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Abstract: In the recent decades, per- and polyfluoroalkyl substances (PFAS) have garnered 

widespread public attention due to their persistence in the environment and detrimental effects on 

the health of living organisms, spurring the generation of several transcriptome-centered 

investigations to understand the biological basis of their mechanism. In this study, we analyzed 

2144 publicly available datasets from 7 distinct species to examine the molecular responses to PFAS 

exposure and determine if there are conserved responses. Our comparative transcriptional analysis 

revealed that exposure to PFAS is conserved across different tissues, molecules and species. We 

identified and reported several genes exhibiting consistent and evolutionarily conserved 

transcriptional response to PFAS, such as ESR1, HADHA and ID1, as well as several pathways 

including lipid metabolism, immune response and hormone pathways. This study provides the first 

evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the 

same metabolic processes across inter-species borders. Our findings have significant implications 

for understanding the impact of PFAS exposure on living organisms and the environment. We 

believe that this study offers a novel perspective on the molecular responses to PFAS exposure and 

provides a foundation for future research into developing strategies for mitigating the detrimental 

effects of these substances. 
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1. Introduction 

Per- and polyfluoroalkyl substances (PFAS) are a heterogeneous class of fluorinated synthetic 

compounds encompassing a great number of molecules with different structures [1]. They have 

gained global notoriety due to their persistence and adverse effects on living organisms and 

environmental health [2]. While a compendious definition of these chemicals is challenging to 

provide, the Organization of Economic Co-operation and Development (OECD) recently defined 

PFAS as molecules containing at least a perfluorinated methyl (‒CF3) or a perfluorinated methylene 

group (‒CF2‒) without any H/Cl/Br/I attached to it [3]. However, there are several PFAS 

classifications that are based on diverse definitions and include a variable number of molecules. For 

instance, PubChem’s classification, based on OECD’s general description [3], includes more than 6.3 

million PFAS molecules [4], while the United States Environmental Protection Agency’s (EPA) 

classification, founded on molecular substructures and threshold of fluorine percentage [5], contains 

14,735 compounds [6]. Despite the challenges and discrepancies in defining these substances, the 

OECD currently recognizes 4730 molecules as bona fide PFAS, which are further classified based on 

their carbon chain length and molecular structure, which determines their unique physicochemical 

properties and environmental behavior. Short chain and long chain PFAS are distinguished based on 

their carbon chain length, and polymeric and non-polymeric PFAS are differentiated based on the 

presence or absence of repeating monomer units in their molecular structure. Moreover, PFAS are 

commonly classified based on their legal status as either legacy or emerging PFAS. Emerging PFAS 
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are compounds such as HFPO-DA or GenX, ADONA, C6O4, which were introduced after the ban on 

perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) production, import, and use. These 

emerging PFAS are characterized by a shorter C-F backbone and are considered less hazardous than 

legacy PFAS due to their lower bioaccumulation potential and toxicity [7].   

PFAS have unique chemical properties that fostered their widespread production and use in a 

multitude of industrial products since the 1950s [8]. The C‒F bond in PFAS molecules confers high 

molecular stability, but also results in high resistance to degradation, leading to their persistence into 

the environment [2,8]. Additionally, the chemical attributes of amphiphilic and hydrophobic PFAS 

render them good surfactants and surface protectors, while also making them resistant to high 

temperatures. The versatility of PFAS has led to their use in a wide range of products, including non-

stick pans, firefighting foams (aqueous film-forming foams, AFFF), waterproof textiles, pesticides, 

building and construction materials, cleaning products, medical and personal care products, among 

many others [2,8].   

Despite their widespread use, the potential risks of PFAS exposure to human health and the 

environment have become increasingly apparent. PFAS have been found to be ubiquitously present 

in the environment, where they can persist for several years owing to their resistance to degradation. 

Water basins have been identified as major repositories of PFAS and are capable of transferring these 

substances over long distances, making the water ecosystem a crucial gateway for PFAS entry into 

the food chain up to humans [9,10]. Numerous studies have focused on specific PFAS molecules, such 

as PFOS and PFOA, and have shown that their accumulation can have detrimental effects on aquatic 

and terrestrial ecosystems, as well as on animal species and plants. As a result, limitations on the use 

of PFOA and PFOS were introduced in some regions [2,11–14]. Moreover, the presence of PFAS in 

human biological matrices has been highlighted in numerous studies, with a global distribution. 

PFAS have been detected in serum [15,16], breast milk [17,18], placenta [19,20], hair [21] and semen 

[22], indicating widespread exposure in human populations. 

The vast majority physiological and molecular research on PFAS has been directed towards 

human health, revealing their toxicological effects on biological processes and metabolism. These 

negative impacts include reduced fertility, altered gene transcription [12,23–29] and the promotion 

of certain types of cancer, such as kidney and liver cancer [30,31]. However, there are conflicting data 

on the involvement of PFAS in cancer pathogenesis [30]. Furthermore, PFAS have been shown to 

negatively affect the activity of the immune system, particularly in children, by impairing immune 

reactions and vaccinations responses [23–25]. Lipid metabolism is also heavily impacted by PFAS 

exposure, leading to dyslipidemia and increased plasma levels of cholesterol [32–37].  

