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Improved DeepSORT‐Based Object Tracking in 
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Isaac Ogunrinde * and Shonda Bernadin 
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*  Correspondence: isaac1.ogunrinde@famu.edu 

Abstract: The presence of fog in the background can prevent small and distant objects from being 
detected,  let alone  tracked. Under safety‐critical conditions, multi‐object  tracking models require 
faster‐tracking  speed while maintaining  high  object‐tracking  accuracy.  The  original DeepSORT 
algorithm used YOLOv4 for the detection phase, and a simple neural network for deep appearance 
descriptor. Consequently,  the  feature map generated  loses relevant details about  the  track being 
matched with a given detection in fog. Targets with a high degree of appearance similarity on the 
detection frame are more likely to be mismatched, resulting in identity switches or track failures in 
heavy fog. We propose an improved multi‐object tracking model based on the DeepSORT algorithm 
to im‐prove tracking accuracy and speed under foggy weather conditions. First, we employed our 
camera‐radar  fusion network  (CR‐YOLOnet)  in  the detection phase  for  faster and more accurate 
object detection. We proposed an appearance  feature network  to replace  the basic convolutional 
neural network. We incorporated GhostNet to take the place of the traditional convolutional layers 
to  generate  more  features  and  reduce  computational  complexities  and  cost.  We  adopted  a 
segmentation module and  fed  the semantic  labels of  the corresponding  input  frame  to add  rich 
semantic  information  to  the  low‐level  appearance  feature  maps.  Our  proposed  method 
outperformed YOLOv5 + DeepSORT with a 35.15%  increase  in multi‐object  tracking accuracy, a 
32.65%  increase  in multi‐object  tracking precision,  the  speed  increased  by  37.56%,  and  identity 
switches decreased by 46.81%. 

Keywords:  Multi‐object  tracking,  DeepSORT,  object  detection,  sensor  fusion,  deep  learning,   
autonomous vehicles, radars, adverse weather, fog 

 

1. Introduction 

Object tracking is constantly determining a moving objectʹs trajectory from measurements taken 
by one or more sensors [1]. Single‐object tracking (SOT) [2] and Multi‐object tracking (MOT) [3–7] are 
two main categories of object tracking methods (MOT). When using SOT, the tracker follows a single, 
predetermined object. Object tracking is required as soon as a target appears in the first frame and 
must be tracked in all subsequent frames. Multi Object Tracking (MOT) necessitates a detection step 
to  identify  all  targets  of  a particular  class  and monitor  them  individually without  any previous 
information of  their appearance or amount. This  is a  far more difficult endeavor, as a number of 
issues, such as object occlusion and objects with similar looks, may make tracking more difficult [1]. 
In object  tracking,  track  loss occurs when  false measurements are used  in a  tracking  filter, which 
causes the estimation error to diverge [8]. 

Recently,  the  state‐of‐the‐art MOT  research  has  centered  on  two methods:  (i)  tracking  by 
detection [9–14] and (ii) joint tracking and detection [15,16]. In this work, our focus is detection by 
tracking. During  tracking by detection, an object detector  is used  to detect objects  in a  frame and 
provide  that detection information to  the object tracking algorithm to perform  the frame‐to‐frame 
association of  the objects. For  instance, if five objects were detected  in a given frame,  five distinct 
bounding boxes would be generated and tracked throughout all future frames. However, detecting 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2023                   doi:10.20944/preprints202306.0262.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202306.0262.v1
http://creativecommons.org/licenses/by/4.0/


  2 

 

and tracking frame‐by‐frame is laborious and may prevent MOT from being executed in real‐time, 
thus  reducing  the  level  of  object‐tracking  performance.  Other  challenges  facing  object  tracking 
include  the  lack of balance between  tracking  speed and accuracy, background distractions, noise 
(such as fog) in the background, multi‐spatial scaled objects, and occlusion. 

As previously mentioned,  the  initial  step of  tracking by detection  algorithm  is  to detect  the 
objects that need to be tracked. Autonomous vehicles (AVs) often use a variety of sensors, including 
cameras,  lidars,  and  radars,  to  detect  objects  such  as  (pedestrians,  cars,  trucks,  bicyclists,  traffic 
lights/signs, etc.) in their path [17–19]. However, inclement weather, including heavy fog, snow, rain, 
and  sandstorm,  can drastically  reduce  sensor performance  [20–25]. For  instance,  low visibility  in 
heavy  foggy weather makes  it difficult  for  cameras  to detect objects,  increasing  the  likelihood of 
collisions and fatalities [24,26]. On the other hand, there is a loss of reflectivity and an inaccuracy in 
distance measurement when using lidar in fog. By monitoring how much energy is reflected from 
radio waves, radars can calculate the range and speed of an object using the doppler effect. Thus, 
radars  outperform  cameras  and  lidars  in  bad  weather  and  remain  consistent  regardless  of 
atmospheric conditions. The data from radars is too sparse for object classification due to the  low 
density of radar point clouds [27,28]. However, AVsʹ radar and camera fusion systems can provide 
complementary information for detected objects [19,28–30]. 

Wojke et al. proposed DeepSORT [10] that uses YOLOv4 for the detection phase. The traditional 
YOLOv4 model  is  a  single  sensor  system  that  takes  only  video  sequence  as  input. The  original 
DeepSORT  a  simple  neural  network  for  deep  appearance  descriptor  such  that  the  feature map 
extracted is prone to losing relevant details about the track being matched with a given detection in 
fog. In heavy fog, targets with a high degree of appearance similarity on the detection frame are more 
likely to be mismatched with the wrong predictions resulting in identity switches or track failures. 
Matching inaccuracies occur when objects of various sizes are on the same detection frame. Tracking 
small,  colored,  distant,  and widely  varied  sizes  objects  can  be  challenging  and  yield  inaccurate 
outcomes if the background is too noisy or excessively busy with objects of similar color. It is simpler 
for object detectors  to  identify and  track objects with a uniform background. Therefore, an  input 
frame containing objects with strong color contrast works best for object tracking. It is important to 
have  a  solid  framework  that  can  boost  detection  and  tracking  capabilities while  decreasing  the 
number of identity switches and track failures in fog. In this paper, based on the DeepSORT algorithm 
[10]  in Figure  1, we present  an  improved deep  learning‐based multi‐object  tracking  approach  in 
Figure 2. We address: (i) the issues of background distractions and noise caused by fog that can cause 
detection  and  prediction mismatch  and  (ii)  the  balance  between  tracking  accuracy  and  tracking 
speed.   

We make the following contributions to achieve improved tracking speed and tracking accuracy 
under foggy weather conditions: 
 Instead of a single sensor modal system (video sequence only) used for the detection phase in 

[9,10], we employed our deep camera‐radar fusion network (CR‐YOLOnet model) [31] for faster 
and more accurate object detection in the detection phase of our improved deep learning‐based 
MOT  in Figure 2. Our CR‐YOLOnet model reached an accuracy (mAP at 0.50) of 0.849 and a 
speed of 69 fps for small and distant object detection under medium and heavy fog conditions. 

 We  simulated  a  real‐time  autonomous  driving  environment  in  CARLA  [32]  simulator.  In 
addition  to  the  radar  and  camera  sensors,  we  obtain  semantic  labels  of  the  ego  vehicle 
environment  using  semantic  segmentation  cameras.  The  semantic  segmentation  camera 
presents each object in its field of vision with a distinct color corresponding to the predetermined 
object category  (label). We  fed  the semantic  labels  into  the segmentation module of our own 
deep convolutional neural network‐based appearance descriptor.   
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Figure 1. The architecture of the original DeepSORT. 

 
Figure 2. Our improved deep learning‐based MOT architecture. 

