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Abstract: Poro-poro is an important native fruit used in traditional Peruvian medicine with relevant 

agro-industrial and pharmaceutical potential for its antioxidant capacity for human health. How-

ever, to date, there have been few genetic studies. The lack of genomic exploration limits the possi-

bility of expanding our knowledge of its molecular evolution, new molecular pathways, genetic 

traits, and evolutionary relationships. Here, we report the plastid genome sequence of Passiflora tri-

partita var. mollissima and the reconstructed phylogenetic tree to infer the phylogenetic relationships 

among Passiflora species. Our phylogenetic analysis showed that poro-poro is most closely related 

to Passiflora menispermifolia and Passiflora oerstedii. In summary, our study provides the basis for de-

veloping new molecular markers that constitutes a valuable resource for studying molecular evolu-

tion and domestication. It also provides a powerful foundation for conservation genetics research 

and plant breeding programs. To our knowledge, this is the first report on the plastid genome of 

Passiflora tripartita var. mollissima from Peru. 
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Introduction 

Passiflora tripartita var. mollissima (Kunth) Holms-Niels. & P.M. Jørg [1] previously 

known as Passiflora mollissima (Kunth) Bailey [2], is a semi-perennial fruit plant [3]. It is a 

diploid species with a small number of chromosomes (2n = 18) [4], which is placed in the 

section Elkea of supersection Tacsonia of subgenus Passiflora belonging to the Passifloraceae 

family [5, 6]. Poro-poro is a native fruit of the Andean region [6]. It grows in the Peruvian 

highlands in the departments of Ancash, Junín, Moquegua, Huancavelica, and Huánuco 

at altitudes of 1,000–4,000 m.a.s.l. [7, 8]. It is widely used in traditional medicine [8] and is 

considered one of the best Passiflora species based on its organoleptic characteristics [2]. 

This fruit provides a source of vitamins (A, B3, and C) and minerals (magnesium, potas-

sium, phosphorus, sodium, chlorine, iron, calcium, sulfur, zinc, copper, selenium, cobalt, 

and nickel) [9, 10]. In addition, it has an elevated antioxidant activity and high content of 

carotenoids (118.8 mg β-carotene), phenols (460.1 mg gallic acid), and flavonoids (1907.6 

mg catechin/100 g) [9, 10]. Specifically, the high concentration of flavan-3-ols (a group of 

bioactive compounds) has been associated with beneficial effects on human health, such 

as cardiovascular protection, neurodegenerative diseases, and as an anti-cancer, anti-mi-

crobial, and anti-parasitic agent [11, 12]. 

Plastome sequences of more than 800 sequenced genomes are small in size with high 

copy numbers and conserved sequences, enabling a significant understanding of plant 

molecular evolution, structural variations, and evolutionary relationships of plant diver-

sity [13, 14]. The plastid genome has a quadripartite structure: a large single-copy (LSC) 

of 80–90 kilobase pairs (kb), a small single-copy (SSC) of 16–27 kb, and two sets of inverted 

repeats (IRa and IRb) of 20–28 kb, with 110-130 unique genes, including protein-coding 
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genes, transfer RNA (tRNA), and ribosomal RNA (rRNA) [15, 16]. In recent years, declin-

ing genome sequencing costs resulted in more than 780 complete plant genomes of differ-

ent species becoming available [17, 18]. Recently, some Passiflora plastid genomes such as 

Passiflora edulis [19], Passiflora xishuangbannaensis [20], Passiflora caerulea [21], Passiflora ser-

rulata [22], Passiflora foetida [23], and Passiflora arbelaezii [24], became publicly available. 

However, despite the scarcity of genomic information on underutilized crops [25], we 

have only begun to investigate the genomics of plants of great importance for plant breed-

ing programs. The aim of the present study was to sequence, assemble, and annotate the 

plastid genome of poro-poro to contribute to plant breeding programs. In the present 

study, we report the first plastid genome sequence submitted for an isolate of Passiflora 

tripartita var. mollissima from Peru, a species with great agro-industrial and pharmaceuti-

cal potential because of its beneficial characteristics for human health. 

