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Article 

A Unified Spinor Description of the Photon and 
Electron Relativistic Fields 
Pavel Gorev 

Candidate of Technical Sciences, Nizhny Novgorod, Russia; pppay7733@yahoo.com 

Abstract: We propose a description of  the electromagnetic  field  in  the  form of a  four‐component  complex 
spinor,  from which  a  vector  of  electromagnetic potential with  two degrees of  freedom,  calibrated by  two 
conditions ‐ zero length and zero component along the y‐axis ‐ is obtained by using Pauli matrices. A similar 
approach is applied to the field of a fermion, in particular, the electron. It is known that the quantum field of 
the electron and the electron itself is a four‐component complex spinor, so, existing in the Minkowski vector 
space, we cannot observe it directly. But with the help of Pauli matrices a vector is formed from the electron 
spinor, which is known to us as an electric current vector, and this current vector describes exactly a single 
particle. As a vector, it is available to us for observation in our vector space. Similarly, the electromagnetic field 
and its photon particle is also a four‐component spinor, from which the universal formula using Pauli matrices 
produces a vector, it is known to us as the electromagnetic potential vector, and it too describes even a single 
photon. All the differences in the properties of the current vector and the electromagnetic potential vector, and 
hence the electron and the electromagnetic field, are due only to a slight difference in the structures of their 
four‐component  spinors  and  inextricable  linked  to  them  momentum  spinors  and  coordinate  spinors. 
Expressions for the electric and magnetic fields of a photon during its interaction with an electron, including 
the Pauli matrices and momentum spinors of these particles, are presented. Thus, a unified way to describe 
bosons and  fermions  in  spinor  space  is proposed. The consequences of  the Dirac equation  for  the electron 
spinor are considered and the existence of a similar first‐order equation for the photon spinor is assumed. Each 
spinor using the same formula corresponds to a vector, in the case of a fermion it is a current vector, in the case 
of a boson it is a vector, for example, of the electromagnetic potential. Each spinor of a field is matched with a 
spinor of coordinates and a spinor of momentum, which are transformed by the same Lorentz transformations 
and which have the same structure as their corresponding field spinor, that is, the momentum and coordinates 
of boson have a bosonic spinor structure, while momentum and coordinates of fermion are a spinor with a 
fermionic structure. Field, coordinates and momentum vectors of boson automatically have a zero length, while 
in the case of fermion they all have a nonzero length, so the fermion, in contrast to the boson, has a nonzero 
mass, nonzero charge and moves with a sub light speed. The presented approach, in the long run, makes it 
possible  to  carry  out  calculations  of  the  interaction  of  particles  in  two‐dimensional  spinor  space,  and  to 
interpret  in  terms  of  the Minkowski  vector  space  only  the  final  results. While  quantum mechanics  treats 
probability as a real number, quantum field theory deals with probability as a four‐dimensional real vector. 
The place of the probability amplitude, which in quantum mechanics is a complex number, in quantum field 
theory is taken by a complex spinor. 

Keywords: quantum field theory; Minkowski space; electromagnetic potential calibration; Lorentz 
force; Casimir operators; wave equation; Dirac equation 

 

1. Natural calibration of the electromagnetic potential 

This  paper  uses  a  description  of  electrodynamics,  relying  as  much  as  possible  on  group 
transformations of coordinates and relativistic fields. We use the Minkowski space with the metric 𝜂ఓఔ ൌ 𝜂ఓఔ and the signature (+‐‐‐). Let us denote the contravariant and covariant coordinates with the 
speed of light equal to one as  𝑋ఓ ൌ ሺ𝑡, 𝑋, 𝑌, 𝑍ሻ ≡ ሺ𝑋଴, 𝑋ଵ, 𝑋ଶ, 𝑋ଷሻ 𝑋ఓ ൌ ሺ𝑋଴, െ𝑋ଵ, െ𝑋ଶ, െ𝑋ଷሻ 
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𝑋ఓ ൌ 𝜂ఓఔ𝑋ఓ 
Let us denote the real components of the electromagnetic potential as   𝐴ఓ ൌ ሺ𝐴௧ , 𝐴௫, 𝐴௬, 𝐴௭ሻ ≡ ሺ𝐴଴, 𝐴ଵ, 𝐴ଶ, 𝐴ଷሻ 
Consider the linear homogeneous Lorentz transformation of the Minkowski space coordinates   𝑋ᇱఓ ൌ 𝛬  ఈఓ 𝑋ఈ 

where the matrix  𝛬  ఈఓ   with coefficients independent of coordinates has the property 𝜂ఈఉ𝛬  ఓఈ 𝛬  ఔఉ ൌ 𝜂ఓఔ 

The Lorentz transformations form a Lie group; we will use its identity (attached) representation 
in the form of the Lorentz transformation matrices themselves. We will also use the Poincaré group 
and its operator representation. 

Suppose that at a point in space with coordinates  𝑥ఓ, the potential is described by contravariant 
quantities  𝐴ఓ . We  are  interested  in  the magnitude  of  the  potential  at  a  point with  transformed 
coordinates  𝛬  ఈఓ 𝑥ఈ. The key assumption we will further rely on is that the vector of potential at the 
transformed point can be obtained from the vector of potential at the original point using the same 
transformation  matrix  with  which  the  transformed  coordinates  are  obtained  from  the  original 
coordinates    𝐴ఓሺ𝛬  ఊఋ 𝑋ఊሻ ൌ 𝛬  ఈఓ 𝐴ఈሺ𝑋ఊሻ 

In this case we will call  𝐴ఓ  a relativistic field. There are other definitions of the relativistic field 
that  use  the  coordinate  system  change  procedure,  the  principles  of  symmetry,  invariance,  and 
covariance. We do not use mental transitions to other reference systems, but work in one chosen one. 
We define the antisymmetric covariant tensor of the electromagnetic field as 𝐹ఓఔ ൌ 𝜕ఓ𝐴ఔ െ 𝜕ఔ𝐴ఓ 

where  𝜕ఓ ≡ 𝜕𝜕𝑋ఓ 

The electric and magnetic field components are components of this tensor 

𝐹ఓఔ ൌ ⎝⎜
⎛ 0  𝐸௫െ𝐸௫  0 𝐸௬ 𝐸௭െ𝐵௭ 𝐵௬െ𝐸௬   𝐵௭െ𝐸௭  െ𝐵௬ 0 െ𝐵௫𝐵௫ 0 ⎠⎟

⎞
 

It is known [1] that  𝐹ఓఔ is transformed as a tensor even though  𝐴ఓ may not be transformed as a 
vector. In fact, it will be shown further that the vector potential is a vector indeed. The assumptions 
made are already  sufficient  to  calculate electric and magnetic  fields  in practical  situations and  to 
check in experiments the validity of the assumption made about the properties of the relativistic field. 
The transformation law of any tensor has the form 𝐹ఓఔሺ𝛬  ఊఋ 𝑋ఊሻ ൌ 𝛬  ఓఈ 𝛬  ఔఉ 𝐹ఈఉሺ𝑋ఊሻ 

with this transformation, we can find the electric and magnetic fields at the transformed point from 
the known values of the fields at the starting point.   

The Lorentz transformation group includes spatial rotations and boosts. Let us know the fields 
at the stationary point at the origin of the used reference system at zero moment of time. Let us choose 
for the example the simplest Lorentz transformation in the form of a boost in the x‐axis direction with 
velocity  𝑣  with the corresponding boost parameter in the form of an angle β ൌ arcthሺ𝑣/𝑐ሻ 
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𝛬 ൌ ൮cosh ሺ𝛽ሻ sinh ሺ𝛽ሻsinh ሺ𝛽ሻ cosh ሺ𝛽ሻ 0 00 00         00         0 1 00 1൲ 

The transformed point will still be at the origin of coordinates at zero moment of time, but will 
have velocity  𝑣  along  the x‐axis. The  transformed  electromagnetic  field  tensor will  contain new 
components of electric and magnetic fields. If we perform all necessary transformations to the tensor, 
we  should  obtain well‐known  field  transformation  formulas which,  for  the  general  case  of  an 
arbitrary velocity of the observation point  𝐯, look like 𝐄෠ ൌ 𝛾ሺ𝐄 െ ሺ𝐯 ൈ 𝐁ሻሻ െ  𝛤𝐯ሺ𝐯 ∙ 𝐄ሻ               𝐁෡ ൌ 𝛾൫𝐁 ൅ ሺ𝐯 ൈ 𝐄ሻ൯ െ  𝛤𝐯ሺ𝐯 ∙ 𝐁ሻ              𝛾 ൌ 1√1 െ 𝑣ଶ           𝛤 ൌ 𝛾 െ 1𝑣ଶ               

If a charge is placed in this point, it will be subject to a force from the electric field to which a 
contribution equal to the vector product of velocity by the value of the initial magnetic field at the 
stationary point is added during the transformation. And this force from the electric field will be the 
only force acting on the charge. There will be no effect on the charge from the magnetic field with the 
new value, additional accounting of the effect on the charge of the transformed magnetic field will 
lead to the total effect, contradicting the experiment. This example illustrates the fact that a charge, 
whether stationary or moving, is only affected by an electric field and never by a magnetic one. The 
concept of a Lorentz  force acting on a moving  charge  from  the magnetic  field  is  superfluous; all 
movements of the charge are accounted with the Lorentz transformations of the electromagnetic field 
and give a magnitude of force from the transformed electric field which is consistent with experiment. 

As  we  can  see,  to  recalculate  the  electric  and  magnetic  fields  in  the  Lorentz  group 
transformations, we do not need to know the values of the electromagnetic potential and do not need 
to transform it. But let us consider the more complicated case when the angles of rotations and boosts 
determining the Lorentz transformations are not constants but depend on coordinates. Let us again 
consider the simplest case of the boost on the x‐axis. The transformation in this case has the form 

𝛬ሺ𝛽ሺ𝑥ఓሻሻ ൌ ൮cosh ሺ𝛽ሻ sinh ሺ𝛽ሻsinh ሺ𝛽ሻ cosh ሺ𝛽ሻ 0 00 00           00           0 1 00 1൲ ൌ exp ⎝⎛𝛽ሺ𝑥ఓሻ ቌ0 11 0 0 00 00 00 0 0 00 0ቍ⎠⎞ 

Since the angle β depends on the coordinates, the corresponding velocity   𝑣/𝑐 ൌ thሺ𝛽ሻ 
depends  on  the  coordinates,  which  means  that  the  derivatives  of  the  velocity  along  all  four 
coordinates are, generally speaking, not equal to zero, i.e., the observation point moves accelerated 
after the transformation. To calculate the electric and magnetic fields in such an accelerated moving 
point, we already have to refer to the definition of the electromagnetic field tensor 
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𝐹ఓఔ൫𝛬  ఊఋ 𝑋ఊ൯ ൌ 𝛬  ఓఈ 𝜕ఈቂ𝛬ሺ𝑋ఊሻ  ఔఉ 𝐴ఉቃ െ 𝛬  ఔఉ 𝜕ఉൣ𝛬ሺ𝑋ఊሻ  ఓఈ 𝐴ఈ൧ ൌ
ൌ 𝛬  ఓఈ 𝛬ሺ𝑋ఊሻ  ఔఉ 𝜕ఈൣ𝐴ఉ൧ െ 𝛬  ఔఉ 𝛬ሺ𝑋ఊሻ  ఓఈ 𝜕ఉሾ𝐴ఈሿ ൅ 𝛬  ఓఈ ൥𝜕𝛬ሺ𝑋ఊሻ  ఔఉ𝜕𝑋ఈ 𝐴ఉ൩
െ 𝛬  ఔఉ ൥𝜕𝛬ሺ𝑋ఊሻ  ఔఉ𝜕𝑋ఉ 𝐴ఈ൩
ൌ 𝛬  ఓఈ 𝛬  ఔఉ 𝜕ఈ𝐴ఉ െ 𝛬  ఔఉ 𝛬  ఓఈ 𝜕ఉ𝐴ఈ ൅ 𝛬  ఓఈ ൥𝜕𝛬ሺ𝑋ఊሻ  ఔఉ𝜕𝑋ఈ 𝐴ఉ൩ െ 𝛬  ఔఉ ൥𝜕𝛬ሺ𝑋ఊሻ  ఔఉ𝜕𝑋ఉ 𝐴ఈ൩
ൌ 𝛬  ఓఈ 𝛬  ఔఉ 𝐹ఈఉሺ𝑋ఊሻ ൅ 𝛬  ఓఈ ൥𝜕𝛬ሺ𝑋ఊሻ  ఔఉ𝜕𝑋ఈ 𝐴ఉ൩ െ 𝛬  ఔఉ ൥𝜕𝛬ሺ𝑋ఊሻ  ఔఉ𝜕𝑋ఉ 𝐴ఈ൩ 

Now, because of the dependence of the boost angle on the coordinates, the expression for the 
transformed tensor contains additional terms that depend on derivatives of the form    ఉሺ௫ഋሻడ௫ഀ . 

Since we now need to know the values of the electromagnetic potential explicitly, we turn to the 
question of its calibration. Calibration introduces constraints that prevent the potential from taking 
arbitrary values, while the coordinate vector has no such constraints and can take any values. Hence, 
there are doubts whether the vector of potential with imposed restrictions can transform according 
to  the  same  law  as  the  coordinates without  any  restrictions  imposed on  them. To  eliminate  this 
discrepancy,  we  propose  to  switch  from  considering  real  four‐dimensional  vectors  to  two‐
dimensional complex spinors. Let us take an arbitrary two‐dimensional complex spinor and call it a 
coordinate spinor    𝐱 ൌ ቀ𝑥ଵ𝑥ଶቁ 

Let us compare to each coordinate spinor the spinor of the electromagnetic potential   𝐚 ൌ ቀ𝑎ଵ𝑎ଶቁ 

Transformations from the SL(2,C) group can be applied to the coordinate spinors. Let the matrix 
M belongs to this group and perform the spinor transformation 𝐱ᇱ ൌ 𝑀𝐱 

Let us know the values of the components of the field spinor  𝐚  associated with the coordinate 
spinor  𝐱, and we want to know their values for the field spinor corresponding to the transformed 
coordinate  spinor.  As  in  the  case  of  four‐dimensional  vectors,  we  will  assume  that  when  the 
coordinate spinor is transformed, the field spinor is transformed by the same law   𝐚ሺ𝑀𝐱ሻ ൌ 𝑀𝐚ሺ𝐱ሻ 

The coordinate spinor and the field spinor can take arbitrary values, so the coincidence of their 
transformation laws looks more natural. 

From spinors we want to go to the real coordinate space of vectors and vector potentials. This 
can be done by means of Pauli matrices    𝜎଴ ൌ ቀ1 00 1ቁ 𝜎ଵ ൌ ቀ0 11 0ቁ 𝜎ଶ ൌ ቀ0 െ𝑖𝑖 0 ቁ 
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𝜎ଷ ൌ ቀ1 00 െ1ቁ 

which allow us to determine four components of the coordinate vector 𝑋ఓ ൌ 𝐱ற𝜎ఓ  𝐱 
and the field vector  𝐴ఓ ൌ 𝐚ற𝜎ఓ  𝐚 

So defined vectors have real components and zero lengths in Minkowski space, that is 𝜂ఈఉ𝑋ఈ𝑋ఉ ൌ 𝑋ఉ𝑋ఉ ൌ 0 𝜂ఈఉ𝐴ఈ𝐴ఉ ൌ 𝐴ఉ𝐴ఉ ൌ 0 

The same real vector with zero length from an arbitrary complex spinor can also be obtained in 
another way, by forming a tensor by direct product of the spinor on itself with a complex conjugation 
and taking the trace of its product with the corresponding Pauli matrix 𝐴ఓ ൌ Trሾሺ𝐚𝐚றሻ𝜎ఓሿ   

We can go in the opposite direction and first construct a spintensor from the potential vector 
using Pauli matrices    𝑆 ൌ 𝐴ఓ𝜎ఓ  
and then impose a zero‐length requirement on this vector 𝐴ఉ𝐴ఉ ൌ 0 

In this case, the determinant of the spintensor will be zero 𝑑𝑒𝑡 𝑆 ൌ 0 
and then  𝑆  can be represented as a direct product of two arbitrary and generally different complex 
spinors. In the case of nonzero vector length, the derived spinor cannot be represented in this form, 
and when transformed using the elements of the SL(2,C) group, it is transformed as a combination of 
left and right spinors having different conversion laws. Thus, the calibration of the potential in the 
form of a zero vector length requirement entails a simplification of the structure of the spintensor and 
its representation as a direct product of arbitrary spinors. This takes place in the case of a complex 
initial vector, and if the initial vector is a real vector, the spinors coincide. A real vector also can be 
obtained with the direct product of two different real spinors. 

