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Abstract: The inflammatory bowels diseases (IBD) are autoimmune diseases that deeply impact the
patients’ quality of life. The IBD pathogenesis is not yet defined, but evidence demonstrated that
the IBD chronic inflammation is related to an impaired intestinal barrier. Traditionally, two actors
were considered for their contribution to this disfunction: the gut microbiota and intestinal epithe-
lium. However, a third element, which is the intestinal mucus, should be considered as peer of the
epithelium and microbiota. Indeed, mucus represents the biological interface between bacteria and
cells, filtering molecules or toxins and preventing bacteria penetration exploiting both structural
and compositional properties. The boosting effect of the mucus characterization towards IBD com-
prehension is far too underestimated, although some mucus-oriented studies are already reported
in literature. This work reviews the intestinal barrier features, describing each component of the gut
mucosa (i.e., epithelium, microbiota, and mucus) in a mucus-oriented perspective.
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1. Introduction

In the last years, the prevalence of autoimmune diseases increased worldwide[1]-[3].
More than 60 different pathologies are grouped as autoimmune diseases by the World
Health Organization, (WHO) without stressing the differences, but focusing on the com-
mon aspects: immune cells (or their products) react abnormally to the presence of the body
self-antigens, triggering non-physiological bio-mechanisms that lead to inflammation and
other dysfunctions [4], [5].

The prevalence of autoimmune diseases is growing worldwide particularly consid-
ering pathologies related to the gastrointestinal tract with a net increase of ~ 6% per year
[3]. The severity and the impact on patients’ life depend on the specific gastrointestinal
pathology. For instance, diseases such as celiac disease can be easily controlled and man-
aged through gluten-free diets, while the inflammatory bowel diseases (IBD), such as
Crohn’s disease (CD) and ulcerative colitis (UC), maybe deeply debilitating and lacking a
resolutive drug therapy heading for the remission of symptoms and the prevention of
relapse [6].
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Figure 1 A) Graphical representation of the gut epithelial barrier. From the lumen to the lamina propria,
the structure of the barrier is composed by: (1) outer mucus enriched of bacteria; (2) inner mucus; (3) cell
layer; (4) lamina propria enriched of immune cells. B) Differences between the CD and UC characteristics
in terms of inflammation distribution (darker areas in the images) and commonly related symptoms [15].

In healthy condition, the gut protects the human body as a shield against pathogens
and toxins, while governing the communication between cells and the overwhelming
number of microorganisms, collectively called microbiota, that symbiotically grow in the
human intestine[7]. Even if the microbiota and gut-tissue crosstalk are not yet completely
explored, their potential in modulating the human health are leading to new therapeutic
strategies, which are well-represented by the so-called pro-, pre- and post-biotic ap-
proaches [8]-[10].

Although the microbiota and gut epithelial cells are unanimously recognized to be strictly
dependent [11], [12], they do not directly act on each other but by means of a third, cell-
free, intermediator: the intestinal mucus.

The intestinal mucus is a biological hydrogel covering the entire gastrointestinal tract
[13]. It supports the microbiota growth and modulates, through specific physico-chemical
and structural properties, the communication between bacteria and cells [13] by selec-
tively filtering signal molecules or altering their absorption profile. Despite this, the mu-
cus is rarely addressed with the dignity that it deserves [14]-[16] as a peer of microbiota
and cells on the gut barrier properties in the study of IBD. Independently from the specific
aim of the research, when a complex biological phenomenon is studied regarding the in-
testinal barrier, a mucus-including perspective, other than a purely cellular/microbiolog-
ical one, could bring new insights in the etiology of these diseases by providing a “micro-
biota-mucus-epithelium” triad generating the final pathological scenario [17].

In this review, we present each component of the “microbiota-mucus-epithelium”
triad separately. We particularly focus on how the mucus properties, under a materialistic
point of view, may contribute as a cell-free intermediator of the biological actors in the
pathological scenario of the IBDs.

2. General aspect and relevance of Inflammatory Bowel Disease

From 1990 to 2017, the number of patients diagnosed with autoimmune IBD doubled
from ~ 4 to ~ 8 millions, with outstanding increase in respect to the past decades [18].

