Submitted:
08 June 2023
Posted:
08 June 2023
You are already at the latest version
Abstract
Keywords:
1. INTRODUCTION
2. ONCOGENIC SIGNALING PATHWAYS
2.1. Extracellular Matrix
2.2. Angiogenesis
2.3. Inflammation
3. DRUG EFFLUX PUMP
4. CELL DEATH PATHWAYS
4.1. Apoptosis
4.1.1. B-cell lymphoma-2
4.1.2. Heat shock protein 90
4.1.3. Proteasome pathway and apoptosis resistance
4.1.4. The role of nuclear transport in apoptosis resistance
4.2. Autophagy
4.3. Necrotic Cell Death and Necroptosis
4.4. Senescence Induced chemoresistance
4.5. ER Stress and tumor evasion of chemotherapy
5. TUMOR MICROENVIRONMENT
5.1. Extracellular Vesicles
5.1.1. Exosomal miRNAs and tumor-associated macrophages
5.1.2. Exosomal miRNAs and epithelial-mesenchymal transition
5.1.3. Exosomal miRNAs and autophagy
5.1.4. Exosomal long non-coding RNAs
5.2. Mesenchymal Stem Cells
6. IMMUNOMODULATION
7. DNA REPAIR MECHANISMS
8. CANCER STEM CELLS
9. CONCLUSIONS
References
- Zhu, R.; et al. Current progress in cancer treatment using nanomaterials. Frontiers in Oncology 2022, 12. [Google Scholar] [CrossRef]
- Cheng, Z.; et al. Nanomaterials for cancer therapy: Current progress and perspectives. Journal of hematology & oncology 2021, 14, 1–27. [Google Scholar]
- Sun, G.; et al. Role of small molecule targeted compounds in cancer: progress, opportunities, and challenges. Frontiers in cell and developmental biology 2021, 9, 694363. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal transduction and targeted therapy 2021, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Solimini, N.L.; Luo, J.; Elledge, S.J. Non-oncogene addiction and the stress phenotype of cancer cells. Cell 2007, 130, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.A. The biology of cancer; Garland science, 2013. [Google Scholar]
- Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell 2013, 153, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; et al. Cancer genome landscapes. science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nature medicine 2004, 10, 789–799. [Google Scholar] [CrossRef]
- Futreal, P.A.; et al. A census of human cancer genes. Nature reviews cancer 2004, 4, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Ajabnoor, G.; Crook, T.; Coley, H.M. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell death & disease 2012, 3, e260–e260. [Google Scholar]
- Moore, B.S.; Eustáquio, A.S.; McGlinchey, R.P. Advances in and applications of proteasome inhibitors. Current opinion in chemical biology 2008, 12, 434–440. [Google Scholar] [CrossRef]
- Glasspool, R.; Teodoridis, J.M.; Brown, R. Epigenetics as a mechanism driving polygenic clinical drug resistance. British journal of cancer 2006, 94, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Lotfipour, F.; et al. Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-12 and their expression in CT-26 colon carcinoma cells. Journal of Pharmacy & Pharmaceutical Sciences 2011, 14, 181–195. [Google Scholar]
- Parikh, J.R.; et al. Discovering causal signaling pathways through gene-expression patterns. Nucleic acids research 2010, 38 suppl_2, W109–W117. [Google Scholar] [CrossRef]
- Malla, R.R.; Kiran, P. Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis 2022, 9, 310–324. [Google Scholar] [CrossRef]
- Karar, J.; Maity, A. PI3K/AKT/mTOR pathway in angiogenesis. Frontiers in molecular neuroscience 2011, 4, 51. [Google Scholar] [CrossRef]
- Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010, 10, 9–22. [Google Scholar] [CrossRef]
- Lamanuzzi, A.; et al. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma. Oncotarget 2018, 9, 20563. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012, 491, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harbor perspectives in biology 2012, 4, a006049. [Google Scholar] [CrossRef] [PubMed]
- Lowrence, R.C.; et al. Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Critical reviews in microbiology 2019, 45, 334–353. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; et al. Drug resistance in cancer: an overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature medicine 2004, 10 (Suppl 12), S122–S129. [Google Scholar] [CrossRef]
- Persidis, A. Cancer multidrug resistance. Nature biotechnology 1999, 17, 94–95. [Google Scholar] [CrossRef]
