Altmetrics
Downloads
391
Views
148
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
06 June 2023
Posted:
07 June 2023
You are already at the latest version
Criteria | Alkanolamines | Sterically hindered Amines | ||
Primary | Secondary | Tertiary | ||
Examples | Monoethanolamine (MEA) | Diethanolamine (DEA) | N-methyldiethanolamine (MEDA) | 2-amino-2-methyl-1- propanol (AMP) |
Structure | ||||
CO2 loading at 59.85 °C (mol CO2/mol amine) |
0.426 (MEA 30 wt %) [33] |
0.404 (DEA 30 wt %) [33] |
0.141 (TEA 30 wt %) [33] |
0.466 (AMP 30 wt %) [33] |
Regeneration efficiency (%) at 90 °C | 75.5 [34] |
84.89 [34] |
95.09 [34] |
|
Advantages | ● Inexpensive solvent ● Reversible absorption ● High selectively (between acid and other gases) ● Reacts with CO2 more rapidly [33] |
● Inexpensive solvent ● Reversible absorption ● High selectively (between acid and other gases) ● Reacts with CO2 more rapidly [33] |
● Inexpensive solvent ● Reversible absorption ● High selectively (between acid and other gases) ● High CO2 absorption capacity ● Requires low regeneration energy [33] |
● High CO2 absorption capacity ● Requires low regeneration energy [34] |
Disadvantages | ● Lower CO2 absorption capacity ● Requires high regeneration energy ● Oxidative degradation occurs in the presence of other gas components ● Corrosive ● High capital costs [33] |
● Lower CO2 absorption capacity ● Requires high regeneration energy ● Oxidative degradation occurs in the presence of other gas components ● Corrosive ● High capital costs [33] |
● Reaction rate with CO2 is low compared to MEA and DEA ● Corrosive ● High capital costs [33] |
● Low reaction rate [34] |
Types of mesoporous silica | Structure |
Silica Source |
Surfactant/ Block co-polymer |
BET Specific surface area (m2/g) | Pore volume (cm3/g) | Pore size (nm) |
Adsorption capacity (mmol/g) |
Adsorption Conditions | Ref. | |
Temp. (°C) | Pressure (bar) | |||||||||
KIT-5 | 3D-cubic | TEOS | Pluronic P123 | 711 | 1.05 | 8.04 | 0.48 | 30 | 1 | [99] |
KIT-6 | 3D-cubic | TEOS | Pluronic P123 | 895 | 1.22 | 6.0 | - | - | - | [96] |
MCM – 41 | Hexagonal | Na2SiO3 | CTAB | 994 | 1.00 | 3.03 | 0.63 | 25 | 1 | [95] |
Na2SiO3 | CTAB | 993 | 1.00 | 3.1 | 0.63 | 25 | 1 | [100] | ||
Na2SiO3 | CTAB | 980 | 0.92 | 4.08 | [92] | |||||
MCM 48 | Cubic | SiO2 | CTAB | 1287 | 1.1 | 3.5 | 25 | 1 | [101] | |
SBA-15 | 2D hexagonal | TEOS | P123 | 1254 | 2.44 | 11.4 | - | - | - | [102] |
SBA-16 | Cubic cage | TEOS | Pluronic F127 | 736 | 0.75 | 4.1 | - | - | - | [96] |
SNS | TEOS | Pluronic F127 | 394 | 0.10 | 21.1 | 2.06 | 25 | 1 | [103] | |
SNT | TEOS | Pluronic F127 | 319 | 0.07 | 26.0 | 2.46 | 25 | 1 | [103] |
Silica-based sorbent | Amine types |
CO2 adsorption performance capacity (mmol/g) |