The diagnosis of CD and UC is not a simple process (Figure 1), as they are studied
with techniques developed to highlight the shared molecular mechanisms that trigger the
inflammatory response of cells. Abdominal pain, severe incontinence (more than 10 evac-
uations per day), colon dilation, continuous bleeding and weight loss, are specific indica-
tors of UC but not of CD [19]. In this last case, highly variable symptomatology combined
with other techniques as endoscopy, radiology and histology, makes the analysis of the
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patient's history the preferential approach to the disease management [1], [15]. In case of
CD, the inflammation can be patchy extend to different districts of the gastrointestinal
(GI) tract, with frequency in the ileum and/or colon (95-98%), and, in just 2-5% of cases, in
the upper GI tract [16], [17]. Differently, the UC is a disease located in the colon, which
not usually involve the whole thickness of mucosa (on the opposite of CD)[20]. According
to the disease severity, the UC inflammation could extend until to involve the entire colon
(i.e., pancolitis)[22].

CD and UC they are commonly recognized as relapsing inflammatory diseases de-
veloped in patients with genetic predisposition combined with environmental factors
(e.g., diet, smoke, sanitation and socio-economic status)[23]. Intense industrial and traffic-
derived pollutants (i.e., NO:and sulphur dioxide, respectively) were associated to the IBD
disease development in a still unknown age-dependent mechanism. Moreover, higher cu-
mulative smoking (i.e. the number of cigarettes packages per year) was associated to a
higher risk of CD development [24]. Interestingly, smoking cessation decreases the prob-
ability to incur in CD but increases the probability to incur in UC [25]. These different
effects suggest that environmental factors should not be undervalued in the study of IBD,
but instead should be considered as a contributing cause with the genetic predisposition
to the IBD development.

Although the specific causes of CD and UC remain unknown [26] UC and CD have
historically been considered as two distinct diseases, the hypothesis of a common origin
has been proposed in recent years [27], [28]. Regardless the experimental evidence that
support this hypothesis or not, the scientific community is unanimous in identifying the
changes in either gut microbiota or mucus or cellular barrier dysfunctions as fundamental
phenomena to be considered, whether they were interpreted in terms of causes or symp-
toms [29]-[31]. The synergy with which the components of the “microbiota-mucus-epi-
thelium” triad generates the final phenomenon of the leaky-gut is underestimated, inde-
pendently from how the biological events are considered. It is therefore essential to opti-
mize the traditional methods used for IBD studies - and in general mucosal-associated
diseases - developing new technologies and tools that are able not only to the investigate
the triad as a whole, but also to distinguish one by one the contribution that each actor
performs towards the final result [11], [32]-[35]
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Figure 2 Graphical representation of molecular mechanisms involved in barrier im-
pairment in a physiological (left) or IBD condition (right). (Left) SCFA-producing bac-
teria are abundant and release large quantity of SCFAs (green particles). These mole-
cules interact with epithelium cells and immune cells leading to AMPs production,
immune tolerance and Treg cells maturation. (Right) in IBD pathological condition,
SCFA-producing bacteria together with the anti-inflammatory effect and immune tol-

erance decrease. Consequently, NF-kB-mediated pathway leads to pro-inflammatory
factor production and immune response. All together, these mechanisms cause TJs
disruption, gut barrier impairment and increase of permeability to pro-inflammatory
bacterial molecules.

3. Intestinal epithelial cells in Inflammatory Bowel Disease

The epithelial barrier is a complex biological structure made of different type of
highly specialized cells, which is defective in both CD and UC [36], [37]. Dysbiosis and
inflammation are the two main factors studied for their effect on the cellular barrier integ-
rity, metabolism and functionality. Butyrate-producing bacteria influence several barrier-
related molecular pathways (Figure 2). Colonocytes (enterocytes of colon region) metab-
olize butyrate through -oxidation process, consuming free-oxygen and establishing an
anaerobic environment thus promoting obligate anaerobes over facultative anaerobes
proliferation (i.e. Bacteroides fragilis over Escherichia coli) [31], [37]. Furthermore, butyrate
regulates Treg cells by promoting the expression of Foxp3 gene [38], which is one of the
key transcription factors triggering the Treg cell maturation [39]. A dysbiotic condition
could lead not only to a reduction of butyrate-producing bacteria, but also to the shift of
colonocyte metabolism from (3-oxidation to anaerobic glycolysis. This change increases
levels of oxygen and nitrates and promotes the facultative anaerobes proliferation but also
pathogens colonization [40]. Similarly, the butyrate depletion leads to a decrease in Treg
cell maturation promoting inflammation and pro-inflammatory molecules, such as defen-
sins and bacteriocin [41], [42] (Figure 2).

