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Abstract: Poro-poro is an important native fruit used in traditional Peruvian medicine with relevant
agro-industrial and pharmaceutical potential for its antioxidant capacity for human health. How-
ever, to date, there have been few genetic studies. The lack of genomic exploration limits the possi-
bility of expanding our knowledge of its molecular evolution, new molecular pathways, genetic
traits, and evolutionary relationships. Here, we report the plastid genome sequence of Passiflora tri-
partita var. mollissima and the reconstructed phylogenetic tree to infer the phylogenetic relationships
among Passiflora species. Our phylogenetic analysis showed that poro-poro is most closely related
to Passiflora menispermifolia and Passiflora oerstedii. In summary, our study provides the basis for de-
veloping new molecular markers that constitutes a valuable resource for studying molecular evolu-
tion and domestication. It also provides a powerful foundation for conservation genetics research
and plant breeding programs. To our knowledge, this is the first report on the plastid genome of
Passiflora tripartita var. mollissima from Peru.
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Introduction

Passiflora tripartita var. mollissima (Kunth) Holms-Niels. & P.M. Jorg [1] previously
known as Passiflora mollissima (Kunth) Bailey [2], is a semi-perennial fruit plant [3]. Itis a
diploid species with a small number of chromosomes (2n = 18) [4], which is placed in the
section Elkea of supersection Tacsonia of subgenus Passiflora belonging to the Passifloraceae
family [5, 6]. Poro-poro is a native fruit of the Andean region [6]. It grows in the Peruvian
highlands in the departments of Ancash, Junin, Moquegua, Huancavelica, and Huanuco
at altitudes of 1,000—4,000 m.a.s.1. [7, 8]. It is widely used in traditional medicine [8] and is
considered one of the best Passiflora species based on its organoleptic characteristics [2].
This fruit provides a source of vitamins (A, B3, and C) and minerals (magnesium, potas-
sium, phosphorus, sodium, chlorine, iron, calcium, sulfur, zinc, copper, selenium, cobalt,
and nickel) [9, 10]. In addition, it has an elevated antioxidant activity and high content of
carotenoids (118.8 mg P-carotene), phenols (460.1 mg gallic acid), and flavonoids (1907.6
mg catechin/100 g) [9, 10]. Specifically, the high concentration of flavan-3-ols (a group of
bioactive compounds) has been associated with beneficial effects on human health, such
as cardiovascular protection, neurodegenerative diseases, and as an anti-cancer, anti-mi-
crobial, and anti-parasitic agent [11, 12].

Plastome sequences of more than 800 sequenced genomes are small in size with high
copy numbers and conserved sequences, enabling a significant understanding of plant
molecular evolution, structural variations, and evolutionary relationships of plant diver-
sity [13, 14]. The plastid genome has a quadripartite structure: a large single-copy (LSC)
of 80-90 kilobase pairs (kb), a small single-copy (SSC) of 16-27 kb, and two sets of inverted
repeats (IRa and IRb) of 20-28 kb, with 110-130 unique genes, including protein-coding

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202306.0463.v2
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 June 2023 d0i:10.20944/preprints202306.0463.v2

genes, transfer RNA (tRNA), and ribosomal RNA (rRNA) [15, 16]. In recent years, declin-
ing genome sequencing costs resulted in more than 780 complete plant genomes of differ-
ent species becoming available [17, 18]. Recently, some Passiflora plastid genomes such as
Passiflora edulis [19], Passiflora xishuangbannaensis [20], Passiflora caerulea [21], Passiflora ser-
rulata [22], Passiflora foetida [23], and Passiflora arbelaezii [24], became publicly available.
However, despite the scarcity of genomic information on underutilized crops [25], we
have only begun to investigate the genomics of plants of great importance for plant breed-
ing programs. The aim of the present study was to sequence, assemble, and annotate the
plastid genome of poro-poro to contribute to plant breeding programs. In the present
study, we report the first plastid genome sequence submitted for an isolate of Passiflora
tripartita var. mollissima from Peru, a species with great agro-industrial and pharmaceuti-
cal potential because of its beneficial characteristics for human health.