Results and Discussion 

Plastome of Passiflora tripartiva var. mollisima 

The plastid genome sequences of P. tripartita var. mollissima (poro-poro) (Figure 1) 

was 163,451 bp in length, with a typical quadripartite structure consisting of a large single-

copy (LSC) region of 85,525 bp (52.32% in total) and a small single-copy (SSC) region of 

13,518 bp (8.27%), separated by a pair of inverted repeat regions (IRa and IRb) of 32,204 

bp (19.70%). The poro-poro plastome is 12,045 bp longer than that of one of the most eco-

nomically important species, passion fruit (P. edulis) [19], and is only 7,117 bp longer than 

that of the longest Passiflora plastome reported, i.e., P. arbelaezii [24]. The plastome se-

quence of poro-poro has a similar quadripartite architecture to other plants [26–28]. How-

ever, the LSC region is 4,150 bp longer than that of P. xishuangbannaensis but is 98bp, 195 

bp, and 1,927 bp shorter than that of P. caerulea, P. edulis, and P. arbelaezii, respectivety. 

The SSC region is 121 bp, 140 bp, 359 bp, and 754 bp longer than that of P. caerulea, P. 

edulis, P. xishuangbannaensis, and P. arbelaezii, respectively. The IRs regions are 6,024 bp, 

6,050 bp, and 11,600 longer than that of P. caerulea, P. edulis, and P. xishuangbannaensis, 

respectively; however, it is 2,972 bp shorter than that of P. arbelaezii [19–21, 24]. The plas-

tome structure of the P. tripartita var. mollissima consisted of A = 30.79%, T(U) = 32.34%, C 

= 18.67% and G = 18.20%. The overall AT content of the plastid genome was 63.13%, 

whereas the overall GC content was 36.87% as similar to that of other reported chloroplast 

genomes from the same family, such as 36.90% in P. arbelaezii [24], 37% in P. edulis and P. 

serrulata [19, 22], 37.03% in P. caerulea [21], and 37.1% in P. xishuangbannaensis [20].  
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Figure 1. Plastid genome of Passiflora tripartita var. mollissima. The thick lines indicate the IR1 and 

IR2 regions, which separate the SSC and LSC regions. Genes marked inside the circle are transcribed 

clockwise, and genes marked outside the circle are transcribed counterclockwise. Genes are color-

coded based on their function, shown at the bottom left. The inner circle indicates the inverted 

boundaries and GC content. 

Poro-poro plastid genome annotation identified 128 genes, of which 112 were unique, 

and 17 were duplicated in the inverted repeat (IR) region. The plastome contained 84 pro-

tein-coding genes, 37 transfer RNA (tRNA)-coding genes, 7 ribosomal RNA (rRNA)-cod-

ing genes, and 14 genes with introns (12 genes with one intron and 2 genes with two in-

trons), as shown in Table 1. The poro-poro plastid genome contained 112 unique genes, of 

which there were 29 tRNA genes, 4 rRNA genes, and 79 protein-coding genes. The latter 

comprised 20 ribosomal subunit genes (9 large subunits and 11 small subunit), 4 DNA-

directed RNA polymerase genes, 46 genes were involved in photosynthesis (11 encoded 

subunits of the NADH oxidoreductase, 7 for photosystem I, 15 for photosystem II, 6 for 

the cytochrome b6/f complex, 6 for different subunits of ATP synthase, and 1 for the large 

chain of ribulose biphosphate carboxylase), 8 genes were involved in different functions, 

and one gene was of unknown function (Table 2). 

Table 1. Plastid genome features of the P. tripartita var. mollissima. 

Features Poro-poro 1 

Genome size (bp) 163,451 
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LSC length (bp) 85, 525 

SSC length (bp) 13,518 

IR length (bp) 32,204 

Total GC content (%) 36.87 

A content (%) 30.79 

T(U) content (%) 32.34 

G content (%) 18.20 

C content (%) 18.67 

Total number of genes 128 

Protein-coding genes 84 

rRNA coding genes 7 

tRNA coding genes 37 

Genes duplicated in IR regions 17 

Total introns 14 

Single introns (gene) 12 

Double introns (gene) 2 

In the plastid genome, 14 genes contained introns distributed as follows: the LSC, 

SSC, and IRs regions contained 8 genes (petD, rpl16, rpoC1, trnG-UCC, trnK-UUU, trnL-

UAA, trnV-UAC, and ycf3), 1 gene (ndhA), and 5 genes (ndhB, rpl2, rps12, trnA-UGC, 

and trnI-GAU) respectively. Similarly, these genes included six protein-coding genes, 

each with a single intron (petD, ndhA, ndhB, rpoC1, rpl2, and rpl16); six tRNA genes, each 

with a single intron (trnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU, trnL-UAA, and trnV-