SL(2,C) includes rotations by angle 𝛼 𝑀 ൌ exp ൬12 𝑖𝛼𝜎ఓ൰ 

and boosts by the angle 𝛽  𝑀 ൌ exp ൬12 𝛽𝜎ఓ൰ 

The vector obtained from the transformed spinor is equal to the vector obtained from the original 
spinor and subjected to a rotation or boost by the same angle using the Lorentz transformation matrix 𝛬 ఔఓ ൌ 12 Trሾ𝜎ఓ𝑀𝜎ఔ𝑀றሿ  

The spinor transformation matrix M can be the product of any number of rotations and boosts. 
It is possible to consider the spinor as a more fundamental description of the electromagnetic 

potential; if the coordinate spinor is transformed, the field spinor is transformed by the same law. 
The corresponding field vectors are automatically transformed by  the same  law as the coordinate 
vectors  and  they  are  immediately  calibrated  and  have  zero  length,  just  like  the  corresponding 
coordinate vectors. Now the same transformation of coordinate and field vectors looks more natural, 
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since their set of values is equally bounded by zero length in Minkowski space. Thus, it turns out that 
the electromagnetic field, in particular light, is described by a light‐like vector with zero length.   

Returning to the above example with a given vector of potential at the origin of coordinates at a 
zero moment in time, we note that these coordinates correspond to a zero coordinate spinor, which 
remains zero after the boost, while the corresponding nonzero field spinor changes. If the coordinate 
spinor is not subjected to boost but to translation, the coordinate vector obtained from it will no longer 
be zero, that is, it will also undergo translation, although it will have a zero length. We are interested 
in how the field spinor and the vector obtained from it will change. The translation of a field vector 
can be described if a four‐dimensional momentum vector, which also has zero length in Minkowski 
space, is given. The effect of translation on the field vector is expressed in the multiplication of the 
field vector components by the phase multiplier as an exponent of the scalar product of the vector of 
coordinate translations on the momentum vector. The zero‐length momentum vector can be obtained 
from the corresponding momentum spinor. Thus, each coordinate spinor can be matched with a field 
spinor and a momentum  spinor. The question arises what actions  should be performed with  the 
coordinate and momentum spinor to obtain an analogue of the scalar product of the coordinate and 
momentum vector. The matrix M and its corresponding matrix Λ synchronously transform spinors 
and coordinate and field vectors; the same matrices synchronously transform spinor and momentum 
vector.  That  is,  by  setting  the  matrix  M,  we  thereby  simultaneously  set  six  synchronous 
transformations in which the relations between the triplet of spinors and the triplet of vectors remain 
unchanged. The relations between the spinor  𝐩  and the momentum vector P are 𝑃ఓ ൌ 𝐩ற𝜎ఓ 𝐩 

Scalar product of the transformed momentum and coordinate vectors   𝜂ఈఉሺ𝛬 ఓఈ 𝑃ఓሻሺ𝛬 ఔఉ 𝑋ఔሻ ൌ 𝜂ఈఉ𝛬 ఓఈ 𝛬 ఔఉ 𝑃ఓ𝑋ఔ ൌ 𝜂 ఓఔ𝑃ఓ𝑋ఔ 

coincides  with  the  scalar  product  of  unconverted  vectors  under  the  following  commutability 
condition  𝑃ఓ𝛬ఔఉ െ 𝛬ఔఉ𝑃ఓ ൌ 0 

Obviously, a scalar product of vectors that does not change under the Lorentz transformation 
must correspond to some relation between the corresponding spinors that does not change under the 
transformation from the SL(2,C) group. If this is so, then from this scalar product of spinors one can 
obtain at once the scalar product of vectors, the exponent of which gives the multiplier acting on the 
field vector during translation. Indeed, the equality is correct ሾ𝐩்𝜎ெ𝐱ሿ∗ሾ𝐩்𝜎ெ𝐱ሿ ൌ 12 𝐏்𝜂𝐗 

where η is the metric tensor of Minkowski space and  𝜎ெ  is the metric tensor of spinor space 𝜎ெ ൌ ቀ 0 1െ1 0ቁ 

Another, non‐invariant equality also take place ሾ𝐩ற𝐱ሿ∗ሾ𝐩ற𝐱ሿ ൌ 12 𝐏்𝐗 ൌ Trሾሺ𝐩𝐩றሻறሺ𝐱𝐱றሻሿ 
When the coordinate vector is translated, the field vector is multiplied by the phase multiplier   expሺ𝐏்𝜂𝐗ሻ 
Similarly, we can define a translation in spinor space, leading to the multiplication of the field 

spinor by the phase multiplier  expሺ𝐩்𝜎ெ𝐱ሻ 
If we obtain a vector from the translated spinor, it will differ from the vector obtained by the 

vector  translation by  some  complex multiplier with a unit module.  It  is an open question which 
translations ‐ vector or spinor ‐ more correctly describe the nature. 
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Since the square of the momentum vector length is zero, the square of the momentum spinor 
length is also zero, however, this property is characteristic of arbitrary spinors in general (the spinor 
length is determined by the metric tensor of spinor space) 𝐩்𝜎ெ𝐩 ൌ 0 

Since, from the physical point of view, the zero length of the momentum vector  is associated 
with  the  equality  to  zero mass, we  can  conclude  that  the masslessness  of  the  field  entails  the 
possibility to describe it using a complex spinor.    For a massive field there is no such possibility, it 
is described by a spintensor or a vector equivalent to it. 

The  described  procedure  of  transition  from  an  arbitrary  complex  spinor  to  a  real  four‐
dimensional vector through the direct product of the spinor by the conjugate leads to a vector with 
boson properties, since when the spinor is rotated or boosted by a certain angle, the vector is rotated 
or boosted by a doubled angle. It is also possible to form a four‐dimensional spinor using the direct 
sum of spinor spaces. To do this, we form a four‐component spinor from the complex spinor  𝛙𝐑  and 
the spinor  𝛙𝐋  connected with it in a certain way 𝚿 ൌ ൬𝛙𝐑 𝛙𝐋 ൰ 

and using the matrix M from SL(2,C) we define the matrix 𝛬መ ൌ ൬𝑀 00 െ𝜎ெ𝑀∗𝜎ெ൰          
The matrix  𝛬መ  has the property   𝛬መ்  ൬𝜎ெ 00 𝜎ெ൰ 𝛬መ ൌ ൬𝑀் 00 െ𝜎ெ்𝑀∗்𝜎ெ்൰ ൬𝜎ெ 00 𝜎ெ൰ ൬𝑀 00 െ𝜎ெ𝑀∗𝜎ெ൰ൌ ൬𝑀் 00 െ𝜎ெ்𝑀∗்𝜎ெ்൰ ൬𝜎ெ𝑀 00 െ𝜎ெ𝜎ெ𝑀∗𝜎ெ൰

ൌ ቆ𝑀்𝜎ெ𝑀 00 ሺ𝜎ெ்𝑀∗்𝜎ெ்ሻ𝜎ெሺ𝜎ெ𝑀∗𝜎ெሻቇ ൌ ൬𝜎ெ 00 𝜎ெ൰ 

where the property of matrices is used   𝑀்𝜎ெ𝑀 ൌ 𝜎ெ       ሺ𝜎ெ்𝑀∗்𝜎ெ்ሻ𝜎ெሺ𝜎ெ𝑀∗𝜎ெሻ ൌ 𝜎ெ  
The matrix  𝑀  is a combination of rotations and boosts with arbitrary angles 𝑀 ൌ 𝑒𝑥𝑝 ൬12 𝛽ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬12 𝑖𝛼ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬12 𝛽ଷ𝜎ଷ൰ 𝑒𝑥𝑝 ൬12 𝑖𝛼ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬12 𝛽ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬12 𝑖𝛼ଷ𝜎ଷ൰ 

When the matrix  𝛬መ  acts, the spinor  𝚿  undergoes the transformation 𝛬መ 𝚿 ൌ ൬𝑀𝛙𝐑 00 ሺെ𝜎ெ𝑀∗𝜎ெሻ𝛙𝐋൰ 

Since the angles do not double, the spinor  𝚿  behaves as a spinor rather than a vector  in the 
Lorentz transformation. The matrix  𝛬መ  is not a Lorentz matrix at finite angles of rotations and boosts, 
but in the infinitesimal case, i.e. when all angles tend to zero, the Lorentz condition is approximately 
satisfied    𝜂ఈఉ𝛬መ  ఓఈ 𝛬መ  ఔఉ ൌ 𝜂ఓఔ 

and  in this approximation  the Dirac equation for  the electron,  for example,  is valid for  𝚿. This  is 
because at infinitesimal angles the matrix M can be represented as   𝑀 ൌ exp ൬12 𝛽ଵ𝜎ଵ൰ exp ൬12 𝑖𝛼ଶ𝜎ଶ൰ exp ൬12 𝛽ଷ𝜎ଷ൰ exp ൬12 𝑖𝛼ଵ𝜎ଵ൰ exp ൬12 𝛽ଶ𝜎ଶ൰ exp ൬12 𝑖𝛼ଷ𝜎ଷ൰ൌ 1 ൅ 12 𝛽ଵ𝜎ଵ ൅ 12 𝑖𝛼ଶ𝜎ଶ ൅ 12 𝛽ଷ𝜎ଷ ൅ 12 𝑖𝛼ଵ𝜎ଵ ൅ 12 𝛽ଶ𝜎ଶ ൅ 12 𝑖𝛼ଷ𝜎ଷ 
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and the matrix  𝛬መ  as  𝛬መ ൌ 1 ൅ 𝑖2 𝜔ఓఔΩఓఔ 

where  𝜔ఓఔ   consists  of  rotation  angles  and  boosts,  and  the  antisymmetric matrix  Ωఓఔ is defined 
through the gamma matrix commutator [1]   Ωఓఔ ൌ െ 𝑖4 ሾ𝛾ఓ, 𝛾ఔሿ 𝑖ሾΩఓఔ , Ωఘఙሿ ൌ 𝜂ఓఔΩఘఙ െ 𝜂ఔఘΩఓఙ െ 𝜂ఓఘΩఔఙ ൅ 𝜂ఙఔΩఘఓ 

Let us use the methodology by which the Dirac equation is derived in [2]. There, instead of the 
product of exponents, the exponent of the sum is used in determining  𝑀 𝑀 ൌ exp ൬12 𝛽ଵ𝜎ଵ ൅ 12 𝑖𝛼ଶ𝜎ଶ ൅ 12 𝛽ଷ𝜎ଷ ൅ 12 𝑖𝛼ଵ𝜎ଵ ൅ 12 𝛽ଶ𝜎ଶ ൅ 12 𝑖𝛼ଷ𝜎ଷ൰ 

which is inappropriate in the general case, since not all rotation and boost generators commute, but 
in the small‐angle limit this substitution has the right to be used, due to which the Dirac equation is 
actually  derived. We will  use  the  exact  transformation  𝑀 , which  is  valid  for  arbitrary  angles. 
Following [2] we consider the case of all six angles of rotations and boosts being equal to zero, which 
means  that we  consider  𝚿  in  the  rest  frame at zero boosts, where  the  left and  the  right  spinors 
coincide    𝛙𝐑 ൌ  𝛙𝐋 ൌ 𝛙 
and equal to some spinor, which can be chosen to be real, its components specify two physical degrees 
of freedom, which a fermion, e.g. an electron, should possess. For arbitrary rotations and boosts, the 
fermion will be described by a complex vector in Minkowski space 𝚿 ൌ 𝛬መ  ൬𝛙 𝛙൰ 

and the fermion will still be characterized by only two real numbers belonging to the spinor  𝛙. 
The infinitesimality of the Dirac equation indicates that Lorentz invariance in vector space is not 

a natural property of the fermion. Whereas for the boson the Lorentz symmetry in Minkowski space 
at any angles follows directly from the field spinor symmetry, for the fermion it takes place only in 
the limit of small angles of rotations and boosts, and the natural symmetry at arbitrary angles for the 
fermion  is  generated  by  the  matrix  𝛬መ .  At  arbitrary  finite  angles  we  have  exact  equalities 
characterizing the difference between the transformation of bosons and fermions in Minkowski space 

𝛬்  ቌ1 00 െ1 0 00 00  00  0 െ1 00 െ1ቍ 𝛬 ൌ ቌ1 00 െ1 0 00 00 00 0 െ1 00 െ1ቍ 

𝛬 ఔఓ ൌ 12 Trሾ𝜎ఓ𝑀𝜎ఔ𝑀றሿ  
𝛬መ்  ቌ 0 1െ1 0  0 00   0  0   0  0   0 0 1െ1  0ቍ 𝛬መ ൌ ቌ 0 1െ1 0  0 00   0  0   0  0   0 0 1െ1  0ቍ 

𝛬መ ൌ ൬𝑀 00 െ𝜎ெ𝑀∗𝜎ெ൰          
Note that [3] uses another set of gamma matrices, whose anticommutators are equal to the metric 

tensor of Minkowski space 
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𝛾଴ ൌ ቌ1 00 1  0 00   00 00 0 െ1 00 െ1ቍ 

𝛾௜ ൌ ൬ 0 𝜎௜െ𝜎௜ 0 ൰          
and it is shown that in this case the last two components of the spinor  𝚿  are equal to zero in the 
resting frame (at zero boosts)  𝜓ଶ ൌ 0     𝜓ଷ ൌ 0      
which agrees with the fact that the electron has two physical degrees of freedom. If we choose the 
zero gamma matrix somewhat differently 

𝛾଴ ൌ ቌെ1 00 1  0 00   00 00 0 െ1 00 1ቍ 

the necessary anticommutators relations are still satisfied, and zero and the second components of 
the vector will be equal to zero at zero boosts 𝜓଴ ൌ 0     𝜓ଶ ൌ 0      

In this case one can draw an analogy with the electromagnetic field in which the direct product 
of identical real spinors leads to a vector of zero length and a zero component in the y axis, while the 
direct sum of identical real vectors at the specified choice of gamma matrices also leads to a vector 
with a zero second component and an equal to zero component with a zero index, but with a nonzero 
length. That is, in this case boson and fermion have field vectors localized in the xz plane. 

It  is possible to consider coordinate and momentum spinors, forming them from the  left and 
right spinors of the spinor field  𝐩 ൌ ቀ𝐩𝐑 𝐩𝐋 ቁ 𝐱 ൌ ቀ𝐱𝐑 𝐱𝐋 ቁ 

the length of the momentum vector in Minkowski space will not equal to zero, i.e. the particle will 
possess a mass. If we accept for the momentum vector and spinors the same mechanism of connection 
between them as for the field vector and spinors, the left and right momentum spinors must be equal 
to each other at zero momentum value (zero boosts). If we know the current value of momentum, we 
know velocity and can make a transformation that brings the velocity, and therefore the boost angles, 
to zero. With this transformation, we will bring both the momentum and field vectors to a state with 
zero boost, and hence the left and right spinors generating them will become equal to each other. By 
this sign, we can relate the spinor and the momentum vector with the spinor and the field vector. 