- Zahreddine, H.; Borden, K.L. Mechanisms and insights into drug resistance in cancer. Frontiers in pharmacology 2013, 4, 28. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; et al. Targeted Anti-Mitochondrial Therapy: The Future of Oncology. Genes 2022, 13. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP–dependent transporters. Nature reviews cancer 2002, 2, 48–58. [Google Scholar] [CrossRef]
- Marquez, B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie 2005, 87, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Ughachukwu, P.; Unekwe, P. Efflux Pump. Mediated Resistance in Chemotherapy. Annals of medical and health sciences research 2012, 2, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochemical and biophysical research communications 2014, 453, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Ringash, J.; et al. Quality of life in patients with K-RAS wild-type colorectal cancer: The CO. 20 Phase 3 Randomized Trial. Cancer 2014, 120, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.R.; Baguley, B.C. Multidrug resistance and mutagenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1993, 285, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Houshyari, M.; Taghizadeh-Hesary, F. Is Mitochondrial Metabolism a New Predictive Biomarker for Antiprogrammed Cell Death Protein-1 Immunotherapy? JCO Oncol Pract 2023, 19, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Hesary, F.; Houshyari, M.; Farhadi, M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023. [Google Scholar] [CrossRef]
- Broxterman, H.J.; Gotink, K.J.; Verheul, H.M. Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug resistance updates 2009, 12, 114–126. [Google Scholar] [CrossRef]
- Merino, D.; et al. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 2016, 35, 1877–87. [Google Scholar] [CrossRef]
- Masood, A.; Azmi, A.S.; Mohammad, R.M. Small molecule inhibitors of bcl-2 family proteins for pancreatic cancer therapy. Cancers 2011, 3, 1527–1549. [Google Scholar] [CrossRef]
- Marubayashi, S.; et al. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. The Journal of clinical investigation 2010, 120, 3578–3593. [Google Scholar] [CrossRef]
- Mohammad, R.M.; et al. Broad targeting of resistance to apoptosis in cancer. In Seminars in cancer biology; Elsevier, 2015. [Google Scholar]
- Shimamura, T.; et al. Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer research 2008, 68, 5827–5838. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature reviews Molecular cell biology 2005, 6, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kisselev, A.F.; Songyang, Z.; Goldberg, A.L. Why does threonine, and not serine, function as the active site nucleophile in proteasomes? Journal of Biological Chemistry 2000, 275, 14831–14837. [Google Scholar] [CrossRef]
- Van Bortle, K.; Corces, V.G. Nuclear organization and genome function. Annual review of cell and developmental biology 2012, 28, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Grosschedl, R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes & development 2007, 21, 3027–3043. [Google Scholar]
- Nagano, A.; Arahata, K. Nuclear envelope proteins and associated diseases. Current Opinion in Neurology 2000, 13, 533–539. [Google Scholar] [CrossRef]
- Diekmann, Y.; Pereira-Leal, J.B. Evolution of intracellular compartmentalization. Biochemical journal 2013, 449, 319–331. [Google Scholar] [CrossRef]
- Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nature Reviews Cancer 2007, 7, 961–967. [Google Scholar] [CrossRef]
- Xi, G.; et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer letters 2011, 307, 141–148. [Google Scholar] [CrossRef]
- Chen, H.; et al. Radiotherapy modulates tumor cell fate decisions: a review. Radiation Oncology 2022, 17, 196. [Google Scholar] [CrossRef]
- Chakrabarty, A.; et al. Senescence-induced chemoresistance in triple negative breast cancer and evolution-based treatment strategies. Frontiers in Oncology 2021, 11, 674354. [Google Scholar] [CrossRef]
- Liu, Y.R.; et al. Therapeutic effects and perspective of stem cell extracellular vesicles in aging and cancer. Journal of Cellular Physiology 2021, 236, 4783–4796. [Google Scholar] [CrossRef]
- Allegra, A.; et al. Exosome-Mediated Therapeutic Strategies for Management of Solid and Hematological Malignancies. Cells 2022, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, J.; Tchkonia, T. Senolytic drugs: from discovery to translation. Journal of internal medicine 2020, 288, 518–536. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Lee, A.S. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation–induced apoptosis. Cancer research 2007, 67, 3734–3740. [Google Scholar] [CrossRef] [PubMed]