Conditions | BET Specific surface area (m2/g) | Pore volume (cm3/g) | Pore size (nm) | Preparation methods | Ref | |
Temperature (°C) | Pressure (bar) | ||||||||
DWSNT | - | 0.1 | 25 | 83 | 0.58 | Immobilization | [126] | ||
DWSNT | APTMS | 1.0 | 25 | 112 | 0.72 | Immobilization | [126] | ||
DWSNT | MAPTMS | 1.5 | 25 | 114 | 0.79 | Immobilization | [126] | ||
DWSNT | DEAPTMS | 1.8 | 25 | 68.9 | 0.49 | Immobilization | [126] | ||
DWSNT | AEAPTMS | 2.25 | 25 | 60.9 | 0.45 | Immobilization | [126] | ||
HAS | Aziridines | 3.25 | 25 | 71 | 5 | 0.15 | [127] | ||
HPS | PEI | 2.44 | 75 | 1 | 0.5 | 0.009 | Impregnation | [128] | |
HVMCM-41 | PEHA | 4.07 | 105 | 1 | Impregnation | [125] | |||
KIT-6 | PEHA | 4.48 | 105 | 1 | Impregnation | [125] | |||
MCM-41 | EDA | 1.19 | 35 | Impregnation | [129] | ||||
MCM-41 | DETA | 1.43 | 35 | Impregnation | [129] | ||||
MCM-41 | TEPA | 1.96 | 35 | Impregnation | [129] | ||||
MCM-41 | PEHA | 2.34 | 35 | Impregnation | [129] | ||||
MCM-41 | MEA (3%) | 11.39 | 25 | 426 | 0.42 | 3.12 | Impregnation | [130] | |
MCM-41 | PEI | 0.39 | 40 | 0.15 | 443 | 0.340 | 2.95 | Impregnation | [49] |
MCM-41 | PEI | 0.22 | 75 | 1 | 590 | 1.4 | 13.6 | Impregnation | [122] |
MCM-41 | PEIAziridine | 0.98 | 75 | 1 | In-situ grafted polymerization | [131] | |||
MCM-41 | APTS | 94 | 25 | 1 | 10 | 0.01 | Grafting | [116] | |
MCM-41 | APTS | 2.48 | 20 | 1 | 17 | 0.04 | 20.1 | Grafting | [133] |
MCM-41 | PEHA | 4.5 | 105 | 1 | Impregnation | [122] | |||
MCM-41 | MEA | 0.89 | 25 | 1 | 19 | 0.82 | Impregnation | [100] | |
MCM-41 | DEA | 0.80 | 25 | 1 | 13 | 0.07 | Impregnation | [100] | |
MCM-41 | TEA | 0.63 | 25 | 1 | 213 | 0.17 | Impregnation | [100] | |
MCM-41 | Branched PEI | 1.08 | 100 | 1 | 6 | 0 | - | Impregnation | [95] |
MCM-41 | Branched PEI | 0.79 | 100 | 1 | 12 | 0.04 | - | Impregnation | [95] |
MCM-41 | Branched PEI – (30 wt%) | 0.70 | 100 | 1 | 80 | 0.14 | - | Impregnation | [95] |
MCM-41 | Branched PEI | 28 | 100 | 1 | 104 | 0.12 | 2.05 | Impregnation | [95] |
MCM-41 | Branched PEI | 17.5 | 100 | 1 | 291 | 0.17 | 2.05 | Impregnation | [95] |
MCM-41 | TEPA | 1.24 | 25 | 1 | 11 | 0.05 | 1.8 | Impregnation | [134] |
MCM-48 | APTES | 0.62 | 25 | 1.01 | 1072 | 0.52 | 2.9 | Grafting | [101] |
MCM-48 | TRI | 0.46 | 25 | 1.01 | 698 | 0.39 | 2.6 | Grafting | [101] |
MCM-48 | TRI | 0.44 | 25 | 1.01 | 463 | 0.23 | 2.5 | Grafting | [101] |
MsiNTs | PEI | 2.75 | 92 | 52.4 | 0.17 | 12.4 | Impregnation | [135] | |
OMS | PEI | 1.4 | 25 | 352 | 0.79 | Grafting | [122] | ||
SAB-15 | PEHA | 4.0 | 105 | 1 | Impregnation | [125] | |||
SBA-15 | PEI | 0.65 | 25 | 683 | 1.19 | 8.5 | Impregnation | [124] | |
SBA-15 | PEI/Zr4 | 1.34 | 25 | 642 | 1.08 | 8.6 | Impregnation | [124] | |