Gut dysbiosis alters also intestinal epithelium function by impairing the cellular bar-
rier permeability. The maintenance of the epithelium integrity allows a regulated flux of
nutrients, water and ions and avoids the passage of bacterial molecules or microorgan-
isms. This regulation mechanism is mainly due to the presence of tight junctions (T]) be-
tween epithelium cells [43]. TJs are composed by different proteins, such as claudins, oc-
cludin and others (e.g. zonula occludens-1, ZO-1 protein)[44], [45], which are sensitive to
inflammatory mediators and in particular the tumor necrosis factor-a (TNF«), among oth-
ers [46]-[49]. TNFa is one of the main pro-inflammatory factors produced by T cells, mac-
rophages and monocytes during inflammation in both CD and UC [50]. This cytokine ac-
tivates different and complex signaling pathways that lead to the endocytosis of occludins
and to the promotion of claudin-2 expression, which forms channels for the flux of small
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cations and water and is associated to leaky epithelia and intestinal barrier integrity im-
pairment in both CD and UC [43], [49], [51], [52].

Inflammatory mediators showed a role in epithelium integrity regulation also by
triggering the nitric oxide synthase (NOS) pathway [53]. Nitric oxide (NO) is a reactive
molecule synthesized by the inducible NOS (iNOS) through the oxidation of L-arginine,
leading to the production of citrullin and NO. In physiological conditions, NO protects
the epithelium integrity from oxidative stress-mediated by reactive oxygen species [54].
Instead, in pathological conditions, iNOS activity seems to have an opposite role as it con-
tributes to an increase in intestinal permeability and correlates with prolonged gut inflam-
mation [55]. Indeed, iNOS activity was found significantly higher in colonic biopsies of
UC patients respect to control subjects. They showed an increasing colonic level of cit-
rullin and thus, of NO. TNFa or the combination of IL-1a and IFN-vy are the key mediators
of iNOS expression upregulation [53].

Interestingly, studies on the use of exogenous NO to treat a colonic epithelium model
showed a protective role also at higher doses, in contradiction with what observed with
native NO [54]. The presence of conflicting results in the literature may be indicative of
the fact that cellular models, although useful tools for the decrypt the complex molecular
pathways, are currently unable to model the biological phenomenon as a whole. In vitro
models including non-biological components, such as advanced mucus models, could al-
low to understand whether the contradictions in the literature describes a real physio-
pathological phenomenon or a bias, born by purely biological-oriented approaches with-
out synergy with materialistic-oriented ones.

4. Intestinal microbiota and dysbiosis in Inflammatory Bowel Disease

More than 100 trillion of microorganisms inhabit the human intestine and compose
the gut microbiota, including fungi, bacteria, and yeast. In a physiological condition, bac-
terial population is highly diversified and mainly characterized by the phyla Firmicutes
(i.e. Lactobacillus and Clostridium), Actinobacteria (i.e. Bifidobacterium), Bacteroidetes (i.e.
Bacteroides), Proteobacteria (i.e. Escherichia), Fusobacteria (i.e. Helicobacter) [56] with Fir-
micutes and Bacteroidetes representing the 90% of the whole microbiota composition. The
gut anatomical region, the human age and the state of health profoundly influence the
biodiversity and the bacterial abundance. For examples, infants of the first year of life have
significant biodiversity in Firmicutes and Proteobacteria respect to adulthood and even
more to old age (> 70 years old) [7], while pathologies like the irritable inflammation syn-
drome are associated with a reduction in aerobic bacteria — such as Lactobacillus — respect
to the healthy condition [57].

The intestinal flora contributes to the intestinal barrier homeostasis mainly by inhib-
iting pathogen infection and regulating the nutrients extraction, synthesis and absorption
[56].

The gut microbiota can interfere with pathogens adhesion and infection by physically
protecting the intestinal mucosa in a prey-predator mechanism or altering intestinal phys-
icochemical features (e.g. pH) [58]. Furthermore, the microbiota can promote the matura-
tion of the gut-associated lymphoid tissue (GALT) and stimulate immune cells to be re-
sponsive [59]. For instance, Bacteroides fragilis produces the polysaccharide A able to stim-
ulate the maturation of regulatory T cells (Treg), thus promoting a state of immune toler-
ance and avoiding uncontrolled inflammation [60]. Simultaneously, bacteria can contrib-
ute to host defense from pathogen infection by stimulating specific intestinal epithelium
cells to produce antimicrobial peptides (AMPs). Among the AMPs, defensins are mole-
cules able to impair the bacterial cell wall integrity and prevent the pathogens coloniza-
tion [61]-[63].

