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Abstract: Protons are gaining increasing attention as neurotransmitters due to their extraordinary abilities to 

rapidly transfer electrical charge, mobilize cellular calcium and modulate ion channels. How all this is possible 

is currently the subject of in-depth studies and discussions concerning not only neurophysiology, but also 

biological materials for artificial intelligence. In this short review, some biochemical mechanisms are described 

by which protons, in combination with calcium, can initiate firing in sensory neurons and transmit impulse 

across synapses. Furthermore, mechanisms are put forward concerning how three neurotransmitters, 

glutamate, gamma-aminobutyric acid and acetylcholine, are able to generate protons. The results of the 

numerous experimental works taken into consideration indicate that protons can play a fundamental role both 

in the generation and in the transmission of the nerve impulse. 

Keywords: lipid membrane; excitable cells; synaptic vesicles; H+ ion; Ca2+ signaling; calcium binding 

proteins; signal transduction; G-protein coupled receptors 

 

Introduction 

The dual purpose of this review is: 1) to describe some biochemical pathways for the 

transmission of the nerve impulse activated by H+ and Ca2+ ions; 2) highlight endogenous sources 

of H+ ions, neglected until now. 

The fundamental role of Na+ e K+ ions in nerve transmission was demonstrated by eighteen 

years of experimental work by Hodgkin and Huxley [1]. H+ and Ca2+ ions were studied less, 

although Hodgkin and Huxley noted the significant role of Ca2+ as far back as 1949 (Hodgkin1976, 

Figure 7) [2]. Subsequent studies confirmed the fundamental role of Ca2+ in proper transmission [3–

5] and showed that dysfunctions in the homeostasis of Ca2+ can cause neurodegenerative diseases. 

The interest in H+ ions, identified below with the current terminology as “protons”, picked up with 

technical progress in instruments after 1980 [6–8]. Nerve impulses can last no more than 10 ms, pH 

transients and calcium spikes less than 2 ms, hence require sophisticated instruments for their study. 

It is known that both Ca2+ ions and protons are ubiquitous in organisms, at concentrations that 

are strictly correlated [9–11]. A widespread lasting increase in their concentration produces the 

pathological condition known as acidosis, whilst a local and temporary increase is used currently by 

cells as a signal, in physiological conditions [12,13]. The correlation between protons and Ca2+ ions 

is fundamental for the transmission of the signal and depends on the high degree of solubility in an 

acid environment of protein-calcium complexes and calcium compounds, such as carbonates and 

phosphates, known to be calcium-buffering molecules. In cells in a static state, most cytosolic calcium 

is immobilized in these compounds. When the stimulus reaches the cell membrane activating a 

strongly acidifying enzyme, such as an esterase, the enzymatic action produces protons and hence 

locally and temporarily lowers pH. The acidity dissolves the calcium compounds, which can 

therefore pass into solution as Ca2+, producing calcium spikes, of intensity and duration proportional 

with the quantity of protons freed [9,14,15]. It has been calculated that in mitochondria a fall of one 

unit of pH produces a 100-fold increase in the concentration of Ca2+ [16]. Clearly, the acidifying 

action of esterases is an important characteristic enabling the transformation of the chemical signal 
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into transient electric charges and the basis for the release of Ca2+ from cellular stores and the influx 

of extracellular Ca2+. However, surprisingly, this characteristic has almost entirely been ignored in 

scientific publications [11]. Table 1 sets out some examples of esterases and the acids they produce, 

which can solubilize cytosolic calcium. 