Numerous studies have demonstrated that PFAS affect multiple species through detectable 

molecular mechanisms [38–41]. These compounds can directly interact with molecules such as the 

peroxisome proliferator-activated receptor α (PPARα), which mediates PFAS toxicity [42]. Most 

importantly, PFAS are capable of modifying the transcriptional expression of many genes in humans 

and other species [12], which has significant repercussions on the mentioned pathways and diseases. 

Despite the vast evidence of transcriptional changes induced by PFAS in multiple species and 

despite the presence of numerous quantitative transcriptome-wide studies measuring gene 

expression responses to PFAS exposure [38,39,43], a comprehensive and comparative analysis of the 

data generated by these studies has yet to be performed. To address this gap, we propose a rational 

integration and comparison of transcriptome-wide studies performed in animal species and cell 

models, in the form of RNA-Seq or microarray datasets. Using the opportunities offered by 

transcriptomics, we aim to elucidate the molecular effects induced by PFAS not only at the single 

gene level, but also across different pathways and cell types. Our research provides a comprehensive 

understanding of the molecular mechanisms underlying PFAS toxicity that translate across species, 

while accelerating evidence-based policies and treatments to safeguard public and environmental 

health. 
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2. Materials and Methods 

2.1. Data collection and processing 

We conducted an extensive literature search across databases to identify transcriptomics studies 

focusing on the effects of PFAS on animal samples. A total of 11 transcriptomics datasets were 

identified, containing publicly available data from 7 different species (Homo sapiens, Mus musculus, 

Caenorhabditis elegans, Danio rerio, Gadus morhua, Micropterus salmoides, Pimephales promelas) (Table 1) 

[38–41,43–49]. Data associated with these studies were retrieved from the Gene Expression Omnibus 

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) [50] and the Sequence Read Archive (SRA) 

database (https://www.ncbi.nlm.nih.gov/sra) [51], both hosted at the National Center for 

Biotechnology Information (NCBI).  

Raw sequence data (FASTQ files) from the D. rerio [41] and G. morhua [43] datasets were 

downloaded from the SRA database [51] using SRA Toolkit version 3.0.1. These reads were aligned 

to the respective reference genomes (zebrafish genome version danRer11/GRCz11 and Atlantic cod 

genome version gadMor3.0) using the HISAT2 alignment program version 2.1.0 [52]. The BAM files 

containing the aligned reads of zebrafish and Atlantic cod were processed with featureCounts 

version 2.0.0 [53] to obtain matrices containing the gene counts for each sample. The other datasets 

were directly downloaded from NCBI GEO database [50] with most of them being in the form of gene 

counts matrices, while the Pfohl et al. 2021 dataset [47] was available through CEL files. 

All statistical analyses were conducted in the R statistical software version 4.2.2 and 

Bioconductor version 3.16. To generate graphs for this manuscript we used base R functions and R 

packages including ggplot2 version 3.4.1 [54], corrplot version 0.92, corto version 1.2.0 [55], and 

ComplexHeatmap version 2.14.0 [56]. 

RNA-Seq gene-based reads counts were directly loaded into the R environment, while R 

package oligo version 1.62.2 was used to import and process CEL files. Microarray data were 

normalized using RMA normalization [57]. R package GEOquery version 2.66.0 [58] was utilized to 

recover the metadata containing the information about the experimental design. 

All sequencing data alignment and gene expression quantification steps were performed on a 

HPC dedicated DELL EMC server with an AMD EPYC 7301 32 Core processor and 256 GB of RAM. 

Microarray normalization, post-normalization statistical analysis, graphics were carried out on 

Windows 10 machine Intel Core i7-10700 CPU with 32 GB RAM. 

2.2. Differential Gene Expression Analysis  

To comprehensively assess the transcriptome-wide response to PFAS, we designed an approach 

of comparison of 110 total differential gene expression contrasts, using for each dataset a balanced 

PFAS-treated vs. control design, with at least three replicates per group. For RNA-seq data, we used 

the DESeq2 R package version 1.38.3 [59] on raw read counts. For microarray data, we implemented 

the default pipeline of the limma R package version 3.54.1 [60]. Due to the significantly higher number 

of contrasts in two H. sapiens datasets [38,44] than all others (Table 1), we decided to retain only PFAS 

concentration of 20µM in these two datasets [38,44]. In the case of P. promelas dataset [48], low 

exposure specimens from Upper Prior Lake were used as PFAS-treated samples. Overall, the 

differential gene expression analysis was implemented on 110 separated contrasts, encompassing all 

datasets (Table 1).   

For each contrast of the datasets, we generated a gene-by-gene transcriptome-wide signature, 

defined by the following formula: 

-log10(p) x sign(log(FC)) 

Where p represents p-value of the differential expression (calculated by limma or DESeq2) and 

FC representing the Fold Change of the differential expression. 

In essence, this formula (implemented in several other transcriptomics publications, such as 

Alvarez et al. 2016 [61]) assigns a numerical value to each gene that is positive for significantly up-

regulated genes, and negative for significantly down-regulated genes. The magnitude of the 

numerical value is proportional to the tested significance of the change. 
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2.3. Ortholog prediction  

To enable the comparison of gene expression data across different species, we devised a 

phylogenetic gene conversion approach to convert all gene signatures to a common gene identifier.  