 We  replaced  the  basic  convolutional  neural  network  used  for  appearance  descriptor  in 
DeepSORT with our deep convolutional neural network. Our deep appearance descriptor uses 
cross‐stage partial connection (CSP)‐based backbone for low‐level feature extraction and feature 
pyramid network  (FPN)‐based neck  for multi‐scale  level feature vectors to address objects of 
different  sizes. We  incorporate GhostNet  into our deep appearance descriptor  to  replace  the 
traditional convolutional layers used in standard neural networks. Using GhostNet helps to: (i) 
generate more  features,  thus,  improving  the  integrity of  the  feature extracted  for an accurate 
detection  and  prediction  match,  (ii)  reduce  the  number  of  parameters,  computational 
complexities, and cost, thus, improving tracking speed without diminishing the output feature 
map.   

 We  incorporate  a  segmentation module  to  add  rich  semantic  information  to  the  low‐level 
appearance  feature  map  generated  using  semantic  labels.  With  semantic  labels,  the 
segmentation module can help the deep appearance descriptor distinguish between objects with 
close appearances and similarities even when the background is noisy. 
 Our proposed method performed better than YOLOv5 + DeepSORT. Especially under heavy 

fog conditions, our results show that the multi‐object tracking accuracy (MOTA) increased by 35.15%, 
the multi‐object tracking precision (MOTP) increased by 32.65%, the speed increased by 37.65%, and 
identity  switches  (IDS)  reduced  by  46.81%.  The  remaining  parts  of  this  paper  are  structured  as 
follows: we discuss the related studies in section 2, we describe our materials and methodology in 
section 3, in section 4 is where we present our improved appearance feature extraction network, we 
present our results and discussion in chapter 5, and section 6 consist of the conclusions. 
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2. Related Works 

2.1. Object Detection 

In  literature, many deep  learning models  [33–36] have provided excellent detection accuracy 
and speed for object detection tasks under favorable weather circumstances. AlexNet, suggested by 
Krizhvsky et al. [37], was the first convolutional network used for image feature extraction, ushering 
in the current era of deep feature extraction.      In our previous work [31], we did a comprehensive 
review of camera‐only along with camera and radar fusion‐based object detection methods. Some of 
the camera‐only approaches include SSD proposed by Liu et al [38], YOLO proposed by Redmon et 
al. [39], and its derivatives [40–44], RCNN proposed by Girshick et al. [45], and its derivatives [46–
48]. Some camera‐radar approaches  include  [28,49–52]. Although  these methods provide excellent 
detection accuracy and speed in favorable weather, they are extremely inefficient when used in foggy 
weather [25]. There is a limited camera‐radar approach in the literature for object detection under 
foggy weather conditions. Because of the  tradeoff between detection speed and accuracy, existing 
methods have a very limited range of use in foggy weather conditions. Recently, we proposed a deep 
learning‐based radar and camera fusion (CR‐YOLOnet) [31]based on YOLOv5[44] for object detection 
in foggy weather conditions. In [31], we gave a comprehensive overview of YOLOv5. When detecting 
small and distant objects, our small CR‐YOLOnet model achieved a balance between accuracy and 
speed and performed better than YOLOv5. The small CR‐YOLOnet model reached an accuracy (mAP 
at 0.50) of 0.849 and a speed of 69 fps for medium and heavy fog conditions. 

2.2. Tracking by Detection 

Tracking by detection methods uses existing information about where objects are located along 
with the predicted information to produce a time‐variant association model for object tracking. The 
multiple hypothesis tracking  (MHT) approach  is one of the  first MOT techniques proposed  in the 
literature [53–55]. Delaying complex data association determinations until more data is collected is 
crucial  to  the MHT  approach. Many methods  [9,10,56]  have used  the Kalman  filter  (KF), which 
considers both the current detections (bounding boxes) as input measurements and prior predictions 
to estimate where the target objects would appear in the next frame. Previous research has used the 
KF method as a velocity and motion model to enhance object associations. Particle filter algorithms 
were also studied for effective initialization and learning phase multi‐object tracking [57]. However, 
tracking multi‐scale  targets  and  identity  switches  (IDS)  continues  to  be  challenging.  Because  of 
advances in computing power and the concept of deep learning, better tracking by detection methods 
(such as simple online and real‐time tracking (SORT)    [9], DeepSORT [10], etc.) have been developed. 

Bewley et al. [9] suggested the SORT algorithm that employs KF [58] and Hungarian algorithms 
[59] for MOT. The 4 main steps of SORT include (i) detection, (ii) estimation, (iii) data association, 
and (iv) creation and deletion of track identities. SORT employs KF to estimate object states based on 
linear constant velocity model. The Hungarian algorithm helps to associate new detections (bounding 
boxes) with the KF predictions. However, the SORT algorithm is solely concerned with the tracking 
speed and  ignores  target appearance. Because SORT  considers position and  IOU only,  the SORT 
algorithmʹs  tracking  performance  degrades  significantly  when  the  tracked  object  overlaps  in 
consecutive frames. Thus, SORT suffers frequent ID switch when tracked object reappears after an 
overlap and might even fail in the presence of occlusion. Wojke et al. [10] proposed that DeepSORT, 
an extension of the SORT algorithm, can track objects by associating their velocity and motion profile 
and their appearance features, which are extracted via a convolutional neural network. As a result, 
we  choose DeepSORT  as  this  paperʹs  baseline  object  tracking  algorithm. We discuss DeepSORT 
further in section 3.4. 

Other tracking by‐detection methods include Chen et al. [60] that suggested the MOTDT, which 
employs a scoring mechanism based entirely on convolutional neural networks to choose candidates 
optimally. Euclidean distances between  the  retrieved object appearance  features were applied  to 
enhance the association phase further. He et al. [61]   
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suggested the GMT‐CT that leverages graph partitioning and deep feature learning to improve 
the association phaseʹs ability to represent the correlation between measurements and tracks. 

Similarly,  the  use  of  Siamese  networks  trained  using  deep  learning  has  increased  in  object 
tracking [14]. Lee et al. [15] developed FPNS‐MOT that combines a Siamese network structure with 
a feature pyramid network. It compares the attributes of two inputs to generate a similarity vector. 
Tracks  are  updated  in  FPNS‐MOT  by  selecting  the  highest‐scoring  combination  of  tracks  and 
observations. Jin et al. [16] employed a Siamese structure to improve the efficiency of the Deep‐SORT 
object feature extractor. To enhance the accuracy of the object association, Jin et al. extended their 
study by incorporating optical flow into the motion module [62]. 

3. Methods 

3.1. Experimental platform 

The PyTorch framework and third part library Opencv were used to experiment with Python 
programming. The hardware and software settings are as follows: Graphics card: Nvidia GeForce 
RTX 2070 with Max‐Q Design; RAM: 16 gigabytes of memory; CPU: Intel Core 17‐8570H 2.2 GHz 6 
cores.   

3.2. Datasets and Semantic Labels 

Because of the unique nature of radar signals and the relative lack of publicly accessible datasets 
[63] that include both camera and radar datasets [21,64–68] under foggy weather conditions, the scope 
of  AV  research  with  respect  to  foggy  weather  conditions  has  been  severely  constrained.  For 
autonomous vehicle  research,  there  are only  a very  small number of datasets  available  [67]  and 
[21]which  combine  information  from  cameras  and  radar  when  undertaken  in  foggy  weather 
conditions. 

In  this  study,  we  simulated  an  autonomous  driving  environment  using  the  CARLA  [69] 
simulator. The CARLA simulator enables autonomous driving simulation using a variety of sensors, 
including radar, RGB cameras, and semantic segmentation cameras. Semantic segmentation cameras 
can  obtain data  from  an  ego vehicleʹs  surroundings  and  analyze  them  on  a wide  range of  light 
intensities. Semantic segmentation cameras can determine an objectʹs composition by analyzing its 
reflected  light  since  various materials  absorb  light  at  varying wavelengths.  Figure  3  illustrates 
describing semantic labels obtained from the semantic segmentation camera in the CARLA simulator. 

 
Figure  3.  Semantic  segmentation  showing  semantic  labels  obtained  from  semantic  segmentation 
camera in CARLA simulator. 