Similar  to  the  description  of  the  electron,  the  most  economical  way  to  describe  the 
electromagnetic  field  is  to use  two  identical real spinors.  In  this approach,  the vector of potential 
depends only on two real parameters, since not only is its length equal to zero, but its component 
along the y‐axis is always equal to zero  𝐴଴ ൌ 𝐚்𝜎଴𝐚 𝐴ଵ ൌ 𝐚்𝜎ଵ𝐚 𝐴ଶ ൌ 0 𝐴ଷ ൌ 𝐚்𝜎ଷ𝐚 𝐴 ଴ଶ ൌ 𝐴 ଵଶ ൅ 𝐴 ଷଶ  

When describing  the  electromagnetic  field quantization procedure  in  [2],  it  is noted  that by 
imposing  two  calibration  conditions,  the  number  of  independent  parameters  describing  the 
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electromagnetic potential must be reduced to two, there Lorentz calibration and Coulomb calibration 
are used  for  this purpose. The  approach we have described with  the  same  real  spinors  is also a 
calibration that provides the dependence of the potential on only two independent parameters.   

If we apply only rotation around the y‐axis and boosts on the x‐ and z‐axes to the real spinor exp ൬12 𝛽ଵ𝜎ଵ൰         exp ൬12 𝑖𝛼ଶ𝜎ଶ൰       exp ൬12 𝛽ଷ𝜎ଷ൰ 

then  the  spinor  remains  real,  and  the  components  of  the  transformed  vector  satisfy  the  above 
constraints. These  three  transformations constitute a group,  its elements act on  the coordinates of 
spinor space, and the algebra of its generators has the form   ሾ𝜎ଵ, ሺ𝑖𝜎ଶሻሿ ൌ െ2𝜎ଷ       ሾሺ𝑖𝜎ଶሻ, 𝜎ଷሿ ൌ െ2𝜎ଵ      ሾ𝜎ଵ, 𝜎ଷሿ ൌ 2ሺ𝑖𝜎ଶሻ  
if we denote    𝜉ଵ ൌ െ 12 𝜎ଵ       𝜉ଶ ൌ െ 12 𝑖𝜎ଶ        𝜉ଷ ൌ െ 12 𝜎ଷ 

then  ሾ𝜉ଵ, 𝜉ଶሿ ൌ 𝜉ଷ       ሾ𝜉ଶ, 𝜉ଷሿ ൌ 𝜉ଵ          ሾ𝜉ଷ, 𝜉ଵሿ ൌ െ𝜉ଶ 
Such an algebra does not coincide with either  the algebra of  the rotation group SO(3) or  the 

algebra of the group SU(2), which should be ൣ𝜉௜ , 𝜉௝൧ ൌ 𝑖ℰ௜௝௞𝜉௞      
The difference from this group is the sign of the commutator  ሾ𝜉ଷ, 𝜉ଵሿ. 
Let us introduce step‐up and step‐down operators    𝐽ା ൌ  𝜉ଵ െ 𝑖𝜉ଷ        𝐽ି ൌ  𝜉ଵ ൅ 𝑖𝜉ଷ          𝐽ଶ ൌ 𝑖𝜉ଶ 

for which  ሾ𝐽ଶ, 𝐽ାሿ ൌ 𝐽ା         ሾ𝐽ଶ, 𝐽ିሿ ൌ െ 𝐽ି        ሾ𝐽ା, 𝐽ିሿ ൌ 2𝐽ଶ     
The increasing operator increases the eigenvalue of the operator  𝐽ଶ  by one, and the decreasing 

operator decreases it by one. It is possible to define the operator   𝐽𝐽 ൌ 12 ሺ𝐽ା𝐽ି െ 𝐽 𝐽ାሻ ൅  𝐽ଶ𝐽ଶ ൌ ቀ0.75 00 0.75ቁ ൌ 12 ൬1 ൅ 12൰ ቀ1 00 1ቁ   
which is the Casimir operator for the group in question. 

Extending  this group  to an  inhomogeneous group by  two  translations on  the coordinates of 
spinor space  𝑥ଵ  and  𝑥ଶ, and finding an infinitesimal representation of its algebra using infinitesimal 
operators of translations on the two coordinates     𝜕𝜕𝑥ଵ         𝜕𝜕𝑥ଶ 

one can define its Casimir operators and write differential wave equations for spinor space. It is also 
possible  to  find  irreducible representations of this five‐parameter group. The matrix of the metric 
tensor in this space is such that the length of any spinor, including the spinor of momentum, is equal 
to zero    𝐩்𝜎ெ𝐩 ൌ 0 

Thus, one spinor cannot be compared to any concept analogous to mass in Minkowski space. A 
nonzero value can be obtained only for the momentum described by the spintensor. 

The angles of rotations and boosts in spinor space can depend on two spinor coordinates, which 
will give an additional contribution to the derivatives on them in the Casimir operators and in the 
wave equation, similar to that in four‐dimensional space, as described further in the part 2 of this 
paper. Such a spinor‐closed approach will probably allow one to obtain all necessary results in terms 
of spinors, including solving the spinor wave equations and quantization, and to move to ordinary 
space after obtaining results, calculating the potential vector from the spinor field, and the electric 
and magnetic fields from it. 
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Based on this reasoning, we can assume that the electromagnetic field is inherently a real spinor 
subject  to  transformations  in  the  form  of  a  combination  of  one  rotation  and  two  boosts.  Such  a 
description can simplify the procedure of quantization of the electromagnetic field. The reason for 
the difference in the properties of the Pauli matrix  𝜎ଶ  among others is obvious ‐ it coincides with the 
matrix of the metric tensor of spinor space to within an imaginary unit.   

Summarizing the above considerations, we can propose the following concept of describing the 
electromagnetic  field  existing  in  Minkowski  space.  There  is  a  two‐dimensional  space  of  real 
coordinate spinors, that is, each point in the space is described by two real numbers taking arbitrary 
values. At each such point, a real spinor of the field, representing two real numbers taking arbitrary 
values, is defined. From one point of coordinate spinor space one can move to another by translations. 
A field is also defined at a new point in space, and its values can depend on the value of the field at 
the first point and on the relation of the spatial points, for example by means of a wave equation. It 
can also be changed by adding a  field  from another  source. As a  result,  the coordinate spinor  is 
somehow mapped to two real field values. Having a given field for given coordinates, we postulate 
that all homogeneous linear coordinate transformations from the group described above lead to field 
transformations  according  to  exactly  the  same  law. The  transformations  are  the product of  two‐
dimensional square matrices with arbitrary angles exp ൬12 𝛽ଵ𝜎ଵ൰         exp ൬12 𝑖𝛼ଶ𝜎ଶ൰       exp ൬12 𝛽ଷ𝜎ଷ൰ 

If the coordinates are transformed with their help, the field undergoes the same transformations. 
From the two spatial coordinates, using three Pauli matrices and the unit matrix, we calculate the 
coordinates of a point in Minkowski space and the four values of the electromagnetic field potential 
compared  to  this  point. At  different  angles, we  get  coordinate  points  in  the  xz  plane,  and  the 
coordinate and field transformations correspond to two boosts along the x and z axes and rotation 
around the y axis. But in reality, the field does not exist only in the xz plane, but can have a nonzero 
y component. This limitation is removed by the consideration that the coordinate and field spinors 
can also undergo three other homogeneous transformations exp ൬12 𝑖𝛼ଵ𝜎ଵ൰       exp ൬12 𝛽ଶ𝜎ଶ൰       exp ൬12 𝑖𝛼ଷ𝜎ଷ൰ 

With this boost and two rotations, the entire four‐dimensional field value space and the entire 
Minkowski  space will be  filled. Although  the  spinors will  take  complex values as well, both  the 
spinors  and  the  corresponding  four‐dimensional  vectors  will  be  determined  by  only  two  real 
numbers in the original coordinate spinor and two numbers in the original field spinor corresponding 
to them. All further transformations of both spinors and vectors will be determined by the angles of 
three rotations and three boosts. 

It is necessary to recall our basic assumption that the rotation and boost of the field spinor does 
not occur by itself, but only after the rotation and boost of the coordinate spinor to which the field 
spinor is mapped. This coordinate spinor in Minkowski space acts as a vector with a double rotation 
angle. Rotation of the coordinate spinor entails rotation of the field spinor, which, in turn, rotates the 
boson  and  fermion  vectors.  If  we  want  to  trace  all  symmetries,  starting  from  the  rotation  in 
Minkowski space, we should not consider boson and fermion at once, we should first return from the 
transformed coordinate vector to the coordinate spinor, transform it, then transform the field spinor 
by the same law, and obtain from it the transformed vectors for boson and fermion. The boson will 
be transformed exactly according to the Lorentz transformation, while the fermion in general case is 
not, the Lorentz transformation for it is valid only at infinitely small angles of rotations and boosts. 

2. Description of accelerated motion 

Let us return to Minkowski space and consider the Casimir operator of the Poincaré group, see, 
for example, [4], which is equal to the square of the length of the translation operator 𝑃ఓ ൌ െ𝑖𝜕ఓ 
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𝐶ଵ ൌ 𝑃ఓ𝑃ఓ ൌ 𝜂ఈఉ𝑃ఈ𝑃ఉ 

Instead of this operator, we propose to use an operator of a more general form, composed of the 
translation operators subjected to the Lorentz transformation 𝐶ଵ ൌ 𝜂ఈఉሺ𝛬 ఓఈ 𝑃ఓሻሺ𝛬 ఔఉ 𝑃ఔሻ 

If the matrix  𝛬 ఔఉ   does not depend on coordinates, it can be taken out from under the sign of the 
derivative    𝐶ଵ ൌ 𝜂ఈఉ𝛬 ఓఈ 𝛬 ఔఉ 𝑃ఓ𝑃ఔ ൌ 𝜂ఓఔ𝑃ఓ𝑃ఔ 

and get the usual Casimir operator. But if it depends on coordinates, the Casimir operator becomes 
more complicated 𝐶ଵ ൌ 𝜂ఈఉሺ𝛬 ఓఈ 𝑃ఓሻሺ𝛬 ఔఉ 𝑃ఔሻ ൌ  𝜂ఈఉ𝛬 ఓఈ ሾ𝑃ఓሺ𝛬 ఔఉ 𝑃ఔሻሿൌ  𝜂ఈఉ𝛬 ఓఈ ሾ𝛬 ఔఉ ሺ𝑃ఓ𝑃ఔሻሿ ൅ 𝜂ఈఉ𝛬 ఓఈ ሾሺ𝑃ఓ𝛬 ఔఉ ሻ𝑃ఔሿൌ 𝜂ఈఉ𝛬 ఓఈ 𝛬 ఔఉ ሾሺ𝑃ఓ𝑃ఔሻሿ ൅ 𝜂ఈఉ𝛬 ఓఈ ሾሺ𝑃ఓ𝛬 ఔఉ ሻ𝑃ఔሿൌ 𝜂ఓఔሺ𝑃ఓ𝑃ఔሻ ൅ 𝜂ఈఉ𝛬 ఓఈ ሾሺ𝑃ఓ𝛬 ఔఉ ሻ𝑃ఔሿ 

Here we add terms with derivatives on coordinates from angles of rotations and boosts. 
Similar reasoning can be applied to the second Casimir operator of the Poincaré group formed 

from the Lubansky‐Pauli vector.  𝐶ଶ ൌ 𝑊ఓ𝑊ఓ ൌ 𝜂ఈఉ𝑊ఈ𝑊ఉ 

The propagation  in space and  time of  fields,  realizing  the Poincaré group representations,  is 
described by  relativistic wave  equations  [4]. Wave  equations  are  constructed on  the basis of  the 
Casimir operators, so when using generalized Casimir operators, the wave equations also become 
more complicated and acquire new terms. This can also be illustrated directly for specific types of 
wave  equations. For  example,  consider  a wave  equation  for  the  electromagnetic  field,  but use  a 
ʺnaturalʺ  calibration  in  the  form of  the zero‐length  requirement  for  the  electromagnetic potential 
vector.   

In [3] the equation for a massive meson field with spin 1 is considered. The corresponding vector 
field satisfies the field equation  ሺ𝜕ଶ ൅ 𝑚ଶሻ𝐴ఓ ൌ 0 

with the additional Lorentz calibration condition 𝜕𝝁𝐴𝝁 ൌ 0 
The equation for the electromagnetic field is obtained in the special case of zero mass. Instead of 

the calibration condition adopted in [3], we propose to use the ʺnaturalʺ calibration justified above     𝐴𝝁𝐴𝝁 ൌ 0    𝐴𝟐 ൌ 0 
and instead of the equation    ሺ𝜂ఓఔ𝜕ఓ𝜕ఔ ൅ 𝑚ଶሻ𝐴ఓ ൌ 0 
consider the equation with transformed vector of derivatives    ሺ𝜂ఓఔሺ𝛬 ఓఈ 𝜕ఈሻሺ𝛬 ఔఉ 𝜕ఉሻ ൅ 𝑚ଶሻ𝐴ఓ ൌ 0 

Here the matrix  𝛬 ఓఈ   depends on angles of rotations and boosts, which generally depend on the 
four‐dimensional coordinates. If the commutation relation is satisfied 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 June 2023                   doi:10.20944/preprints202306.0258.v2

https://doi.org/10.20944/preprints202306.0258.v2


  13 

 

𝜕ఈ𝛬ఔఉ െ 𝛬ఔఉ𝜕ఈ ൌ 0 

then we can write  𝜂ఓఔሺ𝛬ఓఈ𝜕ఈሻሺ𝛬ఔఉ𝜕ఉሻ ൌ 𝜂ఓఔ𝛬ఓఈ𝛬ఔఉ𝜕𝜶𝜕ఉ ൌ 𝜂ఈఉ𝜕𝜶𝜕ఉ 

and obtain an ordinary wave operator, which, on the other hand, can be obtained from a general view 
operator simply by putting the angles of rotations and boosts equal to zero. But even at arbitrary 
constant angles the general operator coincides with the usual one, and therefore it does not seem to 
change the description of physical phenomena. But the commutative relation   𝜕ఈ𝛬ఔఉ െ 𝛬ఔఉ𝜕ఈ ൌ 0 

is not always satisfied; it includes, for example, the time and spatial coordinate derivative of the boost 
angles, and hence the derivative of velocity, which is indirectly included as a parameter in the Lorentz 
matrix. Both angles and velocity may not be constant. Then new terms appear in the equation where 
this operator enters, depending, for example, on acceleration, which make an additional contribution 
to the corresponding propagator and Lagrangian studied in [3]. 

The usual wave equation, in which all angles of rotations and boosts in the Lorentz matrix are 
equal  to  zero,  describes  behavior  of  the  relativistic  field  in  a  stationary  observation  point,  the 
generalized wave equation describes behavior of  the  field  in a moving observation point,  thus,  if 
motion  is  uniform  and  speed,  and  thus  angles  of  boosts,  do  not  depend  on  four‐dimensional 
coordinates, the generalized equation coincides with the usual one. If the motion is accelerated, the 
generalized equation contains additional terms. 

The motion of a charged particle in an electromagnetic field is known to be accelerated, so the 
field acting on the moving particle must be calculated by transforming the external field given for the 
stationary observation point with a boost with an angle depending on coordinates and time. This 
would  make  adjustments  to  the  equation  of  motion  of  the  particle.  The  difficulty  is  that  the 
dependence of the boost angle on the coordinates is determined by the resultant field acting on the 
particle itself. In any case, the equation of motion will differ from the one usually used. In particular, 
it will take into account the presence of conduction. Maxwellʹs equations are valid only for free space; 
in the presence of the right‐hand side, the term related to conductivity should appear in them because 
if there is no conductivity in the point for which the equations are written, then there cannot be any 
current  in  it,  i.e.  the  right‐hand  side of  the equations  is equal  to zero. Maxwellʹs  inhomogeneous 
equations must be telegraphic equations. The physical expression of conductivity is the accelerated 
motion of a charged particle under the action of a field, which can be described as the dependence of 
angles in the Lorentz transformations on the four coordinates of Minkowski space. Note that since 
the fields in the moving observation point depend on its velocity and acceleration, one force acts on 
a stationary charged particle and another force acts on the same stationary but not fixed particle, since 
the particle has a non‐zero acceleration. 