Gut microbiota is also a key regulator of nutrients metabolism as bacteria can process
non-digestible fibers into carbon dioxide, hydrogen and short-chain fatty acids
(SCFA)[64], [65]. SCFAs — such as acetate, propionate, and butyrate— are a fundamental
energy source for the host organism since they represent metabolites for lipogenesis and
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gluconeogenesis [66]. Each type of SCFA specifically contributes to the host tissue and
organs. For instance, butyrate produced by Firmicutes is an important energy source for
colonic cells, a protective element for intestinal barrier integrity and an inhibitor of inflam-
mation [67]. Although the process of SCFAs fermentation gained the researchers attention
in different microbiota-related studies, it has not yet been included in an overall view of
the gut, especially comprehensive of mucus. Indeed, it is well defined either the impact of
SCFAs on cells metabolism or their effect on the mucus viscoelastic properties, especially
in viscosity, which is one of the leading parameters influencing the molecules diffusion in
gut mucosa [68]. However, no studies investigated the possible synergic machinery of
pathological microbiota composition (dysbiosis) and variation in SCFAs fermentation
with the subsequent modification of the mucus properties, varied diffusion of molecules
towards epithelium, and therefore altered cellular metabolism.

The intestinal microbiota composition is influenced by a multitude of factors rather
than SCFAs — such as diet, antibiotic drugs and disease development — and its alteration
is commonly defined as dysbiosis. Inflammatory bowel disease is one of the pathological
conditions found to affect both the gut microbiota stability and the intestinal barrier ho-
meostasis. In particular, IBD is related to a reduced immune tolerance to the microbiota-
associated molecular patterns (MAMP) and an increase in inflammation of the intestinal
barrier [62].

CD and UC have a different impact on gut systems (Table 1)[69]. Each inflammatory
condition alters the bacterial composition reducing the biodiversity and thus, the abun-
dance of key regulators of gut homeostasis [69]. For instance, Fecalibacterium Praustnizii is
one of the main butyrate-producing bacteria and was found to be lower in both CD and
UD patients respect to healthy patients[70]. A reduction in butyrate, as in other SCFAs,
causes impairment in SCFA-associated mechanisms, which regulate the immune response
by promoting AMP production and by modulating inflammation through the inhibition
of NF-«B signaling pathway [67]. Changes in these SCFA-associated processes lead to a
decreasing level of defensins production, a lower level of GALT stimulation and an in-
crease in gut inflammation [62], [67].

Although the cause-effect relationship between IBD and dysbiosis is still not well
defined [71]-[73], the importance of microbiota in IBD progression is an undeniable phe-
nomenon [74], [75]. For this reason, the gut microbiota manipulation of CD and UC pa-
tients represent a promising therapeutic approach to reduce pathological symptoms, such
as diarrhea and gut inflammation. In_this regard, probiotics and fecal microbiota trans-
plantation (FMT) are promising strategies[76]-[78]. While probiotics approach appears
poorly standardized and confuses in its efficacy, FMT is a clinical reality with significant
dysbiosis and symptoms remission data [79].

FMT requires the transplantation of fecal microbiota of a healthy donor into an intes-
tinal tract of a recipient [80]. The transplantation success depends on the type of dysbiosis,
which can be defined as primary or secondary. The primary condition is generally acute
and transient and is triggered by antibiotics, malnutrition or pathogen infection. Instead,
the secondary condition is commonly chronic and recurrent due to side effects of therapies
(such as chemotherapy) or complex diseases, such as IBD, irritable bowel syndrome and
autism [80]. Many aspects influence the success of FMT and thus of the clinical remission:
(1) mucosal inflammation; (2) fecal sample manipulation; (3) donor and recipient compat-
ibility; (4) administration method; (5) frequency of transplants; (6) pre-treatment with an-
tibiotics [81], [82].

The percentage of clinical remission is different for CD and UC: about 25% in UC and
over 55% in CD. FMT success is featured by increasing biodiversity, rescue of Treg cells
at the intestinal barrier, immune tolerance enhancement, SCFAs levels increase and re-
duction of barrier permeability to pathogens and bacterial molecules [79], [83], [84].

