sigmoid”.The best results were obtained
for “RBF”. In the case of “linear” and “poly”, the drop in accuracy was about 10%, and in the case of
“sigmoid”, the drop in accuracy was about 30%. The Kernel parameter helps determine the shape of
the hyperplane and the decision boundary. For ”rbf”, the radial basis function gave us the best result.

Gamma can be either “Scale”, “Auto”, or “float”. We tried for various values of “float”; we
also tried “auto”, but the best results were obtained for “Scale”. The Gamma parameter determines
how far the influence of a single training example reaches. If Gamma is small, the model will be too
constrained. The radius of the “rbf” kernel alone acts as an excellent structural regulariser. Using
high values of “C” will not help further. We varied the regularisation parameter “C” from C=1 to 15;
the best results were obtained for C=10, after which the accuracy plateaued till C=15, after which the
accuracy started dropping again. The “C” parameter tells SVM optimisation how much misclassifying
must be avoided in each training example. For large values of C, the optimisation will choose a smaller
margin hyperplane if that hyperplane does a better job of getting all the training points classified
correctly. A small value of “C” might misclassify in a training dataset.

4.3.4. Regression Analysis

It is a predicting modelling technique that establishes a relation between a target and an
independent variable, i.e. the predictor. In this method, we fit the line/curve through the data
points to minimize the differences between the distances of the data point. Various kinds of regression
analysis exist, such as linear, logistical and polynomial. In the case of Fall detection, logistical regression
is used [75]

4.3.5. K-Nearest Neighbour

It’s an example of instance-based learning. It is a non-parametric method used for both
classification and regression. Given n-training vectors, the KNN algorithm [76] identifies the k
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nearest neighbours of an unknown feature vector whose class is to be identified. The ideal “K” value
for KNN was found to be nine while using “Minkowski” as a distance metric.

4.4. Analysis of Effect of User parameters on the Accuracy

To understand the variations in accuracies we used various combinations of the user
demographics. This was done to understand the effect of user parameters such as gender, age,
height, weight and health issues on the accuracies. We also analysed which of the ADLs and Falls were
incorrectly detected with respect to the user parameters. We used a combination of user demographics
to understand the behaviour of the algorithm and why there were variations in Accuracy, Sensitivity,
Specificity and False Negative rates. We used a combination of varying user parameters for training
and testing. For example, to understand the effect of gender on the test accuracies, we first ran the ML
algorithms separately for male volunteers using their data for both training and testing. We repeated
the same for the female volunteers. Then we used the data of the female volunteers for training and
the male volunteers for testing and vice-versa. Many of the existing public datasets which are used
for training the ML algorithms have similar user demographics. In most cases the volunteers are
male and in the age between 20 and 30 years with no known health issues. The actual users of the
end product will be people above 60 years, both male and female with several pre-existing health
conditions. Under these circumstances, whether the fall prediction algorithms will work accurately
needs to be analysed. Hence in this paper, we have tried to analyse the behaviour of the algorithms
with varying user demographics. The combinations that we used for testing and training are given in
Table 7.

We ran the algorithms with and without the data from heart rate sensors to understand the effects
of biometric parameters during falls. In the next section, we give the complete results and the analytics.

Table 7. Train and Test Combinations.

Sr no. User Demographics Range Train Test

1 Age
<30
30-40

40-50

<30 (70% Train)
<30
<30
30-40
30-40

40-50

<30 (30% test)
30 -40
40 - 50
30 - 40
40 - 50
40 - 50

2 Gender
Male

Female

Female
Male
Male

Female

Female
Male

Female
Male

3 Health Issues
With

Without

Without
With
With

Without

Without
With

Without
With

4 Height
<5.5ft

>5.5ft

<5.5ft
>5.5ft
<5.5ft

>5.5ft

<5.5ft
>5.5ft
<5.5ft
>5.5ft

5 Weight
50-65
65-80

80-120

50-65
65-80
80-120
50-65
50-65
65-80
65-80
80-120

80-120

50-65
65-80
80-120
65-80
80-120
50-65
80-120
50-65

65-80

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 October 2023                   doi:10.20944/preprints202305.0917.v2

https://doi.org/10.20944/preprints202305.0917.v2


19 of 30

5. Results and Discussion

5.1. Overall Performance Analysis for various ML algorithms with varying data sizes

We initially analysed the effect of varying data sizes on the performance of ML algorithms before
analysing the effect of user demographics on the performance of the algorithms. As mentioned in
earlier sections we have used the common ML models (a) Naïve Bayes, (b) KNN, (c) Logistic Regression,
(d) SVM and (e) Random Forest.
The accuracy, specificity and sensitivity of various algorithms with (a) 41 users (b) 35 users (c) 30 users
(d) 25 users (e) 20 users and (f) 10 users are shown in Figure 3 to 8.