Table 1. Examples of esterases, as possible sources of protons and intracellular Ca2+ spikes. 

enzyme substrate acid product reference 

phospholipase A2 phosphatidylcholine arachidonic acid Sun [17] 

phospholipase C phosphatidylinositol 4,5-

bisphosphate 

acid IP3 Molinari, Figure 

1A [18] 

phospholipase D phosphatidylcholine phosphatidic acid Cazzolli [19] 

ecto-ATPase ATP ADP + acid 

phosphate 

Vultaggio-Poma 

[20] 

phosphodiesterase cAMP acid AMP Delhaye [21] 

phosphodiesterase cGMP acid GMP  Delhaye [21] 

cADPR cyclase cADPR acid ADPR Young [22] 

acetylcholinesterase acetylcholine acetic acid Fillafer [23] 

It is important to underline that hydrolysis of any ester that yields an acid with pKa < 6 will 

release a proton at pH 7. While phospholipases (i.e., PLA2, PLC, PLD), triphosphatases (i.e., ecto-

ATPase) and phosphodiesterases are acidifying enzymes, phosphomonoesterases (phosphatases) are 

not, due to the unfavorable pKas of phosphoric acid. Therefore, contrary to what was stated in my 

previous articles [11,18], the ability of phosphatases to lower pH and consequently mobilize calcium 

stores is questionable. 

With an atomic mass about 23 times lower than sodium and a radius of about 0.08 nm, the proton 

is the smallest and most mobile ion in existence. In its hexahydrate form, proton has a radius of about 

0.25 nm [24], against 0.95 nm of Na+. Its level of permeability through the phospholipidic membrane 

is controversial, however it is ≤ that of Na+ [25]. The elemental charge of the proton is the same as for 

other individual monovalent cations, at 1.602 x 10-19 C. Anyway, protons can transport the charge 

much more quickly [26,27], via proton-hopping [24,28]. In addition to reacting with water, they can 

interact with amino acids and proteins and modulate [29] a large variety of channels and receptors, 

such as Voltage Gated Calcium Channels (VGCC/CaV) [30,31], Store Operated Calcium channels 

(SOC) [32], calcium-activated potassium channels (KCa) [33,34], inward rectifier potassium channels 

(Kir) [35,36], voltage gated proton channels (Hv) [37], proton gated Acid Sensing Ion Channels (ASIC) 

[38–40], multimodal Transient Receptor Potential channels (TRP) [41,42], and G-protein Coupled 

Receptors (GPCR) [43]. The interaction depends on the species, the extracellular or intracellular 

position of the protons, their concentration and the type of channel [44]. Many channels, including 

ASIC and TRPV1, mainly trigger activation, others such as VGCC [45] and TRPV5 [46] have a control 

or inhibitory function. 
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To sum up, protons are tiny ionic particles that in an aqueous environment are acidic and highly 

mobile, able to rapidly transfer positive charges and to temporarily modify pH, Ca2+ concentration, 

electrical potential and the protein structure, as a result activating numerous receptors. Due to these 

extraordinary chemical and physical properties they are used in the preparation of organic electro-

conductive materials [47,48] and are attracting increasing attention as neurotransmitters [12,13,49–

58]. They have been shown to have an essential role at the synaptic level [58–62] and it has been 

posited that they are responsible for conduction in axons [57]. Some authors have also posited a 

significant role in the transmission and modulation of the signal in the nervous system generally 

[13,38,63]. However, the endogenous sources of the protons have yet to be determined. There are four 

candidates: Na-H exchangers, V-ATPases, carbonic anhydrases and AE3 chloride-bicarbonate 

exchanger [12,13,64,65], which however appear to be insufficient [65]. Specifically, Soto et al. [13] 

rightly observe: “A problem of classifying protons as neurotransmitters is related to the fact that its regulated 

release is always a co-release with classical neurotransmitters”. In addition, some criticisms have been 

levelled against the theory of Hodgkin and Huxley; for example, it does not explain the origin of the 

firing of neurons [66]. X-ray crystallography and cryo-electron microscopy have revealed the 

structure of many ionic channels in the inactivated/open state and in some cases the amino acid 

residues involved in gating [67]. However, a knowledge of the structures of the intermediate states 

at the atomic level is required in order to better understand the origin of the movement of charges in 

the gating mechanism [68]. These problems could be overcome more simply if neurotransmitters and 

second messengers [69] were included among the possible sources of protons, given that these 

molecules can generate protons, i.e., new mobile charges as described in paragraph 2 of the discussion 

and protons can trigger firing and open channels, as described in paragraph 1. 