Results and Discussion
Plastome of Passiflora tripartiva var. mollisima

The plastid genome sequences of P. tripartita var. mollissima (poro-poro) (Figure 1)
was 163,451 bp in length, with a typical quadripartite structure consisting of a large single-
copy (LSC) region of 85,525 bp (52.32% in total) and a small single-copy (SSC) region of
13,518 bp (8.27%), separated by a pair of inverted repeat regions (IRa and IRb) of 32,204
bp (19.70%). The poro-poro plastome is 12,045 bp longer than that of one of the most eco-
nomically important species, passion fruit (P. edulis) [19], and is only 7,117 bp longer than
that of the longest Passiflora plastome reported, i.e., P. arbelaezii [24]. The plastome se-
quence of poro-poro has a similar quadripartite architecture to other plants [26-28]. How-
ever, the LSC region is 4,150 bp longer than that of P. xishuangbannaensis but is 98bp, 195
bp, and 1,927 bp shorter than that of P. caerulea, P. edulis, and P. arbelaezii, respectivety.
The SSC region is 121 bp, 140 bp, 359 bp, and 754 bp longer than that of P. caerulea, P.
edulis, P. xishuangbannaensis, and P. arbelaezii, respectively. The IRs regions are 6,024 bp,
6,050 bp, and 11,600 longer than that of P. caerulea, P. edulis, and P. xishuangbannaensis,
respectively; however, it is 2,972 bp shorter than that of P. arbelaezii [19-21, 24]. The plas-
tome structure of the P. tripartita var. mollissima consisted of A = 30.79%, T(U) = 32.34%, C
= 18.67% and G = 18.20%. The overall AT content of the plastid genome was 63.13%,
whereas the overall GC content was 36.87% as similar to that of other reported chloroplast
genomes from the same family, such as 36.90% in P. arbelaezii [24], 37% in P. edulis and P.
serrulata [19, 22], 37.03% in P. caerulea [21], and 37.1% in P. xishuangbannaensis [20].
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Figure 1. Plastid genome of Passiflora tripartita var. mollissima. The thick lines indicate the IR1 and
IR2 regions, which separate the SSC and LSC regions. Genes marked inside the circle are transcribed
clockwise, and genes marked outside the circle are transcribed counterclockwise. Genes are color-
coded based on their function, shown at the bottom left. The inner circle indicates the inverted
boundaries and GC content.

Poro-poro plastid genome annotation identified 128 genes, of which 112 were unique,
and 17 were duplicated in the inverted repeat (IR) region. The plastome contained 84 pro-
tein-coding genes, 37 transfer RNA (tRNA)-coding genes, 7 ribosomal RNA (rRNA)-cod-
ing genes, and 14 genes with introns (12 genes with one intron and 2 genes with two in-
trons), as shown in Table 1. The poro-poro plastid genome contained 112 unique genes, of
which there were 29 tRNA genes, 4 rRNA genes, and 79 protein-coding genes. The latter
comprised 20 ribosomal subunit genes (9 large subunits and 11 small subunit), 4 DNA-
directed RNA polymerase genes, 46 genes were involved in photosynthesis (11 encoded
subunits of the NADH oxidoreductase, 7 for photosystem I, 15 for photosystem II, 6 for
the cytochrome b6/f complex, 6 for different subunits of ATP synthase, and 1 for the large
chain of ribulose biphosphate carboxylase), 8 genes were involved in different functions,
and one gene was of unknown function (Table 2).

Table 1. Plastid genome features of the P. tripartita var. mollissima.

Features Poro-poro !
Genome size (bp) 163,451
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LSC length (bp) 85, 525
SSC length (bp) 13,518
IR length (bp) 32,204
Total GC content (%) 36.87
A content (%) 30.79
T(U) content (%) 32.34
G content (%) 18.20
C content (%) 18.67
Total number of genes 128
Protein-coding genes 84
rRNA coding genes 7
tRNA coding genes 37
Genes duplicated in IR regions 17
Total introns 14
Single introns (gene) 12
Double introns (gene) 2

