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Abstract: In the recent decades, per- and polyfluoroalkyl substances (PFAS) have garnered
widespread public attention due to their persistence in the environment and detrimental effects on
the health of living organisms, spurring the generation of several transcriptome-centered
investigations to understand the biological basis of their mechanism. In this study, we analyzed
2144 publicly available datasets from 7 distinct species to examine the molecular responses to PFAS
exposure and determine if there are conserved responses. Our comparative transcriptional analysis
revealed that exposure to PFAS is conserved across different tissues, molecules and species. We
identified and reported several genes exhibiting consistent and evolutionarily conserved
transcriptional response to PFAS, such as ESR1, HADHA and ID1, as well as several pathways
including lipid metabolism, immune response and hormone pathways. This study provides the first
evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the
same metabolic processes across inter-species borders. Our findings have significant implications
for understanding the impact of PFAS exposure on living organisms and the environment. We
believe that this study offers a novel perspective on the molecular responses to PEAS exposure and
provides a foundation for future research into developing strategies for mitigating the detrimental
effects of these substances.
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1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are a heterogeneous class of fluorinated synthetic
compounds encompassing a great number of molecules with different structures [1]. They have
gained global notoriety due to their persistence and adverse effects on living organisms and
environmental health [2]. While a compendious definition of these chemicals is challenging to
provide, the Organization of Economic Co-operation and Development (OECD) recently defined
PFAS as molecules containing at least a perfluorinated methyl (-CFs) or a perfluorinated methylene
group (—CF2-) without any H/CI/Br/l attached to it [3]. However, there are several PFAS
classifications that are based on diverse definitions and include a variable number of molecules. For
instance, PubChem’s classification, based on OECD’s general description [3], includes more than 6.3
million PFAS molecules [4], while the United States Environmental Protection Agency’s (EPA)
classification, founded on molecular substructures and threshold of fluorine percentage [5], contains
14,735 compounds [6]. Despite the challenges and discrepancies in defining these substances, the
OECD currently recognizes 4730 molecules as bona fide PFAS, which are further classified based on
their carbon chain length and molecular structure, which determines their unique physicochemical
properties and environmental behavior. Short chain and long chain PFAS are distinguished based on
their carbon chain length, and polymeric and non-polymeric PFAS are differentiated based on the
presence or absence of repeating monomer units in their molecular structure. Moreover, PFAS are
commonly classified based on their legal status as either legacy or emerging PFAS. Emerging PFAS
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are compounds such as HFPO-DA or GenX, ADONA, C604, which were introduced after the ban on
perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) production, import, and use. These
emerging PFAS are characterized by a shorter C-F backbone and are considered less hazardous than
legacy PFAS due to their lower bioaccumulation potential and toxicity [7].

PFAS have unique chemical properties that fostered their widespread production and use in a
multitude of industrial products since the 1950s [8]. The C-F bond in PFAS molecules confers high
molecular stability, but also results in high resistance to degradation, leading to their persistence into
the environment [2,8]. Additionally, the chemical attributes of amphiphilic and hydrophobic PFAS
render them good surfactants and surface protectors, while also making them resistant to high
temperatures. The versatility of PFAS has led to their use in a wide range of products, including non-
stick pans, firefighting foams (aqueous film-forming foams, AFFF), waterproof textiles, pesticides,
building and construction materials, cleaning products, medical and personal care products, among
many others [2,8].

Despite their widespread use, the potential risks of PFAS exposure to human health and the
environment have become increasingly apparent. PEAS have been found to be ubiquitously present
in the environment, where they can persist for several years owing to their resistance to degradation.
Water basins have been identified as major repositories of PFAS and are capable of transferring these
substances over long distances, making the water ecosystem a crucial gateway for PFAS entry into
the food chain up to humans [9,10]. Numerous studies have focused on specific PEAS molecules, such
as PFOS and PFOA, and have shown that their accumulation can have detrimental effects on aquatic
and terrestrial ecosystems, as well as on animal species and plants. As a result, limitations on the use
of PFOA and PFOS were introduced in some regions [2,11-14]. Moreover, the presence of PFAS in
human biological matrices has been highlighted in numerous studies, with a global distribution.
PFAS have been detected in serum [15,16], breast milk [17,18], placenta [19,20], hair [21] and semen
[22], indicating widespread exposure in human populations.

The vast majority physiological and molecular research on PFAS has been directed towards
human health, revealing their toxicological effects on biological processes and metabolism. These
negative impacts include reduced fertility, altered gene transcription [12,23-29] and the promotion
of certain types of cancer, such as kidney and liver cancer [30,31]. However, there are conflicting data
on the involvement of PFAS in cancer pathogenesis [30]. Furthermore, PFAS have been shown to
negatively affect the activity of the immune system, particularly in children, by impairing immune
reactions and vaccinations responses [23-25]. Lipid metabolism is also heavily impacted by PFAS
exposure, leading to dyslipidemia and increased plasma levels of cholesterol [32-37].