Methods 

A review and critical assessment was made of the scientific publications dealing with the topic 

between 01.01.1950 and 25.05.2023, all available online. 

Results and Discussion 

1. Pre-Synaptic Transmission of the Impulse in Sensory Neurons 

Protons can contribute to the generation and transmission of impulses in sensory neurons via 

biochemical mechanisms that differ in modality and effects [70]. 

For the perception of tastes there are substantial differences between vertebrates and insects [71]. 

In the specific case of neurons sensitive to a sour taste, it has been shown in mammals that 

protons can directly cause firing by opening OTOP1 [72], TRP [73,74] and perhaps ASIC [75] type 

channels. OTOP1 channels induce a change in the potential of the membrane, directly importing 

protons into the cytosol [73,76]. The resulting fall in cytosolic pH solubilizes calcium-buffering 

molecules and reduces the action of Kir channels [36] and this may cause further depolarization [76]. 

Any activation of ASIC and TRPV1 channels can produce proton-induced calcium influx [44]. The 

increase in Ca2+ concentration in the cytosol modulates calcium-activated potassium channels 

[77,78]. 

The pathway is more complex in the case of sensory neurons with GPCR-type metabotropic 

receptors at the distal termination of the axon; these are very common in mammals [79,80] for the 

transmission of visual stimuli [81], smell [82,83], nociceptive stimuli [84] and taste, limited to 

taste/flavour perceptions of sweet, bitter, umami and kukumi [85–87]. In these cases, the biochemical 

mechanism begins with the activation of a phospholipase C (PLC) [88,89]. The PLC hydrolyzes the 

phosphatidylinositol (4,5)-bisphosphate of the neuron membrane, this reaction for several enzyme 

isoforms is pH and Ca2+ dependent [90–92]. It is important to note that the reaction can be acidifying 

and autocatalytic, because inside the neuron hydrolysis produces inositol 1,4,5-trisphosphate (IP3) 

and protons [18,55], which in turn free Ca2+ [93,94], solubilizing the calcium-buffering molecules 

hence fostering a gradual increase in enzymatic activity. The acidifying action has been confirmed 

experimentally at the presynaptic termination [95–97]. The protons and IP3 released from the PLC by 
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the enzymatic action of hydrolysis produce a threefold increase in cytosolic Ca2+ concentration due 

to: 1) the lowering of pH and resulting solubilization of the calcium-buffering molecules, 2) Ca2+ 

release from endoplasmic reticulum stores, 3) Ca2+ influx by stimulation of the SOCs. Since the 

activation of the SOCs induces the depolarization of the neuron membrane [98], the influx of Ca2+ 

can be seen as the first step in depolarization. A second step may follow rapidly with the closing of 

Kir-type channels and the opening of low threshold VGCC/CaV channels [99–102] permeable to 

Ca2+, TRP [12,42,55,103] and ASICs [104] channels permeable to Ca2+ e Na+ [105]. The opening of 

the channels enables the influx of further Ca2+ and Na+. The above studies jointly demonstrate that 

protons, together with Ca2+ ions, can start the process of depolarizing the membrane not only in 

neurons sensitive to a sour taste, but also in many other neurons with GPCR-type receptors. 

It is likely that the three ions, H+, Ca2+ and Na+ contribute in differing degrees to depolarization 

until the threshold value is reached. When the threshold value is exceeded Voltage Gated Sodium 

Channels (NaV) open, generating the action potential [1,106]. This produces the exocytosis of the 

vesicles and release of the neurotransmitters into the synaptic cleft [107,108]. In the following 

repolarization phase the NaV channels close and the Kv [1,109,110], KCa, Kir and Hv proton channels 

[37,111] open enabling the efflux respectively of the K+ ions and the protons leading to the 

immobilization of Ca2+ and the return to static conditions. Pumps and exchangers are secondary 

contributors to the entire process. 

In the eye, the activation of GPCRs via the PLC/IP3 pathway occurs by means of the cells 

containing melanopsin, such as the ganglion cells of the iris, whilst the cells of the retina containing 

rhodopsin and the cells of the auricular cochlea follow a different pathway, via PDE/cGMP [112,113]. 