UAC); and two protein-coding genes with two introns (ycf3 and rps12). Except for 17 

genes that were duplicated in the IR region (ndhB, rps19, rpl2, rpl23, rps12, ycf15, rrn5, 

rrn16, rrn23, trnA-UGC, trnI-CAU, trnI-GAU, trnL-CAA, trnM-CAU, trnN-GUU, trnR-

ACG, and trnV-GAC) all genes contained a single copy, as shown in Table 2.  The plastome 

of P. tripartita var. mollissima contained eight genes (ycf1, ycf2, ycf15, rps16, rpl20, rpl22, 

accD, infA) that were lost or non-functional genes in P. edulis; and compared to P. edulis, 

it has one absent gene (trnfM-CAU), as previously reported [19]. In this study, the ycf1 

sequence encodes a protein essential for plant viability and a vital component of the trans-

locon on the inner chloroplast membrane (TIC) complex [29], and ycf2 is a component of 

the ATPase motor protein associated with the TIC complex [30]. 

Table 2. Genes present in the plastid genome of P. tripartita var. mollissima. 

Group of genes Gene names 

Photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3 **, ycf4 

Photosystem II 
psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, 

psbK, psbL, psbM, psbN, psbT, psbZ 

Cytochrome b/f complex petA, petB, petD *, petG, petL, petN 

ATP synthase atpA, atpB, atpE, atpF, atpH, atpI 

NADH dehydrogenase 
ndhA*, ndhB * (X2), ndhC, ndhD, ndhE, ndhF, ndhG, 

ndhH, ndhI, ndhJ, ndhK 

RubisCO large subunit rbcL 

DNA-dependent RNA polymerase rpoA, rpoB, rpoC1 *, rpoC2 

Ribosomal proteins (SSU) 
rps2, rps3, rps4, rps8, rps11, rps12 ** (X2), rps14, 

rps15, rps16, rps18, rps19 (X2) 

Ribosomal proteins (LSU) 
rpl2 * (X2), rpl14, rpl16 *, rpl20, rpl22, rpl23 (X2), 

rpl32, rpl33, rpl36 

Acetyl-CoA carboxylase accD 

C-type cytochrome synthesis ccsA 

Envelope membrane protein cemA 

Protease clpP 

Translational initiation factor IF-1 infA 

Maturase matK 

Component of TIC complex yct1, ycf2 

Unknown function protein-coding ycf15 (X2) 

Ribosomal RNAs rrn4.5, rrn5 (X2), rrn16 (X2), rrn23 (X2) 
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Transfer RNAs 

trnA-UGC * (X2), trnC-GCA, trnD-GUC, trnE-UUC, 

trnF-GAA, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-

CAU (X2), trnI-GAU * (X2), trnK-UUU *, trnL-CAA 

(X2), trnL-UAA *, trnL-UAG, trnM-CAU (X2), trnN-

GUU (X2), trnP-UGG, trnQ-UUG, trnR-ACG (X2), 

trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-

GGU, trnT-UGU, trnV-GAC (X2), trnV-UAC *, trnW-

CCA, trnY-GUA 

* Gene contains one intron; ** gene contains two introns; (X2) indicates two gene copies in IRs. 

Phylogenetic Reconstruction  

To identify the evolutionary position of Passiflora tripartita var. mollissima in the Pas-

sifloraceae family, phylogenetic relationships based on the OrthoFinder clustering 

method were used to avoids erroneous rearrangements in phylogenetic tree reconstruc-

tion and provides a more reliable evolutionary analysis [31, 32]. The phylogenetic tree was 

constructed based on single-copy orthologous genes [33] and maximum likelihood anal-

ysis with the complete annotated protein sequences of 27 plastid genomes, of which 26 

were from Passiflora species. One species, Vitis vinifera, was chosen as the outgroup,  

Maximum likelihood (ML) bootstrap values ranged from 38%–92% for 7 of the 25 

nodes. All nodes except the indicated ones (seven nodes) exhibited bootstrap support (BS) 

values of 100%. These Passiflora species were divided into four groups: subgenus Passiflora 

(P. nitida, P. quadrangularis, P. cincinnata, P. caerulea, P. edulis, P. laurifolia, P. vitifolia, P. 

serratifolia, P. serrulata, P. ligularis, P. serratodigitata, P. actinia, P. menispermifolia and P. oer-

stedii), subgenus Tetrapathea (P. tetrandra), subgenus Decaloba (P. microstipula, P. 

xishuangbannaensis, P. biflora, P. lutea, P. jatunsachensis, P. suberosa and P. tenuiloba), and 

subgenus Deidamoides (P. contracta and P. arbelaezii). The relationships between the four 

subgenera of Passiflora species (Passiflora, Tetrapathea, Decaloba, and Deidamoides) were 

congruent and strongly supported by the same patterns as previously reported [34, 35]. 