In the plastid genome, 14 genes contained introns distributed as follows: the LSC,
SSC, and IRs regions contained 8 genes (petD, rpl16, rpoCl, trnG-UCC, trnK-UUU, trnL-
UAA, trnV-UAC, and ycf3), 1 gene (ndhA), and 5 genes (ndhB, rpl2, rps12, trnA-UGC,
and trnl-GAU) respectively. Similarly, these genes included six protein-coding genes,
each with a single intron (petD, ndhA, ndhB, rpoCl1, rpl2, and rpl16); six tRNA genes, each
with a single intron (trnA-UGC, trnG-UCC, trnl-GAU, trnK-UUU, trnL-UAA, and trnV-
UAC); and two protein-coding genes with two introns (ycf3 and rps12). Except for 17
genes that were duplicated in the IR region (ndhB, rps19, rpl2, rpl23, rpsl2, ycfl5, rrn5,
rrml6, rr23, trnA-UGC, trnl-CAU, trnl-GAU, trnL-CAA, trnM-CAU, trnN-GUU, trnRk-
ACG, and trnV-GAC) all genes contained a single copy, as shown in Table 2. The plastome
of P. tripartita var. mollissima contained eight genes (ycfl, ycf2, ycfl5, rpsl16, rpl20, rpl22,
accD, infA) that were lost or non-functional genes in P. edulis; and compared to P. edulis,
it has one absent gene (trnfM-CAU), as previously reported [19]. In this study, the ycfl
sequence encodes a protein essential for plant viability and a vital component of the trans-
locon on the inner chloroplast membrane (TIC) complex [29], and ycf2 is a component of
the ATPase motor protein associated with the TIC complex [30].

Table 2. Genes present in the plastid genome of P. tripartita var. mollissima.

Group of genes Gene names

Photosystem 1 psaA, psaB, psaC, psal, psal, ycf3 **, ycf4
psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbl, psbJ,
Photosystem IT psbK, psbL, psbM, psbN, psbT, psbZ
Cytochrome b/f complex petA, petB, petD *, petG, petL, petN
ATP synthase atpA, atpB, atpE, atpF, atpH, atpl
NADH dehydrogenase ndhA*, ndhB * (X2), ndhC, ndhD, ndhE, ndhF, ndhG,

RubisCO large subunit
DNA-dependent RNA polymerase

Ribosomal proteins (SSU)

Ribosomal proteins (LSU)

Acetyl-CoA carboxylase
C-type cytochrome synthesis
Envelope membrane protein

Protease
Translational initiation factor IF-1
Maturase
Component of TIC complex
Unknown function protein-coding
Ribosomal RNAs

ndhH, ndhl, ndhJ, ndhK
rbcL
rpoA, rpoB, rpoC1 *, rpoC2
ps2, rps3, 1ps4, rps8, tpsll, rps12 ** (X2), rpsl4,
rpsl5, rpsl6, rpsl8, rps19 (X2)
rpl2 * (X2), rpl14, rpll6 *, rpl20, rpl22, rpl23 (X2),
rpl32, rpl33, rpl36
accD
ccsA
cemA
clpP
infA
matK
yctl, ycf2
ycfl5 (X2)
rr4.5, rm5 (X2), rrn16 (X2), rrn23 (X2)
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trnA-UGC * (X2), trnC-GCA, trnD-GUC, trnE-UUC,
trnF-GAA, trnG-GCC, trmG-UCC *, trnH-GUG, trnl-

CAU (X2), trnl-GAU * (X2), trnK-UUU *, trnL-CAA

(X2), trnL-UAA *, trnL-UAG, trnM-CAU (X2), trnN-
GUU (X2), tmP-UGG, trnQ-UUG, tmR-ACG (X2),
trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-

GGU, trmT-UGU, trnV-GAC (X2), trnV-UAC *, trnW-

CCA, tmY-GUA
* Gene contains one intron; ** gene contains two introns; (X2) indicates two gene copies in IRs.

Transfer RNAs

Phylogenetic Reconstruction

To identify the evolutionary position of Passiflora tripartita var. mollissima in the Pas-
sifloraceae family, phylogenetic relationships based on the OrthoFinder clustering
method were used to avoids erroneous rearrangements in phylogenetic tree reconstruc-
tion and provides a more reliable evolutionary analysis [31, 32]. The phylogenetic tree was
constructed based on single-copy orthologous genes [33] and maximum likelihood anal-
ysis with the complete annotated protein sequences of 27 plastid genomes, of which 26
were from Passiflora species. One species, Vitis vinifera, was chosen as the outgroup,