3. Bosons and fermions in spinor space 

Let us consider a universal method for describing bosons and fermions using a four‐component 
complex spinor. Let there be two complex spinors, one of which we will further compare with a boson 
and the other with a fermion  𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଶ, 𝑏ଷሻ 𝐟𝑻 ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓ଶ, 𝑓ଷሻ 

Letʹs define the matrix given by the set of real angles of rotations and boosts 𝑀ൌ 𝑒𝑥𝑝 ൬െ 12 𝑖𝛼ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬12 𝛽ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬െ 12 𝑖𝛼ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬12 𝛽ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬െ 12 𝑖𝛼ଷ𝜎ଷ൰ 𝑒𝑥𝑝 ൬12 𝛽ଷ𝜎ଷ൰ 

and the matrix   
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𝑁 ൌ െ𝜎ெ𝑀∗𝜎ெ 
where the two‐dimensional spinor space metric is used 𝜎ெ ≡ ቀ 0 1െ1 0ቁ 

the matrix N can be written explicitly 𝑁 ൌ 𝑒𝑥𝑝 ൬െ 12 𝑖𝛼ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬െ 12 𝛽ଵ𝜎ଵ൰ 𝑒𝑥𝑝 ൬െ 12 𝑖𝛼ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬െ 12 𝛽ଶ𝜎ଶ൰ 𝑒𝑥𝑝 ൬െ 12 𝑖𝛼ଷ𝜎ଷ൰ 𝑒𝑥𝑝 ൬െ 12 𝛽ଷ𝜎ଷ൰ 

where the sign of all the angles of the boosts has changed. Let us also define the matrix 𝛬 ఔఓ ൌ 12 Trሾ𝜎ఓ𝑀𝜎ఔ𝑀றሿ  
which can be written down explicitly using the matrices of the rotation and boost generators 𝛬 ൌ 𝑒𝑥𝑝ሺ𝛼ଵ𝐿ଵሻ𝑒𝑥𝑝ሺ𝛽ଵ𝐾ଵሻ𝑒𝑥𝑝ሺ𝛼ଶ𝐿ଶሻ𝑒𝑥𝑝ሺ𝛽ଶ𝐾ଶሻ𝑒𝑥𝑝ሺ𝛼ଷ𝐿ଷሻ𝑒𝑥𝑝ሺ𝛽ଷ𝐾ଷሻ 
as well as the matrices  𝑀𝑀 ൌ ቀ𝑀 00 𝑀 ቁ 𝑀𝑁 ൌ ቀ𝑀 00 𝑁 ቁ 𝛴଴ ൌ ൬𝜎଴ 00 𝜎଴ ൰   𝛴ଵ ൌ ൬𝜎ଵ 00 𝜎ଵ ൰   𝛴ଶ ൌ ൬𝜎ଶ 00 𝜎ଶ ൰   𝛴ଷ ൌ ൬𝜎ଷ 00 𝜎ଷ ൰ 𝛤଴ ൌ ൬𝜎଴ 00 𝜎଴ ൰   𝛤ଵ ൌ ൬𝜎ଵ 00 െ𝜎ଵ ൰   𝛤ଶ ൌ ൬𝜎ଶ 00 െ𝜎ଶ ൰   𝛤ଷ ൌ ൬𝜎ଷ 00 െ𝜎ଷ ൰ 𝛤5଴ ൌ ൬െ𝜎଴ 00 𝜎଴ ൰   𝛤5ଵ ൌ ൬െ𝜎ଵ 00 െ𝜎ଵ ൰   𝛤5ଶ ൌ ൬െ𝜎ଶ 00 െ𝜎ଶ ൰   𝛤5ଷ ൌ ൬െ𝜎ଷ 00 െ𝜎ଷ ൰ 

Let us define the real vectors    𝐵ఓ ൌ 12 𝐛ற𝛴ఓ𝐛  𝐹ఓ ൌ 12 𝐟ற𝛤ఓ𝐟  
which can also be calculated in another way 𝐵ఓ ൌ 12 Trሾ𝐛𝐛ற𝛴ఓሿ  𝐹ఓ ൌ 12 Trሾ𝐟𝐟ற𝛤ఓሿ  

Let us subject the spinors to transformations 𝐛መ ൌ 𝑀𝑀𝐛 𝐟መ ൌ 𝑀𝑁𝐟 
then for the transformed vectors    𝐵෠ఓ ൌ 12 𝐛መ ற𝛴ఓ𝐛መ   𝐹෠ఓ ൌ 12 𝐟መற𝛤ఓ𝐟መ  
the equations are valid  𝐁෡ ൌ 𝛬𝐁 𝐅෠ ൌ 𝛬𝐅 
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Thus, the spinors of bosons and fermions differ in the transformation matrices and the set of 
matrices by which real Lorentzian vectors are formed from them.   

All  the above  is also  true  for  the  case of different  spinors  to  the  left and  to  the  right of  the 
matrices, but in this case the Lorentz invariant vector is complex. 

Although a complex spinor has 8 degrees of freedom, in reality both the boson and the fermion 
have fewer degrees of freedom. If we restrict ourselves to spinors with complex components in the 
form  𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏଴, 𝑏ଵሻ 𝐟𝑻 ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓଴, 𝑓ଵሻ 
then vector  𝐁  has a zero  length  (and  if all components of b are real,  then also a zero component 
along the y‐axis), and F has only one nonzero component 𝐁𝑻 ൌ ሺ𝐵଴, 𝐵ଵ, 0, 𝐵ଷሻ 𝐅𝑻 ൌ ሺ𝐹଴, 0,0,0ሻ 
and if one chooses  𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଵ∗, െ𝑏଴∗ሻ 𝐟𝑻 ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓ଵ∗, െ𝑓଴∗ሻ 
which corresponds to  ൬𝑏ଶ𝑏ଷ൰ ൌ  ቀ 0 1െ1 0ቁ ൬𝑏଴∗𝑏ଵ∗൰ 

then,  on  the  contrary,  vector  F  has  already  a  zero  length  (and  a  zero  component  y  if  all  spinor 
components are real), and B has only one nonzero component 𝐁𝑻 ൌ ሺ𝐵଴, 0,0,0ሻ 𝐅𝑻 ൌ ሺ𝐹଴, 𝐹ଵ, 0, 𝐹ଷሻ 

The rest of the value manifold is obtained from the spinors given by the two complex parameters 
by means of all possible rotations and boosts. Note that the vector F can be interpreted as a current 
vector [5], and the vector  𝐹5ఓ ൌ 12 𝐟ற𝛤5ఓ𝐟  
as an axial current vector, the scalar  𝜂ఓఔ𝐹ఓ𝐵ఔ describes the boson‐fermion interaction in the Lagrange 
function [5].   

It  is possible not  to use gamma matrices at all, because  if we use  the matrices  for  the spinor 
transformation  𝑀𝑁 ൌ ቀ𝑀 00 𝑁 ቁ 

then the vector is obtained using the matrices 𝛤଴ ൌ ൬𝜎଴ 00 𝜎଴ ൰ 𝛤ଵ ൌ ൬𝜎ଵ 00 െ𝜎ଵ ൰ 𝛤ଶ ൌ ൬𝜎ଶ 00 െ𝜎ଶ ൰ 𝛤ଷ ൌ ൬𝜎ଷ 00 െ𝜎ଷ ൰ 

but the same result in terms of the behavior of the spinor and the vector is obtained if we transform 
the spinor by matrices  𝑀𝑀 ൌ ቀ𝑀 00 𝑀 ቁ 

and the vector is obtained by matrices 𝛴଴ ൌ ൬𝜎଴ 00 𝜎଴ ൰ 𝛴ଵ ൌ ൬𝜎ଵ 00 𝜎ଵ ൰ 𝛴ଶ ൌ ൬𝜎ଶ 00 𝜎ଶ ൰ 𝛴ଷ ൌ ൬𝜎ଷ 00 𝜎ଷ ൰ 

In this connection we can consider only the variant with all matrices M and matrices 𝜎 entering 
only with plus. That  is, one can  limit oneself  to sigma matrices and not use gamma matrices,  the 
differences between bosons and fermions will be determined only by the structure of spinors with 
the same way of forming vectors from them. 
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In fact, it is possible to reduce the number of degrees of freedom by considering only real spinors, 
which follows from the fact that according to the Dirac equation in the rest frame with zero boosts 
the fermion spinor has just this form, and the spinor components are real [5]: 𝐟𝑻 ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓଴, 𝑓ଵሻ 𝐅𝑻 ൌ ሺ𝐹଴, 0,0,0ሻ 
i.e. in the rest frame (with zero boosts) the three‐dimensional current vector is zero, there is only a 
stationary charge, which is logical, because in the rest frame the momentum vector has exactly the 
same form  𝐏𝑻 ൌ ሺ𝑃଴, 0,0,0ሻ 

We can thus say that the fulfillment of the Dirac equation leads to the fact that the current vector 
and  the momentum vector  are  transformed not  just by  the  same Lorentz matrix, but  it happens 
synchronously, that is, the current is created only by a moving charge. From a physical point of view, 
it  cannot  be  otherwise. We  can  say  that  the Dirac  equation  connects  the  current  vector  and  the 
momentum vector. The axial current vector in the considered form of a spinor has the form 𝐅𝑻 ൌ ሺ0, 𝐹ଵ, 0, 𝐹ଷሻ 
it is known [5] that the current is always conserved, and the axial current is conserved only in the 
case of zero mass. 

The  synchronous  transformation  of  the  current  vector  and  the momentum  vector  allow  to 
suppose that some spinor, which transforms by the same law as the fermion spinor and, moreover, 
synchronously with it, is also connected with the momentum vector, i.e. in the fermion rest frame 
this spinor should have the form  𝐩𝑻 ൌ ሺ𝑝଴, 𝑝ଵ, 𝑝଴, 𝑝ଵሻ 

When the momentum vector is formed from the momentum spinor having this form with the 
help of  𝛤ఓ matrices, it will have a non‐zero length and therefore the fermionʹs mass will be non‐zero. 
The vector  for  the boson  from a spinor of  this  format  is  formed with  𝛴ఓ matrices and has a zero 
length, assuming that the momentum vector for the boson is also formed with  𝛴ఓ, it will also have a 
zero length, which explains the zero mass of the boson. 

In general, the physical mechanism can be described as follows. There is a spinor of the field 
with the configuration  𝐟் ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓଴, 𝑓ଵሻ 

It  is  matched  with  a  spinor  of  coordinates  and  a  spinor  of  momentum  with  the  same 
configuration  𝐱் ൌ ሺ𝑥଴, 𝑥ଵ, 𝑥଴, 𝑥ଵሻ 𝐩் ൌ ሺ𝑝଴, 𝑝ଵ, 𝑝଴, 𝑝ଵሻ 

Actually,  the  same  configuration  combines  these  spinors  in  conjunction with  the  same  and 
simultaneous transformation using the same matrix of rotations and boosts M. Vectors in Minkowski 
space are formed from all three spinors in two ways ‐ using sigma matrices and gamma matrices. By 
means of sigma matrices three bosonic vectors are formed ‐ the zero length of the momentum vector 
provides zero mass, the zero length of the coordinate vector means motion with light speed, and the 
zero  length of  the  field vector corresponds  to  the absence of charge. Gamma matrices  form  three 
fermionic vectors ‐ non‐zero length of the momentum vector means the presence of mass, non‐zero 
length of the coordinate vector means motion with a sub light speed, and non‐zero length of the field 
vector means the presence of charge.   

The Dirac equation in the momentum representation is fulfilled here automatically, because at 
zero boost the field spinor and the momentum vector of the fermion have the form 𝐟𝑻 ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓଴, 𝑓ଵሻ 𝐏𝑻 ൌ ሺ𝑃଴, 0,0,0ሻ 
that is, they satisfy the Dirac equation, and at nonzero boost they transform coherently and continue 
to satisfy the equation. On the other hand, the sigma matrices translate triplet of spinors of the type   𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଵ, െ𝑏଴ሻ 
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into three vectors of non-zero length, and the gamma matrices translate into three vectors of 
zero length. 

As a summary, let us formulate the following. The properties of fields are not determined by the 
Klein‐Gordon and Dirac equations, but simply by the structure of spinors at zero boosts. The Klein‐
Gordon equation for a fermion is just a statement that its momentum is a vector of fixed length 𝑃଴ଶ െ 𝑃ଵଶ െ 𝑃ଶଶ െ 𝑃ଷଶ ൌ const 

The wave equation for a boson is just a statement that the momentum of, for example, a photon 
is a vector with zero length  𝑃଴ଶ െ 𝑃ଵଶ െ 𝑃ଶଶ െ 𝑃ଷଶ ൌ 0 

For the fermion, there is an equation stating that the current is a vector of fixed length 𝐹଴ଶ െ 𝐹ଵଶ െ 𝐹ଶଶ െ 𝐹ଷଶ ൌ const 
this equation is related to the law of conservation of charge. And for the photon, there is a second 
order equation stating that the electromagnetic potential is also a vector with zero length (taking into 
account A ≡ 𝐁)  𝐴଴ଶ െ 𝐴ଵଶ െ 𝐴ଶଶ െ 𝐴ଷଶ ൌ 0 

Dirac  equation  states  that  current  is  created only when  a  fermion moves. Dirac  equation  is 
written for a spinor, if a spinor satisfies it, then the vector obtained from it satisfies Klein‐Gordon 
equation,  the  reverse  is not  true. The vector obtained  from  the photon  spinor  satisfies  the Klein‐
Gordon equation, but the photon spinor does not satisfy the Dirac equation, but a first order equation 
similar to it. The fact that momentum vector of the photon and electromagnetic potential vector are 
inseparably related and change synchronously, similar to the synchrony of momentum and current 
transformations  in  the  fermion,  can be described by  the  first order  equation  similar  to  the Dirac 
equation. In the reference frame with zero boosts, analogous to the rest frame of the fermion, it is 
simply an algebraic relation, and with nonzero boosts the equation undergoes transformations from 
the Lorentz group. All this is true for complex spinors, so the statement about two physical degrees 
of freedom of photon and electron is not quite justified, formally the degrees of freedom are four, two 
for each spin of fermion or helicity of photon. 

The question arises what conclusions by analogy with the fermion can be made for the boson in 
its configuration  𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଵ∗, െ𝑏଴∗ሻ 𝐁𝑻 ൌ ሺ𝐵଴, 0,0,0ሻ 

If the boson had non‐zero mass and possessed a charge, it could only have this form of current 
vector at zero boosts, hence it would have to have momentum in this configuration   𝐏𝑻 ൌ ሺ𝑃଴, 0,0,0ሻ 
and  this  could be provided by  the  first‐order  equation  limiting  its  form,  analogous  to  the Dirac 
equation for the fermion. The real spinor with format   𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଵ, െ𝑏଴ሻ 
may be converted to the format  𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏଴, 𝑏ଵሻ 
by converting  𝛴ெ𝐛 

𝛴ெ ൌ ቌ1 00 1  0 00 00 00 0 0 1െ1 0ቍ ൌ ൬1 00 𝜎ெ ൰ 

By substituting this spinor into the Dirac equation for the fermion (𝛤𝝁 ≡ 𝛤ఓ)   ൫𝑖𝛤𝝁𝜕ఓ െ 𝑚൯𝐟 ൌ 0 

we obtain the first order equation for the boson 
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൫𝑖𝛤𝝁𝜕ఓ െ 𝑚൯𝛴ெ𝐛 ൌ 0 ൫𝑖ሺ𝛤𝝁𝛴ெሻ𝜕ఓ െ 𝑚𝛴ெ൯𝐛 ൌ 0 

For generality, in all the differential equations considered, one should substitute the boson and 
fermion spinors transformed by Lorentz with some angles of rotations and boosts, then when taking 
the  derivatives  in  the  equations  there will  be  additional  terms with  derivatives  from  angles  of 
rotations and boosts, which depend on the spinor and Minkowski space coordinates, since when a 
fermion moves in the boson field the speeds and momenta are not constants. 