The best results among all the algorithms were obtained when heart rate was included, as can be
seen in Figure 3 and Figure 5. The best result was obtained for 30 users for all algorithms, except for
random forest (where the best result was obtained at 10 users), with heart rate the peak accuracy was
98.5% obtained by SVM and 96.5% without heart rate again in SVM. For all user combinations, with
and without heart rate the sensitivities were higher than the specificity. This is as per the requirement
for Fall detection. Since we are dealing with geriatrics a false positive is better than a false negative.

Figure 3. Accuracy vs number of users (without heart rate).

Figure 4. Specificity vs number of users (without heart rate).
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Figure 5. Sensitivity vs number of users (without heart rate).

Figure 6. Accuracy vs number of users (with heart rate).

Figure 7. Specificity vs number of users (with heart rate).
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Figure 8. Sensitivity vs number of users (with heart rate).

The main activities that were incorrectly detected were those of User-1 as the subject had an erratic
heart rate due to a medical condition known as Sinus Tachycardia. In the case of other users, very few
ADL or Fall activities failed since we had selected the 10, 20, 25, 30 and 35 users randomly out of the
total 41 users. Wherever user-1 was not selected, we had better results. When heart rate was ignored
several of the ADL activities which were related to “lying on the bed” or “getting up slowly/quickly
from the bed” were incorrectly detected as falls depending purely on the IMU sensor’s values. Also
“backward falls and falls from the bed” were incorrectly detected as ADL activities for several users.
When heart rate was ignored more of User – 1 activities were incorrectly detected especially since
several of the ADLs were construed as false positives. This included “lying on the bed”, “lying on the
back and getting up slowly/quickly” and “transitioning sideways to one’s back while lying down”.
This caused a drop in accuracy from 99% to 98%, especially due to a drop in specificity values from
0.99 to 0.98. It can be concluded from the results that when we use the heart rate of a volunteer with
severe health conditions the accuracies obtained are better especially since there will be a huge spike
in heart rate while performing Fall activities as against performing ADL activities. The sensitivity was
higher by almost 1.5% when heart rate was used and the specificity was high when heart rate was
ignored.

Tables 8 and 9 show the accuracy, sensitivity and specificity for the various age groups “under
30”, “30-40” and “40-50” for individual algorithms with and without heart rate. As usual, Naïve Bayes
gives the lowest accuracy and SVM gives the highest accuracy. When training and testing were done
with the same age group, it can be observed from the table that the impact of accuracy is not much.
The accuracies have dropped in the case of all the algorithms as the size of the dataset would have
been reduced as we only considered volunteers under the age of 30. While the accuracies of SVM with
the whole dataset went up to 98.5%, here the highest accuracy again being produced by SVM is 95.10%
for the age group of >30, in the case of 30-40 it drops to 87.50% as the number of volunteers in this age
group was lesser. At 40-50 it was higher at 90.91%. In the case of 40-50, Random Forest and Logistic
Regression gave the highest accuracies at 93.18%. Random Forest’s Decision trees work equally well
with large as well as smaller data sets. When the simulations were run with volunteers under 30, heart
rate had a huge impact for the higher age range which is 40-50 with Random Forest giving an accuracy
of 99.31%. But in the case of 30-40, the IMU sensors had a higher impact. Since in most scenarios in
practical life, volunteers would be in the age group of below 30 and users will be in the range of 50
and above; The impact of heart-rate is very significant. When we analysed which of the users were
causing a fall in accuracy, they were primarily users in the age range of 30-40 but though they were
physically fit, they had pre-existing health conditions and were on medications. Primarily user 30 with
a pre-existing prostate condition and user 35 with a pre-existing diabetic condition.
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Table 8. Analysis of the impact of age on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

< 30 < 30 94.60 92.15 92.64 86.76 92.15 93.38 89.51 93.18 91.80 91.24 97.06 98.36 91.67 79.27 94.03

< 30 30-40 92.50 90.00 89.38 87.50 90.63 92.37 89.34 90.60 89.66 90.76 92.86 92.11 86.05 81.82 90.24