Table 1. Gut microbiota composition versus CD and UC. Summary of CD and UC impact on gut
microbiota composition and function respect to healthy conditions.
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Decrease Increase Dysbiosis impact Ref.
Chron’s Actinobacteria Actinobacteria Reduction of defensins (62,  [69]
disease Bifidobacterium adolescentis Bifidobacteriaceae production by Paneth [70] [82]I
Bacteroidetes Coriobacteriaceae cells [85],—[88] ’
Bacteroides fragilis Firmicutes
Firmicutes Ruminococcus ghavus Lower level of SCFAs
Fecalibacterium Praustnizii Clostridium difficile
Eubacterium spp. Proteobacteria Gut inflammation
Lachnospiraceae Escherichia coli
Clostridium prausnitzii
Roseburia spp.
Ruminococcus spp.
Dialister invisus
Ulcerative Firmicutes Firmicutes Reduction of defensins 81, [86],
colitis Roseburia hominis Clostridium difficile production by Paneth (891, [90]
Fecalibacterium Praustnizii cells ’
Clostridium
Enterococcus Lower level of SCFAs
Proteobacteria

Escherichia coli Gut inflammation

5. Intestinal mucus Barrier in IBD

The intestinal mucus is a biological hydrogel covering the whole intestinal tract [13].
It has a complex bi-layered architecture that allows for symbiotic microbiota growth, on
the one hand, the preservation of the sterility of the gut epithelium, on the other, while
modulating the passages of molecules from bacteria to cells and vice versa [14]. The pol-
ymeric network is made of trimers of the gel-forming mucins (MUC2 in the intestine and
MUCS5A in the stomach) [13], [91] and is further stabilized by a set of specific structural
protein, such as FCGBP and trefoil factor 3 (TFF3) proteins among others [92]-[94]. The
gel-forming mucins are composed by many amino acids that is specific for the intestinal
tract considered, but maintain a very conservative structure: a linear core with highly O-
glycosylated branches, which increased the molecular weight of the mucin up to 50 kDa
[13], [95]-[97]. Moreover, the gel-forming mucins are supported by other mucins, named
transcellular mucins (e.g. MUC1, MUC3 and MUC4) that do not form the polymeric net-
work of mucus but are involved in different biological functions, such as lubrication, bac-
terial adhesion and inflammation signaling [98], [99].

During disease, and in particular IBD, the homeostasis of the mucus ecosystem is
impaired from a chemical and/or a physical point of view [100], altering the critical equi-
librium between the microbiota (which resides in the mucus), mucin-secreting cells, and
the biomolecules that diffuse in the network (at the base of microbiota-host communica-
tion) (Figure 3).

5.1 Compositional variation
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Figure 3 In physiological condition (A), the mucus acts as a barrier for either toxins
or bacteria adhesion (red arrows), modulating the immune response of the epithelial
cell while filtering the nutrients and other molecules. During IBD (B) compositional
changes and structural weakening impair these functions; bacteria are free to adhere
to the epithelium and toxin diffusion is facilitate. These events contribute to the
maintenance of the pathological state of inflammation.

During UC, the quantity and quality of the mucus is reduced considering the either
whole mucus produced in bulk by the entire gut tissue either the mucus secreted at the
single-cell level. Indeed, the number of mucin-secreting goblet cells is depleted[101], [102]
[87], [88]. Proteomic analysis revealed alteration in the mucus protein-core of UC patients.
In particular, the decrease of structural protein, both gel-forming and transmembrane,
(MUC2, MUC4, MUC3, FCGBP and CLCA1) was combined with an increase of inflam-
matory-related protein[103]-[105] [87], [89], [90]. Interestingly, the reduction of [103]
[89][104][106], the increase of these proteins suggests an abnormal mucus production con-
comitant to an upregulated epithelial healing process.

IBDs were associated in changes of not only mucins production, but also composi-
tion. Physiologically, mucins can be classified as negative or neutral accordingly to the
charge of glycosylated branches [107], [108]. The intestinal MUC?2 is a negative mucin
composed by a high quantity of sulfonate (R-50s) group, which is involved in the MUC2
resistance to the bacteria enzymatic activity[109], [110]. Histological results on IBD ex vivo
models showed an outstanding reduction of the sulfation degree (more than 50%) [111],
[112], suggesting that the pathological mucus has only a limited defensive potential con-
cerning physiology as also demonstrated by other studies (described below).