In this case, the protons are generated by the hydrolysis of cGMP and the dissociation of acid 

glutamate, as described below in paragraph 2. The role of protons in hair cell transmission is currently 

under debate [114]. 

In relation to the sensory neurons that transmit mechanical stimuli, it is believed that in 

mammals these neurons generally respond via mechanoelectrical channels [115]. The physical 

stimulus induces the opening of ionic channels enabling the influx of Ca2+, depolarization and the 

generation of the action potential. The mechanisms for the activation of the channels are not clear 

[116]. In some cases, ASIC channels [117] or GPCR receptors [118] are involved. It has been shown 

that the G protein-coupled receptor OGR1 (GPR68) responds to mechanical stimuli and to protons 

via the PLC/IP3 pathway [119,120]. 

To sum up, for the above sensorial neurons, with ionotropic channels of the OTOP, TRP, ASIC 

type or metabotropic channels of the GPCR type, protons are essentials for increased cytosolic Ca2+ 

concentration. With limitation to these cases is it therefore possible to respond to the criticisms of the 

Hodgkin and Huxley theory and to affirm that protons, inducing with Ca2+ the first depolarization 

step, via proton-influx and/or proton-induced calcium influx, may be at the origin of firing. 

2. Synaptic Transmission of the Impulse 

In two prior publications we have described how protons may be generated in different cells by 

second messengers with the chemical structure of an ester or anhydride, such as ATP, IP3, NAADP, 

cADPR, cAMP or cGMP, by the hydrolytic action of specific enzymes [11,18]. 

The hydrolysis of an ester or anhydride always produces an acid, in these cases phosphoric acid 

or a derivation, which can rapidly dissociate, freeing protons. Table 1 in the introduction provides 

some examples of the hydrolysis of esters in organisms. Schematic representations of the reaction are 

available in many cases, for example for: ATP (Feng, equation 5),[121] IP3 (Huang, Supplementary 

Information, Figure S1),[55] cAMP (Barbosa, Figure 3) [122] and cGMP (Rybalkin Figure 1) [123]. 

However, it is not easy to find the complete representation, because most texts inexplicably fail to 

mention protons. 

Neurotransmitters include compounds with an acid or ester type structure that can therefore 

generate protons. Below, three fundamental neurotransmitters are considered, released in the ribbon-

type synapses by vesicle exocytosis: acetylcholine (ACh), gamma-aminobutyric acid (GABA) and 

glutamate (Glu). ACh is an ester, GABA and Glu are acid molecules. It is worth clarifying something 
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regarding the latter: glutamate is the name given to a neutral salt and this can lead to confusion. In 

fact, for the acid strength GABA and Glu are very similar amino acids: they have respectively 4.0 and 

4.3 pKa. Therefore, in vesicles where the pH is acidic [124–128], they are both partially undissociated, 

in the protonate form; therefore, for the sake of coherence, like GABA, Glu should be called acid 

glutamate. When they are released in a neutral or slightly alkaline environment, such as the synaptic 

cleft in the static state, these undissociated acid molecules tend to dissociate, each in its respective 

anion and a proton, as shown in Table 2. 

Table 2. Protonated and deprotonated states of acid neurotransmitters. 

VESICLE LUMEN         SYNAPTIC CLEFT 

acid glutamate          ⇌        glutamate-  +  H+ 

γ-aminobutyric acid      ⇌    γ-aminobutyrate-  +  H+ 

Therefore, it is evident that vesicle exocytosis produces inter-synaptic acidification 

[13,58,127,129–132] through the release of protons due to the acid content of vesicles and that the two 

acid neurotransmitters Glu and GABA may be, in this case, the principal source of the protons. The 

importance of this source is shown by the fact that the organism consumes energy to recycle Glu and 

GABA in the vesicles sufficiently rapidly to reuse them [133–136]. 