- Ala, M. Sestrin2 in cancer: a foe or a friend? Biomarker Research 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Deepak, K.; et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacological research 2020, 153, 104683. [Google Scholar] [CrossRef]
- Chu, D.-T.; et al. The effects of adipocytes on the regulation of breast cancer in the tumor microenvironment: an update. Cells 2019, 8, 857. [Google Scholar] [CrossRef]
- Jena, B.C.; Mandal, M. The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2021, 1875, 188488. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; et al. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Medicine 2023. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacology & therapeutics 2021, 221, 107753. [Google Scholar]
- Roy, S.; et al. Hypoxic tumor microenvironment: implications for cancer therapy. Experimental Biology and Medicine 2020, 245, 1073–1086. [Google Scholar] [CrossRef]
- Huang, K.; et al. Hypoxia Tumor Microenvironment Activates GLI2 through HIF-1α and TGF-β2 to Promote Chemotherapy Resistance of Colorectal Cancer. Computational and Mathematical Methods in Medicine 2022, 2022. [Google Scholar] [CrossRef]
- Wang, J.X.; et al. Lactic Acid and an Acidic Tumor Microenvironment suppress Anticancer Immunity. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Russi, S.; et al. Adapting and surviving: intra and extra-cellular remodeling in drug-resistant gastric cancer cells. International journal of molecular sciences 2019, 20, 3736. [Google Scholar] [CrossRef]
- Sun, Y. Tumor microenvironment and cancer therapy resistance. Cancer letters 2016, 380, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Kang, Y. Complex interplay between tumor microenvironment and cancer therapy. Frontiers of Medicine 2018, 12, 426–439. [Google Scholar] [CrossRef]
- Paskeh, M.D.A.; et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. Journal of Hematology & Oncology 2022, 15, 1–39. [Google Scholar]
- Zou, W. Immune regulation in the tumor microenvironment and its relevance in cancer therapy. Cellular & Molecular Immunology 2022, 19, 1–2. [Google Scholar]
- Zeligs, K.P.; Neuman, M.K.; Annunziata, C.M. Molecular Pathways: The Balance between Cancer and the Immune System Challenges the Therapeutic Specificity of Targeting Nuclear Factor-κB Signaling for Cancer TreatmentNF-κB in Cancer Therapeutics. Clinical Cancer Research 2016, 22, 4302–4308. [Google Scholar] [CrossRef]
- Yan, Y.; et al. Combining immune checkpoint inhibitors with conventional cancer therapy. Frontiers in immunology 2018, 9, 1739. [Google Scholar] [CrossRef]
- Sounni, N.E.; Noel, A. Targeting the tumor microenvironment for cancer therapy. Clinical chemistry 2013, 59, 85–93. [Google Scholar] [CrossRef]
- Boyd, N.H.; et al. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 2021, 11, 665. [Google Scholar] [CrossRef]
- Sousa, D.; Lima, R.T.; Vasconcelos, M.H. Intercellular transfer of cancer drug resistance traits by extracellular vesicles. Trends in molecular medicine 2015, 21, 595–608. [Google Scholar] [CrossRef]
- König, L.; et al. Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. Oncoimmunology 2018, 7, e1376153. [Google Scholar] [CrossRef]
- O’Neill, C.P.; Gilligan, K.E.; Dwyer, R.M. Role of extracellular vesicles (EVs) in cell stress response and resistance to cancer therapy. Cancers 2019, 11, 136. [Google Scholar] [CrossRef]
- Campos, A.; et al. Extracellular vesicle-associated miRNAs and chemoresistance: a systematic review. Cancers 2021, 13, 4608. [Google Scholar] [CrossRef]
- Wendler, F.; et al. Extracellular vesicles swarm the cancer microenvironment: from tumor–stroma communication to drug intervention. Oncogene 2017, 36, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; et al. Study of Drug Resistance in Chemotherapy Induced by Extracellular Vesicles on a Microchip. Analytical Chemistry 2022, 94, 16919–16926. [Google Scholar] [CrossRef] [PubMed]
- Bouvy, C.; et al. Transfer of multidrug resistance among acute myeloid leukemia cells via extracellular vesicles and their microRNA cargo. Leukemia research 2017, 62, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene 2018, 37, 2873–2889. [Google Scholar] [CrossRef]