In order to do so, we performed a direct species-to-human conversion using the DRSC 

Integrative Ortholog Prediction Tool (DIOPT) database version 9.0 [62] for all available species in the 

database. For species not available in DIOPT, we utilized the R package orthogene version 1.4.1 [63] to 

perform the conversion. In instances where species were not available in either database (specifically, 

for Micropterus salmoides and Pimephales promelas), we employed a bidirectional best-hit approach 

based on BLASTn version 2.12.0+ [64], using the sequences associated to each microarray probe as 

query, and the zebrafish cDNA version danRer11/GRCz11 as target database. We then converted the 

identifiers from zebrafish to human using DIOPT. All ortholog conversions used in this study are 

available as Supplementary File S1. 

The resulting matrix of signatures, based on the most likely human ortholog, contained 110 

contrasts (PFAS vs. control) and was used for subsequent analysis (Supplementary File S2). 

2.4. Signature analysis  

To assess the similarities between gene expression signatures, we employed Pearson correlation, 

provided by the R basic function cor(). 

For the pathway enrichment analysis, we retrieved gene sets from KEGG, WikiPathways and 

Gene Ontology using the Molecular Signatures Database (MSigDB) [65]. We accessed the database 

via the R package msigdbr version 7.5.1 and implemented the enrichment analysis on the signatures 

using the R package fgsea version 1.24.0. This package uses an algorithm for expedite and parallel 

Gene Set Enrichment Analysis [66]. 

To integrate the normalized enrichment scores (NES) derived from the pathway enrichment 

analysis, we employed Stouffer integration as implemented by the corto R package version 1.2.0 [55]. 

In short, we opted for Stouffer, as done before by treating signature scores as Z-scores [61], in order 

to allow for the integration of positive and negative values. Z-scores were converted to p-values, 

where needed, using the z2p() function from the aforementioned corto package [55]. All p-values were 

corrected using the Benjamini-Hochberg method. 

2.5. Metabolites prediction 

We employed a correlation-based method to predict metabolites based on gene expression 

signatures, as described in Cavicchioli et al. 2022 [67]. Specifically, we utilized the same 

metabolite/transcript networks generated by Cavicchioli and colleagues to perform the analysis. We 

applied this approach to the human dataset of Rowan-Carroll and colleagues, focusing only on the 

contrast with highest response in terms of number of differentially expressed genes (Day 4 of 

exposure to PFOS at the concentration of 20µM). Prior to the analysis, RNA-seq gene expression 

count data was normalized using Variance Stabilizing Transformation (VST) [59]. 

3. Results 

3.1. Datasets 

As previously mentioned, we retrieved 11 datasets from 7 different species for our analysis. 

Table 1 provides detailed information about each dataset, including overall study design, tested 

PFAS molecules, number of samples, and tissues analyzed. 
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Table 1. Summary of the transcriptomics datasets analyzed in this study. 

Species 
Sample 

size 
Platform 

PFAS  

compound 
Concentration Setup Tissue Reference 

H. sapiens 607 RNA-seq 

PFOS  

PFOA  

PFBS  

PFDS 

0.02, 0.1, 0.2, 1, 

2, 10, 20, 50, 

100 µM  

in vitro 

Primary 

liver 

spheroids 

Rowan-

Carroll et al. 

2021 [38] 

H. sapiens 1201 RNA-seq 

PFBA 

PFPeA 

PFHxA 

PFHpA 

PFOA  

PFNA  

PFDA 

PFUnA 

PFTeDA 

PFBS  

PFHxS 

PFHpS  

PFOS  

PFDS 

PFOSA  

8:2MonoPAP 

6:2MonoPAP 

8:2 FtS  

6:2 FtS  

4:2 FtS  

8:2 FtOH  

6:2 FtOH 

5:3 Acid 

Various 

concentrations 

in the range 

0.2 – 100 µM  

in vitro 

Primary 

liver 

spheroids 

Reardon et 

al. 2021 [44] 

H. sapiens 23 RNA-seq PFOS 10 mg/kg in vivo 

Prostate  

cancer cells 

xenograft 

Imir et al. 

2021 [45] 

M. 

musculus 
32 RNA-seq 

PFOA  

GenX 

0.05, 0.3 

mg/kg body 

weight/day 

in vivo Liver 
Attema et 

al. 2022 [39] 

M. 

musculus 
37 RNA-seq HPFO-DA 

0.1, 0.5, 5 

mg/kg 
in vivo Liver 

Heintz et al. 

2022 [46] 

M. 

musculus 
18 Microarray 

PFOS  

PFNA 

0.0003% of 

low-fat diet or 

high-fat diet 

in vivo Liver 
Pfohl et al. 

2021 [47] 

C. elegans 60 RNA-seq HPFO-DA 

1.25x10-5, 

6.25x10-5, 

3.13x10-4, 

1.56x10-3, 

7.81x10-3, 

1.56x10-2, 

3.13x10-2, 

6.25x10-2, 

0.125, 0.25, 0.5, 

1, 2, 4 g/L 

in vivo 
Whole 

body 

Feng et al. 

2022 [40] 

D. rerio 16 RNA-seq PFOSA 12.5 µM in vivo Embryo 
Dasgupta et 

al. 2020 [41] 

G. morhua 48 RNA-seq 

PFOS 

PFOA 

PFNA 

Low, medium, 

high, 1x, 20x, 

100x 

in vitro Ovary 
Khan et al. 