< 30 40-50 96.53 95.14 95.83 93.75 99.31 95.96 93.20 95.92 93.94 98.97 97.78 100 95.65 93.33 100

30-40 30-40 85.42 81.25 83.33 72.92 87.50 84.21 78.57 83.78 85.71 84.62 90.00 100 81.82 55 100

30-40 40-50 90.28 89.58 90.97 88.89 95.83 91.84 86.49 91.92 97.62 94.12 86.96 100 88.89 76.67 100

40-50 40-50 93.18 88.64 93.18 84.09 90.91 90.32 84.85 93.10 92.00 92.86 100 100 93.33 73.68 87.50

* With Heartrate

Table 9. Analysis of the impact of age on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

< 30 < 30 95.10 91.67 93.14 87.25 92.16 92.81 89.44 93.23 93.28 90.07 100 96.77 92.96 78.82 96.83

< 30 30-40 92.50 90.52 89.38 87.50 90.63 92.37 90.08 90.60 89.66 89.43 92.86 92.31 86.05 81.82 94.60

< 30 40-50 95.83 95.14 95.14 94.44 99.31 95.92 93.20 94.95 96.81 98.97 95.65 100 95.56 90 100

30-40 30-40 87.50 81.25 79.17 72.92 87.50 86.49 78.57 82.86 85.71 84.62 90.91 100 69.23 55 100

30-40 40-50 90.97 88.89 90.28 88.19 93.75 91.09 85.71 91.84 98.77 92.23 90.70 100 86.96 74.60 97.56

40-50 40-50 90.91 86.36 93.18 84.09 93.18 90 82.35 93.10 88.89 93.10 92.86 100 93.33 76.47 93.33

* Without Heartrate

Tables 10 and 11 show the accuracy, sensitivity and specificity of the male and female participants
for individual ML algorithms with and without heart rate. From the table, it can be seen that we get
better accuracies with heart rate in the case of males but in the case of females, the accuracies fall
with heart rate. In the case of females, the accuracies seem to increase or drop erratically because the
number of females was only a little more than 1/3rd of the entire set of volunteers. When trained
with the Male data set and tested with the Female, we got better results both in the case of With and
Without heart rate, because the training was done with a larger population than the number of test
subjects. This shows that the size of the data set has a huge impact while gender does not have a large
impact on accuracy. So it’s very important to train the models with large datasets with the gender
being insignificant. The train set must be larger than the test set.

Table 10. Analysis of the impact of gender on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

Female Female 93.07 86.14 88.12 84.16 93.07 96.92 92.19 95.16 94.83 95.52 86.11 75.68 76.92 69.77 88.24

Male Male 93.33 92.82 95.90 89.23 92.82 93.13 90.00 94.70 91.34 91.79 93.75 100.00 98.41 85.29 95.08

Male Female 94.35 90.48 94.35 89.58 93.45 94.37 88.40 94.76 89.21 93.16 94.29 96.51 93.46 90.53 94.12

Female Male 91.82 92.59 92.90 91.05 93.83 90.58 91.20 93.47 93.29 92.79 95.03 96.15 91.67 86.57 96.32

*With heart rate gender

Table 11. Analysis of the impact of gender on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

Female Female 95.04 89.10 89.10 85.14 93.06 98.46 93.84 95.23 94.91 95.52 88.88 80.55 78.94 71.42 88.23

Male Male 92.30 92.82 95.38 88.71 92.82 93.02 90.57 94.65 91.26 92.42 90.90 98.24 96.87 84.05 93.65

Male Female 93.75 92.26 94.05 89.29 92.56 93.94 91.25 94.74 89.17 92.34 93.33 94.79 92.59 89.58 93.07

Female Male 92.44 92.28 92.44 90.43 94.14 90.83 90.81 93.03 93.43 93.20 96.56 96.11 91.13 84.68 96.35

*Without heart rate gender
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Tables 12 and 13 show the accuracy, sensitivity and specificity for subjects with pre-existing health
conditions and subjects who did not have any health conditions were used as participants. Table 12
shows the result with heart rate whereas table 13 shows the result without heart rate.