- Hägele, S.; et al. TSGA10 prevents nuclear localization of the hypoxia-inducible factor (HIF)-1α. FEBS letters 2006, 580, 3731–3738. [Google Scholar] [CrossRef]
- Behnam, B.; et al. TSGA10 is specifically expressed in astrocyte and over-expressed in brain tumors. 2009. [Google Scholar]
- Behnam, B.; et al. Expression of Tsga10 sperm tail protein in embryogenesis and neural development: from cilium to cell division. Biochemical and biophysical research communications 2006, 344, 1102–1110. [Google Scholar] [CrossRef]
- Xavier, C.P.; et al. The role of extracellular vesicles in the hallmarks of cancer and drug resistance. Cells 2020, 9, 1141. [Google Scholar] [CrossRef]
- Nehrbas, J.; et al. Extracellular vesicles and chemotherapy resistance in the AML microenvironment. Frontiers in oncology 2020, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Słomka, A.; et al. EVs as potential new therapeutic tool/target in gastrointestinal cancer and HCC. Cancers 2020, 12, 3019. [Google Scholar] [CrossRef]
- Ab Razak, N.S.; et al. Impact of chemotherapy on extracellular vesicles: understanding the chemo-EVs. Frontiers in oncology 2019, 9, 1113. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; et al. Extracellular vesicles: Emerging modulators of cancer drug resistance. Cancers 2021, 13, 749. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; et al. Exosomes and breast cancer drug resistance. Cell death & disease 2020, 11, 987. [Google Scholar]
- Movahedpour, A.; et al. Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Molecular and Cellular Biochemistry 2021, 476, 4081–4092. [Google Scholar] [CrossRef]
- Sueta, A.; et al. Exosomal miRNA profiles of triple-negative breast cancer in neoadjuvant treatment. Oncology Letters 2021, 22, 1–10. [Google Scholar] [CrossRef]
- Tian, W.; et al. The promising roles of exosomal microRNAs in osteosarcoma: A new insight into the clinical therapy. Biomedicine & Pharmacotherapy 2023, 163, 114771. [Google Scholar]
- Hu, C.; et al. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Proliferation 2020, 53, e12828. [Google Scholar] [CrossRef]
- Jiang, X.; et al. Exosomal microRNA remodels the tumor microenvironment. PeerJ 2017, 5, e4196. [Google Scholar] [CrossRef]
- Zheng, P.; et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. Journal of experimental & clinical cancer research 2017, 36, 1–13. [Google Scholar]
- Zhong, Y.; et al. Exosomes: a new pathway for cancer drug resistance. Frontiers in Oncology 2021, 11, 743556. [Google Scholar] [CrossRef]
- Gao, H.; et al. Exosomal transfer of macrophage-derived miR-223 confers doxorubicin resistance in gastric cancer. OncoTargets and therapy 2020, 13, 12169. [Google Scholar] [CrossRef] [PubMed]
- Steinbichler, T.B.; et al. Therapy resistance mediated by exosomes. Molecular cancer 2019, 18, 1–11. [Google Scholar] [CrossRef]
- Yang, Y.; et al. Influence of exosome-derived miR-21 on chemotherapy resistance of esophageal cancer. Eur Rev Med Pharmacol Sci 2019, 23, 1513–1519. [Google Scholar] [PubMed]
- Houshyari, M.; Taghizadeh-Hesary, F. The Metastatic Spread of Breast Cancer Accelerates during Sleep: How the Study Design can Affect the Results. Asian Pac J Cancer Prev 2023, 24, 353–355. [Google Scholar] [CrossRef]
- Challagundla, K.B.; et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. JNCI: Journal of the National Cancer Institute 2015, 107. [Google Scholar] [CrossRef] [PubMed]
- Mowla, M.; Hashemi, A. Functional roles of exosomal miRNAs in multi-drug resistance in cancer chemotherapeutics. Experimental and Molecular Pathology 2021, 118, 104592. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; et al. Advances in Exosomal microRNAs and Proteins in Ovarian Cancer Diagnosis, Prognosis, and Treatment. Current Molecular Medicine 2023. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, Y.; Ding, K. Roles of exosomes in cancer chemotherapy resistance, progression, metastasis and immunity, and their clinical applications. International Journal of Oncology 2021, 59, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; et al. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget 2016, 7, 19601. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.; et al. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 2018, 25, R663–R685. [Google Scholar] [CrossRef]