Numerous studies have demonstrated that PFAS affect multiple species through detectable
molecular mechanisms [38—41]. These compounds can directly interact with molecules such as the
peroxisome proliferator-activated receptor o (PPARc), which mediates PFAS toxicity [42]. Most
importantly, PFAS are capable of modifying the transcriptional expression of many genes in humans
and other species [12], which has significant repercussions on the mentioned pathways and diseases.

Despite the vast evidence of transcriptional changes induced by PFAS in multiple species and
despite the presence of numerous quantitative transcriptome-wide studies measuring gene
expression responses to PFAS exposure [38,39,43], a comprehensive and comparative analysis of the
data generated by these studies has yet to be performed. To address this gap, we propose a rational
integration and comparison of transcriptome-wide studies performed in animal species and cell
models, in the form of RNA-Seq or microarray datasets. Using the opportunities offered by
transcriptomics, we aim to elucidate the molecular effects induced by PFAS not only at the single
gene level, but also across different pathways and cell types. Our research provides a comprehensive
understanding of the molecular mechanisms underlying PFAS toxicity that translate across species,
while accelerating evidence-based policies and treatments to safeguard public and environmental
health.
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2. Materials and Methods

2.1. Data collection and processing

We conducted an extensive literature search across databases to identify transcriptomics studies
focusing on the effects of PFAS on animal samples. A total of 11 transcriptomics datasets were
identified, containing publicly available data from 7 different species (Homo sapiens, Mus musculus,
Caenorhabditis elegans, Danio rerio, Gadus morhua, Micropterus salmoides, Pimephales promelas) (Table 1)
[38—41,43-49]. Data associated with these studies were retrieved from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) [50] and the Sequence Read Archive (SRA)
database (https://www.ncbi.nlm.nih.gov/sra) [51], both hosted at the National Center for
Biotechnology Information (NCBI).

Raw sequence data (FASTQ files) from the D. rerio [41] and G. morhua [43] datasets were
downloaded from the SRA database [51] using SRA Toolkit version 3.0.1. These reads were aligned
to the respective reference genomes (zebrafish genome version danRer11/GRCz11 and Atlantic cod
genome version gadMor3.0) using the HISAT2 alignment program version 2.1.0 [52]. The BAM files
containing the aligned reads of zebrafish and Atlantic cod were processed with featureCounts
version 2.0.0 [53] to obtain matrices containing the gene counts for each sample. The other datasets
were directly downloaded from NCBI GEO database [50] with most of them being in the form of gene
counts matrices, while the Pfohl et al. 2021 dataset [47] was available through CEL files.

All statistical analyses were conducted in the R statistical software version 4.2.2 and
Bioconductor version 3.16. To generate graphs for this manuscript we used base R functions and R
packages including ggplot2 version 3.4.1 [54], corrplot version 0.92, corto version 1.2.0 [55], and
ComplexHeatmap version 2.14.0 [56].

RNA-Seq gene-based reads counts were directly loaded into the R environment, while R
package oligo version 1.62.2 was used to import and process CEL files. Microarray data were
normalized using RMA normalization [57]. R package GEOquery version 2.66.0 [58] was utilized to
recover the metadata containing the information about the experimental design.

All sequencing data alignment and gene expression quantification steps were performed on a
HPC dedicated DELL EMC server with an AMD EPYC 7301 32 Core processor and 256 GB of RAM.
Microarray normalization, post-normalization statistical analysis, graphics were carried out on
Windows 10 machine Intel Core i7-10700 CPU with 32 GB RAM.

2.2. Differential Gene Expression Analysis

To comprehensively assess the transcriptome-wide response to PFAS, we designed an approach
of comparison of 110 total differential gene expression contrasts, using for each dataset a balanced
PFAS-treated vs. control design, with at least three replicates per group. For RNA-seq data, we used
the DESeq2 R package version 1.38.3 [59] on raw read counts. For microarray data, we implemented
the default pipeline of the limma R package version 3.54.1 [60]. Due to the significantly higher number
of contrasts in two H. sapiens datasets [38,44] than all others (Table 1), we decided to retain only PFAS
concentration of 20uM in these two datasets [38,44]. In the case of P. promelas dataset [48], low
exposure specimens from Upper Prior Lake were used as PFAS-treated samples. Overall, the
differential gene expression analysis was implemented on 110 separated contrasts, encompassing all
datasets (Table 1).

For each contrast of the datasets, we generated a gene-by-gene transcriptome-wide signature,
defined by the following formula:

-logio(p) x sign(log(FC))

Where p represents p-value of the differential expression (calculated by limma or DESeq2) and
FC representing the Fold Change of the differential expression.

In essence, this formula (implemented in several other transcriptomics publications, such as
Alvarez et al. 2016 [61]) assigns a numerical value to each gene that is positive for significantly up-
regulated genes, and negative for significantly down-regulated genes. The magnitude of the
numerical value is proportional to the tested significance of the change.
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2.3. Ortholog prediction

To enable the comparison of gene expression data across different species, we devised a
phylogenetic gene conversion approach to convert all gene signatures to a common gene identifier.