2021 [43] 
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M. 

salmoides 
72 Microarray 

PFDA 

PFUnA 

PFDoA 

PFOS 

Different for 

each lake and 

each PFAS 

in vivo 
Liver &  

Testis 

Collí-Dulá 

et al. 2016 

[48] 

P. 

promelas 
30 Microarray 

PFOS 

PFBA 

PFHxA 

PFHpA 

PFOA 

PFNA 

PFDA 

0.5, 25 µg/L in vivo 

Liver & 

Whole 

blood 

Rodríguez-

Jorquera et 

al. 2019 [49] 

3.2. Correlation analysis 

To assess whether PFAS promote similar responses across species, we extracted transcriptional 

signatures from each PFAS vs. control contrast (Supplementary File S2). Our comparative 

transcriptional analysis revealed that exposure to different PFAS molecules determines both intra- 

and inter-species correlations (Figure 1), indicating that this class of compounds induces conserved 

biological responses among species, despite the high phylogenetic distance between the species 

herein analyzed. Notably, our analysis demonstrated a general preponderance of positive correlation, 

with greater values in intra-species comparison (Figure 1 and Supplementary Figure S1).  
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Figure 1. Heatmap displaying the correlation among 110 different PFAS vs. control differential expression 

contrasts. The color gradient ranges from blue (denoting negative correlation) to red (denoting positive 

correlation), with darker colors indicating higher correlation values. Each colored dot indicates the correlation 

value between any two contrasts of the final signature matrix (Supplementary File S2). The upper bar denotes 

the tissue of origin of each contrast. 

Relating to cross-species correlation, our analysis revealed a strong positive correlation between 

the transcriptional signatures of H. sapiens and M. musculus, especially when exposed to the same 

PFAS molecule (Figure 2A and Supplementary Figure S2), highlighting the close evolutionary 

proximity between the two species. We detected inter-species positive correlations as high as 0.36 

(Figure 2A), which is extremely significant (p-value=1.52x10-68, Figure 2B). This similarity was 

observed between the liver of wildtype mice [39] and human liver spheroids [38], both exposed to 

PFOA, although at different concentrations and exposure times.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0413.v1

https://doi.org/10.20944/preprints202306.0413.v1


 

   

Figure 2. (a) Correlation plot of M. musculus and H. sapiens exposed to PFOA molecule (both Mix of human 

dataset of Reardon et al. 2021 [44] contain PFOA). As an example, the greatest correlation achieved between 

human and mouse contrasts (0.36) is highlighted by a black box. (b) Scatterplot showing the correlation among 

the contrasts of mouse and human highlighted by a black box in the previous plot. The highlighted genes are 

the most significant genes driving the correlation between the two species, defined by significant transcriptional 

change (p ≤0.001) in response to PFAS exposure in both species. 

This correlation between the transcriptional signature of H. sapiens [38] and M. musculus [39] is 

driven by genes that are differentially expressed (p-value ≤ 0.001) in both species in response to PFAS 

exposure, as highlighted in Figure 2B. Among these genes, CYP4A11 is highly up-regulated in both 

species and encodes a ω-hydroxylase of CYP450 gene family, which is involved in fatty acids 

metabolism, such as arachidonic acid. CYP4A11 is highly expressed in liver and kidney, where it 

synthetizes the 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid [68]. 20-HETE has 

been shown to have cardiotoxic and vasoconstrictive activity, and its increased synthesis is associated 

with vascular inflammation and hypertension [69]. Remarkably, CYP4A11 up-regulation has been 

associated with non-alcoholic fatty liver disease (NAFLD), since it increases the intracellular 

production of reactive oxygen species (ROS) and pro-inflammatory cytokines [70]. Our result is in 

line with data showing that exposure to PFOA is positively related to NAFLD development [71]. The 

other upregulated genes (Figure 2B) are mainly implicated in lipid metabolism, mitochondrial 

function, and stress response, while downregulated genes participate in immune response and 

inflammation, thrombosis, and cellular adhesion. 

Our analysis also revealed a significant positive correlation (0.22, p-value=7.89x10-20) between 

the transcriptional signatures of H. sapiens from Rowan-Carroll et al. 2021 dataset [38] and D. rerio 

from Dasgupta et al. 2020 dataset [41]. Notably, this correlation is driven by the downregulation of 

various genes encoding different types of collagen (Supplementary Figure S3). 

In addition to positive correlations, our analysis also highlighted significant negative 

correlations, both between distinct species and between different tissues of the same species (Figure 

1 and Supplementary Figure S1). We hypothesize that exposure to PFAS substances elicits opposite 

responses depending on the tissue analyzed, both within and across different species. These results 

might be due to histological differences in gene expression among distinct tissues, as similarly 

observed by Glinos and colleagues [72], where the same molecules trigger distinct transcriptional 

changes as demonstrated for drug-metabolizing enzymes [73]. Illustratively, the negative values 

were most prominently observed in fish species, where different tissues of distinct species, such as 

G. morhua (ovary [43]) and P. promelas (blood [49]), and of the same species, as in the case of M. 

salmoides (liver and testis [48]), exhibited moderate but significant negative correlations (Figure 3 and 

Supplementary Figure S4). For instance, the negative correlation of -0.2 between blood sample of P. 
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promelas exposed to PFOS 0.5 µg/L and ovary of G. morhua exposed to PFOS at low concentration is 

really significant with a p-value of 6.99x10-49. 