- Shi, Z.-Y.; et al. Exosomal microRNAs-mediated intercellular communication and exosome-based cancer treatment. International journal of biological macromolecules 2020, 158, 530–541. [Google Scholar] [CrossRef]
- Xiao, L.; et al. Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. Journal of Immunology Research 2020, 2020. [Google Scholar] [CrossRef]
- Sun, Z.; et al. Effect of exosomal miRNA on cancer biology and clinical applications. Molecular cancer 2018, 17, 1–19. [Google Scholar] [CrossRef]
- Kanlikilicer, P.; et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine 2018, 38, 100–112. [Google Scholar] [CrossRef]
- Bach, D.H.; et al. The role of exosomes and miRNAs in drug-resistance of cancer cells. International journal of cancer 2017, 141, 220–230. [Google Scholar] [CrossRef]
- Maleki, M.; et al. Role of exosomal miRNA in chemotherapy resistance of Colorectal cancer: A systematic review. Chemical Biology & Drug Design 2023, 101, 1096–1112. [Google Scholar]
- Najminejad, H.; et al. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB life 2019, 71, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Hussein, G.M.; et al. Find new channel for overcoming chemoresistance in cancers: Role of stem cells-derived exosomal microRNAs. International Journal of Biological Macromolecules 2022. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Molecular cancer 2019, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Taghvimi, S.; et al. Exosomal microRNAs and long noncoding RNAs: Novel mediators of drug resistance in lung cancer. Journal of cellular physiology 2022, 237, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, P.; Li, H.-X. CAFs-derived exosomal miRNA-130a confers cisplatin resistance of NSCLC cells through PUM2-dependent packaging. International Journal of Nanomedicine 2021, 16, 561. [Google Scholar] [CrossRef] [PubMed]
- Da, M.; et al. The biological roles of exosomal long non-coding RNAs in cancers. OncoTargets and therapy 2021, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Pathania, A.S.; Challagundla, K.B. Exosomal long non-coding RNAs: emerging players in the tumor microenvironment. Molecular Therapy-Nucleic Acids 2021, 23, 1371–1383. [Google Scholar] [CrossRef]
- Li, Y.; et al. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal transduction and targeted therapy 2019, 4, 47. [Google Scholar] [CrossRef]
- Tan, S.; et al. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. Journal of Experimental & Clinical Cancer Research 2023, 42, 1–28. [Google Scholar]
- Yang, E.; et al. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal transduction and targeted therapy 2020, 5, 242. [Google Scholar] [CrossRef]
- Entezari, M.; et al. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomedicine & Pharmacotherapy 2022, 150, 112963. [Google Scholar]
- Lakshmi, S.; Hughes, T.A.; Priya, S. Exosomes and exosomal RNAs in breast cancer: A status update. European Journal of Cancer 2021, 144, 252–268. [Google Scholar] [CrossRef]
- De los Santos, M.C.; Dragomir, M.P.; Calin, G.A. The role of exosomal long non-coding RNAs in cancer drug resistance. Cancer Drug Resistance 2019, 2, 1178. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; et al. Mesenchymal/stromal stem cells: necessary factors in tumour progression. Cell Death Discovery 2022, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Holland, M.; Dass, C.R. Doxorubicin, mesenchymal stem cell toxicity and antitumour activity: implications for clinical use. Journal of Pharmacy and Pharmacology 2018, 70, 320–327. [Google Scholar] [CrossRef]
- Lee, M.W.; et al. Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019, 33, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Chen, J. Mesenchymal stem cells in the tumor microenvironment. Biomedical reports 2013, 1, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; et al. The role of mesenchymal stem/progenitor cells in sarcoma: update and dispute. Stem cell investigation 2014, 1. [Google Scholar]
- Rühle, A.; et al. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. International journal of cancer 2018, 143, 2628–2639. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; et al. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell cycle 2015, 14, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Roodhart, J.M.; et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer cell 2011, 20, 370–383. [Google Scholar] [CrossRef]