Alongside the camera and radar sensors, we attached semantic segmentation cameras to the ego 
vehicle to obtain semantic labels of the objects in its environment. The semantic segmentation camera 
presents each object in its field of vision with a distinct color corresponding to the predetermined 11 
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object categories. However, we make use of the seven common traffic participant (bicycle, bus, car, 
motorcycle, person, traffic light, and truck) labels in our work.   

3.3. Object Detection Model 

In  this work, we  employed our  recently proposed CR‐YOLOnet  [31],  a deep  learning‐based 
camera‐radar  fusion  network  (CR‐YOLOnet)  for  object  detection with  YOLOv5  as  the  baseline. 
Unlike  the single‐modal system used  in  the YOLOv5 baseline,  the CR‐YOLOnet  takes  input  from 
both  camera  and  radar  sources  as  input. CR‐YOLOnet uses  two different CSPDarknet backbone 
networks to extract feature maps, one each for camera and radar. To further improve the network, 
the low‐level feature information from the backbone network was sent to the feature fusion layers 
using two connections inspired by residual network concepts. These two connections aim to improve 
the  networkʹs  gradient  backpropagation  while  simultaneously  limiting  the  amount  of  feature 
information  loss  for relatively small or distant objects obscured by  fog. To detect multi‐scale  item 
sizes  in  foggy weather  circumstances, we  improved CR‐YOLOnet with  an  attention  framework. 
Attention modules are added  into the fusion  layers to draw greater emphasis to and  improve the 
feature representation of the features that aid in object detection. The attention module additionally 
addresses the issue of high‐level feature information loss. We used a similar experimental platform 
as  this work and obtained our  camera and  radar data  from CARLA  simulator. For CR‐YOLOnet 
training and testing, we used clear and foggy weather scenarios. With an accuracy (mAP at 0.50) of 
0.849 and a speed of 69 fps, our small CR‐YOLOnet model optimally maintained a balanced between 
accuracy and speed. 

3.4. Object Tracking Method 

The  DeepSORT  algorithm  addresses  the  assignment  problem  of  matching  new  detection 
measurements and predicted target states with the KF and Hungarian algorithms. The Hungarian 
algorithm with  the  Kalman  filter  algorithm  provides  a  single‐hypothesis  tracking  approach  for 
moving  targets. The Hungarian matching  algorithm  helps  to match up  new detections with  the 
predicted  tracks.  There  were  three  distinct  phases  to  the  tracks.  (i)  tentative  tracks:  for  each 
unmatched detection,  a new  set of  track propositions  is generated  and  stored  in  the  tracked  list 
for further observations, (ii) confirmed tracks: detections that are matched successfully are kept in 
the track matrix, (iii) deleted tracks: detections that cannot be matched or are no longer appearing 
within a specified number of frames are deleted from the track list. In addition to the data association 
of  position  and motion  information,  the DeepSORT  incorporates  a CNN‐based  component  that 
extracts and associates object appearance features to address ID switch problem   

However, when it comes to tracking tasks under noisy situations such as fog, the network used 
for appearance feature extraction greatly influences the quality of the appearance feature information 
being extracted and,  consequently,  the  tracking  speed. The original  feature extraction network  is 
merely a very  simple kind of  convolution. As a  result,  targets with a high degree of appearance 
similarity on the detection frame are more likely to be mismatched with the wrong predictions. In 
addition, matching inaccuracies can occur when widely varied size objects are on the frame. Thus, 
there is a need for further refinement when it comes foggy weather applications. 

In this work, our multi‐object tracking technique is broken down into the following stages: 
(i) The KF takes detection information (object bounding box provided by CR‐YOLOnet) as the input 

measurement, then KF predicts the target objectʹs future states (position) in the detection frame, 
and the prior estimate value of target object is estimated. Also, CR‐YOLOnet extracts and saves 
the feature information of the target object on the detection frame. 

(ii) The  Hungarian  algorithms  employ  the  appearance  feature  and  Mahalanobis  distance  to 
associate  the  target object  in  the detection  frame and  track.  In  the event  that  the association 
procedure  generates  a  successful match,  the  system will  proceed  to  a Kalman  update  and 
provide  tracking  results. However,  if  there  is  no match,  cascade matching  is  employed  to 
associate  the  unmatched  detection  frame  and  track.  Each  track  has  its  own  time  update 
parameter,  ʺtime_since_update,  ʺ established throughout the cascade matching process. Since 
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the tracks are sorted by ʺtime_since_updateʺ, the unmatched detection frame is first associated 
with  the  track  with  the  minimum  ʺtime_since_updateʺ  to  prevent  tracking  failure  while 
decreasing the frequency of ID switches. 

(iii) To evaluate if the target object in the detection frame and the track have the same ID and are a 
match, we  compute  the  percentage  of  overlapping  areas  to  compute  their  similarity.  If  the 
similarity  computation  generates  a  successful match,  the  system will  proceed  to  a Kalman 
update  and provide  tracking  results. However,  if  there  is no match  for  the  subsequent  five 
frames, the mismatched track will be associated with a new detection frame. The tracking result 
will  be  returned  if  the  detection  frame  is  found within  the  next  five  frames.  The  target  is 
consequently deleted if no match is found after five frames. 
To acquire the overall tracking result, it is necessary to modify and adapt the tracking trajectory 

obtained from the KF by repeating the three stages mentioned above. Allocating a new identifying 
ID or removing a set trajectory are the actions that must be taken once a detection frame is unable to 
match and track. 

3.4.1. Kalman Filter Prediction of Target Object State 

We employ a Kalman uniform velocity model for the object motion state estimation. Equations 
1 and 2 describe the non‐linear discrete‐state space model. For the motion state of each target  𝑥௞, the 
target object state is set from the previous state  𝑘 െ  1  to the present state  𝑘, the measurement vector 𝑧௞  is the target object detection result that consists of the bounding boxes co‐ordinate (a, b) at the 
current scan  𝑘, and the process noise at scan  𝑘. 𝑥௞ ൌ 𝐴𝑥௞ିଵ ൅ 𝜔௞ିଵ  (1)

𝑧௞ ൌ 𝐻𝑥௞ ൅ 𝑣௞  (2)

where  𝐴  is the state transition matrix, 𝜔௞ ~ 𝑁ሺ0,𝑄௞ሻ  denotes the state white Gaussian process noise 
and  𝑄௞   is  the  estimated  process  error  covariance  matrix,  𝐻   is  the  measurement  matrix,   𝑣௞ ~ 𝑁ሺ0,𝑅௞ሻ   denotes  the  measurement  of  white  Gaussian  process  noise,  𝑅௞   is  the  estimated 
measurement  error  covariance matrix, with an  initial  state  𝑥଴  ∼  𝑁 ሺ𝑥଴ି ,𝑃଴ሻ,  𝑥଴ି ∈  ℝ௡   is  the prior 
mean and  𝑃଴ ∈  ℝ௡ൈ௡  is the initial covariance. 

We represent the state of the target object by vector  𝑥,  and it can be expressed as follow: 
 
where ሺ𝑎, 𝑏ሻ   is 
the bounding box co‐ordinate of the target,  𝛾  is the bounding box aspect ratio,  ℎ  is the bounding 
box height,  𝑎ሶ , 𝑏ሶ , 𝛾ሶ , ℎሶ   represent the corresponding velocity information of   𝑎, 𝑏, 𝛾, ℎ.   

There are two primary parts to the Kalman filter. First, we make the predictions of the system 
state using the time update mathematical state model. Equations (4) and (5) describe the prediction 
of the future state of the target object and the future error covariance: 

𝑃௞ି ൌ 𝐴𝑃௞ିଵି 𝐴் ൅ 𝑄  (5)

where  𝑥ො௞ି   is the prior estimate that describes the future state of the target object at scan  𝑘,  𝑃௞ି   is the 
prior estimate of the future error covariance at scan  𝑘,  𝑥ො௞ିଵି   is the posterior estimate of the target 
object state at scan  𝑘 െ  1,  𝑃௞ିଵି   is the posterior estimate of error covariance at scan  𝑘 –  1.   