 

 

Figure 3. Comparison between PFAS exposure signatures in four different fish species. For the Atlantic cod 

(Gadus morhua) dataset one concentration for each PFAS molecule was selected. The full analysis including all 

concentrations and contrasts is displayed in Supplementary figure S4. 

3.3. Generation of a cross-species PFAS responses 

Once ascertained that exposure to PFAS molecules induces significantly similar transcriptional 

changes across different species, our primary objective was to identify which genes are most 

responsible to this transcriptional conservation, and therefore define the molecular basis for this 

observed conservation. In order to overcome the uneven representation of species in our signature 

analysis (Table 1), we performed a weighted Stouffer integration on the signature matrix, giving 

equal representation to each species in our dataset. This approach enabled us to pinpoint the genes 

that were over- and under-expressed across all species. 

We successfully identified 3435 genes appearing in at least six species of the seven species 

included in our dataset (Figure 4). Our analysis highlights genes that are most consistently up- or 

down- regulated by PFAS in the dataset. 9 genes (EHHADH, RETSAT, GCLM, ACOX1, HADHB, 

ARHGAP27, DECR1, HADHA, POR, depicted in orange in Figure 4) are characterized by an elevated 

and positive integrated signature (≥10 Stouffer integrated Z-score, corresponding to p-value ≤ 1.6x10-

23), but also by a high (≥10) signature standard deviation across our dataset; these 9 genes are therefore 

induced by PFAS in a strong and conserved way, however with heavy fluctuations across contrasts 

(see also Figure S5), which may indicate outlying contrasts. We then highlighted 25 genes 

significantly upregulated (≥5 Stouffer integrated Z-score, corresponding to p-value ≤ 5.8x10-7) with 

lower standard deviation (<10), highlighted in red in Figure 4, and including Acetyl-CoA 

Acetyltransferase 1 (ACAT1), Inhibitor of DNA Binding 1 (ID1) and Vascular Endothelial 

Growth Factor A (VEGFA). Among genes consistently repressed by PFAS, we found 8 genes (FN1, 
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MSMO1, TTR, HMGCR, FMO5, NEB, DPYS, COL1A2, indicated in cyan in Figure 4) with strong 

down-regulation across the dataset (≤ -10 Stouffer integrated Z-score, corresponding to p-value ≤ 

1.6x10-23) and high standard deviation. We also highlighted 23 genes down-regulated at lower 

standard deviation (<10) with ≥ ≤ -5 Stouffer integrated Z-score, corresponding to p-value ≤ 5.8x10-7, 

which include the PFAS-repressed oncogene ESR1, encoding for estrogen receptor. 

 

Figure 4. Plot showing the integrated response to PFAS across 110 contrasts. Each point represents a gene. The 

x-axis indicates the integrated signature value (obtained by integrating signatures across the dataset using the 

Stouffer method). The y-axis indicates the standard deviation of the signature across the dataset. In red and 

orange, genes with the highest positive integrated signature (i.e., conserved PFAS-induced upregulation across 

species), in blue and cyan, genes with the highest negative integrated signature (i.e., conserved PFAS-induced 

down-regulation across species). Genes in orange or cyan are also characterized by signature standard deviation 

above 10, indicating heavier fluctuations across the dataset (see also Figure 5 and Supplementary Figure S5). 

While useful as a summarization technique, signature integration may hide odd behaviors in the 

response to PFAS across different contrasts. In order to investigate this potential issue, we visualized 

the signature of each of the 48 genes (25 + 23) up- and down-regulated by PFAS across the 7 species 

and 110 contrasts (Figure 5). All prioritized genes show indeed a consistent pattern of activation. It is 

to be noted, however, that for the data deriving from two species, the response to PFAS is almost 

negligible (C. elegans and P. promelas). Genes with higher standard deviation (cyan and orange dots 

in Figure 4) also showed consistent response to PFAS, however their scores were heavily dominated 

by specific contrasts in M. musculus and H. sapiens (Supplementary Figure S5). 
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Figure 5. Line graph indicating the levels of expression of selected genes in response to PFAS molecules in 

different species. Each line is one gene: the genes shown here are the most consistently up- or down- regulated 

with low Standard deviation, as extracted from the red and blue points of Figure 4. X-axis reports all the 110 

contrasts analyzed in the integrated dataset, grouped by species. Y-axis reports the signature for each gene, 

representing the significance (and sign) of the gene’s transcriptional response to PFAS. The horizontal lines 

delimit the p-value thresholds of 0.05. 

The 65 genes prioritized by our analysis were found to be consistently differentially expressed 

not only across different species, but also across different tissues. A more in-detail analysis of the 

signatures shows that the strongest impact of PFAS is observed in the liver and reproductive system 

of M. musculus, H. sapiens, G. morhua and M. salmoides, together with a strong response to PFAS in the 

embryonal development of D. rerio. 