- Houthuijzen, J.; et al. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. British journal of cancer 2012, 106, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; et al. Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism. Oncotarget 2019, 10, 3435. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Molecular Cancer 2022, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Dauer, P.; et al. Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters. Pancreatology 2017, 17, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Larionova, I.; et al. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019, 8, e1596004. [Google Scholar] [CrossRef]
- Yang, Z.; et al. Myeloid-derived suppressor cells—new and exciting players in lung cancer. Journal of Hematology & Oncology 2020, 13, 1–17. [Google Scholar]
- Salem, M.L.; et al. Myeloid-derived suppressor cells and regulatory T cells share common immunoregulatory pathways-related microRNAs that are dysregulated by acute lymphoblastic leukemia and chemotherapy. Human Immunology 2021, 82, 36–45. [Google Scholar] [CrossRef]
- Gazinska, P.; et al. Dynamic Changes in the NK-, Neutrophil-, and B-cell Immunophenotypes Relevant in High Metastatic Risk Post Neoadjuvant Chemotherapy–Resistant Early Breast Cancers. Clinical Cancer Research 2022. [Google Scholar] [CrossRef]
- Chong, A.S.; et al. Diverse multidrug-resistance-modification agents inhibit cytolytic activity of natural killer cells. Cancer Immunol Immunother 1993, 36, 133–9. [Google Scholar] [CrossRef]
- Chanmee, T.; et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 2014, 6, 1670–1690. [Google Scholar] [CrossRef]
- Weizman, N.; et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 2014, 33, 3812–3819. [Google Scholar] [CrossRef]
- Sanchez, L.R.; et al. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. Journal of leukocyte biology 2019, 106, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; et al. Tumor-associated macrophages: an accomplice in solid tumor progression. Journal of biomedical science 2019, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Petty, A.J.; Yang, Y. Tumor-associated macrophages in hematologic malignancies: new insights and targeted therapies. Cells 2019, 8, 1526. [Google Scholar] [CrossRef]
- Wei, C.; et al. M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. OncoTargets and therapy 2019, 12, 3051. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; et al. Tumor-associated macrophage-derived CCL5 promotes chemotherapy resistance and metastasis in prostatic cancer. Cell biology international 2021, 45, 2054–2062. [Google Scholar] [CrossRef]
- Ireland, L.V.; Mielgo, A. Macrophages and fibroblasts, key players in cancer chemoresistance. Frontiers in cell and developmental biology 2018, 6, 131. [Google Scholar] [CrossRef]
- Cassetta, L.; Pollard, J.W. Targeting macrophages: therapeutic approaches in cancer. Nature reviews Drug discovery 2018, 17, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Ireland, L.; et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene 2018, 37, 2022–2036. [Google Scholar] [CrossRef]
- Zhang, X.; et al. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Letters 2016, 381, 305–313. [Google Scholar] [CrossRef]
- Esposito, M.T.; So, C.W.E. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 2014, 123, 545–561. [Google Scholar] [CrossRef]
- Chaney, S.G.; Sancar, A. DNA repair: enzymatic mechanisms and relevance to drug response. JNCI: Journal of the National Cancer Institute 1996, 88, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, P.; Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nature Reviews Cancer 2012, 12, 587–598. [Google Scholar] [CrossRef] [PubMed]
- El-Awady, R.A.; et al. Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy. Cancer biology & therapy 2015, 16, 1056–1070. [Google Scholar]
- Shah, K.; Rawal, R.M. Genetic and epigenetic modulation of drug resistance in cancer: challenges and opportunities. Current Drug Metabolism 2019, 20, 1114–1131. [Google Scholar] [CrossRef]
- Kutanzi, K.R.; et al. MicroRNA-mediated drug resistance in breast cancer. Clinical epigenetics 2011, 2, 171–185. [Google Scholar] [CrossRef]