In order to do so, we performed a direct species-to-human conversion using the DRSC
Integrative Ortholog Prediction Tool (DIOPT) database version 9.0 [62] for all available species in the
database. For species not available in DIOPT, we utilized the R package orthogene version 1.4.1 [63] to
perform the conversion. In instances where species were not available in either database (specifically,
for Micropterus salmoides and Pimephales promelas), we employed a bidirectional best-hit approach
based on BLASTn version 2.12.0+ [64], using the sequences associated to each microarray probe as
query, and the zebrafish cDNA version danRer11/GRCz11 as target database. We then converted the
identifiers from zebrafish to human using DIOPT. All ortholog conversions used in this study are
available as Supplementary File S1.

The resulting matrix of signatures, based on the most likely human ortholog, contained 110
contrasts (PFAS vs. control) and was used for subsequent analysis (Supplementary File S2).

2.4. Signature analysis

To assess the similarities between gene expression signatures, we employed Pearson correlation,
provided by the R basic function cor().

For the pathway enrichment analysis, we retrieved gene sets from KEGG, WikiPathways and
Gene Ontology using the Molecular Signatures Database (MSigDB) [65]. We accessed the database
via the R package msigdbr version 7.5.1 and implemented the enrichment analysis on the signatures
using the R package fgsea version 1.24.0. This package uses an algorithm for expedite and parallel
Gene Set Enrichment Analysis [66].

To integrate the normalized enrichment scores (NES) derived from the pathway enrichment
analysis, we employed Stouffer integration as implemented by the corto R package version 1.2.0 [55].
In short, we opted for Stouffer, as done before by treating signature scores as Z-scores [61], in order
to allow for the integration of positive and negative values. Z-scores were converted to p-values,
where needed, using the z2p() function from the aforementioned corto package [55]. All p-values were
corrected using the Benjamini-Hochberg method.

2.5. Metabolites prediction

We employed a correlation-based method to predict metabolites based on gene expression
signatures, as described in Cavicchioli et al. 2022 [67]. Specifically, we utilized the same
metabolite/transcript networks generated by Cavicchioli and colleagues to perform the analysis. We
applied this approach to the human dataset of Rowan-Carroll and colleagues, focusing only on the
contrast with highest response in terms of number of differentially expressed genes (Day 4 of
exposure to PFOS at the concentration of 20uM). Prior to the analysis, RNA-seq gene expression
count data was normalized using Variance Stabilizing Transformation (VST) [59].

3. Results

3.1. Datasets

As previously mentioned, we retrieved 11 datasets from 7 different species for our analysis.
Table 1 provides detailed information about each dataset, including overall study design, tested
PFAS molecules, number of samples, and tissues analyzed.
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Table 1. Summary of the transcriptomics datasets analyzed in this study.

Species Sar.nple Platform PFAS Concentration  Setup Tissue Reference
size compound
ll’jlfglsk 0.02,0.1,0.2, 1, Primary Rowan-
H. sapiens 607 RNA-seq PFBS 2,10, 20, 50, in vitro liver Carroll et al.
PFDS 100 pM spheroids 2021 [38]
PFBA
PFPeA
PFHxA
PFHpA
PFOA
PFNA
PFDA
PFUnA
PFTeDA
PFBS Various
PFHxS . Primary
H. sapiens 1201 RNA-seq PFHpS c9ncentrat10ns in vitro liver Reardon et
in the range . al. 2021 [44]
PFOS 02100 uM spheroids
PFDS
PFOSA
8:2MonoPAP
6:2MonoPAP
8:2 FtS
6:2 FtS
4:2 FtS
8:2 FtOH
6:2 FtOH
5:3 Acid
Prostate Imir et al.
H. sapiens 23 RNA-seq PFOS 10 mg/kg invivo  cancer cells 2021 [45]
xenograft
0.05,0.3
mui\fp‘tlus 32 RNA-seq I;;Fei? mg{kg body  invivo Liver aft;gga[ ;;]
weight/day
M. 0.1,05,5 . . Heintz et al.
musculus 37 RNA-seq HPFO-DA me/kg in vivo Liver 2022 [46]
O,
M. 18 Microarray PFOS loa??iacﬁ)e?for in vivo Liver Pfohl et al.
musculus PENA . . 2021 [47]
high-fat diet
1.25x10%,
6.25x107,
3.13x10%,
1.56x107,
C.elegans 60 RNA-seq  HPFO-DA Zgéﬁgz in vivo VZ:S;Q erg‘zgz TZS‘]]
3.13x10%,
6.25x102,
0.125, 0.25, 0.5,
1,2,4¢g/L
D. rerio 16 RNA-seq PFOSA 12.5 uM in vivo Embryo ];)ljaz%);gt[‘;f;
PFOS Low, medium, Khan et al.
G. morhua 48 RNA-seq PFOA high, 1x, 20x,  in vitro Ovary 2021 [43]