A closer analysis of the genes most affected by PFAS across species (Figure 4 and Figure 5) shows 

a noticeable prevalence of certain biological pathways, most notably lipid metabolism (HADHA, 

HADHB, ACOX1, ACSL5, FABP3, CRAT, PLA2G6), hormone-associated signal transduction (NDRG1, 

ESR1, PIK3R1, SQSTM1, TSC22D3), pyrimidine metabolism (DPYS, CDA), with also a relevant 

presence of mitochondrial (CRAT, DECR1, GLUD1, HADHA, HADHB, PDHB) and peroxisomal 

(ACOX1, CRAT, ECH1) genes. The presence of so many genes involved in lipid metabolism confirms 

previous data demonstrating that this metabolic process is highly affected by PFAS exposure [32–36]. 

A peculiar finding here is the USP42 gene, which is downregulated by PFAS across species (Figure 

4). USP42 encodes a deubiquitinating enzyme involved in embryonal testis development and 

spermatogenesis [74], and its presence amongst the most consistently down-regulated genes may 

provide a molecular link to the previously observed PFAS effects on the male reproductive system 

[75]. 

3.4. Pathway Enrichment Analysis 

In order to perform a more rigorous investigation of the molecular and biological processes most 

affected by PFAS, we calculated pathway enrichment contrast of the signature matrix 

(Supplementary File S2) using the GSEA algorithm [76]. We then integrated the normalized 

enrichment scores (NES) across the datasets to identify the pathways that were predominantly up- 

and down-regulated. We identified 3275 pathways significantly up- and down-regulated by PFAS 
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across species (integrated p-adjusted 0.05). In Figure 6, we show the most significantly up- and 

down- regulated pathways. 

 

Figure 6. Heatmap showing the 20 most significant pathways that are upregulated and downregulated across 

species. The blue-red color scale is proportional to the strength of the calculated pathway NES. White cells 

indicate contrasts with insufficient (<5) pathway genes to reliably calculate GSEA. The bottom bar indicates the 

species of each contrast in color code. The p-adjusted on the left side indicates the integrated p-value of pathway 

enrichment calculated across species. 

As inferred in the previous paragraph, lipid metabolism appears to be amongst the cellular 

component most upregulated in response to PFAS (Figure 6), with the “fatty acid transporters” 

WikiPathways gene set characterized by a p-adjusted of 1.79x10-17 and the Gene Ontology “lipid 

import to cell” gene set at p-adjusted=2.80x10-12. As previously mentioned, PFAS have a significant 

impact on this metabolic process, for example through the induction of dyslipidemia, characterized 

by elevated total cholesterol plasma levels [32–37], and NAFLD [71,77], characterized by fat 

accumulation in the liver that leads to impaired organ function. It is important to note that children 

and adolescents are equally susceptible to the effects of PFAS exposure on lipid metabolism [78], as 

studies have reported that this group is at a higher risk of developing nonalcoholic steatohepatitis 

(NASH) and NAFLD [79]. A significant body of research has confirmed this effect of PFAS on lipid 

metabolism in human [32–36], mouse [37], and zebrafish [80] with comparable lipid changes 

observed across species. Strikingly, among the up-regulated pathways, there are some that relate to 

the response to gonadotropins (Gene Ontology “Cellular response to gonadotropin stimulus”, p-

adjusted 7.56x10-14) and to FSH (Follicle-Stimulating Hormone, represented by Gene Ontology term 
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“Response to FSH” at p-adjusted 7.56x10-14). These hormones stimulate the ovarian follicles 

development and growth, thereby affecting fertility[81]. Previous data have shown that PFAS 

molecules directly influence the secretion of gonadotropin-releasing hormone (GnRH), in turn 

promoting the expression of gonadotropins, depending on dose and period of exposure [82]. 

The most significant down-regulated pathway is represented by the Gene Ontology “Tertiary 

granule” gene set (adjusted p-value=7.28x10-12). Tertiary granules are secretory granules of neutrophil 

cells that contain extracellular matrix-degrading enzymes and are implicated in inflammatory 

response [83]. This result highlights a possible mechanism for the immunotoxicity deriving from 

PFAS exposure[23–25]. 

In summary, the identified pathways underscore the complex and diverse nature of PFAS 

toxicity, with significant implications for lipid metabolism, immune response, and reproductive 

function. 

3.5. Prediction of Affected Metabolites 

As a last step of our analysis, we wanted to test the possibilities provided by a newly developed 

algorithm to infer metabolite differential abundance from gene expression data [67]. As the method 

has been developed and tested only on human data, we decided to test it on the strongest (in terms 

of number of differentially expressed genes) human PFAS-induced signature publicly available: 

response to 20 µM PFOS [38]. The analysis identified several metabolites that were up- and down-

regulated in response to PFOS exposure, of which the top ten that were significantly dysregulated 

are displayed in Figure 7. 

 

Figure 7. Bar plot indicating the Normalized Enrichment Score of predicted metabolic changes upon exposure 

to PFOS 20 µM in human cells. TAG: triacylglycerol. SM: Sphingomyelin. 