These results resolved Passiflora tripartita var. mollissima was placed in the subgenus Passi-

flora, which was closely related to P. menispermifolia and P. oerstedii with 100% BS, and was 

sister to P. tetrandra (subgenus Tetrapathea), P. biflora (subgenus Decaloba), and P. con-

tracta (subgenus Deidamoides), as shown in the cladogram (Figure 2). 

 

Figure 2. Phylogenetic tree of 27 plastid genomes using maximum likelihood analysis based on sin-

gle-copy orthologous protein. Bootstrap values on the branches were calculated from 100 replicates. 
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Conclusions 

This study provides information on the sequencing, assembly, and annotation of the 

plastid genome of Passiflora tripartita var. mollissima (poro-poro) from Huánuco, Peru. The 

plastome structure and gene content were relatively conserved, and the phylogenetic re-

lationships illustrated that this species is placed in the subgenus Passiflora and positioned 

close to Passiflora menispermifolia and Passiflora oerstedii. This study will open up further 

avenues for research on plant molecular breeding, molecular markers, evolutionary stud-

ies, and conservation genetics of poro-poro. 

Materials and Methods 

Plant Materials 

In November 2022, the fresh leaves of Passiflora tripartita var. mollissima (Supplemen-

tary Figure S1) were collected from Raccha Cedrón locality of Quisqui District, Huánuco 

Province from Peru (9°53’37”S, 76°26’02”W, altitude 2,945 m.a.s.l.). A herbarium voucher 

specimen (USM<PER>:MHN331530) was deposited in the Herbario San Marcos (USM) of 

the Museo de Historia Natural (MHN) at the Universidad Nacional Mayor de San Marcos 

(UNMSM). 

DNA Extraction 

Total genomic DNA was extracted from approximately 100 mg fresh leaves (from 

voucher number USM<PER>:MHN331530) using a cetyl-trimethyl ammonium bromide 

(CTAB) protocol [36]. Genomic DNA quality was assessed using a fluorometry-based 

Qubit (Thermo Fisher Scientific, USA) coupled to a Broad Range Assay kit. High-quality 

DNA (230/260 and 260/280 ratios >1.8) was normalized (20 ng/μL) to examine its integrity 

using 1% (w/v) agarose gel electrophoresis.  

Genome Sequencing, Assembly, and Annotation 

Qualified DNA was fragmented, and the TruSeq Nano DNA kit (Illumina, San Diego, 

CA, USA) was used to construct an Illumina paired-end (PE) library. PE sequencing (2 × 

150 bp) was performed using the Illumina NovaSeq 6000 platform [37] (Macrogen, Inc., 

Seoul, Republic of Korea). All adapters and low-quality reads were removed using the 

FastQC [38] and Cutadapt [39] programs. PE reads (2 × 150 bp) were evaluated for quality 

using QUAST [40] analysis, and subsequent steps used clean data. Then, clean reads ob-

tained were assembled into a circular contig using NOVOPlasty v.4.3 [41], with P. edulis 

(NC_034285) as the reference.  

The plastid genome was annotated using the Dual Organellar GenoMe Annotator 

GeSeq [42] and CpGAVAS2 [43]. A circular genome map was constructed using OGDRAW 

v.1.3.1 [44]. Finally, the completed sequences were submitted to the NCBI GenBank under 

the accession number OQ910395. 

Phylogenetic Analysis 

We used 26 complete plastome sequences to infer the phylogenetic relationships 

among Passiflora species, and Vitis vinifera was used as an outgroup (Supplemental Table 

1). Single-copy orthologous genes were identified using the Orthofinder version 2.2.6 

pipeline [33]. For each gene family, the nucleotide sequences were aligned using the L-

INS-i algorithm in MAFFT v7.453 [45]. A phylogenetic tree based on maximum likelihood 

(ML) was constructed using RAxML v8.2.12 [46] with the GTRCAT model. A phylogenetic 

ML tree was reconstructed and edited using MEGA 11 [47] with 100 replicates. 

Supplementary information: Figure S1: Herbarium specimen voucher of Passiflora tripartita var. 

mollissima (Kunth) Holms-Niels. & P.M. Jørg (USM<PER>:MHN331530).  

Table S1: Details of the plastid genome sequences used for phylogenetic analysis. 
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