Maximum likelihood (ML) bootstrap values ranged from 38%-92% for 7 of the 25
nodes. All nodes except the indicated ones (seven nodes) exhibited bootstrap support (BS)
values of 100%. These Passiflora species were divided into four groups: subgenus Passiflora
(P. nitida, P. quadrangularis, P. cincinnata, P. caerulea, P. edulis, P. laurifolia, P. vitifolia, P.
serratifolia, P. serrulata, P. ligularis, P. serratodigitata, P. actinia, P. menispermifolia and P. oer-
stedii), subgenus Tetrapathea (P. tetrandra), subgenus Decaloba (P. microstipula, P.
xishuangbannaensis, P. biflora, P. lutea, P. jatunsachensis, P. suberosa and P. tenuiloba), and
subgenus Deidamoides (P. contracta and P. arbelaezii). The relationships between the four
subgenera of Passiflora species (Passiflora, Tetrapathea, Decaloba, and Deidamoides) were
congruent and strongly supported by the same patterns as previously reported [34, 35].
These results resolved Passiflora tripartita var. mollissima was placed in the subgenus Passi-
flora, which was closely related to P. menispermifolia and P. oerstedii with 100% BS, and was
sister to P. tetrandra (subgenus Tetrapathea), P. biflora (subgenus Decaloba), and P. con-
tracta (subgenus Deidamoides), as shown in the cladogram (Figure 2).
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Figure 2. Phylogenetic tree of 27 plastid genomes using maximum likelihood analysis based on sin-
gle-copy orthologous protein. Bootstrap values on the branches were calculated from 100 replicates.
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Conclusions

This study provides information on the sequencing, assembly, and annotation of the
plastid genome of Passiflora tripartita var. mollissima (poro-poro) from Huanuco, Peru. The
plastome structure and gene content were relatively conserved, and the phylogenetic re-
lationships illustrated that this species is placed in the subgenus Passiflora and positioned
close to Passiflora menispermifolia and Passiflora oerstedii. This study will open up further
avenues for research on plant molecular breeding, molecular markers, evolutionary stud-
ies, and conservation genetics of poro-poro.

Materials and Methods
Plant Materials

In November 2022, the fresh leaves of Passiflora tripartita var. mollissima (Supplemen-
tary Figure S1) were collected from Raccha Cedrén locality of Quisqui District, Huanuco
Province from Peru (9°53'37”S, 76°26'02”W, altitude 2,945 m.a.s.l.). A herbarium voucher
specimen (USM<PER>:MHNB331530) was deposited in the Herbario San Marcos (USM) of
the Museo de Historia Natural (MHN) at the Universidad Nacional Mayor de San Marcos
(UNMSM).

DNA Extraction

Total genomic DNA was extracted from approximately 100 mg fresh leaves (from
voucher number USM<PER>MHNB331530) using a cetyl-trimethyl ammonium bromide
(CTAB) protocol [36]. Genomic DNA quality was assessed using a fluorometry-based
Qubit (Thermo Fisher Scientific, USA) coupled to a Broad Range Assay kit. High-quality
DNA (230/260 and 260/280 ratios >1.8) was normalized (20 ng/pL) to examine its integrity
using 1% (w/v) agarose gel electrophoresis.

Genome Sequencing, Assembly, and Annotation

Qualified DNA was fragmented, and the TruSeq Nano DNA kit (Illumina, San Diego,
CA, USA) was used to construct an [llumina paired-end (PE) library. PE sequencing (2 x
150 bp) was performed using the Illumina NovaSeq 6000 platform [37] (Macrogen, Inc.,
Seoul, Republic of Korea). All adapters and low-quality reads were removed using the
FastQC [38] and Cutadapt [39] programs. PE reads (2 x 150 bp) were evaluated for quality
using QUAST [40] analysis, and subsequent steps used clean data. Then, clean reads ob-
tained were assembled into a circular contig using NOVOPlasty v.4.3 [41], with P. edulis
(NC_034285) as the reference.

The plastid genome was annotated using the Dual Organellar GenoMe Annotator
GeSeq [42] and CpGAVAS2 [43]. A circular genome map was constructed using OGDRAW
v.1.3.1 [44]. Finally, the completed sequences were submitted to the NCBI GenBank under
the accession number OQ910395.

Phylogenetic Analysis

We used 26 complete plastome sequences to infer the phylogenetic relationships
among Passiflora species, and Vitis vinifera was used as an outgroup (Supplemental Table
1). Single-copy orthologous genes were identified using the Orthofinder version 2.2.6
pipeline [33]. For each gene family, the nucleotide sequences were aligned using the L-
INS-i algorithm in MAFFT v7.453 [45]. A phylogenetic tree based on maximum likelihood
(ML) was constructed using RAXML v8.2.12 [46] with the GTRCAT model. A phylogenetic
ML tree was reconstructed and edited using MEGA 11 [47] with 100 replicates.

Supplementary information: Figure S1: Herbarium specimen voucher of Passiflora tripartita var.
mollissima (Kunth) Holms-Niels. & P.M. Jorg (USM<PER>:MHN331530).
Table S1: Details of the plastid genome sequences used for phylogenetic analysis.
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