Leucine, an essential aminoacid and precursor of cholesterol synthesis [84], was predicted to 

have the highest induction by PFOS, with NES=4.32 (p-adjusted=1.56x10-5). Additionally, several 

metabolites were also predicted by our algorithm to be reduced by PFAS exposure, one prominent 

example being the aminoacids Serine (NES=4.39, p-adjusted=1.13x10-5) and Lysine (NES=4.16, p-

adjusted=3.18x10-5). 
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4. Discussion 

Our comprehensive analysis gathered and compared all currently available datasets on PFAS 

response in animals, measured with transcriptome-wide coverage via microarray or RNA-Seq 

technology. We utilized this unique collection of data to investigate cross-species conservation of 

transcriptional responses to PFAS, both at the gene and pathway level. 

The first important result is that there is detectable and significant cross-species transcriptomics 

similarity in the response to PFAS (Figure 1 and Supplementary Figure S1), with higher similarity 

between closer species (Figure 2, Figure 3, Supplementary Figure S1, Supplementary Figure S2 and 

Supplementary Figure S4). However, some transcriptional effects induced by PFAS are conserved 

even in species as distantly related as human and zebrafish (Supplementary Figure S3). 

Our investigation then deepened towards specific genes and pathways underlying this cross-

species conservation. For example, our analysis detected a strongly conserved PFAS-induced 

upregulation of lipid metabolism and transport, as well as gonadotropin and FSH pathways, (Figure 

6). All these processes are clearly related to ovarian development, estrogens production, ovulation 

and the physiological functioning of the female reproductive system [85] and this deregulation may 

provide molecular mechanisms to explain PFAS-related detrimental effects on fertility [26–29,81] and 

fetal development [86–90]. 

Another interesting finding is the conserved down-regulation of another component of ovarian 

development, the ESR1 gene (Figure 4). ESR1 encodes for the estrogen receptor alpha (ER-), a 

nuclear receptor that influences the expression of numerous genes and physiological processes [91]. 

By interacting with estrogens, mainly with estradiol (E2), it affects female fertility being essential for 

ovulation, cellular proliferation, and tissue differentiation [91]. Ovary E2/ER- axis promotes 

ovulation, and lower or absent expression of ER- is associated with infertility [91,92]. ER- is 

expressed even in kisspeptin neurons, in which the E2-ER- interaction inhibits the activity of these 

neurons and the subsequent synthesis of gonadotropins in hypothalamic-pituitary axis [93,94]. Lack 

of ER- is also associated with increased synthesis of gonadotropins [95], which in turn determines 

the production of estradiol in the ovary [81]. ESR1 down-regulation is associated with the up-

regulation of response to gonadotropins also in Polycystic Ovary Syndrome, leading to infertility 

[95]. The setup of low ESR1/high gonadotropins is enacted, at least from a gene expression point of 

view, also by PFAS exposure. 

However, there appears to be effects of PFAS that go beyond the disruption of reproductive 

functionality. For example, our data shows the upregulation of the ID1 gene across species (Figure 4 

and Figure 5). ID1 encodes for an inhibitor of DNA-binding proteins, which regulates the cell cycle 

and differentiation. Overexpression of ID1 has been linked to various types of cancer, including 

leukemia, breast, and pancreatic cancers [96,97]. Epidemiologic data suggest that also PFAS are 

associated with certain types of cancers, with some elements suggesting a pro-oncogenic effect [30]. 

Notably, elevated exposure to PFOA and PFOS appears to significantly increase the mortality of 

individuals affected by liver cancer and malignant neoplasms of lymphatic and hematopoietic tissues 

[31]. The finding of a conserved upregulation of ID1 may provide a molecular support to the 

involvement of PFAS molecules in cancer pathogenesis. 

Our integrated pipeline also detected a strong conserved downregulation of the tertiary granule 

pathway (Figure 6), a component of the immune defense against microorganisms enacted by 

neutrophil cells [83]. Recent independent findings also suggest that PFAS affect the function of 

neutrophils, likely inhibiting the granules formation or the degranulation process [98]. More scientific 

literature supports the fact PFAS exposure impairs immune reactions, antibody production and 

vaccination responses, particularly in children exposed to PFAS during prenatal and postnatal 

periods [23–25]. This immunotoxicity has been observed not only in humans but also in other animals 

[23–25] and can increase the incidence and severity of many pathologies, including COVID-19 [99–

101]. In addition, PFAS exposure increases the serum concentration of inflammatory and oxidative 

stress markers, potentially promoting the development of systemic diseases as liver injury and 

cardiovascular diseases, including atherosclerosis and thromboembolic events [102–104]. The size 

and width of our collected PFAS transcriptomics dataset provides the neutrophil tertiary granule 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 June 2023                   doi:10.20944/preprints202306.0413.v1

https://doi.org/10.20944/preprints202306.0413.v1


 

mechanism as a strong molecular candidate behind the observed toxic effect of PFAS on the immune 

system. 

Our analysis shows that the transcription of genes involved in lipid metabolism is significantly 

affected by PFAS exposure, not only in humans but also in other species (Figure 4, Figure 5 and Figure 

6). This is confirmed by previous studies, where PFAS exposure is associated with chronic 

dyslipidemia and increasing of lipid serum levels [32–37]. PFAS also increase the plasma levels of 

total cholesterol and triglycerides, in a dosage-dependent manner [32–36]. It is worth noting that 

dyslipidemic changes are more pronounced in females than males [35,36] and are also observed in 

mice [37], as confirmed by our data. The relationship between dyslipidemia and PFAS has also been 

found in human children and adolescents [78], where the exposure to these chemicals increases the 

risk of developing NASH and NAFLD [79] as well as impairing glucose metabolism [105]. Notably, 

we found that CYP4A11, previously associated with NAFLD [70,71], is highly up-regulated in both 

humans and mice, possibly indicating a causative role in NASH development due to PFAS exposure. 