PENA 100x
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PFDA

Different for . Colli-Dula
M', 72 Microarray PFUnA each lake and  in vivo leer'& et al. 2016
salmoides PFDoA Testis
PFOS each PFAS [48]
PFOS
PFBA
p PFHxA Liver & Rodriguez-
rom.elas 30 Microarray PFHpA 0.5, 25 ug/L in vivo Whole Jorquera et
P PFOA blood al. 2019 [49]
PFNA
PFDA

3.2. Correlation analysis

To assess whether PFAS promote similar responses across species, we extracted transcriptional
signatures from each PFAS vs. control contrast (Supplementary File S2). Our comparative
transcriptional analysis revealed that exposure to different PFAS molecules determines both intra-
and inter-species correlations (Figure 1), indicating that this class of compounds induces conserved
biological responses among species, despite the high phylogenetic distance between the species
herein analyzed. Notably, our analysis demonstrated a general preponderance of positive correlation,
with greater values in intra-species comparison (Figure 1 and Supplementary Figure S1).


https://doi.org/10.20944/preprints202306.0413.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 June 2023 doi:10.20944/preprints202306.0413.v1

I Tissues
Species

Species

IM. musculus
~ B H. sapiens

IC. elegans
D. rerio

IG. morhua

M. salmoides
P. promelas

Tissues

ILiver

Cancer xenograft
Whole body
Embryo tissues
Reproductive syster

! Blood

Pearson correlation
[ B | ]
-1 -08 -06 -04 -02 O 02 04 06 038 1

Figure 1. Heatmap displaying the correlation among 110 different PFAS vs. control differential expression

contrasts. The color gradient ranges from blue (denoting negative correlation) to red (denoting positive
correlation), with darker colors indicating higher correlation values. Each colored dot indicates the correlation
value between any two contrasts of the final signature matrix (Supplementary File S2). The upper bar denotes
the tissue of origin of each contrast.

Relating to cross-species correlation, our analysis revealed a strong positive correlation between
the transcriptional signatures of H. sapiens and M. musculus, especially when exposed to the same
PFAS molecule (Figure 2A and Supplementary Figure S2), highlighting the close evolutionary
proximity between the two species. We detected inter-species positive correlations as high as 0.36
(Figure 2A), which is extremely significant (p-value=1.52x108, Figure 2B). This similarity was
observed between the liver of wildtype mice [39] and human liver spheroids [38], both exposed to
PFOA, although at different concentrations and exposure times.
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Figure 2. (a) Correlation plot of M. musculus and H. sapiens exposed to PFOA molecule (both Mix of human
dataset of Reardon et al. 2021 [44] contain PFOA). As an example, the greatest correlation achieved between
human and mouse contrasts (0.36) is highlighted by a black box. (b) Scatterplot showing the correlation among
the contrasts of mouse and human highlighted by a black box in the previous plot. The highlighted genes are
the most significant genes driving the correlation between the two species, defined by significant transcriptional
change (p <0.001) in response to PFAS exposure in both species.

This correlation between the transcriptional signature of H. sapiens [38] and M. musculus [39] is
driven by genes that are differentially expressed (p-value <0.001) in both species in response to PFAS
exposure, as highlighted in Figure 2B. Among these genes, CYP4A11 is highly up-regulated in both
species and encodes a w-hydroxylase of CYP450 gene family, which is involved in fatty acids
metabolism, such as arachidonic acid. CYP4A11 is highly expressed in liver and kidney, where it
synthetizes the 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid [68]. 20-HETE has
been shown to have cardiotoxic and vasoconstrictive activity, and its increased synthesis is associated
with vascular inflammation and hypertension [69]. Remarkably, CYP4A11 up-regulation has been
associated with non-alcoholic fatty liver disease (NAFLD), since it increases the intracellular
production of reactive oxygen species (ROS) and pro-inflammatory cytokines [70]. Our result is in
line with data showing that exposure to PFOA is positively related to NAFLD development [71]. The
other upregulated genes (Figure 2B) are mainly implicated in lipid metabolism, mitochondrial
function, and stress response, while downregulated genes participate in immune response and
inflammation, thrombosis, and cellular adhesion.

Our analysis also revealed a significant positive correlation (0.22, p-value=7.89x102°) between
the transcriptional signatures of H. sapiens from Rowan-Carroll et al. 2021 dataset [38] and D. rerio
from Dasgupta et al. 2020 dataset [41]. Notably, this correlation is driven by the downregulation of
various genes encoding different types of collagen (Supplementary Figure S3).

In addition to positive correlations, our analysis also highlighted significant negative
correlations, both between distinct species and between different tissues of the same species (Figure
1 and Supplementary Figure S1). We hypothesize that exposure to PFAS substances elicits opposite
responses depending on the tissue analyzed, both within and across different species. These results
might be due to histological differences in gene expression among distinct tissues, as similarly
observed by Glinos and colleagues [72], where the same molecules trigger distinct transcriptional
changes as demonstrated for drug-metabolizing enzymes [73]. Illustratively, the negative values
were most prominently observed in fish species, where different tissues of distinct species, such as
G. morhua (ovary [43]) and P. promelas (blood [49]), and of the same species, as in the case of M.
salmoides (liver and testis [48]), exhibited moderate but significant negative correlations (Figure 3 and
Supplementary Figure S4). For instance, the negative correlation of -0.2 between blood sample of P.
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Figure 3. Comparison between PFAS exposure signatures in four different fish species. For the Atlantic cod
(Gadus morhua) dataset one concentration for each PFAS molecule was selected. The full analysis including all
concentrations and contrasts is displayed in Supplementary figure 54.