Second, the predicted state values are compared to the measured state values to generate state 
estimation output. In equations (6), (7), and (8), we compute the Kalman gain, update the estimate 
using measurements  𝑧௞, and update the error covariance, respectively. 𝐾௞ ൌ 𝑃௞ି 𝐻்ሺ𝐻𝑃௞ି 𝐻் ൅ 𝑅ሻିଵ  (6)

𝑥 ൌ ൣ𝑎, 𝑏, 𝛾, ℎ,𝑎ሶ , 𝑏ሶ , 𝛾ሶ ,ℎሶ ൧்  (3)

𝑥ො௞ି ൌ 𝐴𝑥ො௞ିଵି ൅𝜔  (4)
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𝑥ො௞ ൌ 𝑥ො௞ି ൅ 𝐾௞ሺ𝑧௞ െ 𝐻𝑥ො௞ି ሻ  (7)

𝑃௞ ൌ ሺ𝐼 െ 𝐾௞𝐻ሻ𝑃௞ି   (8)

A state estimation output is generated from the adjusted difference between the predicted and 
observed states, considering the predicted noise and error in the system and the measurements. The 
generated state estimation output is fed into the mathematical state model described in equations (4) 
and (5) to predict the target object future state at the subsequent time update. Thus, the cycle starts 
all  over  again.  The  error  between  the  real  value  and  the  observed  value  is minimized  via  the 
aforementioned iterative process, bringing the predicted value closer and closer to the real value until 
the optimal tracking outcome is attained. 

3.4.2. Matching New Detections Measurements and Predicted Target States 

The  motion  and  appearance  information  matching  is  incorporated  using  (i)  Mahalanobis 
distance and  (ii) minimum cosine distance, respectively. Let  𝑝  and  𝑞  be  the order number of  the 
predicted target state and target bounding box detection.   
(i) Mahalanobis distance: 

The Mahalanobis distance (𝑑𝑖𝑠𝑡ெ) include the motion data by estimating the distance between 
the new target detections and predicted target states, and it can be calculated as follows:   𝑑𝑖𝑠𝑡ெሺ𝑝, 𝑞ሻ ൌ ൫𝑑௤ െ 𝑦௣൯்𝑆௣ି ଵሺ𝑑௤ െ 𝑦௣ሻ  (9)

where  𝑑௤   represents  the  𝑞 െ 𝑡ℎ   bounding  box  detection,    ሺ𝑦௣, 𝑆௣ሻ   denotes  the  𝑝 െ 𝑡ℎ   track  in 
measurement  space,   𝑦௣   denotes  the projection  of  the predicted  value  of  the  𝑝 െ 𝑡ℎ  track  in  the 
detection space,  𝑆௣  denotes the covariance matrix of the  𝑝 െ 𝑡ℎ  track in the measurement space.   

With the KFʹs uncertainty estimation of the target state, the Mahalanobis distance computes the 
distance from the mean track to the detectionʹs standard deviation. Then a threshold  𝒕ሺ𝟏ሻ  described 
equation 2 is used to determine if the  𝑝 െ 𝑡ℎ  track and  𝑞 െ 𝑡ℎ  detection are related or not.     𝑏ெሺ𝑝, 𝑞ሻ ൌ  ቊ1,𝑑𝑖𝑠𝑡ெሺ𝑝, 𝑞ሻ  ൑ 𝑡ሺଵሻ

0,𝑑𝑖𝑠𝑡ெሺ𝑝, 𝑞ሻ ൐   𝑡ሺଵሻ  (10)

If the  𝑝 െ 𝑡ℎ track and  𝑞 െ 𝑡ℎ  detection related, the threshold evaluates to  1. Otherwise, it is  0. 
(ii) Appearance feature matching: 

The appearance features of the target are disregarded while using Mahalanobis distance since it 
only considers the distance relationship between the detected target and the predicted target states. 
The appearance features are extracted using a simple convolutional neural network to incorporate 
the appearance metric. A  total of  two convolutional  layers and six  residual blocks makes up  this 
network. Appearance  feature descriptors  𝑟௤   are  extracted  from  each  bounding  box detection  𝑑௤ 
using  a  simple  convolutional  neural  network  shown  below.  For  each  track  𝑘 ,  all  the matched 
appearance descriptors are stored  in  𝑅௣. Hence  the minimum cosine appearance  ሺ𝑑𝑖𝑠𝑡஼) distance 
between the  𝑝 െ 𝑡ℎ  track and  𝑞 െ 𝑡ℎ  detection can be calculated using equation 3. 𝑑𝑖𝑠𝑡஼ሺ𝑝,𝑞ሻ ൌ min ቄ1 െ 𝑟௤் 𝑟௞ሺ௣ሻቚ𝑟௞ሺ௤ሻ  ∈ 𝑅௣ቅ  (11)

Using  the  threshold  𝒕ሺ𝟐ሻ   in  equation  12,  we  can  show  whether  𝑝 െ 𝑡ℎ   track  and  𝑞 െ 𝑡ℎ 
detection in equation 11 are related. Similarly, if the  𝑝 െ 𝑡ℎ track and  𝑞 െ 𝑡ℎ  detection related, the 
threshold evaluates  1. Otherwise, it is  0. 𝑏஼ሺ𝑝,𝑞ሻ ൌ  ቊ1,𝑑𝑖𝑠𝑡஼ሺ𝑝, 𝑞ሻ  ൑ 𝑡ሺଶሻ

0,𝑑𝑖𝑠𝑡஼ሺ𝑝, 𝑞ሻ ൐   𝑡ሺଶሻ  (12) 

When the Mahalanobis distance is used in conjunction with the minimum value of the cosine 
distance, the DeepSORT algorithmʹs efficiency can be enhanced. The Mahalanobis distance includes 
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details  about  object  positions  depending  on  the  motion  to  address  short‐term  prediction  and 
matching. When the motion information is less reliable because of extended occlusions, the cosine 
distance considers appearance information that is important for re‐establishing identities. Therefore, 
the fusion of Mahalanobis distance  𝑑𝑖𝑠𝑡ெሺ𝑝, 𝑞ሻ  and cosine distance  𝑑𝑖𝑠𝑡஼ሺ𝑝, 𝑞ሻ  from equations 9 and 
11, respectively is described using the weighted sum 𝑈௣,௤  in equation 13:   𝑈௣,௤ ൌ 𝜂𝑑𝑖𝑠𝑡ெሺ𝑝, 𝑞ሻ൅ ሺ1 െηሻ𝑑𝑖𝑠𝑡஼ሺ𝑝, 𝑞ሻ  (13)

where  𝜂 which  is often set  to 0.1 denotes  the hyperparameter used  for setting  the weights of  the 
Mahalanobis and  cosine distances.  In  equation 14,  a gated matrix helps  to  establish whether  the 
association of metrics is related: 

𝑏ሺ𝑝, 𝑞ሻ ൌ ෑ 𝑏ሺ𝑛ሻሺ𝑝, 𝑞ሻ2

𝑛ൌ1

  (14)

In  addition  the  cascade‐matching method  is used  to  compare  the  predicted  targetʹs motion 
trajectory by KF and new target detection [70]. A new measuring matrix is constructed using both 
target appearance features and velocity information to evaluate the degree of similarity between a 
detection  and  a  trajectory.  Although  when  compared  to  the  SORT  algorithm,  the  DeepSORT 
algorithm performs significantly better. 