SBA-15 | PEI/Zr7 | 1.56 | 25 | 674 | 1.23 | 9.5 | Impregnation | [124] | |
SBA-15 | PEI/Zr14 | 1.41 | 25 | 601 | 0.69 | 7.0 | Impregnation | [124] | |
SBA-15 | PEI/Ti1.4 | 0.24 | 25 | 510 | 0.39 | 4.4 | Impregnation | [124] | |
SBA-15 | NH2OH | 1.65 | 25 | 1 | 435.6 | 0.54 | 6.85 | Grafting | [136] |
SBA-15 | APTMS | 1.46 | 25 | 0.15 | 82 | 0.16 | 5 | Grafting | [137] |
SBA-15 | TEPA | 2.45 | 70 | 5 | 0.03 | Grafting | [102] | ||
SBA-15 | AMP | 1.79 | 70 | 372 | 0.21 | Grafting | [122] | ||
SBA-15(0.2µm) | PEI | 5.84 | 100 | 1 | 590 | 1.44 | 13.6 | Impregnation | [122] |
SBA-15 (1.5µm) | PEI | - | 100 | 1 | 746 | 0.80 | 7.2 | Impregnation | [122] |
SBA-15 (25µm) | PEI | 5.81 | 100 | 1 | 580 | 0.95 | 10.5 | Impregnation | [122] |
SiO2 | APTES | 4.3 | 30 | 67 | 0.51 | In-situ polymerization | [29] | ||
SiO2 | AEAPTMS | 5.7 | 30 | 45 | 0.37 | In-situ polymerization | [29] | ||
SiO2 | TRI | 5.6 | 30 | 25 | 0.22 | In-situ polymerization | [29] | ||
SiO2 | APTES | 0.5 | 30 | 216 | 1.11 | Grafting | [29] | ||
SiO2 | AEAPTMS | 0.3 | 30 | 206 | 1.10 | Grafting | [29] | ||
SiO2 | TRI | 0.8 | 30 | 172 | 0.99 | Grafting | [29] | ||
SMCM-41 | MEA | 10.40 | 25 | 405 | 0.39 | 3.01 | Impregnation | [130] | |
SBA-15 | TEPA | 4.5 | 75 | 1 | 121.1 | 0.327 | Impregnation | [138] | |
MPSM | TEA | 4.27 | 75 | 1 | 34 | 0.08 | 9.5 | Impregnation | [50] |
MCM-41 | TRI | 1.74 | 25 | 0.05 | 678.3 | 1.47 | Grafting | [139] | |
MCM-41 | APTES | 1.20 | 30 | 1 | 1045.21 | 2.59 | 30 | Grafting | [140] |
MCM-41 | PEI | 0.98 | 30 | 1 | 6.6 | 0.01 | 0.8 | Grafting | [141] |
MCM-41 | PEI | 4.68 | 45 | 1 | 894 | 1.28 | 5.1 | Grafting | [118] |
MCM-41 | PEI | 2.92 | 50 | 0.1 | 508 | 0.98 | 2.54 | Impregnation | [142] |
MCM-41 | TEPA | 2.25 | 50 | 0.1 | 431 | 0.83 | 2.21 | Impregnation | [142] |
MCM-41- KOH | PEI- | 3.38 | 50 | 0.1 | 391 | 1.08 | 2.33 | Impregnation | [142] |
MCM-41- Ca(OH)2 | PEI- | 3.81 | 50 | 0.1 | 411 | 1.12 | 2.50 | Impregnation | [142] |
MCM-41- CsOH | PEI- | 5.02 | 50 | 0.1 | 306 | 0.91 | 2.14 | Impregnation | [142] |
MCM-41- KOH | TEPA- | 3.93 | 50 | 0.1 | 322 | 0.97 | 2.15 | Impregnation | [142] |
MCM-41- Ca(OH)2 | TEPA- | 3.76 | 50 | 0.1 | 405 | 0.94 | 2.31 | Impregnation | [142] |
PET- CsOH | TEPA- | 5.42 | 50 | 0.1 | 293 | 0.97 | 2.61 | Impregnation | [142] |
MCM 48 | PEI | 1.09 | 80 | 0.24 | 79.3 | 0.02 | 1.68 | Impregnation | [143] |
MCM-41 | PEI | 1.23 | 80 | 0.24 | 59.1 | 0.02 | 1.80 | Impregnation | [143] |
SBA-15 | PEI | 1.07 | 80 | 0.24 | 62.1 | 0.01 | 5.2 | Impregnation | [143] |
SBA-15 | PEI | 1.77 | 0 | 1 | 783 | 0.03 | 7.0 | Impregnation | [144] |
SBA-15 | PEI | 1.26 | 45 | 0.15 | 399 | 0.79 | 8.2 | Impregnation | [145] |
MCM 41 | PEI | 3.53 | 25 | 1 | 24 | 0.012 | Impregnation | [146] | |