3.3. Generation of a cross-species PFAS responses

Once ascertained that exposure to PFAS molecules induces significantly similar transcriptional
changes across different species, our primary objective was to identify which genes are most
responsible to this transcriptional conservation, and therefore define the molecular basis for this
observed conservation. In order to overcome the uneven representation of species in our signature
analysis (Table 1), we performed a weighted Stouffer integration on the signature matrix, giving
equal representation to each species in our dataset. This approach enabled us to pinpoint the genes
that were over- and under-expressed across all species.

We successfully identified 3435 genes appearing in at least six species of the seven species
included in our dataset (Figure 4). Our analysis highlights genes that are most consistently up- or
down- regulated by PFAS in the dataset. 9 genes (EHHADH, RETSAT, GCLM, ACOX1, HADHB,
ARHGAP27, DECR1, HADHA, POR, depicted in orange in Figure 4) are characterized by an elevated
and positive integrated signature (=10 Stouffer integrated Z-score, corresponding to p-value < 1.6x10-
2), but also by a high (>10) signature standard deviation across our dataset; these 9 genes are therefore
induced by PFAS in a strong and conserved way, however with heavy fluctuations across contrasts

| (see also Figure S5), which may indicate outlying contrasts. We then highlighted 25 genes
significantly upregulated (=5 Stouffer integrated Z-score, corresponding to p-value < 5.8x107) with
lower standard deviation (<10), highlighted in red in Figure 4, and including Acetyl-CoA
Acetyltransferase 1 (ACAT1), Inhibitor of DNA Binding 1 (ID1) and  Vascular Endothelial
Growth Factor A (VEGFA). Among genes consistently repressed by PFAS, we found 8 genes (FN1,
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MSMO1, TTR, HMGCR, FMO5, NEB, DPYS, COL1A2, indicated in cyan in Figure 4) with strong
down-regulation across the dataset (< -10 Stouffer integrated Z-score, corresponding to p-value <
1.6x10%) and high standard deviation. We also highlighted 23 genes down-regulated at lower
standard deviation (<10) with = < -5 Stouffer integrated Z-score, corresponding to p-value < 5.8x107,
which include the PFAS-repressed oncogene ESR1, encoding for estrogen receptor.
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Figure 4. Plot showing the integrated response to PFAS across 110 contrasts. Each point represents a gene. The
x-axis indicates the integrated signature value (obtained by integrating signatures across the dataset using the
Stouffer method). The y-axis indicates the standard deviation of the signature across the dataset. In red and
orange, genes with the highest positive integrated signature (i.e., conserved PFAS-induced upregulation across
species), in blue and cyan, genes with the highest negative integrated signature (i.e., conserved PFAS-induced
down-regulation across species). Genes in orange or cyan are also characterized by signature standard deviation
above 10, indicating heavier fluctuations across the dataset (see also Figure 5 and Supplementary Figure S5).

While useful as a summarization technique, signature integration may hide odd behaviors in the
response to PFAS across different contrasts. In order to investigate this potential issue, we visualized
the signature of each of the 48 genes (25 + 23) up- and down-regulated by PFAS across the 7 species
and 110 contrasts (Figure 5). All prioritized genes show indeed a consistent pattern of activation. It is
to be noted, however, that for the data deriving from two species, the response to PFAS is almost
negligible (C. elegans and P. promelas). Genes with higher standard deviation (cyan and orange dots
in Figure 4) also showed consistent response to PFAS, however their scores were heavily dominated
by specific contrasts in M. musculus and H. sapiens (Supplementary Figure S5).
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Figure 5. Line graph indicating the levels of expression of selected genes in response to PFAS molecules in
different species. Each line is one gene: the genes shown here are the most consistently up- or down- regulated
with low Standard deviation, as extracted from the red and blue points of Figure 4. X-axis reports all the 110
contrasts analyzed in the integrated dataset, grouped by species. Y-axis reports the signature for each gene,
representing the significance (and sign) of the gene’s transcriptional response to PFAS. The horizontal lines
delimit the p-value thresholds of 0.05.

The 65 genes prioritized by our analysis were found to be consistently differentially expressed
not only across different species, but also across different tissues. A more in-detail analysis of the
signatures shows that the strongest impact of PFAS is observed in the liver and reproductive system
of M. musculus, H. sapiens, G. morhua and M. salmoides, together with a strong response to PFAS in the
embryonal development of D. rerio.