Since vector B is a vector of the electromagnetic potential, and the electromagnetic potential may 
be included in the Dirac equation [6] ൫𝛤𝝁ሺ𝑖𝜕ఓ െ 𝑒𝐴ఓሻ െ 𝑚൯𝐟 ൌ 0 

then by substituting  𝐵ఓ  instead of  𝐴ఓ      𝐵ఓ ൌ 12 𝐛ற𝛴ఓ𝐛  
we get    ൬𝛤𝝁ሺ𝑖𝜕ఓ െ 𝑒 12 𝐛ற𝛴ఓ𝐛 ሻ െ 𝑚൰ 𝐟 ൌ 0 

In momentum space this equation has the form ൬𝛤𝝁 ൬𝑃ఓ െ 𝑒 12 𝐛ற𝛴ఓ𝐛 ൰ െ 𝑚௙൰ 𝐟ሺ𝐏ሻ ൌ 0 

The assumption used here is that momentum in the equation acts as a vector. Of course, in the 
usual treatment of the Dirac equation this is what is meant, but in the light of our consideration it is 
not at all obvious that it is the momentum vector and not the spinor that enters the equation. After 
all, f  is a spinor, and  there  is no such variable as  time  in spinor space. Nevertheless, we use  this 
assumption because it is convenient for writing the following form of the equation ൬𝛤𝝁 ൬12 𝐩௙ற𝛴ఓ𝐩௙ െ 𝑒 12 𝐛ற𝛴ఓ𝐛 ൰ െ 𝑚௙൰ 𝐟ሺ𝐩௙ሻ ൌ 0 

One is tempted to write this equation in a more interesting form ൬𝛤𝝁 ൬12 ሺ𝐩௙ െ √𝑒𝐛ሻற𝛴ఓሺ𝐩௙ െ √𝑒𝐛ሻ ൰ െ 𝑚௙൰ 𝐟ሺ𝐩௙ሻ ൌ 0 

but this transition requires justification.   
In what follows we will proceed from the assumption that the quantity  √𝑒𝐛  has the dimension 

of the momentum spinor and is essentially the momentum spinor of the boson 𝐩௕ ൌ √𝑒𝐛 
We can also assume a rigid dependence of the fermion spinor on the spinor of its momentum 

and the corresponding dependence of vectors 𝐟 ൌ േඨ 𝑒𝑚௘ 𝐩௘ 

𝐅 ൌ 𝑒𝑚௘ 𝐏௘ 

The squares of the charge and mass of the electron are simply notations for the squares of the 
length of the electronʹs field vector and its momentum vector 𝑒ଶ ≡ 𝜂ఓఔ𝐹ఓ𝐹ఔ 𝑚௘ଶ ≡ 𝜂ఓఔP௘ఓP௘ఔ 
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In turn, based on the ratio  𝐩௘ ൌ േට𝑚௘𝑒 𝐟 𝐏௘ ൌ 𝑚௘𝑒 𝐅 

we can add the momentum contributed by the fermion vector to the momentum in the equation for 
the boson (here we have also subtracted an additional contribution, but perhaps it should be added)   ൬ሺ𝛤𝝁𝛴ெሻ ൬𝑃ఓ െ 𝑚௘𝑒 12 𝐟ற𝛴ఓ𝐟 ൰  െ 𝑚௕𝛴ெ൰ 𝐛ሺ𝐩௕ሻ ൌ 0 

or using only spinors ൭ሺ𝛤𝝁𝛴ெሻ ൭12 ቆ𝐩௕ െ ට𝑚௘𝑒 𝐟 ቇற 𝛴ఓ ቆ𝐩௕ െ ට𝑚௘𝑒 𝐟 ቇ ൱ െ 𝑚௕𝛴ெ൱ 𝐛ሺ𝐩௕ሻ  ൌ 0 

As a result, we have two coupled equations for boson and fermion. They can be interpreted in 
such a way that if in one point of the spinor coordinate space there is a boson and a fermion, then 
each of them gives an addition to the momentum spinor of the other, proportional to its field spinor, 
the signs of these additions require specification. Addition of the boson spinor to the spinor of the 
fermion momentum changes its structure and the fermion ceases to be a fermion, but if we postulate 
a rigid uniformity of structures of the field and its momentum, the change of the momentum structure 
must lead to a change in the structure of its field, and it in turn gives an inverse contribution to the 
momentum of the interacting field. Perhaps such interdependence of the fields will allow us to find 
out the law of their interaction and evolution.   

Actually  𝐟 ൌ േඨ 𝑒𝑚௘ 𝐩௘ 

𝐅 ൌ 𝑒𝑚௘ 𝐏௘ 

is a simpler form of Dirac equation, which looks more complicated because it connects spinor of the 
electron with the of its momentum vector. But in fact it is reduced to a simple relation between spinors 
of the electron and its momentum.   

If for the combined spinor      𝐩௘ െ √𝑒𝐛 
we calculate the vector, then it turns out, for example, that if the electron was at rest and all three 
components  of  its momentum  vector were  equal  to  zero,  then  adding  to  the  spinor  the  boson 
momentum, that is, imposing an electromagnetic field, leads to a nonzero component of the electron 
momentum vector, that is, it moves under the action of the field. When field is absent we have   ቌ 3െ2െ2െ3ቍ    ቌെ25െ25 ቍ          ቌ13000 ቍ    ቌ 29െ200െ21ቍ 

after turning on the field (letʹs put the  √𝑒  at 0.01) we have ቌ 3െ2െ2െ3ቍ െ 0.01 ∗ ቌെ25െ25 ቍ          ቌ13.273െ0.1520െ0.232ቍ    
The energy of the fermion increases. In turn, the electron also affects the field 
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ቌെ25െ25 ቍ െ 0.01 ∗ ቌ 3െ2െ2െ3ቍ          ቌ29.271െ20.150െ21.23ቍ    
in the presence of the electron, the field energy increased and the vector potential changed, that is, 
there was  additional  radiation.  The  energy  of  both  particles  increased, which  is  apparently  not 
realistic. If you change the sign     ቌെ25െ25 ቍ ൅ 0.01 ∗ ቌ 3െ2െ2െ3ቍ          ቌ28.731െ19.850െ20.77ቍ    
then the magnitude of the potential and energy of the field have decreased, and the total energy of 
the two particles    13.273 ൅ 28.731 ൌ 42.004 
slightly increased. Apparently, the field energy was spent to accelerate the massive electron (the mass 
of the electron in our example is 13). The mass of the electron increased to 13.27 and the mass of the 
photon also became non‐zero 0.269, the total mass increased to 13.539. 

We used the same coefficient  √𝑒  to account for the effect of the electron on the field, which is 
apparently incorrect; in fact, the modified boson momentum has the form 𝐩௕ െ ට𝑚௘𝑒 𝐟 

but for our illustrative computational examples this is not fundamental.   
Here we can clarify the meaning of the Lorentz calibration 𝜕𝝁𝐴𝝁 ൌ 0 

which in the momentum vector space has the form ሺ𝐏௕ሻ𝝁𝐴𝝁 ൌ 0 
and taking into account the ratio  𝐩௕ ൌ √𝑒𝐛 𝐏௕ ൌ 𝑒𝐁 ൌ 𝑒𝐀 
we receive  𝑒𝐴𝝁𝐴𝝁 ൌ 0 
that is, the Lorentz calibration means zero length of the potential vector. And instead of the Coulomb 
calibration  𝐴𝟎 ൌ 0 
we use a similar condition  𝐴𝟐 ൌ 0 

But  in  our  case  calibration  is  not  an  artificially  imposed  external  condition,  but  a  natural 
consequence of the particular structure of the photon spinor. 

Let us apply our approach to the electromagnetic field tensor of a single photon 𝐹ఓఔ ൌ 𝜕ఓ𝐴ఔ െ 𝜕ఔ𝐴ఓ ൌ ሺ𝐏௕ሻ𝝁𝐴ఔ െ ሺ𝐏௕ሻఔ𝐴ఓ ൌ 𝐴𝝁𝐴ఔ െ 𝐴ఔ𝐴ఓൌ 𝐚ற𝛴ఓ𝐚𝐚ற𝛴ఔ𝐚 െ 𝐚ற𝛴ఔ𝐚𝐚ற𝛴ఓ𝐚 ൌ 𝟎 

Replacing the photonʹs momentum by its field  𝐩௕ ൌ √𝑒𝐛 ൌ √𝑒𝐚, we got a result in the form of 
zero electric and magnetic  fields, which  is a consequence of direct proportionality of momentum 
components to potential components.    The zero fields of a free photon are not something absurd. 
One can suppose that the direct proportionality of the momentum spinor to the field spinor takes 
place  only  for  a  free  photon,  and  if  it  interacts with  another  field,  there  is  an  addition  to  the 
momentum spinor, so that the direct proportionality of momentum and field no longer takes place. 
Therefore, the components of the electric and magnetic fields do not become equal to zero. We can 
say that the effect of the electromagnetic field is manifested only if there is an object for that effect. 
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As noted above,  the  spinor of  the photon momentum can be added  to  the  spinor of  the electron 
momentum with a plus or minus sign 𝐩௕ ൌ √𝑒𝐛 ൌ √𝑒𝐚, we got a  result  in  the  form of zero electric and magnetic  fields, which  is a 
consequence of direct proportionality of momentum  components  to potential  components.    The 
zero fields of a free photon are not something absurd. One can suppose that the direct proportionality 
of the momentum spinor to the field spinor takes place only for a free photon, and if it interacts with 
another  field,  there  is an addition  to  the momentum  spinor,  so  that  the direct proportionality of 
momentum and field no longer takes place. Therefore, the components of the electric and magnetic 
fields do not become equal to zero. We can say that the effect of the electromagnetic field is manifested 
only if there is an object for that effect. As noted above, the spinor of the photon momentum can be 
added to the spinor of the electron momentum with a plus or minus sign 𝐩௕ ൅ ට𝑚௘𝑒 𝐟 

In this case, the components of the electromagnetic field tensor have the form  ൬ට௠೐௘ ≡ 𝜆൰ 𝐹ఓఔ ൌ 𝜕ఓ𝐴ఔ െ 𝜕ఔ𝐴ఓ ൌ ሺ𝐏௕ሻ𝝁𝐴ఔ െ ሺ𝐏௕ሻఔ𝐴ఓൌ 14 ሺ𝐩௕ ൅ 𝜆𝐟ሻற𝛴ఓሺ𝐩௕ ൅ 𝜆𝐟ሻ𝐚ற𝛴ఔ𝐚 െ 14 ሺ𝐩௕ ൅ 𝜆𝐟ሻற𝛴ఔሺ𝐩௕ ൅ 𝜆𝐟ሻ𝐚ற𝛴ఓ𝐚ൌ 14 ൫√𝑒𝐚 ൅ 𝜆𝐟൯ற𝛴ఓ൫√𝑒𝐚 ൅ 𝜆𝐟൯𝐚ற𝛴ఔ𝐚 െ 14 ൫√𝑒𝐚 ൅ 𝜆𝐟൯ற𝛴ఔ൫√𝑒𝐚 ൅ 𝜆𝐟൯𝐚ற𝛴ఓ𝐚ൌ 14 ൫𝑒𝐚ற𝛴ఓ𝐚 ൅ √𝑒𝜆𝐚ற𝛴ఓ𝐟 ൅ 𝜆√𝑒𝐟ற𝛴ఓ𝐚 ൅ 𝜆𝟐𝐟ற𝛴ఓ𝐟൯𝐚ற𝛴ఔ𝐚െ 14 ൫𝑒𝐚ற𝛴ఔ𝐚 ൅ √𝑒𝜆𝐚ற𝛴ఔ𝐟 ൅ 𝜆√𝑒𝐟ற𝛴ఔ𝐚 ൅ 𝜆𝟐𝐟ற𝛴ఔ𝐟൯𝐚ற𝛴ఓ𝐚ൌ 14 ൫√𝑒𝜆𝐚ற𝛴ఓ𝐟 ൅ 𝜆√𝑒𝐟ற𝛴ఓ𝐚 ൅ 𝜆𝟐𝐟ற𝛴ఓ𝐟൯𝐚ற𝛴ఔ𝐚െ 14 ൫√𝑒𝜆𝐚ற𝛴ఔ𝐟 ൅ 𝜆√𝑒𝐟ற𝛴ఔ𝐚 ൅ 𝜆𝟐𝐟ற𝛴ఔ𝐟൯𝐚ற𝛴ఓ𝐚 𝐸௬ ൌ 14 ቀඥ𝑚௘𝐚ற𝛴଴𝐟 ൅ ඥ𝑚௘𝐟ற𝛴଴𝐚 ൅ 𝑚௘𝑒 𝐟ற𝛴଴𝐟ቁ 𝐚ற𝛴ଶ𝐚െ 14 ቀඥ𝑚௘𝐚ற𝛴ଶ𝐟 ൅ ඥ𝑚௘𝐟ற𝛴ଶ𝐚 ൅ 𝑚௘𝑒 𝐟ற𝛴ଶ𝐟ቁ 𝐚ற𝛴଴𝐚 𝐵௫ ൌ 14 ቀඥ𝑚௘𝐚ற𝛴ଷ𝐟 ൅ ඥ𝑚௘𝐟ற𝛴ଷ𝐚 ൅ 𝑚௘𝑒 𝐟ற𝛴ଷ𝐟ቁ 𝐚ற𝛴ଶ𝐚െ 14 ቀඥ𝑚௘𝐚ற𝛴ଶ𝐟 ൅ ඥ𝑚௘𝐟ற𝛴ଶ𝐚 ൅ 𝑚௘𝑒 𝐟ற𝛴ଶ𝐟ቁ 𝐚ற𝛴ଷ𝐚 

The field depends on the charge on which it acts, which is not surprising either, since the charge 
has its own field that distorts the external one. 

Thus, when finding the momentum vector, we sum the momentum spinors of the boson and 
fermion, and when finding the field vector, we do not sum the field spinors. This approach can be 
tried  to  apply  to Maxwell’s  equations.  In  this  case, we  replace  the derivative  of  the  field vector 
component on the coordinate vector component with the product of the corresponding momentum 
vector component and the field vector component.   𝜕ఓ𝐴ఔ ൌ ሺ𝐏௕ሻ𝝁𝐴ఔ ൌ 14 ሺ𝐩௕ ൅ 𝜆𝐟ሻற𝛴ఓሺ𝐩௕ ൅ 𝜆𝐟ሻ𝐚ற𝛴ఔ𝐚 ൌ 14 ൫√𝑒𝐚 ൅ 𝜆𝐟൯ற𝛴ఓ൫√𝑒𝐚 ൅ 𝜆𝐟൯𝐚ற𝛴ఔ𝐚 