The chronic inflammation of IBD pathologies resides in a defective immune response
triggered by unbalance between pro- and anti-inflammatory signals [113]. Phospholipids
play a key role in this process, as they greatly contribute, together with bacteria, in mod-
ulating the mucus function of filtering [114]-[117]. In physiological condition, phosphati-
dylcholine (PC) and lysophosphatidylcholine (LPC) are the two main phospholipid clas-
ses that are present in mucus, accounting together for more than 80% of total mucus phos-
pholipids [114]. However, in the case of UC, a strong depletion of PC and LPC was ob-
served. Differently, CD patients only expressed a decrease of LPC, while maintaining PC
concentration similar to control (Table 2). In healthy condition, the phospholipids grant
hydrophobicity to mucus [118], [119], which is one of the main physical properties con-
trasting bacteria adhesion to substrates [120]. For this reason, the phospholipids reduction
occurring during IBD favoured the bacteria penetration in the gut tissue [121], [122]. In-
terestingly, the LPC/PC ratio was comparable to control in case of CD but increased in
case of UC [123]. As LPC is commonly associated to phospholipase activity rather than
synthesis [124]-[126], these results suggest two different mechanisms involved in IBD:
limited availability of PC but downregulation of phospholipase (i.e. an increase of LPC/PC
ratio) in case of UC and only a slight promotion of the phospholipase activity in case of
CD.

Compositional variations are not only important as a cause of the changes in the
physiological feature of mucus per se, but also because they can directly modify the chem-
ical affinity of mucus with bacterial, cellular or other molecules, facilitating and impairing
their diffusion towards epithelium [14], [127].
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Table 2. Compaositinnal variatinn in the human colonic mucus in IBD extracted from [119] and [114]. The
mean values obti; =~ — (T Ji—Z)’” Zith reference to the standard deviation (s.d.) and the mean s.d. obtained

by the formula:

HEALTHY CD ucC
LPC mean value
[pmol/100 pg protein] 4371 + 487 2961 + 287 1738 + 288
PC mean value
[pmol/100 pg protein] 2983 + 321 2508 + 415 676 + 104
% of LPC / protein 2.22% + 0.25% 1.50% = 0.15% 0.88% + 0.15%
% of PC / protein 2.30% + 0.25% 1.94% +0.32% 0.52% + 0.08%
LPC/PC 1.45+0.32 1.18 £0.31 2.57+0.84

5.2 Structural weakening

Acting as a selective filter, the mucus behaves like a physical barrier between human
cells and the environment, preserving the sterility of the epithelium while allowing the
passage of nutrients and other molecules [13]. One of the main structural parameters of
this barrier is its thickness since it is closely related to the function of the specific intestinal
tract. For example, in the small intestine, where the nutraceutical molecules are absorbed,
the mucus thickness is minimal thus facilitating the diffusion of the molecules from the
lumen to the tissue. Conversely, in the colon, where the majority of the intestinal microbi-
ota is hosted, the thick mucus layer acts as a protection against infections (Table 3). For
this reason, the colonic thickness (i.e. ~150 vs ~50 um) is significantly higher than small
intestine [68], [128], [129].

The IBD mucus is usually investigated after identification of the inflammation degree
by standard clinical criteria, expressed by numbers from 0 to 4 in proportion to the sever-
ity. In UC patients, the mucus layer was thinner than controls (especially in the descend-
ing colon and rectum) [130]. Moreover, the thickness reduction was exacerbated with pro-
portionality to the severity of inflammation, showing a complete absence of mucus with
a severe state of inflammation [131], [132].

The measurements of the CD mucus thickness are not homogeneous in the literature.
Indeed, this structural parameter was found to be either higher [132], or lower [133], or
comparable [134] to the healthy controls. This variability can be linked to the intrinsic
heterogeneity in the distribution of the lesions in the case of CD compared to UC [20], [22],
but also in variations of the mucus staining protocols and preservation as well as the not-
standard definition of “controls”, which often suffer from other intestinal pathologies. In-
terestingly, independently from the data obtained in the inflamed areas, the mucus thick-
ness in undamaged colon portions of both UC and CD patients is not significantly differ-
ent from healthy controls [135], suggesting the localized nature and impact of these pa-
thologies.