A closer analysis of the genes most affected by PFAS across species (Figure 4 and Figure 5) shows
a noticeable prevalence of certain biological pathways, most notably lipid metabolism (HADHA,
HADHB, ACOX1, ACSL5, FABP3, CRAT, PLA2G6), hormone-associated signal transduction (NDRGI,
ESR1, PIK3R1, SQSTM1, TSC22D3), pyrimidine metabolism (DPYS, CDA), with also a relevant
presence of mitochondrial (CRAT, DECR1, GLUD1, HADHA, HADHB, PDHB) and peroxisomal
(ACOX1, CRAT, ECH1) genes. The presence of so many genes involved in lipid metabolism confirms
previous data demonstrating that this metabolic process is highly affected by PFAS exposure [32-36].
A peculiar finding here is the USP42 gene, which is downregulated by PFAS across species (Figure
4). USP42 encodes a deubiquitinating enzyme involved in embryonal testis development and
spermatogenesis [74], and its presence amongst the most consistently down-regulated genes may
provide a molecular link to the previously observed PFAS effects on the male reproductive system
[75].

3.4. Pathway Enrichment Analysis

In order to perform a more rigorous investigation of the molecular and biological processes most
affected by PFAS, we calculated pathway enrichment contrast of the signature matrix
(Supplementary File S2) using the GSEA algorithm [76]. We then integrated the normalized
enrichment scores (NES) across the datasets to identify the pathways that were predominantly up-
and down-regulated. We identified 3275 pathways significantly up- and down-regulated by PFAS
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across species (integrated p-adjusted <0.05). In Figure 6, we show the most significantly up- and
down- regulated pathways.
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Figure 6. Heatmap showing the 20 most significant pathways that are upregulated and downregulated across
species. The blue-red color scale is proportional to the strength of the calculated pathway NES. White cells
indicate contrasts with insufficient (<5) pathway genes to reliably calculate GSEA. The bottom bar indicates the
species of each contrast in color code. The p-adjusted on the left side indicates the integrated p-value of pathway
enrichment calculated across species.

As inferred in the previous paragraph, lipid metabolism appears to be amongst the cellular
component most upregulated in response to PFAS (Figure 6), with the “fatty acid transporters”
WikiPathways gene set characterized by a p-adjusted of 1.79x107 and the Gene Ontology “lipid
import to cell” gene set at p-adjusted=2.80x10-2. As previously mentioned, PFAS have a significant
impact on this metabolic process, for example through the induction of dyslipidemia, characterized
by elevated total cholesterol plasma levels [32-37], and NAFLD [71,77], characterized by fat
accumulation in the liver that leads to impaired organ function. It is important to note that children
and adolescents are equally susceptible to the effects of PFAS exposure on lipid metabolism [78], as
studies have reported that this group is at a higher risk of developing nonalcoholic steatohepatitis
(NASH) and NAFLD [79]. A significant body of research has confirmed this effect of PFAS on lipid
metabolism in human [32-36], mouse [37], and zebrafish [80] with comparable lipid changes
observed across species. Strikingly, among the up-regulated pathways, there are some that relate to
the response to gonadotropins (Gene Ontology “Cellular response to gonadotropin stimulus”, p-
adjusted 7.56x10-%) and to FSH (Follicle-Stimulating Hormone, represented by Gene Ontology term
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“Response to FSH” at p-adjusted 7.56x10-4). These hormones stimulate the ovarian follicles
development and growth, thereby affecting fertility[81]. Previous data have shown that PFAS
molecules directly influence the secretion of gonadotropin-releasing hormone (GnRH), in turn
promoting the expression of gonadotropins, depending on dose and period of exposure [82].

The most significant down-regulated pathway is represented by the Gene Ontology “Tertiary
granule” gene set (adjusted p-value=7.28x102). Tertiary granules are secretory granules of neutrophil
cells that contain extracellular matrix-degrading enzymes and are implicated in inflammatory
response [83]. This result highlights a possible mechanism for the immunotoxicity deriving from
PFAS exposure[23-25].

In summary, the identified pathways underscore the complex and diverse nature of PFAS
toxicity, with significant implications for lipid metabolism, immune response, and reproductive
function.

3.5. Prediction of Affected Metabolites

As a last step of our analysis, we wanted to test the possibilities provided by a newly developed
algorithm to infer metabolite differential abundance from gene expression data [67]. As the method
has been developed and tested only on human data, we decided to test it on the strongest (in terms
of number of differentially expressed genes) human PFAS-induced signature publicly available:
response to 20 uM PFOS [38]. The analysis identified several metabolites that were up- and down-
regulated in response to PFOS exposure, of which the top ten that were significantly dysregulated
are displayed in Figure 7.

Top metabolites

Normalized Enrichment Score

Metabolites

Figure 7. Bar plot indicating the Normalized Enrichment Score of predicted metabolic changes upon exposure
to PFOS 20 pM in human cells. TAG: triacylglycerol. SM: Sphingomyelin.