In the left parts of Maxwell’s equations there are derivatives on the coordinate vector 
component of the electric or magnetic field component, for example 
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𝜕ఓ𝐸௬ ൌ 𝜕ఓ𝐹଴ଶ ൌ 𝜕ఓሺሺ𝐏௕ሻ଴𝐴ଶሻ െ 𝜕ఓሺሺ𝐏௕ሻଶ𝐴଴ሻൌ ሺ𝐏௕ሻ଴𝜕ఓ𝐴ଶ ൅ 𝐴ଶ𝜕ఓሺ𝐏௕ሻ଴ െ ሺ𝐏௕ሻଶ𝜕ఓ𝐴଴ െ 𝐴଴𝜕ఓሺ𝐏௕ሻଶൌ ሺ𝐏௕ሻ଴ሺ𝐏௕ሻఓ𝐴ଶ ൅ 𝐴ଶ𝜕ఓሺ𝐏௕ሻ଴ െ ሺ𝐏௕ሻଶሺ𝐏௕ሻఓ𝐴଴ െ 𝐴଴𝜕ఓሺ𝐏௕ሻଶൌ ሺ𝐏௕ሻఓሺሺ𝐏௕ሻ଴𝐴ଶ െ ሺ𝐏௕ሻଶ𝐴଴ሻ ൅ 𝐴ଶ𝜕ఓሺ𝐏௕ሻ଴ െ 𝐴଴𝜕ఓሺ𝐏௕ሻଶൌ ሺ𝐏௕ሻఓ𝐸௬ ൅ 𝐴ଶ𝜕ఓሺ𝐏௕ሻ଴ െ 𝐴଴𝜕ఓሺ𝐏௕ሻଶൌ ሺ𝐏௕ሻఓ𝐸௬ ൅ 𝐴ଶ ൭12 𝑒𝟐𝐴ఓ𝐴଴ ൅ 12 𝑚௘𝟐𝑒𝟐 𝐹ఓ𝐹଴ ൅ 12 ඥ𝑚௘𝜕ఓሺ𝐚ற𝛴଴𝐟 ൅ 𝐟ற𝛴଴𝐚ሻ൱
െ 𝐴଴ ൭12 𝑒𝟐𝐴ఓ𝐴ଶ ൅ 12 𝑚௘𝟐𝑒𝟐 𝐹ఓ𝐹ଶ ൅ 12 ඥ𝑚௘𝜕ఓሺ𝐚ற𝛴ଶ𝐟 ൅ 𝐟ற𝛴ଶ𝐚ሻ൱ 

where taken into account 𝜕ఓሺ𝐏௕ሻଶ ൌ 12 𝜕ఓ ቀሺ𝐩௕ ൅ 𝜆𝐟ሻற𝛴ఓሺ𝐩௕ ൅ 𝜆𝐟ሻቁൌ 12 𝜕ఓ൫𝐩௕ற𝛴ଶ𝐩௕ ൅ 𝜆𝐩௕ற𝛴ଶ𝐟 ൅ 𝜆𝐟ற𝛴ଶ𝐩௕ ൅ 𝜆𝟐𝐟ற𝛴ଶ𝐟൯ ൌൌ 12 𝜕ఓ ቀ𝑒𝐚ற𝛴ଶ𝐚 ൅ ඥ𝑚௘𝐚ற𝛴ଶ𝐟 ൅ ඥ𝑚௘𝐟ற𝛴ଶ𝐚 ൅ 𝑚௘𝑒 𝐟ற𝛴ଶ𝐟ቁൌ 12 𝜕ఓ ቀ𝑒𝐴ଶ ൅ ඥ𝑚௘𝐚ற𝛴ଶ𝐟 ൅ ඥ𝑚௘𝐟ற𝛴ଶ𝐚 ൅ 𝑚௘𝑒 𝐹ଶቁൌ 12 𝑒𝜕ఓ𝐴ଶ ൅ 12 𝑚௘𝑒 𝜕ఓ𝐹ଶ ൅ 12 ඥ𝑚௘𝜕ఓሺ𝐚ற𝛴ଶ𝐟 ൅ 𝐟ற𝛴ଶ𝐚ሻൌ 12 𝑒ሺ𝐏௕ሻఓ𝐴ଶ ൅ 12 𝑚௘𝑒 ሺ𝐏௘ሻఓ𝐹ଶ ൅ 12 ඥ𝑚௘𝜕ఓሺ𝐚ற𝛴ଶ𝐟 ൅ 𝐟ற𝛴ଶ𝐚ሻൌ 12 ሺ𝐏௕ሻఓሺ𝐏௕ሻଶ ൅ 12 ሺ𝐏௘ሻఓሺ𝐏௘ሻଶ ൅ 12 ඥ𝑚௘𝜕ఓሺ𝐚ற𝛴ଶ𝐟 ൅ 𝐟ற𝛴ଶ𝐚ሻ
ൌ 12 𝑒𝟐𝐴ఓ𝐴ଶ ൅ 12 𝑚௘𝟐𝑒𝟐 𝐹ఓ𝐹ଶ ൅ 12 ඥ𝑚௘𝜕ఓሺ𝐚ற𝛴ଶ𝐟 ൅ 𝐟ற𝛴ଶ𝐚ሻ 

In the process of this calculations there is a real vector 12 ൫𝐚ற𝛴ఓ𝐟 ൅ 𝐟ற𝛴ఓ𝐚൯ 

about which we can say that it characterizes the interaction of fields. 
Thus, in the  left parts of the Maxwell’s equations we can get rid of all derivatives, except for 

derivatives from the real vector of interaction  ଵଶ ൫𝐚ற𝛴ఓ𝐟 ൅ 𝐟ற𝛴ఓ𝐚൯, and in the right parts there are only 
the components of the field vector of currents F. But the derivative of the interaction vector remains 
a  problem.  Something  similar  can  be  applied  to  the  equation  of motion  of  the  electron  in  the 
electromagnetic field to also take into account the mutual influence of the fields. 

In quantum electrodynamics, to account for the interaction of the electron with the 
electromagnetic field, the Lagrangian includes the value 𝑒𝜂ఓఔ𝐹ఓ𝐵ఔ ൌ 𝑒𝜂ఓఔ൫𝐟ற𝛴ఓ𝐟൯ሺ𝐛ற𝛴ఔ𝐛ሻ 

Alternatively, we can consider another scalar quantity derived from the interaction vector just 
given  12 𝑒𝜂ఓఔ൫𝐟ற𝛴ఓ𝐟 ൅ 𝐛ற𝛴ఓ𝐛൯ሺ𝐟ற𝛴ఔ𝐟 ൅ 𝐛ற𝛴ఔ𝐛ሻ 
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or  12 𝑒𝜂ఓఔ൫ሺ𝐟 ൅ 𝐛ሻற𝛴ఓሺ𝐟 ൅ 𝐛ሻ൯ሺሺ𝐟 ൅ 𝐛ሻற𝛴ఔሺ𝐟 ൅ 𝐛ሻሻ 

It is clear from general considerations that when convolving the interaction vector into a scalar, 
we lose some information about this interaction. Interestingly, if both spinors  𝐟  and  𝐛  were bosons, 
then an additional equality would also be true 𝑒𝜂ఓఔ𝐹ఓ𝐵ఔ ൌ 𝑒𝜂ఓఔ൫𝐟ற𝛴ఓ𝐟൯ሺ𝐛ற𝛴ఔ𝐛ሻ ൌ 12 𝑒ሾ𝐟𝑻𝛴ெெ𝐛ሿ∗ሾ𝐟𝑻𝛴ெெ𝐛ሿ 𝛴ெெ ൌ ൬𝜎ெ 00 𝜎ெ ൰ 

Above we  considered  an  example  for  zero  angles  of  rotations  and  boosts. Let  us  see what 
changes if one of the fields is transformed by an MM matrix with arbitrary angles of rotations and 
boosts, e.g.   𝛼 ൌ ൭251൱       𝛽 ൌ ൭െ0.710.3 ൱  

First we transform the electron without changing the field ቌെ2.786 െ 2.282𝑖2.578 ൅ 1.685i5.493 െ 0.335iെ1.847 െ 1.5i ቍ    ቌെ25െ25 ቍ          ቌ 29.2െ20.672െ7.66714.054 ቍ    ቌ 29െ200െ21ቍ 

letʹs turn on the field ቌെ2.786 െ 2.282𝑖2.578 ൅ 1.685i5.493 െ 0.335iെ1.847 െ 1.5i ቍ െ 0.01 ∗ ቌെ25െ25 ቍ          ቌ 29.221െ20.795െ7.79414.143 ቍ    
ቌെ25െ25 ቍ ൅ 0.01 ∗ ቌെ2.786 െ 2.282𝑖2.578 ൅ 1.685i5.493 െ 0.335iെ1.847 െ 1.5i ቍ          ቌ 28.985െ19.8810.126െ21.089ቍ    

energy of the electron increased, the field energy decreased, and the total energy increased from 58.2 
to 58.206. The mass of the electron decreased from 13 to 12.675 and the mass of the photon became 
0.328, the total mass increased to 13.003. 

Now let us transform by means of the MM matrix the field without changing the state of the 
electron 

ቌ 3െ2െ2െ3ቍ    ቌ െ1.22 ൅ 3.092𝑖െ1.609 െ 0.805iെ1.22 ൅ 3.092iെ1.609 െ 0.805iቍ          ቌ13000 ቍ    ቌ14.285െ1.05111.9157.808 ቍ 

Letʹs see how the fields mutually influence each other ቌ 3െ2െ2െ3ቍ െ 0.01 ∗ ቌ െ1.22 ൅ 3.092𝑖െ1.609 െ 0.805iെ1.22 ൅ 3.092iെ1.609 െ 0.805iቍ          ቌ12.933െ0.045െ0.1450.093 ቍ    
ቌ െ1.22 ൅ 3.092𝑖െ1.609 െ 0.805iെ1.22 ൅ 3.092iെ1.609 െ 0.805iቍ ൅ 0.01 ∗ ቌ 3െ2െ2െ3ቍ          ቌ14.354െ1.00612.0627.7160ቍ    

the total energy increased again from 27.285 to 27.287, the field energy increased this time, but the 
energy  of  the  electron  decreased,  which  is  somewhat  strange.  The mass  of  the  electron  again 
decreased to 12.932 and the mass of the photon became 0.1, the total mass increased to 13.031. 
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Note that in these calculations we were not interested in the coordinates of the particles at all, 
we assumed only that they coincide. That is, our calculations are valid for any frame of reference, and 
at all transformations of fields the frame of reference did not change. This suggests that the mention 
of the coordinate transformation at definition of relativistic fields is superfluous, the only thing we 
postulate is the synchronicity of the transformation of the field and its momentum.   

We can switch  to another reference  frame by acting on  the coordinate,  field and momentum 
spinors with the same matrix MM with some angles of rotations and boosts. Then all energy values 
will change simply because of changes in kinetic energy, but the qualitative relations between field 
energies  in  the presence of  interaction and without  it will remain  the same. What really does not 
change at all when changing the coordinate system is the mass of particles. Without interaction the 
photon mass is always zero, in the presence of interaction it becomes non‐zero, and the electron mass 
changes, but these values of masses in the presence of interaction in any frame of reference are the 
same both in total and separately. 

Let us return to the question of choosing a sign to account for the interaction     𝐩௙ െ 0.01 ∗ 𝐩௕              𝐩௕ ൅ 0.01 ∗ 𝐩௙              
which we used in the above examples. With this choice, the total energy in the interaction always 
increases. If you choose both signs minus, then in the interaction of particles, one of which has the 
momentum transformed, in the same examples it turns out that the total energy decreases, although 
the total mass increases. In this regard, we can assume that the choice of the plus sign is correct. 

It is possible to increase the dimensionality of the spinor and to consider, for example, a spinor 
with six arbitrary complex components   𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ, 𝑏ହሻ 
and the corresponding matrices  𝑀𝑀𝑀 ൌ ൭𝑀 0 00 𝑀 00 0 𝑀൱ 

𝛴𝛴𝛴଴ ൌ ൭𝜎଴ 0 00 𝜎଴ 00 0 𝜎଴൱  𝛴𝛴𝛴ଵ ൌ ൭𝜎ଵ 0 00 𝜎ଵ 00 0 𝜎ଵ൱ 𝛴𝛴𝛴ଶ ൌ ൭𝜎ଶ 0 00 𝜎ଶ 00 0 𝜎ଶ൱  𝛴𝛴𝛴ଷ
ൌ ൭𝜎ଷ 0 00 𝜎ଷ 00 0 𝜎ଷ൱ 

Then still the vector    𝐵ఓ ൌ 12 𝐛ற𝛴𝛴𝛴ఓ𝐛  
will be Lorentzian and transformed by the matrix   𝛬 ఔఓ ൌ 12 Trሾ𝜎ఓ𝑀𝜎ఔ𝑀றሿ  

One  can  change  any  matrix  M  in  MMM  to  a  matrix  N  by  changing  the  σ  sign  in  the 
correspondingԛ position of the ΣΣΣ matrices. For example, if 𝑀𝑁𝑀 ൌ ൭𝑀 0 00 𝑁 00 0 𝑀൱ 
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𝛴𝛴𝛴଴ ൌ ൭𝜎଴ 0 00 𝜎଴ 00 0 𝜎଴൱ 𝛴𝛴𝛴ଵ ൌ ൭𝜎ଵ 0 00 െ𝜎ଵ 00 0 𝜎ଵ൱ 𝛴𝛴𝛴ଶ ൌ ൭𝜎ଶ 0 00 െ𝜎ଶ 00 0 𝜎ଶ൱ 𝛴𝛴𝛴ଷ
ൌ ൭𝜎ଷ 0 00 െ𝜎ଷ 00 0 𝜎ଷ൱ 

then the behavior of the spinor and the corresponding vector will not change. In this connection, we 
can consider only the variant with all matrices M and matrices 𝜎 entering only with plus. That is, one 
can limit oneself to sigma matrices and not to use gamma matrices, the differences between bosons 
and  fermions will be determined only by  the  structure of spinors with  the same way of  forming 
vectors from them. 

Let us leave the components of the spinor still complex, but not arbitrary. Let the spinor have 
the form  𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏଴, 𝑏ଵ, 𝑏଴, 𝑏ଵሻ 
then the vector B obtained from it will have a zero length, and if the spinor is real, it will also have a 
zero  component  in  the  y‐axis.  One  can  add  as many  𝑏଴, 𝑏ଵ pairs  to  the  spinor  as  one  wants, 
simultaneously increasing the dimensionality of all matrices, and the vector will always have these 
properties. This behavior can explain the ability of any number of bosons to be in the same quantum 
state. 

If the complex spinor has the form 𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଵ∗, െ𝑏଴∗, 0,0ሻ 
then the vector obtained from it has only one nonzero component   𝐁𝑻 ൌ ሺ𝐵଴, 0,0,0ሻ 

If we try to add a pair of components   𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଵ∗, െ𝑏଴∗, 𝑏଴, 𝑏ଵሻ 
or  𝐛𝑻 ൌ ሺ𝑏଴, 𝑏ଵ, 𝑏ଵ∗, െ𝑏଴∗, 𝑏ଵ∗, െ𝑏଴∗ሻ 
then all components of the vector are non‐zero, and we cannot get a vector with one zero component. 
That is, we cannot get a particle with zero momentum, that is, stationary in some frame of reference. 
In other words, a spinor corresponding to a fermion can have only two pairs of nonzero components 
connected by the relation  ൬𝑏ଶ𝑏ଷ൰ ൌ  ቀ 0 1െ1 0ቁ ൬𝑏଴∗𝑏ଵ∗൰ 

Only  such  a  spinor  can  possess  a  rest  system,  that  is,  exist  as  a  particle  of matter.  These 
conclusions are valid  for complex  spinors, but we must consider  the more particular case of  real 
spinors, since real bosons and fermions are considered to have only two degrees of freedom.   

If one considers a complex spinor with even number of components, one can already obtain a 
vector with zero momentum at zero boosts, for example, this is true for a spinor of the form 𝐟𝑻 ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓ଵ∗, െ𝑓଴∗, 𝑓଴, 𝑓ଵ, 𝑓ଵ∗, െ𝑓଴∗ሻ 
and also for a spinor of the form 𝐟𝑻 ൌ ሺ𝑓଴, 𝑓ଵ, 𝑓ଵ∗, െ𝑓଴∗, 𝑑଴, 𝑑ଵ, 𝑑ଵ∗, െ𝑑଴∗ሻ 

Let us  consider  in detail  the  structure of boson and  fermion  spinors  in a zero‐bust  frame of 
reference. Let us represent the complex boson spinor as a sum of spinors of special structure, about 
which it is customary to say that one of them has a helicity of one and the other minus one 

൮𝑏଴𝑏ଵ𝑏଴𝑏ଵ
൲ ൌ ൮𝑏଴0𝑏଴0 ൲ ൅ ൮ 0𝑏ଵ0𝑏ଵ൲ 
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Then from these three spinors we get three real vectors of zero length   

൮𝐵1଴ ൅ 𝐵2଴𝐵ଵ𝐵ଶ𝐵2଴ െ 𝐵1଴൲       ൮ 𝐵1଴00െ𝐵1଴൲        ൮𝐵2଴00𝐵2଴൲ 

As we see the vector of the boson, for example, the vector of electromagnetic potential is not 
equal  to  the  sum  of  vectors  corresponding  to  photons  of different  helicity. Let  us  represent  the 
complex spinor of a fermion as a sum of spinors, one of which is commonly referred to as having spin 
unity and the other minus unity 

⎝⎛
𝑓଴𝑓ଵ𝑓ଵ∗െ𝑓଴∗⎠⎞ ൌ ൮ 0𝑓ଵ𝑓ଵ∗0 ൲ ൅ ൮ 𝑓଴00െ𝑓଴∗൲ 

Then from these three spinors we get three real vectors   

ቌ𝐹1଴ ൅ 𝐹2଴000 ቍ ൌ ቌ𝐹1଴000 ቍ ൅ ቌ𝐹2଴000 ቍ 

The vector for a fermion, that is, the current vector, unlike the potential vector, is equal to the 
sum of vectors corresponding to fermions with different spins, in particular, the masses of fermions 
are summed up.   