MCM 41 | APTS | 2.41 | 25 | 1 | 736 | 0.37 | Grafting | [146] | |
SBA-15 | PEI | 1.84 | 25 | 1.2 | 195 | 0.39 | 7.0 | Grafting | [147] |
SBA-15- APES | 1.78 | 25 | 1.2 | 190 | 0.37 | 7.2 | Grafting | [147] | |
SBA-15- APES | PEI | 1.54 | 25 | 1.2 | 24 | 0.21 | 2.7 | Grafting | [147] |
OMS | PEI | 2.43 | 25 | 1.2 | 167 | 0.33 | 7.6 | Grafting | [147] |
OMS- APES | 3.03 | 25 | 1.2 | 180 | 0.37 | 7.2 | Grafting | [147] | |
OMS- APES | PEI | 1.18 | 25 | 1.2 | 39 | 0.18 | 2.3 | Grafting | [147] |
OMS- NCC | Amidoxime | 5.54 | 120 | 1 | 315 | 0.69 | 9.3 | [148] | |
MPS-MCC* | 2.41 | 120 | 302 | 0.44 | 7.0 | [149] | |||
MPS-MCC** | 3.85 | 120 | 285 | 0.40 | 6.7 | [149] | |||
OMS- MgO | 4.71 | 120 | 1 | 261 | 0.48 | 7.25 | [150] | ||
OMS-CaO | 3.85 | 120 | 1 | 163 | 0.25 | 6.76 | [150] | ||
SiO2- Al2O3 | APTS | 2.64 | 25 | 1 | 740 | 1.24 | 5.1 | Grafting | [151] |
SiO2- Al(NO3)3 | APTS | 0.78 | 25 | 1 | 319 | 0.63 | 2.9 | Grafting | [151] |
OMS-Ti | 0.81 | 25 | 1 | 487 | [90] | ||||
MsiNTs | APTES | 2.87 | 25 | 1.2 | 293 | 0.79 | 22 | Grafting | [103] |
SNS | APTES | 2.13 | 25 | 1.2 | 210 | 0.31 | 19.6 | Grafting | [103] |
Al(NO3)3 | AP | 0.98 | 25 | 1 | 359 | 0.62 | 10.0 | [152] | |
OMS-Al-Zr | 2.60 | 60 | 1 | 441 | 0.61 | 6.9 | [153] |
Synthesis method | Type of silica-based sorbent | Amine type | Regeneration condition | Stability performance | References | ||
Temperature (°C) | Types of gas flow | No. of cycles (cyclic runs) | Capacity loss (%) | ||||
Impregnated | MCM-41 | PEHA | 100 | N2 | 15 | Less than 1 | [161] |
MCM-41 | TEPA +AMP | 100 | N2 for 60 min | 15 | 4.32 | [119] | |
SBA-15 | PEI-linear | 100 | Ar | 12 | 13.5 | [162] | |
SBA-15 | Acrylonitrile-modified TEPA | 100 | N2 | 12 | 1.1 | [163] | |
HMS | PEI-linear | 75 | N2 for 100 min | 4 | 1.6 | [164] | |
MCF | PEI- branched | 115 | Ar for 20 min | 10 | 32 | [165] | |
MCF | PEI | 100 | H2 | 10 | 5 | [166] | |
MCF | Guanidinylated poly(allylamine) | 120 | He | 5 | 17 | [52] | |
Fumed silica | PEI-linear | 55 | N2 for 15min | 180 | Stable | [167] | |
MCM-41 | TEPA | 100 | N2 | 10 | 3.43 | [168] | |
Silica fume | Diisopropanolamine | 50 | N2 | 10 | 7 | [169] | |
Nano- SiO2 | PEI- branched | 120 | N2 | 30 | 10.5 | [170] | |
Nano- SiO2 | PEI- branched | 120 | N2 | 30 | 19.4 | [171] | |
Mesoporous-SiO2 | APTS | 120 | Air for 30 min | 11 | 4.3 | [172] | |
Porous SiO2 | PEI | 100 | N2 for 30 min | 20 | 5 | [173] | |
Silica aerogel | TEPA | 75 | Ar for 20 min | 10 | 3.9 | [174] | |
Porous SiO2 | TEPA | 75 | He for 20 min | 10 | 2 | [175] | |
SNT | PEI | 110 | N2 for 40 min | 10 | 3.3 | [134] | |
KCC-1- SiO2 | TEPA | 110 | N2 | 21 | 1.2 | [176] | |
Mesoporous multilamellar SiO2 |
PEI | 110 | N2 | 10 | 3.7 | [177] | |