Leucine, an essential aminoacid and precursor of cholesterol synthesis [84], was predicted to
have the highest induction by PFOS, with NES=4.32 (p-adjusted=1.56x10"). Additionally, several
metabolites were also predicted by our algorithm to be reduced by PFAS exposure, one prominent
example being the aminoacids Serine (NES=4.39, p-adjusted=1.13x10%) and Lysine (NES=4.16, p-
adjusted=3.18x10-).
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4. Discussion

Our comprehensive analysis gathered and compared all currently available datasets on PFAS
response in animals, measured with transcriptome-wide coverage via microarray or RNA-Seq
technology. We utilized this unique collection of data to investigate cross-species conservation of
transcriptional responses to PFAS, both at the gene and pathway level.

The first important result is that there is detectable and significant cross-species transcriptomics
similarity in the response to PFAS (Figure 1 and Supplementary Figure S1), with higher similarity
between closer species (Figure 2, Figure 3, Supplementary Figure S1, Supplementary Figure S2 and
Supplementary Figure S4). However, some transcriptional effects induced by PFAS are conserved
even in species as distantly related as human and zebrafish (Supplementary Figure S3).

Our investigation then deepened towards specific genes and pathways underlying this cross-
species conservation. For example, our analysis detected a strongly conserved PFAS-induced
upregulation of lipid metabolism and transport, as well as gonadotropin and FSH pathways, (Figure
6). All these processes are clearly related to ovarian development, estrogens production, ovulation
and the physiological functioning of the female reproductive system [85] and this deregulation may
provide molecular mechanisms to explain PFAS-related detrimental effects on fertility [26-29,81] and
fetal development [86-90].

Another interesting finding is the conserved down-regulation of another component of ovarian
development, the ESR1 gene (Figure 4). ESR1 encodes for the estrogen receptor alpha (ER-a), a
nuclear receptor that influences the expression of numerous genes and physiological processes [91].
By interacting with estrogens, mainly with estradiol (E2), it affects female fertility being essential for
ovulation, cellular proliferation, and tissue differentiation [91]. Ovary E2/ER-o. axis promotes
ovulation, and lower or absent expression of ER-o is associated with infertility [91,92]. ER-a is
expressed even in kisspeptin neurons, in which the E2-ER-a interaction inhibits the activity of these
neurons and the subsequent synthesis of gonadotropins in hypothalamic-pituitary axis [93,94]. Lack
of ER-a is also associated with increased synthesis of gonadotropins [95], which in turn determines
the production of estradiol in the ovary [81]. ESR1 down-regulation is associated with the up-
regulation of response to gonadotropins also in Polycystic Ovary Syndrome, leading to infertility
[95]. The setup of low ESR1/high gonadotropins is enacted, at least from a gene expression point of
view, also by PFAS exposure.

However, there appears to be effects of PFAS that go beyond the disruption of reproductive
functionality. For example, our data shows the upregulation of the ID1 gene across species (Figure 4
and Figure 5). ID1 encodes for an inhibitor of DNA-binding proteins, which regulates the cell cycle
and differentiation. Overexpression of ID1 has been linked to various types of cancer, including
leukemia, breast, and pancreatic cancers [96,97]. Epidemiologic data suggest that also PFAS are
associated with certain types of cancers, with some elements suggesting a pro-oncogenic effect [30].
Notably, elevated exposure to PFOA and PFOS appears to significantly increase the mortality of
individuals affected by liver cancer and malignant neoplasms of lymphatic and hematopoietic tissues
[31]. The finding of a conserved upregulation of IDI may provide a molecular support to the
involvement of PFAS molecules in cancer pathogenesis.

Our integrated pipeline also detected a strong conserved downregulation of the tertiary granule
pathway (Figure 6), a component of the immune defense against microorganisms enacted by
neutrophil cells [83]. Recent independent findings also suggest that PFAS affect the function of
neutrophils, likely inhibiting the granules formation or the degranulation process [98]. More scientific
literature supports the fact PFAS exposure impairs immune reactions, antibody production and
vaccination responses, particularly in children exposed to PFAS during prenatal and postnatal
periods [23-25]. This immunotoxicity has been observed not only in humans but also in other animals
[23-25] and can increase the incidence and severity of many pathologies, including COVID-19 [99-
101]. In addition, PFAS exposure increases the serum concentration of inflammatory and oxidative
stress markers, potentially promoting the development of systemic diseases as liver injury and
cardiovascular diseases, including atherosclerosis and thromboembolic events [102-104]. The size
and width of our collected PFAS transcriptomics dataset provides the neutrophil tertiary granule
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mechanism as a strong molecular candidate behind the observed toxic effect of PFAS on the immune
system.

Our analysis shows that the transcription of genes involved in lipid metabolism is significantly
affected by PFAS exposure, not only in humans but also in other species (Figure 4, Figure 5 and Figure
6). This is confirmed by previous studies, where PFAS exposure is associated with chronic
dyslipidemia and increasing of lipid serum levels [32-37]. PFAS also increase the plasma levels of
total cholesterol and triglycerides, in a dosage-dependent manner [32-36]. It is worth noting that
dyslipidemic changes are more pronounced in females than males [35,36] and are also observed in
mice [37], as confirmed by our data. The relationship between dyslipidemia and PFAS has also been
found in human children and adolescents [78], where the exposure to these chemicals increases the
risk of developing NASH and NAFLD [79] as well as impairing glucose metabolism [105]. Notably,
we found that CYP4A11, previously associated with NAFLD [70,71], is highly up-regulated in both
humans and mice, possibly indicating a causative role in NASH development due to PFAS exposure.
The impact of PFAS on children is a crucial issue, and it seems that these chemicals can even be
transferred through breastfeeding [17,18], which is of great concern.