Since all electrons are the same and have the same mass and charge at rest, we can express the 
field and momentum spinors of electrons with different spins at zero boosts through the mass and 
charge of the electron.   

⎝⎛
ඥ𝑚௘00െඥ𝑚௘⎠⎞        ⎝⎛

0ඥ𝑚௘ඥ𝑚௘0 ⎠⎞               ൮ √𝑒00െ√𝑒൲        ൮ 0√𝑒√𝑒0 ൲ 

A third kind of field can also be imagined, which is neither a boson nor a fermion 

൮ 𝑑଴𝑑ଵ𝑑଴െ𝑑ଵ
൲ ൌ ൮𝑑଴0𝑑଴0 ൲ ൅ ൮ 0𝑑ଵ0െ𝑑ଵ൲ 

൮𝐵1଴ ൅ 𝐵2଴00𝐵2଴ െ 𝐵1଴൲ ൌ ൮ 𝐵1଴00െ𝐵1଴൲ ൅ ൮𝐵2଴00𝐵2଴൲ 

this field, like the fermion, has non‐zero mass and non‐zero charge, but, unlike the fermion, creates a 
non‐zero current even at zero boosts. It, like boson, can be represented as a sum of fields with two 
different spins, each of them has zero mass, but unlike boson its vector is equal to the sum of vectors 
obtained from spinors with different spins. 

In [6] the solution of the Dirac equation for a free particle is sought as 

൮𝜓଴ሺ𝐗ሻ𝜓ଵሺ𝐗ሻ𝜓ଶሺ𝐗ሻ𝜓ଷሺ𝐗ሻ൲ ൌ ൮𝑢଴ሺ𝐏ሻ𝑢ଵሺ𝐏ሻ𝑢ଶሺ𝐏ሻ𝑢ଷሺ𝐏ሻ൲ exp൫െ𝑖𝜂ఓఔ𝑃ఓ𝑋ఔ൯ 
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that  is,  the scalar product of vectors  is used  to describe  the spinor  translation, even  though  these 
vectors are obtained from the corresponding spinors by the formulas     𝑃ఓ ൌ 12 𝐩ற𝛴ఓ𝐩  𝑋ఓ ൌ 12 𝐱ற𝛴ఓ𝐱  
and for the particular case of the boson the equality takes place 𝜂ఓఔ𝑃ఓ𝑋ఔ ൌ 12 ሾ𝐩𝑻𝛴ெெ𝐱ሿ∗ሾ𝐩𝑻𝛴ெெ𝐱ሿ 𝛴ெெ ൌ ൬𝜎ெ 00 𝜎ெ ൰ 

When considering the translation of a field described by a spinor, it is logical, at least in the case 
of a boson, to stay within the spinor representations and use the phase multiplier calculated directly 
from the spinors of coordinates and momentum. It is possible to represent the spinor field in the form 

൮𝜓଴ሺ𝐱ሻ𝜓ଵሺ𝐱ሻ𝜓ଶሺ𝐱ሻ𝜓ଷሺ𝐱ሻ൲ ൌ ൮𝑢଴ሺ𝐩ሻ𝑢ଵሺ𝐩ሻ𝑢ଶሺ𝐩ሻ𝑢ଷሺ𝐩ሻ൲ expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻ 

Note  that  this  phase  multiplier  is  a  scalar  quantity  and  does  not  change  in  Lorentz 
transformations. For the case of a fermion and in general for arbitrary four‐component spinors, the 
relation between the scalar products of vectors and their generating spinors does not hold, although 
they are both invariant under the Lorentz transformations. Then it is possible to put a question which 
way of calculating the phase multiplier at translations is more adequately describing the nature. At 
infinitesimal  translations  these  phase multipliers  are  close,  and  at  finite  translations  the  scalar 
product of spinors may be more adequate description. 

Let us compare the translations generated by a finite spinor of coordinates x in two ways 𝑋ఓ ൌ 12 𝐱ற𝛴ఓ𝐱  𝛹ఓ ൌ 12 𝛙ற𝛴ఓ𝛙  𝑃ఓ ൌ 12 𝐩ற𝛴ఓ𝐩  𝚿𝟏 ൌ 𝚿 ∗ exp൫െ𝑖𝜂ఘఙ𝑃ఘ𝑋ఙ൯ ൌ 𝚿 ∗ exp ൬െ𝑖 12 𝜂ఘఙሺ𝐩ற𝛴ఘ𝐩ሻሺ𝐱ற𝛴ఙ𝐱ሻ൰ 𝛙𝟐 ൌ 𝛙 ∗ expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻ 𝛹2ఓ ൌ 12 𝛙𝟐ற𝛴ఓ𝛙𝟐 ൌ  12 ሺ𝛙 ∗ expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻሻற𝛴ఓሺ𝛙 ∗ expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻሻ 𝛹1ఓ ൌ 𝛹ఓ ∗ exp ൬െ𝑖 12 𝜂ఘఙሺ𝐩ற𝛴ఘ𝐩ሻሺ𝐱ற𝛴ఙ𝐱ሻ൰ൌ 12 𝛙ற𝛴ఓ𝛙 ∗ exp ൬െ𝑖 12 𝜂ఘఙሺ𝐩ற𝛴ఘ𝐩ሻሺ𝐱ற𝛴ఙ𝐱ሻ൰ 
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𝛹2ఓ𝛹1ఓ ൌ ሺ𝛙 ∗ expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻሻற𝛴ఓሺ𝛙 ∗ expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻሻ𝛙ற𝛴ఓ𝛙 ∗ exp ቀെ𝑖 12 𝜂ఘఙሺ𝐩ற𝛴ఘ𝐩ሻሺ𝐱ற𝛴ఙ𝐱ሻቁ 
ൌ ሺexpሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻሻற𝛙ற𝛴ఓ𝛙 expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻ𝛙ற𝛴ఓ𝛙 ∗ exp ቀെ𝑖 12 𝜂ఘఙሺ𝐩ற𝛴ఘ𝐩ሻሺ𝐱ற𝛴ఙ𝐱ሻቁ 
ൌ ሺexpሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻሻ∗ expሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻexp ቀെ𝑖 12 𝜂ఘఙሺ𝐩ற𝛴ఘ𝐩ሻሺ𝐱ற𝛴ఙ𝐱ሻቁ 
ൌ exp ൭ሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻ∗ ൅ ሺെ𝑖𝐩𝑻𝛴ெெ𝐱ሻ െ ቆെ𝑖 12 𝜂ఘఙ൫𝐩ற𝛴ఘ𝐩൯ሺ𝐱ற𝛴ఙ𝐱ሻቇ൱
ൌ exp ൭െ𝑖 ቆሺ𝐩𝑻𝛴ெெ𝐱ሻ∗ ൅ 𝐩𝑻𝛴ெெ𝐱 െ 12 𝜂ఘఙ൫𝐩ற𝛴ఘ𝐩൯ሺ𝐱ற𝛴ఙ𝐱ሻቇ൱ 

This ratio is a complex number with unit module, invariant to Lorentz transformations. If we 
treat the square of the field vector modulus as a probability density, nothing will change for a free 
particle, but the interference pattern will be different for interfered particles. 

For boson the formula is simplified 𝛹2ఓ𝛹1ఓ ൌ exp ቆെ𝑖 ൬ሺ𝐩𝑻𝛴ெெ𝐱ሻ∗ ൅ 𝐩𝑻𝛴ெெ𝐱 െ 14 ሾ𝐩𝑻𝛴ெெ𝐱ሿ∗ሾ𝐩𝑻𝛴ெெ𝐱ሿ൰ቇ 

What is the fundamental difference between spinor and vector translation? It consists in the fact 
that phase  𝜂ఘఙ𝑃ఘ𝑋ఙ  is a real number and phase  𝐩𝑻𝛴ெெ𝐱  is a complex number. Consequently, the 
phase in spinor translation carries more information that is important in the superposition of field 
propagation paths. In particular, in vector translation the exponent is always a real value multiplied 
by the imaginary unit, so the modulus of the exponent is unity, the plane wave does not attenuate, 
and the attenuation is taken into account by dividing by some degree of the distance between the 
starting point and the end point. In spinor translation, the phase is complex and the modulus of the 
exponent can be less than unity, which will cause attenuation without additional division by distance. 
As an example, the experiment with the passage of an electron through two slits may be considered. 
The process can be described by the following logical sequence of events 𝛙𝟏 ൌ 𝛙𝟎 ∗ 𝑒𝑥𝑝ሺെ𝑖𝐩𝟎𝑻𝛴ெெሺ𝐱𝟏 െ 𝐱𝟎ሻሻ 𝛙𝟐 ൌ 𝛙𝟎 ∗ 𝑒𝑥𝑝ሺെ𝑖𝐩𝟎𝑻𝛴ெெሺ𝐱𝟐 െ 𝐱𝟎ሻሻ 𝐩𝟏 ൌ ට𝑚௘𝑒  𝛙𝟏 𝐩𝟐 ൌ ට𝑚௘𝑒  𝛙𝟐 𝛙𝟑𝟏 ൌ 𝛙𝟏 ∗ 𝑒𝑥𝑝ሺെ𝑖𝐩𝟏𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟏ሻሻ 𝛙𝟑𝟐 ൌ 𝛙𝟐 ∗ 𝑒𝑥𝑝ሺെ𝑖𝐩𝟐𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟐ሻሻ 
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𝛙𝟑 ൌ 𝛙𝟑𝟏 ൅ 𝛙𝟑𝟐ൌ  𝛙𝟏 ∗ 𝑒𝑥𝑝ቀെ𝑖𝐩𝟏𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟏ሻቁ ൅ 𝛙𝟐 ∗ 𝑒𝑥𝑝ቀെ𝑖𝐩𝟐𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟐ሻቁൌ 𝛙𝟎 ∗ 𝑒𝑥𝑝ሺെ𝑖𝐩𝟎𝑻𝛴ெெሺ𝐱𝟏 െ 𝐱𝟎ሻሻ ∗ 𝑒𝑥𝑝ቀെ𝑖𝐩𝟏𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟏ሻቁ ൅ 𝛙𝟎∗ 𝑒𝑥𝑝ሺെ𝑖𝐩𝟎𝑻𝛴ெெሺ𝐱𝟐 െ 𝐱𝟎ሻሻ ∗ 𝑒𝑥𝑝ቀെ𝑖𝐩𝟐𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟐ሻቁൌ 𝛙𝟎 ∗ 𝑒𝑥𝑝ቀെ𝑖𝐩𝟎𝑻𝛴ெெሺ𝐱𝟏 െ 𝐱𝟎ሻ െ 𝑖𝐩𝟏𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟏ሻቁ ൅ 𝛙𝟎∗ 𝑒𝑥𝑝ቀെ𝑖𝐩𝟎𝑻𝛴ெெሺ𝐱𝟐 െ 𝐱𝟎ሻ െ 𝑖𝐩𝟐𝑻𝛴ெெሺ𝐱𝟑 െ 𝐱𝟐ሻቁ 

Note another difference  in  the properties of boson and  fermion spinors. Their corresponding 
vectors can also be found by the formulas 𝐵ఓ ൌ 12 Trሾሺ𝐛𝐛றሻ𝛴ఓሿ   𝐹ఓ ൌ 12 Trሾሺ𝐟𝐟றሻ𝛴ఓሿ   
and we can form spintensors from the vectors 𝑆௙ ൌ ෍ 𝐵ఓ𝛴ఓఓ   

𝑆௙ ൌ ෍ 𝐹ఓ𝛴ఓఓ   
Though the determinant of the direct product of both spinors is zero 𝑑𝑒𝑡 ሺ𝐛𝐛றሻ ൌ 0        𝑑𝑒𝑡 ሺ𝐟𝐟றሻ ൌ 0     

this is not the case for the determinants of spintensors; for the boson it is also zero, and for the fermion 
it is equal to the square of the vector length 𝑑𝑒𝑡 𝑆௕ ൌ 0        𝑑𝑒𝑡 𝑆௙ ൌ ሺ𝐅்𝜂𝐅ሻ𝟐     

Letʹs try to find an explanation of why the boson obeys the Bose statistic and the fermion the 
Fermi statistic. Bosons with one or another definite helicity, as well as their sum, have the form of a 
four‐component spinor   

൮𝑏଴𝑏ଵ𝑏଴𝑏ଵ
൲ ൌ ൮𝑏଴0𝑏଴0 ൲ ൅ ൮ 0𝑏ଵ0𝑏ଵ൲ 

You can  join another spinor of the same kind with half  the overlap and get a six‐component 
spinor 

⎝⎜
⎜⎛

𝑏଴𝑏ଵ𝑏଴𝑏ଵ𝑏଴𝑏ଵ⎠⎟
⎟⎞ ൌ ⎝⎜⎜

⎛𝑏଴0𝑏଴0𝑏଴0 ⎠⎟⎟
⎞ ൅ ⎝⎜⎜

⎛ 0𝑏ଵ0𝑏ଵ0𝑏ଵ⎠⎟⎟
⎞
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This combination can be thought of as two bosons in the same quantum state. Since the bosons 
are coupled, they are not independent. Another boson in the same state can be added to them with 
the same overlap and so on to infinity. If n photons are coupled, the chain length is n+1 identical pairs, 
i.e. if a photon is born from a vacuum state, it contains two pairs at once, and each next born photon 
adds only one pair.   

It is impossible to join two fermions with half overlap; the only possibility is to join two fermions 
with different spins 

⎝⎛
𝑓଴𝑓ଵ𝑓ଵ∗െ𝑓଴∗⎠⎞ ൌ ൮ 0𝑓ଵ𝑓ଵ∗0 ൲ ൅ ൮ 𝑓଴00െ𝑓଴∗൲ 

that is why fermions cannot be in the same state. 
How to explain the presence of antiparticles in the framework of the considered concept? The 

simplest way is to use the opposite sign of the matrix sigma in the transition from spinors to vectors. 
Then we get negative energy, opposite sign charge and even negative time. In this case there is no 
difference between spinors of the particle and antiparticle and it is not clear what controls the choice 
of a sign sigma when creating a vector from them. It would be more logical to assume the difference 
between particles and antiparticles already at  the  level of  spinors,  for example,  the  spinor of  the 
antiparticle is equal to the spinor of the particle multiplied by the imaginary unit, but the complex 
conjugation in the formula for a vector leads to the fact that the energy is still positive. If we remove 
the  conjugation  from  the  formula,  the  vector  is  complex  and  then  its  physical  interpretation  is 
incomprehensible. 

Suppose that each fermion and boson has a label ‐ plus or minus. The sign determines the sign 
of the sigma matrices, which form the vector from the spinor. If the fermion and antifermion meet, 
that  is,  have  the  same  coordinate,  then  the  components  of  all  spinors  ‐  field,  coordinate  and 
momentum are transformed by the law   ቆ𝑓ଶᇱ𝑓ଷᇱቇ ൌ  ቀ 0 1െ1 0ቁ ൬𝑓ଶ∗𝑓ଷ∗൰ 

The  fermions become bosons, but  retain  the  label  sign. So,  they  lose  charge and mass,  their 
coordinates remain the same, but their vectors now have zero  length;  in addition, the momentum 
vectors  change  immediately.  If,  for  example,  they  had  zero  components,  i.e.  particles  were 
motionless, they acquire non‐zero components of opposite sign because of different signs of sigma, 
bosons fly in opposite directions with light speed, energy of each particle with its sign remains the 
same, and the law of conservation of momentum vector for each separate component is also satisfied. 
Let us illustrate the interaction process by a numerical example for spinors and vectors of a fermion 
and an antifermion with the same spinor, but different labels before 

⎝⎜
⎛ ൅3െ2െ2െ3⎠⎟

⎞   ൮ െ3െ2െ2െ3൲          ቌ13000 ቍ   ቌെ13000 ቍ 

and after the interaction 

⎝⎛
൅3െ23െ2⎠⎞   ൮ െ3െ23െ2൲          ቌ 13െ1205 ቍ   ቌെ13120െ5 ቍ 

Using a different  label sign  for  the coordinate spinor causes  the corresponding vectors  to be 
different when the coordinate spinors coincide and the particles cannot meet in vector space. Or it is 
necessary to accept the artificial assumption that the label signs act on the sign of the sigma matrices 
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only in the formation of the momentum vector and the field, i.e. the assumption about the possibility 
of changing the sign of time is rejected. We are forced to assume that the coordinate spinor always 
has a plus sign, otherwise it would not make sense for the momentum spinor to have a minus sign, 
because if both the coordinate and momentum spinors have a minus sign, their scalar product is still 
positive, the phase multiplier remains the same and both particles fly in the same direction. That is, 
we distinguish the coordinate spinor space, which is always transformed to a vector with a positive 
label, and the field and momentum spinors can have both plus and minus labels. But there are still 
spinors of different types ‐ bosonic and fermionic spinors in coordinate spinor space. 