3.5. The Appearance Feature Extraction Model 

As mentioned  earlier,  the  appearance  feature  extraction model  in  the  original  DeepSORT 
employed merely  convolution  and  pooling  layer  procedures. The  feature map  generated  by  the 
backbone networkʹs output is prone to losing relevant details about the target object. For very small 
and distant targets, this leads to an incorrect knowledge of object appearance features. Multi‐object 
tracking models notably need faster tracking speeds. In addition to tracking small and distant objects 
at  a  fast  speed,  extracting quality  appearance  features will  enhance  the DeepSORT  algorithm  to 
distinguish between objects with similar appearances and track them accurately. We proposed an 
appearance  feature  network  to  replace  the  basic  convolutional  neural  network  used  for  the 
appearance  descriptor  in  the DeepSORT  algorithm. Our  deep  appearance  descriptor  employs  a 
CSPNet‐based backbone for low‐level feature extraction and an FPN‐based neck for multi‐scale level 
appearance feature fusion to address objects of varying sizes. 

The cross‐stage partial connection (CSP) is a method that was initially derived from CSPNet [71] 
and  is used  to optimize complex computational processes. The CSP network can help  to  increase 
feature‐learning capacity during training. Figure 4(a) illustrates how a network can be ʺCSP‐izeʺ. The 
base layerʹs feature map is split into two components, the main component and a skip connection, 
combined by transition, concatenation, and transition to efficiently cut down on redundant gradient 
information. Because CSP‐ization shortens gradient flow, therefore, CSP‐ization increases accuracy 
and decreases  inference  time while making model scaling possible  [11]. As a result of scaling  the 
model, the ability to detect objects of smaller sizes is made possible. Given the bigger size of the input 
network, the wider receptive field achieved by the CSP connection directly results from the higher 
number of convolutional layers.   
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Figure 4. (a) the architecture of Cross‐Stage Partial Connection, (b) the structure of Feature Pyramid 
Network. 

The feature size plays a significant role in the representation of the targetʹs feature information 
when performing feature extraction.   

When generating  the  final  feature map,  the Feature Pyramid Network  (FPN)  [72]  shown  in 
Figure 4(b) aggregates features from several depths and layers. The final feature map includes a range 
of multi‐layer semantic  information due  to  the  feature  fusion  that occurred at various  levels. The 
feature pyramid network gets its name from its structure and shape, which are both reminiscent of 
pyramids. In FPN, the backbone networks are responsible for feature extraction, and the top‐down 
fusion  of  feature  maps  is  utilized  to  combine  the  resulting  features  𝐶଴,𝐶ଵ,   and  𝐶ଶ .  Network 
structures  of  varying  depths  have  varying  degrees  of  accuracy  when  used  to  extract  feature 
information  from  targets. Scale‐dependent disparities  in  feature  information during  the matching 
phase can be mitigated by  the use of  fused object appearance  feature  information  retrieved  from 
several  network  depths. The  FPN  integrates  a  shallow  feature  extraction  network  for  extracting 
spatial  information  with  a  deep  feature  extraction  network  for  obtaining  appearance  feature 
information. 

We adopted GhostNet, discussed in section 3.5.1, into our deep appearance descriptor to replace 
the traditional convolutional layers. We adopted a segmentation module discussed in section 3.5.2 to 
provide rich semantic information to the low‐level appearance feature map using semantic labels. 

3.5.1. GhostNet for an Improved Performance and Reduced Computational Complexity and Cost 

The Ghost module was developed  to  take  the place of  the traditional convolutional  layers  in 
standard neural networks [73]. The aim of the Ghost module, which is illustrated in Figure 5, is: (i) to 
improve  the  performance  of  neural  networks  performance  by  generating  more  features,  thus, 
improving the integrity of the feature extracted, (ii) to utilize a lesser number of parameters, thus, 
reducing computational complexities and cost without diminishing the output feature map. In the 

(a) 

(b) 
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Ghost module, the conventional convolution process is divided into two separate steps. In the first 
step of the process, a conventional 1 x 1 convolution is performed on the input to acquire the required 
feature concentration. The second step involves performing a series of simple linear operations, such 
as layer‐by‐layer convolution on the intrinsic concentrated feature maps obtained from the prior step 
to produce additional feature maps.   

Consider an input feature map 𝑋 ∈  ℝ௖ൈ௛ൈ௪ with  𝑐  number of channels, height denoted by  ℎ 
and  weight  denoted  by  𝑤 ,  the  procedure  for  generating  n  feature  maps  using  conventional 
convolution can be expressed as:  𝑌 ൌ 𝑋 ∗ 𝑓 ൅ 𝑏  (15)

where  𝑓  denotes the convolution kernels with size,  𝑏  denotes the bias term.  ∗  is the convolution 
operation. Using  𝑛  convolution filter  𝑓 ∈  ℝ௖ൈ௞ൈ௞ൈ௡ with  𝑘 ∙ 𝑘  kernel size, the output feature map 
is  𝑌 ∈  ℝ௛ᇲൈ௪ᇲൈ௡ . The heights and widths of  the output  feature maps  are denoted by  ℎᇱ   and  𝑤ᇱ , 
respectively.   

 
Figure 5. The architecture of Ghost module. 

Because the number of filters and channels often needs to be quite high, the needed number of 
floating‐number operations (FLOPs) may easily reach hundreds of thousands. The needed number 
of FLOPs for the conventional convolution process can be expressed as follows: 𝐹𝐿𝑂𝑃𝑠 ൌ 𝑛 ∙  ℎ′ ∙ 𝑤′ ∙ 𝑐 ∙ 𝑘 ∙ 𝑘  (16)

Assumptions can be made that the generated feature maps are ̋ ghostsʺ of certain original feature 
maps that have been reshaped  in a computationally cost‐effective way. These assumptions can be 
made  to prevent redundancy and similarities  in  the  individual output  feature maps generated by 
ordinary convolutional layers while exhausting a vast number of FLOPs and parameters. Equation 
17 describes the ordinary convolution for creating the 𝑚  intrinsic feature maps  𝑌ᇱ ∈  ℝ௛ᇲൈ௪ᇲൈ௠  such 
that 𝑚 ൑ 𝑛  and  𝑓ᇱ  is the m convolution kernels of the size of  𝑘 ∙ 𝑘 . 𝑌ᇱ ൌ  𝑋 ∗  𝑓ᇱ (17)

Applying a sequence of  inexpensive  linear operations  to each  intrinsic  feature  in  𝑌ᇱ  yields  𝑠 
ghost features, which may then be used to construct the necessary  𝑛  feature maps as described in 
equation 18 and needed FLOPs in equation 19: 𝑦௜௝ ൌ Φ௜,௝ሺ𝑦௜ᇱሻ, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 ∈ ሺ1,𝑚ሻ, 𝑗 ∈  ሾ1, 𝑠ሿ (18)𝐹𝐿𝑂𝑃𝑠 ൌ  𝑚 ∙   ℎ′ ∙  𝑤′ ∙  𝑐 ∙  𝑘 ∙  𝑘 ൅ ሺ𝑠 െ 1ሻ ∙ 𝑚 ∙  ℎ′ ∙  𝑤′ ∙  𝑐 ∙  𝑑 ∙  𝑑  (19)
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where  𝑌௜,௝  denotes the  𝑗 െ 𝑡ℎ  ghost feature map generated by convolution kernel size  𝑑 ∙ 𝑑  of each 
linear operation Φ௜,௝  excluding the last operation Φ௜,௦  used retaining the maps of intrinsic features, 𝑦௜ᇱ  is the  𝑖 െ 𝑡ℎ  intrinsic feature map in  𝑌ᇱ.   

  Figure 6(a)  illustrates our GhostNet structure. The CBL module  is made up of convolution, 
batch normalization, and the leaky ReLU activation function sub‐modules. The Ghost module uses 
standard convolution to produce a portion of the original feature map. Next,  it convolves each of 
these feature maps individually to get a portion of the associated feature map. And then adds the 
latter  feature map with  the  first  feature map. Our  improved  convolution operation  called Ghost 
convolution consist of the CBL block, CSP block, and GhostNet block, as shown in Figure 6(b).   

 
Figure 6. (a) Our GhostNet structure, (b) the architecture of our Ghost convolution. 