Silica aerogel | TEPA | 80 | Ar for 30 min | 100 | 12 | [176] | |
Mesoporous SiO2 |
DEA | 90 | N2 | 10 | 12 | [172] | |
Grafting | SBA-15 | AP | 90 | Vacuum | 10 | 1 | [178] |
SBA-15 | DEAPTMS | 120 | N2 for 10 min | 100 | 7.2 | [179] | |
MCM-48 | 2-[2-(3-trimethoxysilyl propylamino) ethylamino] ethylamine |
- | N2 | 20 | Stable | [100] | |
KIT-6 | APTES | 120 | He | 10 | Stable | [99] | |
MCF | TRI | 150 | N2 for 30 min | 5 | 1.9 | [180] | |
HMS | APTS | 110 | N2 for 180 min | 3 | Less than 1 | [181] | |
MCM-41 | APTS | 105 | N2 for 90 min | 10 | Stable | [117] |
Type of approach | Details | References |
---|---|---|
Improve energy efficiency and promote energy conservation |
|
[4] |
Increase of usage of low carbon or clean fuels such as natural gas, hydrogen or nuclear power; Substitution for Power generation |
|
[4] |
Deploy renewable energy |
|
[4] |
CO2 capture and storage |
|
[4] |
Technology | Types | Examples | Efficiency (%) | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|
Absorption | Chemical | Amines Caustics |
> 90 | ● Ability to regenerate ● Established method ● Very flexible ● Reacts rapidly ● High absorption capacities |
● High energy requirement for regeneration ● Environmental problems ● High boiling point ● Equipment corrosion |
[21,22] |
Physical | Selexol Rectisol fluorinated solvents |
|||||
Adsorption | Chemical | Metal Oxides Si based materials |
>85 | ● Recyclable ● Cost effective ● High stability ● Adjustable catalytic site and pore sizes ● Low energy consumption ● Suitable for separating CO2 from dilute streams |
● High energy cost ● Limited to process feed rates ● Loss of material and pressure drop ● Decreased catalytic efficiency ● Low adsorption capacities |
[6,21] |
Physical | Carbons Zeolites Si based materials |
|||||
Membrane-based technologies | Organic Cellulose derivatives Polyamides |
Polyphenyleneoxide, Polydimethylsiloxane |
>80 | ● Simple device ● Easy production process and process flow scheme ● Low energy consumption ● No phase changes ● Capable of maintaining the membrane structure |
● Requires a high-cost module and support materials ● Not suitable for large volumes of emission gases ● Reduced selectivity and separation ● Pressure drops across the membrane ● Less durability |
[6,21] |
Inorganic | Metallic Ceramics |
|||||
Cryogenic distillation | ● Low capital investment ● High reliability ● Recovery with high purity of CO2 ● Liquid CO2 production ● Not requiring solvents or other components ● Easily scalable to industrial-scale applications |
● High energy consumption | [6,21,23] |
Material types | Examples | Advantages | Disadvantages |
---|---|---|---|
Pours silica materials |
M41S SBA-n AMS |