If  one  proceeds  from  the  assumption  that  the  coordinate  spinor  of  some  field  repeats  the 
structure of the spinor of that field, the question arises whether one can obtain from the coordinate 
spinor of a boson a vector which can also be obtained from some coordinate spinor of a fermion, that 
is, whether a boson and a fermion can meet at one point of Minkowski space.    If not, we will have 
to  reject  the hypothesis  that a coordinate spinor can have a definite structure and admit  that  the 
structure of the coordinate spinor corresponding to the field spinor can be arbitrary. One can also 
consider  the  intermediate  assumption  that  the  coordinate  spinor  of  the  boson  necessarily  has  a 
bosonic structure, because the boson must move at light speed, while the coordinate spinor of the 
fermion can have an arbitrary structure, other than bosonic one, since the fermion can be at any point 
in vector space. 

The coordinate vector of the photon moving with the speed of light cannot coincide with the 
coordinate vector of the electron having a sub light speed, because then the vectors would have the 
same  length, but  the boson has zero  length and  the  fermion does not. But at  their  interaction  the 
photon acquires mass and its speed becomes less than the speed of light and the argument about the 
impossibility of coincidence does not work. Not coordinate vectors in pure form should coincide, but 
coordinates modified taking into account the interaction 

Both boson and fermion consist of a pair of coupled two‐component spinors and have a common 
plus or minus label, but we can assume that under certain conditions these two‐component spinors 
can exist independently without being coupled. Each has its own plus or minus label, if two spinors 
with the same  label are coupled you get a boson with either two minuses or two pluses,  i.e. their 
common sign may be different. If two spinors with different signs are coupled, you get a fermion, 
and their common sign may also be different, because the first spinor in the pair may be minus and 
the second plus, and vice versa. Suppose once the total energy of the world was high, and all spinors 
existed separately, then they bonded together into bosons, fermions, antifermions, and antibosons.   
When they interact, they decouple and recouple, sometimes in a different order. For this interaction 
matter fermions must be accelerated to provide the energy of uncoupling, and matter and antimatter 
fermions interact spontaneously. 

Let us consider the mechanism that leads to a change in the sign of the wave function during the 
interchange of coordinates of two electrons. In Minkowski space, electrons are represented by vectors 
whose spatial parts represent a three‐dimensional vector with a certain direction. Interchange can be 
performed by rotating the entire three‐dimensional space so that the coordinate points swap places. 
In this case, the direction of the electron field vector will change and to bring the picture to its original 
form it is necessary to rotate each field vector by a certain angle. To rotate the vectors by this angle, 
it is necessary to rotate the corresponding spinor by half the angle. If we sum up the angles of rotation 
of the two electron vectors, we should get 360 degrees and the total angle of rotation of the spinors 
respectively 180 degrees.  If  the wave  function of  the system  includes among others  two complex 
multipliers in the form of field spinors, their rotation by a total angle of 180 degrees (the angles are 
included  in the exponents of the factors, so they sum up) will change the sign of the whole wave 
function of the system. This can be demonstrated most clearly in the case where both field vectors lie 
in the same plane and this plane, together with the entire space, rotates flat around the middle of the 
segment connecting the electron locations. After rotation, the field vectors turn out to be rotated and 
to bring the whole picture to its original state it is necessary to rotate them in this plane by 180 degrees 
each, for which the spinors must be rotated by 90 degrees each. 
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For realization of the given mechanism it is necessary that the state of the system of particles is 
described by some product of exponents from quantities, in general case being matrices. Since the 
change of a sign of the state of the system at the exchange of particles is considered proved, this is an 
indirect confirmation that the state of the system should be described by such product of exponents. 

The transition to consideration of the electron as a complex spinor, as opposed to a real vector, 
allowed taking  into account the  interference of particles, but this transition was not complete, the 
coordinates and momentum  continue  to be  considered as vectors, while  they  also have a  spinor 
nature.  In addition,  the photon  field also  continues  to be  treated as a vector, although  it  too  is a 
complex spinor and therefore also subject to interference. Including a complex spinor rather than a 
real vector  in  the wave  function  is  justified because  it allows one not  to  lose  the  information  that 
determines interference in the interaction of fields. In particular, if one ignores the spinor complex 
essence of the photon, one cannot account for its interference properties. But after all the calculations 
are done, it is necessary to go to the real values. The transition from a complex spinor to a real vector 
using  Pauli matrices  performs  the  same  task  as  the  transition  in  quantum mechanics  from  the 
complex wave function to the square of its modulus. Quantum mechanics, in a sense, is a special case 
of quantum field theory, in which there are not four dimensions, but only one, and in which of four 
Pauli matrices  only  the  zero  index,  i.e.  unit matrix,  is  used. While  quantum mechanics  treats 
probability as a real number, quantum field theory deals with probability as a four‐dimensional real 
vector. The place of the probability amplitude, which in quantum mechanics is a complex number, 
in quantum field theory is taken by a complex spinor. 

Letʹs try to connect the theory with experiment. Letʹs take the usual formula for the interaction 
of the electron with the electromagnetic field in the presence of only one photon 𝑃ఓ െ 𝑒𝐴ఓ ൌ 𝑃ఓ െ 𝑒 12 𝐚ற𝛴ఓ𝐚 

The field of one photon in the experiment is difficult to measure, so let us assume that the field 
is  formed  by  n  photons  in  the  same  state, which  corresponds  to  a  chain  of  n+1  identical  two‐
component spinors, one photon consisting of two such spinors. Hence the potential of n photons is ௡ାଵଶ   times the field of one photon. We will consider an electron as a single one. 𝑃ఓ െ 𝑒 𝑛 ൅ 12 𝐴ఓ ൌ 12 𝐩௘ற𝛴ఓ𝐩௘ െ 𝑒 𝑛 ൅ 12 12 𝐚ற𝛴ఓ𝐚 

Letʹs find the correction for the interaction of one electron with one photon ൬12 ሺ𝐩௘ െ √𝑒𝐚ሻற𝛴ఓሺ𝐩௘ െ √𝑒𝐚ሻ ൰ ൌ 12 𝐩௘ற𝛴ఓ𝐩௘ ൅ 𝑒 12 𝐚ற𝛴ఓ𝐚 െ 12 √𝑒൫𝐩௘ற𝛴ఓ𝐚 ൅ 𝐚ற𝛴ఓ𝐩௘൯ൌ 𝑃ఓ ൅ 𝑒𝐴ఓ െ 12 √𝑒൫𝐩௘ற𝛴ఓ𝐚 ൅ 𝐚ற𝛴ఓ𝐩௘൯ 

Here the field action appears with a plus sign, while in the conventional formula there is a minus 
sign. Letʹs try to assume for a while that the sign in the interaction is really plus 𝑃ఓ ൅ 𝑒𝐴ఓ ൌ 𝑃ఓ ൅ 𝑒 12 𝐚ற𝛴ఓ𝐚 

Letʹs subtract the correction and set the task to check in the experiment which formula is more 
correct  𝑃ఓ ൅ 𝑒 12 𝐚ற𝛴ఓ𝐚 െ 12 √𝑒൫𝐩௘ற𝛴ఓ𝐚 ൅ 𝐚ற𝛴ఓ𝐩௘൯ 

For a real experiment with a strong enough field it is necessary to compare two formulas 𝑃ఓ ൅ 𝑒 𝑛 ൅ 12 𝐴ఓ ൌ 12 𝐩௘ற𝛴ఓ𝐩௘ ൅ 𝑒 𝑛 ൅ 12 12 𝐚ற𝛴ఓ𝐚 

and 
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𝑃ఓ ൅ 𝑒 𝑛 ൅ 12 𝐴ఓ െ 𝑛 12 √𝑒൫𝐩௘ற𝛴ఓ𝐚 ൅ 𝐚ற𝛴ఓ𝐩௘൯ൌ 12 𝐩௘ற𝛴ఓ𝐩௘ ൅ 𝑒 𝑛 ൅ 12 12 𝐚ற𝛴ఓ𝐚 െ 𝑛 12 √𝑒൫𝐩௘ற𝛴ఓ𝐚 ൅ 𝐚ற𝛴ఓ𝐩௘൯ 

Here we have assumed that the correction for n photons for interaction with one electron is n 
times greater than for the electron with one photon, although it may be that the correct ratio is  ௡ାଵଶ  
times greater, this question needs clarification. In the experiment we could measure the magnitude 
of the field  𝑒 ௡ାଵଶ 𝐴ఓ  and the momentum  𝑃ఓ, use them to calculate the spinors  𝐚  and  𝐩, then apply 
them  to  the  corrected  formula; we do not know  the number of photons n. To avoid  the need  to 
calculate their number, we may consider  𝑛  to be large, and neglect the difference with  𝑛 ൅ 1. Then 
the  question  remains whether  to  use  the  correction  for  one  photon with multiplier  𝑛   or with 
multiplier    ௡ାଵଶ , it depends on whether the electron interacts with each photon separately ‐ then the 
coefficient will  be  𝑛 ,  or  it  interacts with  a  chain  of  overlapping  photons  as  a whole  ‐  then  the 
coefficient will be  ௡ାଵଶ . There also remains the question of the sign of the interaction of the electron 
with the field  𝑃ఓ േ 𝑒𝐴ఓ, since we are looking for a correction contribution with a plus sign, while the 
standard formula includes a minus.   

4. Spintensor model of quantum system 

Let us  consider  a  representation  of  a  quantum  system  of  several particles  having  the  same 
coordinates. The question about the possibility of coincidence of coordinates of a boson and a fermion 
will  be  left without  consideration  for  the moment.  For  each  four‐component  spinor  𝐬𝐢   we will 
correspond to the spintensor  𝑆௜ ൌ 𝐬𝐢𝐬𝐢ற   
from which we can obtain the vector  ሺ𝑉௜ሻఓ ൌ 12 Trሾሺ𝑆௜ሻ𝛴ఓሿ 

Then a system of n field spinors with the same coordinates is matched to a spintensor in the form 
of a product of the spintensors, obtained from these spinors, as well as the corresponding vector 𝑆 ൌ 𝚷𝑆௜   𝑉ఓ ൌ 12 Trሾ𝑆𝛴ఓሿ 

Since all rotations and boosts are realized by multiplying the spinor by square matrices which 
are exponents of other square matrices, it seems logical to represent the spintensor in the same form, 
namely, as an exponent of its logarithm. During the transformation, the spintensor is multiplied by 
the transformation matrix twice, on the left and on the right; in general, this will look like the product 
of the exponent of the spintensor logarithm by the product of the transformation matrices in the form 
of  exponents on  the  left and by  the product of  these  transformation matrices on  the  right  in  the 
opposite order. If there are several particles, their set can be represented as the product of 𝑆 ൌ 𝚷𝑆௜ ൌ 𝚷𝑒𝑥𝑝ሺ𝑙𝑛ሺ𝑆௜ሻሻ ൌ 𝑒𝑥𝑝ሺ𝑙𝑛ሺ𝚷𝑆௜ሻሻ  

If the matrices  𝑙𝑛ሺ𝑆௜ሻ  commutate with each other, which is wrong in the general case, then the 
exponent of their sum would be equal to the product of the exponents from the logarithms, that is, 
simply the product of the spintensors 𝑆 ൌ 𝑒𝑥𝑝ሺ𝚺𝑙𝑛ሺ𝑆௜ሻሻ ൌ 𝚷𝑒𝑥𝑝ሺ𝑙𝑛ሺ𝑆௜ሻሻ ൌ 𝚷𝑆௜ 

At finite angles of turns and boosts there is no coincidence, but perhaps the exponent from the 
sum of logarithms of spintensors reflects reality more adequately than the product of spintensors, 
and both representations have Lorentz  invariance, and at  infinitesimal angles of  turns and boosts 
both descriptions coincide in the limit. 
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Let us also touch upon the question of the interaction of particles. When studying the interaction 
of electrons, a complex value is used  𝐟ଵற𝛴ఓ𝐟ଶ  
which  describes  the  interaction  of  two  fermions. Unified  spinor  description  allows  constructing 
similar Lorentz invariant complex vectors for any combination of bosons and fermions 𝐛ଵற𝛴ఓ𝐛ଶ                 𝐟ଵற𝛴ఓ𝐛ଶ 

or use a more convenient real vector  12 𝐟ଵற𝛴ఓ𝐛ଶ ൅ 12 𝐛ଶற𝛴ఓ𝐟ଵ 

As an alternative way to describe the interaction, we can consider a vector of symmetrized sum, 
generalizing it to three or more particles 16 𝐬ଵற𝛴ఓ𝐬ଶ ൅ 16 𝐬ଶற𝛴ఓ𝐬ଵ ൅ 16 𝐬ଶற𝛴ఓ𝐬ଷ ൅ 16 𝐬ଷற𝛴ఓ𝐬ଶ ൅ 16 𝐬ଷற𝛴ఓ𝐬ଵ ൅ 16 𝐬ଵற𝛴ఓ𝐬ଷ 

this vector is real for any number of particles. 
There is a right to exist also a variant of a simple summation of field spinors for particles having 

the same coordinates    ሺ𝐬ଵ ൅ 𝐬ଶ ൅ 𝐬ଷሻற𝛴ఓሺ𝐬ଵ ൅ 𝐬ଶ ൅ 𝐬ଷሻ 

5. Conclusion 

The description of the electromagnetic field in the form of a four‐component complex spinor, 
from which a vector of electromagnetic potential with  two degrees of  freedom, calibrated by  two 
conditions ‐ zero length and zero component in the y‐axis ‐ is obtained with the help of Pauli matrices.   

A similar approach is applied to the field of a fermion, such as an electron. A unified way to 
describe bosons and fermions in spinor space is proposed. It is shown that bosons and fermions, of 
which  the  electron  and  the  photon  are  examples,  can  be  described  by  complex  spinors whose 
structure determines whether  they belong  to a boson or a  fermion. Each  spinor by means of  the 
universal formula corresponds to a real vector, in the case of a fermion it is a current vector, in the 
case of a boson it is a vector, for example, of the electromagnetic potential. Each spinor of a field is 
matched with a spinor of coordinates and a spinor of momentum, which are transformed by the same 
Lorentz transformations and which have the same structure as the corresponding field spinor, that 
is, momentum  and  coordinates of boson have  a bosonic  spinor  structure, while momentum  and 
coordinates  of  fermion  have  a  fermionic  spinor  structure.  The  field,  coordinate  and momentum 
vectors formed from spinors by the universal formula automatically have a zero length for the boson, 
while for the fermion they all have a nonzero length, so the fermion, in contrast to the boson, has a 
nonzero mass, a nonzero charge and moves with a sub light speed. 

If we assume that all particles, as well as their impulses and coordinates, are spinors, then their 
interaction, as well as their evolution in time (which does not exist in spinor space in an explicit form) 
and propagation in space should be studied and described in two‐dimensional complex spinor space, 
and then the obtained results should be expressed in terms of real vector space. 
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