The impact of PFAS on children is a crucial issue, and it seems that these chemicals can even be 

transferred through breastfeeding [17,18], which is of great concern. 

Using recent developments of gene expression data mining for metabolite level predictions [67], 

we could further analyze PFAS exposure through the prediction of their effects on the metabolome 

(Figure 7). In particular, our finding that the aminoacid Leucine is upregulated by PFOS is supported 

by previous literature, proving that PFOS can inhibit Leucine-dependent activation of SIRT1 histone 

deacetylases [106,107]. This effect of PFAS on epigenetic regulators is also evident through the 

significant (p-adjusted 4.89x10-11) inhibition of the WikiPathways gene set “Ethanol Effects on Histone 

Modifications” (Figure 6). As widely investigated elsewhere, there ample evidence linking lipid 

metabolism (whose genes are altered by PFAS across species, Figure 6) and bioavailability to 

epigenomics [108], suggesting an indirect role of PFAS on chromatin modification through disruption 

of fatty acid pathways. Moreover, Leucine levels were found to be increased in children with high 

prenatal exposure to PFAS molecules and these high levels are associated with a risk of liver injury 

[86]. Another aminoacid shown to be significantly downregulated by PFAS is Serine (Figure 7), which 

is compatible with current literature, since deficiency in Serine has been causally linked with a 

reduction in lipid accumulation in the liver, a mechanism that mimics the impact of exposure to PFAS 

[111]. Another PFOS-induced metabolite is reduced Glutathione (Figure 7), a thiol compound that 

protects cells from oxidative stress and maintains redox homeostasis. This is consistent with the 

previously shown PFAS-induced increase of glutathione S-transferase in the liver of Atlantic cod 

[109]. PFAS exposure was also predicted to increase the level of triacylglycerols, specifically C52:2 

TAG (Figure 7). This is experimentally confirmed by studies in humans that showed how PFAS 

molecules alter triglycerides and cholesterol homeostasis, increasing the concentration of lipids and 

cholesterol in the blood [32–36]. Similarly, mice exposed to PFAS exhibit an increase in cholesterol 

and triglycerides in the serum and in the liver [110]. 

5. Conclusions 

Our study constitutes the most extensive cross-species and cross-experiment analysis of 

transcriptional response to PFAS to date. With our collected dataset encompassing 7 species, 11 

datasets, 110 contrasts and 2144 samples, we have demonstrated significant conservation of 

differential expression at both gene and pathway levels. Our analysis leverages the opportunities 

provided by contemporary transcriptome-wide quantitative technology and reveals a general 

disruption of hormonal synthesis and detection mechanisms, indicating that PFAS affect an ancient 

and conserved metabolic hormonal network, which has implication for several components of the 

ecosystem. Future studies will undoubtedly provide more data and greater precision to our observed 

response, and hopefully identify better strategies for prevention and/or mitigation of the molecular 

effects of PFAS. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. Figure S1: correlation plot displaying the Pearson correlation coefficient between 

110 PFAS vs. control contrasts across 11 datasets and 7 species. The color indicates the correlation coefficient, 
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from the most negative (-1, dark blue) through no correlation (0, white) to the most positive (+1, dark red). The 

legend indicates the colors used to depict the eleven datasets. Figure S2: correlation plot showing the Pearson 

correlation coefficient between contrasts derived from M. musculus and H. sapiens datasets. The color indicates 

the correlation coefficient, from the most negative (-1, dark blue) through no correlation (0, white) to the most 

positive (+1, dark red). The legend indicates the colors used to depict the six datasets. Figure S3: scatter plot 

showing the positive correlation between two contrasts of D. rerio and H. sapiens. The highlighted and labeled 

genes are significantly (p <0.05) and concordantly differentially expressed in response to PFAS exposure in both 

datasets. Figure S4: correlation plot showing the Pearson correlation coefficient between contrasts derived from 

fish species. The color indicates the correlation coefficient, from the most negative (-1, dark blue) through no 

correlation (0, white) to the most positive (+1, dark red). The legend indicates the colors used to depict the four 

datasets. Figure S5: line graph indicating the levels of expression of selected genes in response to PFAS molecules 

in different species, characterized by absolute integrated signature ≥ 10 and standard deviation ≥ 10. Each line is 

one gene: the genes shown here are the most consistently up- or down- regulated with high Standard deviation, 

as extracted from the orange and cyan points of Figure 4. X-axis reports all the 110 contrasts analyzed in the 

integrated dataset, grouped by species. Y-axis reports the signature for each gene, representing the significance 

(and sign) of the gene’s transcriptional response to PFAS. The horizontal lines delimit the p-value thresholds of 

0.05. File S1: table depicting pairwise inter-species orthologous conversions adopted in the current study. File 

S2: table showing all signature values calculated in the combined dataset, where genes are shown as rows, and 

contrasts as columns. 
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