Moreover, the mucus discontinuity, measured as the length of mucus-free mucosa
normalized to the total specimen length, was significantly higher only in groups with se-
vere active UC (25.7 %) than controls (1.0 %) [136]. No significant difference was found
between controls and either quiescent UC or CD samples, as the adherent mucus layer
was essentially continuous [136] similarly to the physiological condition [137].
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In physiology, the mucus thickness is not the only structural factor affecting the mu-
cus properties. Indeed, this parameter must be always coupled with the peculiar double-
layered architecture, where the adherent mucus layer acts as the real barrier for the epi-
thelium [138]. In vivo animal models with induced moderate UC showed a limited varia-
tion of the mucus thickness but a substantial modification of the mucus architecture. In
particular, the adherent layer was much thicker than the controls [139], [140]. These results
suggest that not only the amount of mucus is a pivotal element in IBDs, but also its quality.
This consideration becomes more robust if the permeability of the mucus is considered,
as an index of the efficacy in maintenance of the barrier properties. Microbeads with di-
mension comparable to bacteria (0.5-2 um) were able to penetrate the mucus and reach
the epithelium in both ex vivo human biopsies [103] and animal models [140]. Similarly to
the thickness, the mucus weakening increased with the disease severity. Indeed, the per-
centage of beads reaching the epithelium was 36% and 20% in the case of acute disease
and remission state, but only 10% in controls [103]. As structural properties correspond to
chemical composition, the impaired barrier properties were as related not only to the de-
crease of the gel-forming mucin MUC2 but also of the support protein FCGBP [103]. This
suggests the presence of two combined effects in UC: a reduced mucus production with a
structural instability of the network.

Table 3. Human mucus thickness as indicator of the intestinal barrier weakening occurring during either
Crohn’s disease (CD) or ulcerative colitis (UC). N/A = not available.

Right colon/caecum Left colon/ Sigmoid Rectum Ref.

Controls 107 + 48 134 + 68 155 + 54 [141]
N/A 218 + 81.07 N/A [142]

N/A 450 + 70 N/A [143]

S[@ N/A 83 +49.93 N/A [142]
90 +79 43 £45 60 £ 86 [141]

CD 190 + 83 232+40 294 + 45 [141]
N/A 74 £40 N/A [142]

6. Barrier integrity and permeability assays

The intestinal barrier integrity and permeability are standard parameters used in
clinics to identify and define the severity of IBD. The measurement of these functional
aspects is currently possible using different well-established methods [144], [145]:

o Active and passive permeability assays: Active permeability assays require the oral
administration of sugars or polymers and the measurement of urinary concentrations
at different time points from 30 min to 24 hours [146]. The higher is the molecule
concentration, the leakier the epithelial barrier. A common method is based on the
administration of different molecules (e.g. lactulose, mannitol, PEG (polyethylene
glycol) molecules and sucrose among others) and the measurement of their
concentration in urine, thus obtaining information about the permeability of the
mucosa in different region of the gut, which is in dependence of the size and the
nature of the administered substance [146], [147][148][149][150]. The use of the
radioactive 51Cr-EDTA were not only able to describe an increased permeability in
CD patients (20% higher than healthy controls) but also to correlate this permeability
variation with a reduction in specific bacteria abundance (i.e. Faecalibacterium
prausnitzii) [151]. No consideration was proposed in terms of mucus properties,
whose contribution remained clouded under the permeability characterization. The
principle of passive permeability assays is similar to the active methods described
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above. The main difference is the nature of the detected molecules, which are usually
products of the individual metabolism (e.g. bacteria-derived molecules, intestinal
integrity-related or immunological biomarkers) measured in plasma, serum and
biopsies [149]. Among the bacterial-derived molecules, lipopolysaccharides (LPS) and
butyrate are of primary importance, as they are the major components of the outer
membrane of Gram-negative bacteria and biomarker of intestinal barrier integrity,
respectively [152]-[154] [140], [155]. Epithelial and immune biomarkers detection in
plasma and urine is another effective method to define the intestinal barrier integrity
(i.e. citrullin and claudin-3) [53] [156].[157]. The inflammatory marker mainly
investigated in UC and CD is calprotectin, a product of active and infiltrated
neutrophils in the intestinal mucosa. High levels of fecal calprotectin (>100 ug/g) were
correlated with higher levels of intestinal permeability indicators and give an indirect
measure of IBD severity [151]. Similarly to active permeability assay, the passive
permeability assays have the possibility to correlate bacterial products to dysbiosis
and intestinal barrier impairment, but do not provide information about the relative
contribution of mucus within the epithelial barrier. The inclusion of a more detailed
characterisation of mucus could provide a deeper understanding of these
experimental evidence. For instance, the study of the variation of the mucus network
microstructure can elucidate if the diffusion of molecules from lumen to epithelium
is facilitate or impaired. Similarly, compositional changes can provide information of
the dye/molecules affinity with the mucus matrix.