Using recent developments of gene expression data mining for metabolite level predictions [67],
we could further analyze PFAS exposure through the prediction of their effects on the metabolome
(Figure 7). In particular, our finding that the aminoacid Leucine is upregulated by PFOS is supported
by previous literature, proving that PFOS can inhibit Leucine-dependent activation of SIRT1 histone
deacetylases [106,107]. This effect of PFAS on epigenetic regulators is also evident through the
significant (p-adjusted 4.89x10-") inhibition of the WikiPathways gene set “Ethanol Effects on Histone
Modifications” (Figure 6). As widely investigated elsewhere, there ample evidence linking lipid
metabolism (whose genes are altered by PFAS across species, Figure 6) and bioavailability to
epigenomics [108], suggesting an indirect role of PFAS on chromatin modification through disruption
of fatty acid pathways. Moreover, Leucine levels were found to be increased in children with high
prenatal exposure to PFAS molecules and these high levels are associated with a risk of liver injury
[86]. Another aminoacid shown to be significantly downregulated by PFAS is Serine (Figure 7), which
is compatible with current literature, since deficiency in Serine has been causally linked with a
reduction in lipid accumulation in the liver, a mechanism that mimics the impact of exposure to PFAS
[111]. Another PFOS-induced metabolite is reduced Glutathione (Figure 7), a thiol compound that
protects cells from oxidative stress and maintains redox homeostasis. This is consistent with the
previously shown PFAS-induced increase of glutathione S-transferase in the liver of Atlantic cod
[109]. PFAS exposure was also predicted to increase the level of triacylglycerols, specifically C52:2
TAG (Figure 7). This is experimentally confirmed by studies in humans that showed how PFAS
molecules alter triglycerides and cholesterol homeostasis, increasing the concentration of lipids and
cholesterol in the blood [32-36]. Similarly, mice exposed to PFAS exhibit an increase in cholesterol
and triglycerides in the serum and in the liver [110].

5. Conclusions

Our study constitutes the most extensive cross-species and cross-experiment analysis of
transcriptional response to PFAS to date. With our collected dataset encompassing 7 species, 11
datasets, 110 contrasts and 2144 samples, we have demonstrated significant conservation of
differential expression at both gene and pathway levels. Our analysis leverages the opportunities
provided by contemporary transcriptome-wide quantitative technology and reveals a general
disruption of hormonal synthesis and detection mechanisms, indicating that PFAS affect an ancient
and conserved metabolic hormonal network, which has implication for several components of the
ecosystem. Future studies will undoubtedly provide more data and greater precision to our observed
response, and hopefully identify better strategies for prevention and/or mitigation of the molecular
effects of PFAS.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figure S1: correlation plot displaying the Pearson correlation coefficient between
110 PFAS vs. control contrasts across 11 datasets and 7 species. The color indicates the correlation coefficient,
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from the most negative (-1, dark blue) through no correlation (0, white) to the most positive (+1, dark red). The
legend indicates the colors used to depict the eleven datasets. Figure S2: correlation plot showing the Pearson
correlation coefficient between contrasts derived from M. musculus and H. sapiens datasets. The color indicates
the correlation coefficient, from the most negative (-1, dark blue) through no correlation (0, white) to the most
positive (+1, dark red). The legend indicates the colors used to depict the six datasets. Figure S3: scatter plot
showing the positive correlation between two contrasts of D. rerio and H. sapiens. The highlighted and labeled
genes are significantly (p <0.05) and concordantly differentially expressed in response to PFAS exposure in both
datasets. Figure S4: correlation plot showing the Pearson correlation coefficient between contrasts derived from
fish species. The color indicates the correlation coefficient, from the most negative (-1, dark blue) through no
correlation (0, white) to the most positive (+1, dark red). The legend indicates the colors used to depict the four
datasets. Figure S5: line graph indicating the levels of expression of selected genes in response to PFAS molecules
in different species, characterized by absolute integrated signature > 10 and standard deviation > 10. Each line is
one gene: the genes shown here are the most consistently up- or down- regulated with high Standard deviation,
as extracted from the orange and cyan points of Figure 4. X-axis reports all the 110 contrasts analyzed in the
integrated dataset, grouped by species. Y-axis reports the signature for each gene, representing the significance
(and sign) of the gene’s transcriptional response to PFAS. The horizontal lines delimit the p-value thresholds of
0.05. File S1: table depicting pairwise inter-species orthologous conversions adopted in the current study. File
§2: table showing all signature values calculated in the combined dataset, where genes are shown as rows, and
contrasts as columns.
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