3.5.2. Segmentation Module for an Improved Appearance Feature 

We adopted the segmentation module (SM), which majorly is composed of atrous convolutional 
layers  to add rich semantic  information  to  the  low‐level appearance  feature map generated using 
semantic  labels  from [74]. The purpose of the semantic  labels  is to add their own robust semantic 
meaningful features to the low‐level feature map extracted from the backbone network, as shown in 
Figure 7. The goal of incorporating the segmentation module into the appearance feature extractor is 
to  improve  the  integrity of  appearance  features and  to be  able  to distinguish between objects of 
similar appearance in a noisy detection frame. Thus, mitigating the problem of mismatch between 
detection measurements and Kalman filter predictions under foggy weather conditions.   

Several parameters make up the segmentation module. First, we consider a primary low‐level 
input  feature map  𝑋 ∈  ℝ஼ൈுൈௐ  with  𝐶   number  of  channels,  height  denoted  by  𝐻   and weight 
denoted by 𝑊, and semantic label (ground‐truth)  𝐺 ∈  ሼ0, 1, 2,⋯ ,𝑁ሽுൈௐ  such that 𝑁  is the number 
of  objects  class  in  the  label  (in  our  case, we make  use  of  7  object  classes).  In  equation  20,  the 
intermediate feature map  𝒢ሺ𝑋ሻ ∈  ℝ𝐶′ൈ𝐻ൈ𝑊  is used to estimate the per‐pixel segmentation prediction 𝑌 ∈  ℝሺேାଵሻൈுൈௐ   ,  this  is  also  known  as  ℱ   path.  In  addition,  for  the ℋ   path,  the  intermediate 
feature map  𝒢ሺ𝑋ሻ   is  employed  to  create  a  profound  feature map  𝑍 ∈  ℝ஼ൈுൈௐ     with  semantic 
content as described in equation 21:  𝑌 ൌ ℱሺ𝒢ሺ𝑋ሻሻ  (20)

  𝑍 ൌ  ℋሺ𝒢ሺ𝑋ሻሻ  (21)
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Figure  7.  The  semantically  profound  feature  map  𝑍   is  obtained  from  the  primary  low‐level 
appearance feature map  𝑋  (input), the element‐wise multiplication of 𝑋  and  𝑍  gives semantically 
activated appearance feature map  𝑋ᇱ. 
The element‐wise multiplication of  the primary  low‐level appearance  feature map X and  the 

semantically profound feature map Z activates 𝑋  to give 𝑋ᇱ. The activation process produces a map 
of low‐level appearance features  𝑋ᇱ ൌ 𝑋 ⨂ 𝑍, which is a semantically activated appearance feature 
map.  𝑋ᇱ  does provide not only rudimentary visual patterns but also high‐level semantic meaning. 
The cross‐entropy loss function  𝐿௦௘௚ሺ𝐼,𝐺ሻ  of the segmentation module is given as: 𝐿௦௘௚ሺ𝐼,𝐺ሻ ൌ  െ 1𝐻𝑊෍ logሺ𝑌𝐺ℎ,𝑤,ℎ,𝑤 ሻℎ,𝑤   (22)

where  𝐼  is the image,  𝐺  is semantic label and  𝑌  is the segmentation prediction. 

4. Improved Deep Appearance Feature Extraction Network 

4.1. The Architecture of Our Appearance Feature Extraction Network 

As  previously  mentioned,  we  chose  CSPDarknet‐based  backbone  with  the  intention  of 
enhancing the functionality of the appearance feature extraction network illustrated in Figure 8.    The 
ghost convolution block consists of the CBL block, CSP block and GhostNet block (see section 3.5.1). 
The goal of CSP block is to help improve the capacity of our networks to learn as many features as 
possible  from  an  image during  training.  Introducing  the GhostNet block helps  to generate more 
features to enhance the integrity of the feature extracted while utilizing a lesser number of parameters 
to  alleviate  computational  complexities  and  cost. To  increase  tracking  accuracy  and manage  the 
autonomous  driving  task  in  dynamic  and  foggy weather  environments, we  integrate  and  fuse 
appearance features from several layers, resulting in a richer appearance feature vector. 

Using  the segmentation module  from  section 3.5.2,  rich  semantic  information  from  semantic 
labels  can  help  to  improve  the  appearance  feature  vector  generated  by  the  appearance  feature 
extraction  network.  In  this work, we  integrate  the  segmentation module  into  the  backbone  of 
CSPDarknet‐based backbone and FPN‐based neck because it is designed to generate multi‐scale level 
feature maps including small, medium, and large size objects. In addition to the semantic label input,   
the segmentation module uses low‐level appearance feature maps (denoted by the dark red square 
dot arrow in Figure 8) generated in the backbone to understand semantic segmentation based on the 
influence  of  segmentation  ground‐truth.  Thus,  the  segmentation  module  uses  its  own  rich 
segmentation features to bolster the low‐level features to produce low‐level semantically activated 
appearance feature maps (denoted by the dark green long dash arrow in Figure 8).   
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Figure 8. The improved appearance feature extraction network consists of the FPN network that fuses 
the feature maps  𝐶଴,  𝐶ଵ, and  𝐶ଶ    generated by the backbone network at varying depths. 

The low‐level semantically activated appearance feature maps have the capability of acquiring 
not just the fundamental visual pattern of a target object but accurate semantic information associated 
with it. 

We  implemented spatial pyramid pooling  (SPP)  [75]  to  (i) enhance  the receptive  field of our 
network,  (ii) decouple  the  context  features,  and  (iii) make  it  easier  for  the neck network  to  fuse 
appearance  features  from  several  layers. We  introduced  SPP  at  the  beginning  of  the  backbone 
network  to prevent  loss  of  resolution  and noise  in  the  input  image  that  can  occur  if  scaled  and 
cropped. The SPP at the very end of the backbone network consists of three different pooling layers 
with sizes of 5×5, 7×7, and 13×13. To generate the many local features, SPP combines the results of the 
three pooling layers and feeds them as input to the subsequent convolutional module, where further 
feature learning is carried out.   𝐶଴,  𝐶ଵ, and  𝐶ଶ which are  the extracted appearance  feature maps  from  three different depths 
were fed into the FPN and fused. The appearance features generated by the  𝐶଴  layer possesses rich 
and high‐level semantic information that enhances the extraction of features from large target objects. 
The  feature maps  from  the  𝐶଴  layer  is  inadequate  for  feature extraction from small  target objects. 
Despite the fact that  𝐶ଵ  and  𝐶ଶ  outputs may not have as much detail in their feature maps as  𝐶଴, 
they are excellent at extracting features from smaller target objects while still providing significant 
and useful positional information. The FPN network combines feature maps  𝐶଴,  𝐶ଵ, and  𝐶ଶ    from 
the backbone networkʹs output at varying depths, as shown in Figure 8. After performing complete 
joining and batch normalizing, the resulting object appearance feature vector is acquired. The object 
appearance  feature  vector  is  used  to  determine  an  estimation  of  the  extent  to which  the  trackʹs 
appearance  is  similar  to  the  detection  appearance. We  performed  the  full  cascading matching 
procedure using the motion information and the cost matrix, which is the estimation of appearance 
feature similarity between detection and tracks. 

4.2. Training 

Figure 9  illustrates  samples of our CARLA dataset used  for  training our appearance  feature 
extraction network in this work. The dataset  includes both sunny and foggy conditions with RGB 
camera data in the top row and the corresponding semantic segmentation camera data in the second 
row, as shown in Figure 9. The RGB data set serves as the input into the appearance feature network, 
while semantic segmentation serves as input (provides semantic labels) to the segmentation module. 
We make use of the seven common traffic participant (bicycle, bus, car, motorcycle, person, traffic 
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light, and truck) labels in our work. There is a total of 18628 RGB pictures and with each having a 
corresponding semantic segmentation image. The training set consists of 80 percent of the images, 
and  the  remaining 20 percent  is used  for  testing. The appearance  feature extraction network was 
trained using both clear and foggy image datasets for 100 epochs with a batch size of  64. To predict 
the  spatial  location of  the  tracked object, we used  the CIoU  loss  function  [76]  for bounding box 
regression described in our previous work [25].   