- Salehan, M.; Morse, H. DNA damage repair and tolerance: a role in chemotherapeutic drug resistance. British journal of biomedical science 2013, 70, 31–40. [Google Scholar] [CrossRef]
- Goldstein, M.; Kastan, M.B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annual review of medicine 2015, 66, 129–143. [Google Scholar] [CrossRef]
- Annovazzi, L.; Mellai, M.; Schiffer, D. Chemotherapeutic drugs: DNA damage and repair in glioblastoma. Cancers 2017, 9, 57. [Google Scholar] [CrossRef]
- Nickoloff, J.A.; et al. Drugging the cancers addicted to DNA repair. JNCI: Journal of the National Cancer Institute 2017, 109, djx059. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, K.M.; Hariharan, S. Regulatory players of DNA damage repair mechanisms: role in cancer chemoresistance. Biomedicine & Pharmacotherapy 2017, 93, 1238–1245. [Google Scholar]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. International journal of molecular sciences 2020, 21, 3233. [Google Scholar] [CrossRef]
- Liu, Y.P.; et al. Molecular mechanisms of chemo-and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021, 2, 315–340. [Google Scholar] [CrossRef]
- Anand, K.; et al. Targeting mTOR and DNA repair pathways in residual triple negative breast cancer post neoadjuvant chemotherapy. Scientific reports 2021, 11, 82. [Google Scholar] [CrossRef]
- Yu, Z.; et al. Cancer stem cells. The international journal of biochemistry & cell biology 2012, 44, 2144–2151. [Google Scholar]
- Malik, B.; Nie, D. Cancer stem cells and resistance to chemo and radio therapy. Frontiers in Bioscience-Elite 2012, 4, 2142–2149. [Google Scholar] [CrossRef]
- Colak, S.; Medema, J.P. Cancer stem cells–important players in tumor therapy resistance. The FEBS journal 2014, 281, 4779–4791. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine 2016, 95 (Suppl 1). [Google Scholar] [CrossRef]
- Cojoc, M.; et al. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. In Seminars in cancer biology; Elsevier, 2015. [Google Scholar]
- Vidal, S.; et al. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 2014, 33, 4451–4463. [Google Scholar] [CrossRef]
- Killi, L.; et al. Cancer stem cell and epithelial mesenchymal transition in chemo resistance of canine solid tumours. 2023. [Google Scholar]
- Phi, L.T.H.; et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem cells international 2018, 2018. [Google Scholar] [CrossRef]
- Das, P.K.; Islam, F.; Lam, A.K. The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells 2020, 9, 1392. [Google Scholar] [CrossRef]
- Nunes, T.; et al. Targeting cancer stem cells to overcome chemoresistance. International journal of molecular sciences 2018, 19, 4036. [Google Scholar] [CrossRef]
- Steinbichler, T.B.; et al. Therapy resistance mediated by cancer stem cells. Seminars in cancer biology 2018. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Mortezaee, K.; Majidpoor, J. Cancer stem cell (CSC) resistance drivers. Life sciences 2019, 234, 116781. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.S.; Di Gennaro, E.; Budillon, A. Implication for cancer stem cells in solid cancer chemo-resistance: promising therapeutic strategies based on the use of HDAC inhibitors. Journal of clinical medicine 2019, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Naghibi, A.F.; et al. Role of Cancer Stem Cell-Derived Extracellular Vesicles in Cancer Progression and Metastasis. Pathology-Research and Practice 2023, 154558. [Google Scholar] [CrossRef]
- Huang, T.; et al. Noncoding RNAs in cancer and cancer stem cells. Chinese journal of cancer 2013, 32, 582. [Google Scholar] [CrossRef]
- Jayaseelan, V.P.; Arumugam, P. Exosome-derived ncRNAs as potential drivers of epigenetic reprogramming of cancer stem cells; Future Medicine, 2021; pp. 1439–1441. [Google Scholar]
- Heery, R.; et al. Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bu, P. Non-coding RNAs in cancer stem cells. Cancer letters 2018, 421, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; et al. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells. Protein & cell 2016, 7, 89–99. [Google Scholar]
- Erkisa, M.; Karakas, D.; Ulukaya, E. Cancer stem cells: Root of the evil. Critical Reviews™ in Oncogenesis 2019, 24. [Google Scholar] [CrossRef]
- Shen, C.; et al. Long non-coding RNAs: emerging regulators for chemo/immunotherapy resistance in cancer stem cells. Cancer letters 2021, 500, 244–252. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).