Table 12. Analysis of the impact of Pre-existing health on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

WithoutWithout96.11 93.33 93.89 92.22 95.56 95.80 93.33 94.12 95.54 95.00 96.72 93.33 93.44 86.76 96.67

With With 91.38 83.62 90.52 84.48 91.38 93.75 82.80 93.67 86.90 91.67 86.11 86.96 83.78 78.13 90.63

With Without95.00 91.50 94.17 90.83 94.00 95.12 89.21 95.06 91.17 94.17 94.74 98.06 92.31 90.06 93.62

WithoutWith 94.27 92.19 92.71 89.06 94.53 94.32 91.85 92.54 91.80 93.04 94.17 92.98 93.10 83.59 98.20

*With heart-rate health issues

Table 13. Analysis of the impact of Pre existing health on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

WithoutWithout93.33 92.22 93.89 94.44 96.11 93.33 91.13 94.87 95.69 95.80 93.33 94.64 92.06 92.19 96.72

With With 90.52 85.34 88.79 83.62 92.24 93.67 83.87 92.41 86.75 91.76 83.78 91.30 81.08 75.76 93.55

With Without96.50 92.00 94.50 90.00 93.83 97.73 90.18 95.76 90.67 94.38 94.09 96.91 91.96 88.46 92.67

WithoutWith 93.49 92.45 92.71 88.80 93.75 94.25 92.19 92.54 91.44 92.65 91.87 93.04 93.10 83.46 96.43

*Without heart rate health issues

Of the 41 volunteers, 12 of them had pre-existing health conditions that varied from high blood
pressure, diabetes, claustrophobia, vertigo, sinus tachycardia, prostate and obesity, etc. To study the
effect of health conditions on the prediction we ran the algorithm separately for the volunteers with
health issues and without health issues. The performance of the algorithms was better when heart rate
was associated with people who did not have any pre-existing health issues. When we tried training
the algorithm using people with health issues and testing them with volunteers who did not have any
health issues and vice-versa, the heart rate had no such impact in the first case however in the second
case, there was a slight improvement in accuracy as can be seen in Table 12 and 13.

Based on this we can come to a conclusion that the presence of health issues does affect the
accuracy of fall detection and since erratic heart rate is usually associated with health issues, there
is more possibility of errors when heart rate is used as one of the features to detect falls. This will
prove to be a major hurdle as we move forward in our research since there are very few elderly who
do not have any pre-existing health conditions, in fact in our 40-50 age group only one volunteer had
no health issue or was not under any form of medication.

Table 14 and 15 show the accuracy, sensitivity and specificity for the subjects having height below
5ft 5in and subjects having height above 5ft 5in for data with and without heart rate respectively. The
behaviour of the model would definitely be impacted by the height of the person as the amount of
change in IMU values would be dependent on the person’s height. For a person whose height is above
5ft 5in, which is also the average height of a person of Indian origin, there is no effect of heart rate on
the accuracy and the accuracy is completely dependent on the values derived from the IMU sensors.
For people who are lesser than 5ft 5in the accuracy drops when heart rate is used. Even otherwise
accuracies for people of height more than 5ft 5in are slightly higher than the volunteers whose height is
lesser than 5ft 5in. With progression in age, the skeletal structure of a person may change introducing
conditions such as hunchbacks which may cause a reduction in height, and hence the accuracies will
be affected. When we trained using volunteers of height greater than 5ft5in and tested with volunteers
with height less than 5ft 5in, there was a definite drop in accuracy both with and without heart rate.
Whereas when we trained with people of height less than 5ft5in and tested using volunteers of height
greater than 5ft5in, in the case of some of the ML models, there was a slight increase in accuracy with
and without heart rate. This shows that the IMU sensors produce drastically different values that
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vary with the height of the person. Though we are extracting statistical parameters, the height of the
person has a huge impact on the accuracy of the model. Hence, if we use volunteers who are young
and in good physical condition and have an above average height to train the ML models and use it
on elderly who will have pre-existing health issues, weakening of the muscular structure and reduced
height, several of the ADLs may be misinterpreted as falls because the drop in accuracy here is due
to the drop in specificity rather than sensitivity. This might be acceptable because in the case of the
elderly, it is better to err on the side of caution.