 
Figure 9. Example of our Carla dataset including both sunny and foggy conditions with RGB camera 
data at the top row, and semantic segmentation camera data showing the semantic labels in the second 
row. 

Figure 10 shows the training loss curve (red), which is the training phase, and the prediction loss 
curve (blue), which is the prediction phase of the appearance feature extraction network using CIoU 
loss with the segmentation module incorporated. In both the training and prediction phases, the loss 
curves decreased rapidly during the initial 15 epochs. Thus, the rate of loss begins to slow down in 
an  unstable manner  because  of  insufficient model  accuracy  at  the  start  of  the  training  phase. 
However, at the 60th epoch, both loss curves begin to flatten out and become stable until the 100th 
epoch. 

 
Figure 10. The training and validation loss of our appearance feature extraction network. 

5. Multi‐Object Tracking Experimental Results and Discussion 

5.1. Comparison of Multi‐Object Tracking Performance using Our CARLA Dataset 

Following the training phase of our appearance  feature extraction network,  the results of the 
training  are  then  incorporated  into  our  improved  DeepSORT  tracking  model  to  evaluate  the 
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performance  of  our  improved multi‐target  tracking  algorithm.  Throughout  this  section  5.1, we 
referred  to our  improved multi‐target  tracking  algorithm using GIoU  loss  function  [77] with  the 
segmentation  module  as  ʺOurs(GIoU)  with  SMʺ  and  without  the  segmentation  module  as 
ʺOurs(GIoU) without SMʺ. Similarly, we referred to our improved multi‐target tracking algorithm 
using CIoU loss function [76] with the segmentation module as ʺOurs(CIoU) with SMʺ and without 
the segmentation module as ʺOurs(CIoU) without SMʺ. The following metrics serve as the basis for 
the evaluation [10]: 
 The multi‐object tracking accuracy (MOTA) describes the total tracking accuracy with respect to 

false  positives  (FP),  false  negatives  (N)  and  identity  switches  (IDS),  and  it  is  expressed  in 
equation 23. 

 The multi‐object tracking precision (MOTP) describes the total tracking precision measured with 
respect  to  the amount of actual bounding box overlap with  the predicted position, and  it  is 
expressed in equation 24.   

MOTA ൌ 1 െ ∑ ሺFP୲ ൅ FN୲ ൅ IDS୲ሻ௧ ∑ GT௧   (23)

MOTP ൌ෌ 𝑑௧,௜௧,௜∑ 𝑐௧௧   (24)

where  𝑐௧   denotes  the  total  number  of matches  at  frame  𝑡 ,  𝑑௧,௜   is  the distance  between  the 
predicted and the ground‐truth bounding box,  𝐺்  is the number of tracking targets. In addition, we 
performed evaluation using other metrics  including mostly tracked  (𝑀𝑇), mostly  lost (𝑀𝐿). 𝑀𝑇  is 
used to describe the percentage of ground‐truth tracks that do not switch labels for the majority (80%) 
of their existence. 𝑀𝐿  is used to describe the percentage of ground‐truth tracks maintained for no 
more than 20% of their existence.   

Table 1. Comparison of multi‐object tracking performance with and without segmentation module in 
clear day condition. 

 

Table 2. Comparison of multi‐object tracking performance with and without segmentation module in 
medium fog condition. 

 

Table 3. Comparison of multi‐object tracking performance with and without segmentation module in 
heavy fog condition. 
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Tables  1,  2,  and  3  describe  the multi‐object  tracking  performance  of Ours(CIoU) with  and 
without  SM  and  Ours(GIoU)  with  and  without  SM  in  clear‐day,  medium  fog  and  heavy  fog 
conditions, respectively. Under clear day weather condition in Table 1, Ours(CIoU) with SM have 
MOTA of 74.86, MOTP of 84.21, MT of 43.40%, and a speed (FPS) of 68.34, which are higher than the 
other  three models.  In addition, Ours(CIoU) with SM has ML of 15.86% and  IDS of 513, which  is 
lower  than  the  other  three models.   When  compared  to Ours(CIoU) without  SM,  the MOTA  in 
Ours(CIoU) with SM increased by 4.30%, MOTP increased by 5.13%, MT increased by 7.83%, and a 
speed (FPS) increased by    8.58%. The ML and IDS were reduced by 12.16% and 14.25%, respectively. 

When operating in medium fog conditions in Table 2, Ours(CIoU) with SM has MOTA of 68.25, 
MOTP of 79.65, MT of 38.77%, and a speed  (FPS) of 66.15, which are higher  than  the other  three 
models. Moreover, Ours(CIoU) with SM has ML of 17.05% and IDS of 691, which is lower than the 
other three models. However, when compared to Ours(CIoU) without SM, the MOTA in Ours(CIoU) 
with SM increased by 5.10%, MOTP increased by 8.55%, MT increased by 14.38%, and a speed (FPS) 
increased by    11.01%. The ML and IDS were reduced by 15.31% and 17.01%, respectively. 

In Table 3, the heavy fog situation shows that Ours(CIoU) with SM has a MOTA of 66.14, MOTP 
of 75.78, MT of 36.80%, and a speed (FPS) of 64.88, all of which are greater than the other three models. 
In addition, Ours(CIoU) with SM has ML of 19.24% and IDS of 816, which is significantly lower than 
the other three modelsʹ respective values. When compared to Ours(CIoU) without SM, the MOTA in 
Ours(CIoU) with SM increased by 9.02%, MOTP increased by 7.43%, MT increased by 18.05% and 
the  speed  (FPS)  increased  by    15.32%.  The ML  and  IDS were  reduced  by  15.57%  and  21.09%, 
respectively. 

In Table 4, under clear day weather conditions, when compared to CR‐YOLO + DeepSORT, the 
MOTA  in Ours(CIoU) with SM  increased by 8.58%, MOTP  increased by 6.84%, MT  increased by 
13.85%, and a speed (FPS) increased by 11.59%. However, the ML and IDS were reduced by 22.58% 
and 37.99%, respectively. Compared to YOLOv5    + DeepSORT, the MOTA in Ours(CIoU) with SM 
increased by 18.12%, MOTP increased by 17.93%, MT increased by 37.19%, and a speed increased by 
32.71%. However, the ML and IDS were reduced by 43.26% and 38.44%, respectively. 

Under medium fog conditions in Table 5, compared to CR‐YOLO + DeepSORT, the MOTA in 
Ours (CIoU) with SM increased by 10.66%, the MOTP increased by 10.87%, MT increased by 16.38%, 
and the speed increased by 16.45%. Nonetheless, the ML and IDS in Ours (CIoU) with SM decreased 
by 24.60% and 38.06%, respectively. Compared to YOLOv5    + DeepSORT, the MOTA in Ours(CIoU) 
with SM increased by 24.13%, MOTP increased by 24.71%, MT increased by 43.27%, and the speed 
increased by 35.80. However, the ML and IDS decreased by 35.12% and 44.0%, respectively. 

Under heavy fog conditions, Table 6 shows that the MOTA in Ours (CIoU) with SM increased 
by 16.17%,  the MOTP  increased by 17.99%, MT  increased by 23.27%, and  the speed  increased by 
23.39% in comparison to CR‐YOLO + DeepSORT. However, the ML and IDS decreased by 27.54% 
and 40.78%, respectively. Compared to YOLOv5 + DeepSORT, the MOTA in Ours (CIoU) with SM 
increased by 35.15%, the MOTP increased by 32.65%, MT saw an increase of 48.72%, and the speed 
saw an increase of 37.65%. However, the ML and IDS decreased by 41.65% and 46.81%, respectively, 
when compared to YOLOV5 + DeepSORT. This  implies  that employing  the segmentation module 
and CIoU loss function efficiently improve our proposed modelʹs object tracking capability in foggy 
and clear weather conditions. 
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Table 4. Comparing the performance of multi‐object tracking model with other models in clear day 
condition. 