● High specific surface area, Pore volume, and good thermal and mechanical properties | ● High molecular diffusion resistance ● Decreased adsorption capacity at high temperature [42] |
Zeolites | NaY 13X |
● Low production cost ● Large micropores/mesopores ● Medium CO2 adsorption capacity at room temperature |
● Low CO2 adsorption capacity ● Moisture-sensitivity ● High energy consumption [6,43] |
Metal organic frameworks (MOFs) |
M-MOF- 74 IRMOF-6 USO-2-Ni Zn4O(BDC)3 (MOF-5) USO-1-Al(MIL-53) |
● Large specific surface area ● Ease of controlling pore sizes ● High selectivity of CO2 |
● Low CO2 adsorption capacity at the partial pressure ● High production cost ● Complicated synthesis process ● Moisture-sensitivity ● Unstable at high temperature [6] |
Alkali-based dry adsorbents |
● Possible adsorption and desorption at a low temperature and wet conditions | ● Low adsorption capability (3–11 wt.%) ● High-temperature reactions ● Requires high temperatures during desorption Complicated operation [6] |
|
Metal oxides-based adsorbents |
CaO, MgO | ● Dry chemical adsorbents ● Adsorption/desorption at medium to high temperatures |
● High energy consumption ● High cost for regeneration ● Complicated process [6] |
Chemisorption | Physisorption | |
---|---|---|
Description | ● Chemical reaction occurs between the solid sorbents and CO2 | ● Depends on the physical properties of CO2 and the ability to engage in noncovalent interactions with the solid sorbent |
Chemical Bonding | ● Covalent Bonding-Occur between functional groups and CO2 in the surface | ● Week Vander-walls forces-London and Dispersion forces, Occur inside pore walls |
Advantages | ● High selectivity | ● Low recycling energy requirements ● High working capacity ● High selectivity even in wet environments ● Fast |
Disadvantages | ● High energy required for recycling and the breakage of the chemical bonds ● Slow reactivity |
● Poor selectivity in binary or mixed gas applications |
References | [55,56] | [57,58,59] |
Porous SiO2 material | Gas mixture | Selectivity value | Pressure (bar) | Temperature (°C) |
Reference |
---|---|---|---|---|---|
PEI- MCM-41 |
CO2 , N2 and H2 | 25.56 | 1 | 100 | [95] |
SBA-15 | CO2/N2 | 123 | 1 | 25 | [156] |
SBA-15 (calcination) | CO2/N2 | 55 | 1 | 25 | [156] |
Mesoporous chitosan−SiO2 nanoparticles | - | 15.46 | 1 | 25 | [157] |
hydrophobic microporous high-silica zeolites | CH4:N2 = 50%:50% | 36.5 | 1 | 25 | [158] |
Hollow silica spherical particles (HSSP) | CO2/N2 | 8.5 | 4 | 25 | [159] |
microporous silicaxerogel | CO2/CH4 | 60 | 6 | 25 | [160] |
Silica based xerogels | C2H4/C2H6 | 20 | 6 | 25 | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Muhamad Faisal
et al.
,
2021
© 2024 MDPI (Basel, Switzerland) unless otherwise stated