Table 14. Analysis of the impact of varying heights on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

<
5.5

<
5.5

92.77 91.57 91.57 89.76 91.57 93.69 90.60 92.79 91.82 90.60 90.91 93.88 89.09 85.71 93.88

>
5.5

>
5.5

93.85 90.77 91.54 86.15 93.08 97.56 89.36 97.47 91.46 93.26 87.50 94.44 82.35 77.08 92.68

>
5.5

<
5.5

93.12 90.40 92.93 90.76 91.85 93.19 87.77 92.51 89.92 90.27 92.94 98.52 93.94 92.90 96.03

<
5.5

>
5.5

94.91 92.82 94.68 89.81 93.75 94.93 91.05 95.22 92.36 93.94 94.85 97.48 93.53 84.72 93.33

*With heart rate height

Table 15. Analysis of the impact of varying heights on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

<
5.5

<
5.5

95.18 93.98 92.17 90.36 91.57 97.20 93.04 93.64 92.66 90.60 91.53 96.08 89.29 85.96 93.88

>
5.5

>
5.5

94.62 90.77 90.00 83.85 93.08 96.47 89.36 96.20 89.16 93.26 91.11 94.44 80.39 74.47 92.68

>
5.5

<
5.5

92.93 90.40 93.12 90.40 93.30 92.73 88.14 92.53 90.28 91.69 93.41 97.12 94.51 90.68 97.42

<
5.5

>
5.5

95.14 93.06 94.68 89.35 93.98 94.95 91.35 95.22 92.01 94.26 95.56 97.50 93.53 84.03 93.38

*Without heart-rate height

Tables 16 and 17 show the accuracy, sensitivity and specificity for the subjects having weight
in the range of 50-65 kgs, subjects having weight in the range of 65 to 80, subjects having weight in
the range of 80 to 120 Kgs with and without heart rates respectively. The impact of the weight of the
subject on accuracies is very high, with accuracies for lower weight range i.e 50-65 Kgs being high and
accuracy drops with an increase in weight. Also, the impact of heart rate on accuracy is visible only in
the weight ranges of 80-120 kgs. As the weight of the person will have an impact on the heart rate
as he/she performs stressful activities. Again cross-testing and training have the least impact on the
weight ranges of 50-65 Kgs. When trained on the weight range of 50-65 Kgs and tested against ranges
65-80 and 80-120, the accuracies are not severely affected. But training with other weight ranges affects
the accuracy as can be seen in the table. The drop in the accuracies in the weight range 65-80 is mainly
due to the drop in specificity rather than sensitivity. When the weight is in the range of 50-65 which
is usually below the Indian average or 80-120 which is above the Indian average, most of the ADL
activities are detected correctly except in the case of Naïve Bayes where the sensitivity is better than
specificity, but NB is more of a threshold based algorithm and its accuracies are generally very low.
Again the elderly are prone to be frail with their weight being less than the average. Hence, we can get
better accuracies irrespective of the age group used for training and testing.
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Table 16. Analysis of the impact of varying weight on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

50-65 50-65 96.35 94.89 94.89 89.78 93.43 94.68 93.62 94.57 95.18 92.55 100.00 97.67 95.56 81.48 95.35

65-80 65-80 91.67 87.96 88.89 84.26 92.59 93.75 87.50 95.89 91.89 94.94 85.71 90.00 74.29 67.65 86.21

80-120 80-120 94.12 90.20 90.20 90.20 92.16 92.11 91.67 91.67 96.88 91.89 100.00 86.67 86.67 78.95 92.86

50-65 65-80 93.89 94.17 92.78 91.39 93.61 93.60 92.94 94.21 92.65 92.22 94.55 97.14 89.83 88.70 97.09

50-65 80-120 89.29 90.48 86.90 86.90 88.69 91.23 89.34 88.79 90.91 89.74 85.19 93.48 82.69 79.31 86.27

65-80 50-65 94.74 91.01 93.64 91.45 93.42 95.45 89.25 94.50 92.88 93.35 93.24 95.87 91.84 88.44 93.57

65-80 80-120 94.64 89.29 91.07 88.69 90.48 94.78 87.30 93.69 91.15 90.00 94.34 95.24 85.96 83.64 91.67

80-120 50-65 88.60 87.06 92.54 90.57 92.76 88.41 85.30 93.27 92.23 91.44 89.06 92.66 90.97 87.07 96.12

80-120 65-80 91.94 88.06 92.50 90.00 93.06 92.37 86.08 92.77 92.50 91.19 90.99 94.25 91.89 85.00 97.98

*With heart rate on weight

Table 17. Analysis of the impact of varying weight on accuracies.