e Confocal laser endomicroscopy. Confocal laser endomicroscopy allows the acquisition of
confocal images during endoscopic procedures [158]. It provides information about
the epithelial barrier morphology. This method requires the intravenous
administration of a fluorescent dye — such as fluorescein — that could be easily excited
by the laser of the endomicroscope. A detector then transforms the emitted light signal
into an electrical input for computational recording. This method generates accurate
images giving evident information on the barrier morphology and the epithelial
crypts architecture [159]. These analyses highlighted frequent morphological features
of IBD epithelia, such as intra- and inter-crypt distance increase, irregular crypt
organization, micro- and macro-lesions leading to cell and molecule infiltrates
increase [149]. Overall, endomicroscopy not only provides critical data for the
determination of the barrier impairment but also allows to limit the collection of
biopsies to strictly necessary cases. Despite the epithelial barrier is well examined, the
mucus barrier contribution is still poorly considered while information about gut
dysbiosis is not provided at all.

o Ussing chamber. The Ussing chamber-based method is an invasive assay used to
determine intestinal barrier integrity and permeability. It is performed on intestinal
tissue biopsies and requires invasive procedures to collect ex vivo specimens. This
technique is based on the measurement of a voltage difference (AVer) and a trans-
epithelial (o trans-mucosal) electric resistance (TEER o TER, respectively) between the
apical and the basolateral side of the barrier. It requires the application of active ion
transport through the epithelium and the measurement of the AVerand TER. The ion
transport is correlated to the barrier integrity. The weaker the epithelium, the higher
will be the transport and the lower the TER [149], [160] Like previous well-established
clinical assays, the Ussing chamber-based method is a valuable approach to study the
intestinal barrier function in IBD, as it was demonstrated for instance that IBD patients
showed a decrease of TER near the 39% [161]. However, it cannot provide information
about the relative contribution of the elements modulating barrier disruption.
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Even though these methods allowed clinicians to evaluate functional aspects — such
as intestinal barrier permeability, integrity and morphology — they do not discriminate
the relative contribution of all the modulating elements (i.e. gut dysbiosis, epithelial bar-
rier and mucus barrier). In particular, the assays that are commonly used for studying the
IBD features rarely focused on the impact of mucus physicochemical and mechanical
properties, which is usually simply considered as the stage, without active and/or sub-
stantial role, in the scene where the biological actors (i.e. epithelium and microbiota) per-
form their playscript. The inclusion of a more refined mechanical and compositional char-
acterization of the mucus with the well-defined permeability assays would lead towards
a synergistic comprehension of the IBD pathology from a biological and materialistic point
of view, opening new horizons towards unexplored therapeutic strategies.

7. Conclusion

Autoimmune diseases of the intestinal tract are spreading worldwide. Researchers
have proposed different hypotheses in their challenging task of identifying the origin of
these diseases, but the pathophysiology of the inflammatory bowel disease (IBD) remains
a not fully described process at the date. In this frame, the leaky intestinal barrier is un-
questionable evidence, wheatear it is interpreted in the sense of trigger or symptom of the
pathological states. Even if the leaky intestinal barrier in IBD is historically associated to
the impaired intestinal cellular barrier and dysbiosis, it is a phenomenon derived by a
complex play-script directed by another, not cellular, actor: the intestinal mucus. In this
complex performance, the chemical and physical barrier of mucus properties cooperates
in synergy with the bacterial and cellular metabolism, effecting the diffusion of bacterial-
and cellular-derived molecules and modulating the inflammatory response. Although
numerous advancements were made in the study of IBD thanks to the classic vision of
these pathologies (such as the definition of standard analysis methods), the inclusion of a
refined mucus characterization can open to new paths in the direction of the complete
comprehension of the IBD condition. Indeed, the synergic approach between the biologi-
cal- and mucus-oriented vision may boost towards new etiological and pathogenic in-
sights, as well as alternative therapeutic strategies against IBD pathologies.
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