Regarding the ACh, which has the molecular structure of an ester, the protons are released by 

the acetic acid produced by the hydrolytic split of the ester by the cholinesterases: 

acetylcholinesterase and butyryl-cholinesterase. The reaction is very rapid and produces choline and 

acetic acid. For a long time, it was believed that the acetic acid and choline, constituting the ACh, 

were neurologically inactive molecules. It is still believed that the activity of ACh concerns the entire 

molecule because the limited use of anticholinesterases inhibits the response in direct proportion to 

the inhibitor dose and the response increases with the accumulation of Ach [137]. From this 

standpoint, cholinesterases have the sole function of rapidly eliminating the ACh, after its action. 

Today, we know that both constituents, choline and acetic acid, carry out a specific neurologically 

significant action [74,138] and that acetylcholinesterase may be indispensable for the action of Ach 

[23,60]. In addition, it has been posited that cholinergic transmission is due to the protonation of the 

postsynaptic membrane, caused by the acetic acid derived from the hydrolysis of Ach [23]. 

If the hypothesis that ACh can also act via its constituents were confirmed, it would be easier to 

clarify a number of questions that have been perplexing for some time. In addition, the fact that the 

three neurotransmitters ACh, Glu and GABA can release protons explains the observation of Soto et 

al. regarding co-release, as cited in the introduction. 

The protons released by Glu, GABA or ACh acidify the inter-synaptic space and can activate 

acid-sensitive receptors at the postsynaptic termination together with specific receptors for Glu, 

GABA and ACh. There are numerous proton-sensitive receptors in the postsynaptic termination 

[139], both ionotropic such as ASICs [39,117], TRPV1 [41,140–142], CaV3 [143] and metabotropic, of 

the TASK type [144] and GPCRs [43]. The proton activation of the postsynaptic receptor can foster 

the opening of ionic channels [103,145], depolarization and the generation of a new action potential, 

enabling the impulse to continue [23,59,146]. 

Furthermore, many ligand receptors, specific for Glu, GABA and ACh, of the GPCR type, such 

as Group1 Glu [147,148], GABAb [149], nicotinic α7 [29,150] and muscarinic M1, M3 and M5 [151,152] 

receptors are activated by protons generated by PLCs. Ionotropic GABAa are also activated by the 

PLCs [153]. On the contrary, most ionotropic postsynaptic receptors of glutamate are inhibited by the 

protons, particularly AMPARs [154], Kainate receptors [155] and NMDARs [156,157]. 

To sum up, the protons may act at the synaptic level in various ways and via a large number of 

receptors. However, since protons are highly mobile and reactive but have low specificity, it is logical 

to attribute to protons mainly the quantitative aspects of the mechanisms of neurotransmission, 

whilst the qualitative aspects could be modulated by variations in the frequency, intensity and 
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duration of the proton impulse, by a parallel series of events such as variations in the concentration 

of Ca2+ and other ions such as Zn2+ and Mg2+, the type of other neurotransmitters involved, the 

receptors activated, their interrelations and their responses. In line with the general principle of co-

release and co-transmission [158,159]. 

Conclusions 

The introduction points out the interdependence of protons and Ca2+ ions due to their chemical 

properties and it is useful to bear this in mind when seeking to understand the role of these ions in 

neurotransmission. The following paragraphs cite numerous experimental works the result of which, 

when taken together, provide an answer to the dual aim of this paper and support the hypothesis 

that protons may play a fundamental role both in the generation and the biochemical transmission 

of the nerve impulse. Specifically, paragraph 1 of the discussion describes how protons are able to 

trigger the depolarization of sensorial neurons by directly opening ionotropic channels and to 

activate GPCR receptors, via PLC/IP3 and the mobilization of Ca2+, thereby contributing to the 

generation of the action potential and the exocytosis of the vesicles. Paragraph 2 describes the 

mechanisms by which neurotransmitters in the vesicles, such as Glu, GABA and ACh, are able to 

become the sources of protons, generating them and, via the protons, fostering the transmission of 

the impulse through the synaptic cleft to the postsynaptic termination and beyond. To conclude, the 

role of protons in neurotransmission may be more important that has so far been believed and may 

in the future lead to many surprising discoveries. 
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