 

Table 5. Comparing the performance of multi‐object tracking model with other models in medium 
fog condition. 

 

Table 6. Comparing the performance of multi‐object tracking model with other models in heavy fog 
condition. 

 

5.2. Qualitative Results of Multi‐Object Tracking Performance on Our CARLA Dataset 

In this section, we present a comparison of the qualitative results of CR‐YOLO + Ours(CIoU) 
with  SM,    CR‐YOLO  + Ours(GIoU) with  SM,  CR‐YOLO  + DeepSORT  on  our  CARLA  dataset. 
Throughout this section 5.2, CR‐YOLO + Ours(CIoU) with SM, CR‐YOLO + Ours(GIoU)   with SM, 
and CR‐YOLO + DeepSORT are referenced as Ours(CIoU), Ours(GIoU), and CR‐YOLO DeepSORT 
respectively.   

As previously mentioned in section 3.4, if the similarity computation between the target object 
in the detection frame and the track generates a successful match, the system will proceed to a Kalman 
update and provide tracking results. If no match is found after five frames, the target is marked as 
untrackable and consequently deleted. This  implies  that, even  though  the CR‐YOLO algorithm  is 
efficient in detecting both small and distant target objects, it is up to the tracking module to generate 
a  successful  match  within  the  first  five  frames  for  tracking  results  to  continue.  We  compare 
Ours(CIoU)  displayed  in  row  1,  Ours(GIoU)  displayed  in  row  2,  and  CR‐YOLO  +  DeepSORT 
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displayed  in  row  3 under  clear weather  conditions  (Figure  11), medium  fog weather  conditions 
(Figure 12), and heavy fog weather conditions (Figure 13).   

  In Figures 11(a), 12(a), and 13(a), several distant and small objects were detected and tracked. 
However, these objects were tracked until they were closed and became medium size in Figures 11(b), 
12(b), and 13(b) and larger size in Figures 11(c), 12(c), and 13(c). Ours(CIoU) performed better than 
Ours(GIoU)  and  DeepSORT  tracking  modules,  especially  regarding  distant  and  small  objects. 
Ours(CIoU)  successfully  generated, maintained,  and matched more  tracks  than Ours(GIoU)  and 
DeepSORT.  For  instance,  in  Figure  11(a),  Ours(CIoU)  confirmed  and  maintained  four  tracks 
compared to two tracks in Ours(GIoU) and one track in DeepSORT. 

Similarly, in Figure 12(a), Ours(CIoU) confirmed and maintained 5 tracks compared to 3 tracks 
in Ours(GIoU) and 2 tracks in DeepSORT. In Figure 13(a), Ours(CIoU) confirmed and maintained 3 
tracks compared to 2 tracks in Ours(GIoU) and 1 track in DeepSORT. Similarly, for medium‐sized 
objects,  in Figure  11(b), Ours(CIoU)  confirmed  and maintained  6  tracks  compared  to  4  tracks  in 
Ours(GIoU) and 3 tracks in DeepSORT. In Figure 12(b), Ours(CIoU) maintained 5 tracks compared 
to 4 tracks in Ours(GIoU) and 3 tracks in DeepSORT. 

Ours(CIoU) successfully handled MOT even when there was a variation of target sizes in the 
detection frame in all three weather scenarios. In Figure 11(c), while tracking large size objects, distant 
vehicles  and  traffic  lights  that  appeared  small were  tracked  simultaneously  by Ours(CIoU)  and 
Ours(GIoU), unlike the CR‐YOLO DeepSORT that tracked the larger objects only. However, in Figure 
13(c), under heavy  fog  conditions, only Ours(CIoU) was  able  to  track  the distant  and  small  size 
pedestrians, unlike Ours(GIoU)    and CR‐YOLO DeepSORT, which tracked the larger objects only. 
Obviously, the CR‐YOLO DeepSORT performed better in clear weather conditions than in medium 
and heavy fog conditions. For instance, in Figure 13(c), DeepSORT could not confirm and track the 
sport utility vehicle due to occlusion and atmospheric scattering. However, despite the problem of 
occlusion and atmospheric scattering, both Ours(CIoU) and Ours(GIoU)    successfully maintained 
the objectʹs identity for a more extended period. 

 
Figure 11. The qualitative results of multi‐object tracking in clear weather condition. Row 1 shows 
CRYOLO + Ours (CIoU), row 2 shows CRYOLO + Ours(GIoU), row 3 shows CRYOLO + DeepSORT: 
(a) small/distant object, (b) medium object, (c) large object. 

 

(a (b (c
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Figure 12. The qualitative results of multi‐object tracking in medium fog weather condition. Row 1 
shows CRYOLO  + Ours(CIoU),    row  2  shows CRYOLO  + Ours(GIoU),  row  3  shows CRYOLO  + 
DeepSORT: (a) small/distant object, (b) medium object, (c) large object. 

 

 
Figure 13. The qualitative  results of multi‐object  tracking  in heavy  fog weather  condition. Row 1 
shows CRYOLO  + Ours(CIoU),  row  2  shows CRYOLO  + Ours(GIoU),  row  3  shows CRYOLO  + 
DeepSORT: (a) small/distant object, (b) medium object, (c) large object. 

In all three weather conditions, fusing the appearance feature map at three different depth levels 
and with the segmentation module gave Ours(CIoU) and Ours(GIoU)    better performance leverage 
over the CR‐YOLO DeepSORT. Ours(CIoU) performed better than Ours(GIoU) due to the CIoU loss 

(a) (b) (c) 

(a) (b) (c) 
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function  that  not  only  considers  non‐overlapping  regions  between  the  actual  and  ground‐truth 
frames but also uses the weight function.    The weight function is a trade‐off parameter that gives the 
overlap  region  factor  a  higher  priority  for  regression.  CIoU  also  measures  the  consistency  or 
similarity of the aspect ratio between the bounding boxes.    Thus, the ability of the tracking model to 
efficiently  generate  and match  tracks  is  essential  for  critical  safety  systems  such  as  autonomous 
driving. 

6. Conclusion 

An improved multi‐object tracking model based on the DeepSORT algorithm was presented in 
this paper. When  fog  is present,  it can be difficult  to detect or track distant or small objects  in an 
autonomous  driving  environment. As  an  example  of  a  safety‐critical  situation,  an  autonomous 
driving environment necessitates for a higher tracking speed in multi‐object tracking models. Object 
appearance  features were  extracted using  a primitive  neural  network  in  the  original DeepSORT 
method. Therefore,  the  resulting  feature map often omits  important  information about  the  target 
being matched with a specific detection. Consequently, identity switches and track failures are more 
likely  to  occur when matching  objects  that  look  quite  similar  in  the  detection  frame.  Errors  in 
matching can also arise if items of varying sizes are included in the detection frame. 

Nevertheless, we used our camera‐radar fusion network during the detection phase to increase 
both  the  speed with which objects could be detected and  the accuracy with which  they could be 
tracked when visibility was extremely low. Instead of using a standard convolutional neural network, 
we proposed a more robust appearance feature network. We incorporated GhostNet to take the role 
of the standard convolutional layers to produce more features and lower computational difficulties 
and  costs while  improving  tracking  speed without  reducing  the  output  feature maps. We  also 
included a segmentation module (SM) and gave it the semantic labels from the input frame to enrich 
the  feature maps  for  the  low‐level  appearance  with  rich  semantic  information.  Distinguishing 
between items that appear identical in a noisy background, like fog, is made easier with the addition 
of rich semantic information. To deal with the problem of variation in object in size on the detection 
frame,  the appearance  features were  fused at  three different depths. Our proposed MOT method 
performed better than YOLOv5 + DeepSORT, such that under heavy fog conditions, the multi‐object 
tracking  accuracy  (MOTA)  increased  by  35.15%,  the  multi‐object  tracking  precision  (MOTP) 
increased by 32.65%, the speed increased by 37.65%, and identity switches (IDS) decreased by 46.81%. 
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