Train Test Accuracy (%) Sensitivity (%) Specificity (%)

SVM KNN LR NV RF SVM KNN LR NV RF SVM KNN LR NV RF

50-65 50-65 94.89 95.62 94.89 89.78 93.43 93.62 94.62 95.56 95.18 92.55 97.67 97.73 93.62 81.48 95.35

65-80 65-80 92.59 87.04 91.67 83.33 92.59 94.94 85.71 96.05 90.67 94.94 86.21 94.12 81.25 66.67 86.21

80-120 80-120 90.20 88.24 92.16 90.20 92.16 89.47 87.18 94.29 96.88 91.89 92.31 91.67 87.50 78.95 92.86

50-65 65-80 94.44 94.44 93.06 91.11 93.06 94.72 92.97 94.61 91.60 91.19 93.86 98.08 89.92 90.00 97.98

50-65 80-120 90.48 90.48 89.29 87.50 89.29 92.11 90.00 90.52 89.57 89.83 87.04 91.67 86.54 83.02 88.00

65-80 50-65 95.18 92.11 94.30 91.45 93.64 96.08 90.61 94.84 93.44 93.93 93.33 96.03 93.15 87.42 93.01

65-80 80-120 93.45 89.29 89.88 87.50 90.48 93.91 87.30 91.30 89.57 90.00 92.45 95.24 86.79 83.02 91.67

80-120 50-65 90.35 87.72 92.54 89.47 92.54 91.67 86.05 94.41 92.11 91.41 87.50 92.86 88.82 84.21 95.38

80-120 65-80 91.94 86.11 92.50 89.44 92.22 92.37 84.17 92.77 91.74 90.46 90.99 92.68 91.89 84.75 96.94

*Without heart rate on weight

6. Conclusion

Though there a multiple data sets available, and we have used them in our previous works,
we were unable to interpret the reasons for the rise or fall in accuracy. Hence we collected our own
data and analyzed it. In this paper, we have attempted to analyze the effect of various characteristics
such as age, height, weight, gender and health issues on the accuracy of the various well-known ML
algorithms. In geriatric fall detection, it is given that the test volunteers and the actual users will
belong to different categories. While the test subjects are usually in the age range of 20-35 in most
data sets, we stretched the age range between 20-50, but the actual users would be the elderly or the
super elderly. While we did have some users who had serious existing health conditions and were on
medication and we did find a fall in accuracy when we trained using healthy volunteers and tested
the accuracy for volunteers with health issues. The loss in accuracy was primarily due to a drop in
specificity hence some of the ADLs were being incorrectly interpreted. In some cases, the use of heart
rate helped improve the accuracy in some cases the impact of heart rate caused a drop in accuracy. But
we still recommend the use of heart rate as one of the parameters as any changes in heart rate in the
elderly supported by the data from IMU sensors may be indicative of a fall.
The problem with multiple datasets is also that the demographics of the users tend to change with
countries. In countries with a good health infrastructure and where healthy living is promoted, the
ageing process is more graceful. The average height and weight also vary across countries. In India,
healthy living and exercising are new concepts, overindulgence is a norm here; hence most elderly
India suffer from various health conditions, and very few of them have access to good healthcare
services due to the cost. Falls may times go undetected; repeated falls in the elderly are also very
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common in India. We need data sets that represent the Indian demographics. We have attempted to
create such a database, and we have analyzed the database in detail for various user parameters such
as age, gender, health issues, height and weight.
The number of features we have is 100,208 after feature extraction, we also plan to add certain
parameters such as height and weight that have a huge impact on the accuracy as part of the features.
We were also able to identify certain users who were outliers, this could be used to clean the data
set further, we have currently retained the outliers as there may be final users who may have similar
characteristics.
We plan to run ensemble ML algorithms on the end device built around Qualcomm Snapdragon 820c.
This means features have to be pruned and the ensemble ML algorithms compressed so that the latency
in obtaining the prediction will be much lesser than the sampling rate, and timely alerts can be issued.
Understanding the impact of features and user characteristics is the first step to pruning features
which is what we have attempted in this paper. We collected data that is specific to the local user
demographics, extracted relevant features and analysed the performance of the ML algorithms on the
collected data.
A perfect data set would be one where the demographics are uniform and similar to the end user
demographics. While some public data sets have attempted to use the elderly to do a limited number
of ADLs, they have not been able to show a significant improvement in accuracy. Hence, we have to
proceed with skewed data sets. The application of ranking and pruning of features gains importance.
This is the next step in our work. This is required as we plan to use Dew computing IoT model.
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