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Abstract: In recent years, several strategies have been introduced to enhance early warning systems for
lowering the risk of rock falls. In this regard, this paper introduces a Deep learning-and (IoT) based Framework
for Rock-fall Early Warning, devoted to reducing the rock-fall risk with high accuracy. In this framework, the
prediction accuracy was augmented by eliminating the uncertainties and confusion plaguing the prediction
model. In order to achieve augmented prediction accuracy, this framework fused the prediction model-based
deep learning with a detection model-based Internet of Things. This study utilized parameters, specifically
overall prediction performance measures based on a confusion matrix, to assess the performance of the
framework, in addition to its ability to reduce the risk. The result indicates an increase in prediction model
accuracy from 86% to 98.8%. In addition, a framework reduced the risk probability from (1.51 x10-3) to (8.57
x10-9). Our findings demonstrate the high prediction accuracy of the framework, which also offers a reliable
decision-making mechanism for providing early warning and reducing the potential hazards of rock falls.

Keywords: rock-fall risk; internet of things IoT; deep learning; early warning

1. Introduction

Rock-fall is a complex natural phenomenon that threatens humans and infrastructures in many
mountain regions of the World. Because rock-fall events are random, reliable mechanisms for
monitoring, predicting, and managing the geological risk due to rock-fall is still a challenging task.
Many approaches have been used to model and assess rock-fall hazards in recent years. For example,
literature [1] developed a hazard assessment model based on the frequency of rock falls, rock
structure, and bounce height. By using a dynamic computational technique, the suggested model
evaluated the risk of rock-fall and the quantification uncertainties. Quantitative models were also
created to evaluate and control the danger of rock falls [2,3].

There is another technique to detect falling rocks, such as seismic signals detection. The literature
reports many methods to track seismic waves produced by falling rocks, as geophysical sensors were
developed to track the seismic signals caused by falling boulders and determine how the rock's effect
on the surface was estimated [4]. A micro-seismic approach was introduced to identify rock-fall
occurrences in another investigation [5]. Although these methods are excellent in detecting rock-fall
occurrences, doing so needs a large number of seismic sensors. Through the use of micro-
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electromechanical and micro-seismic networks, new methods to circumvent micro-seismic limits
have been developed. Camera-based monitoring techniques have been recently used to monitor
better and track fallen rocks in real time. A test version of an artificial intelligence camera was used
to track and monitor falling rocks in real-time [8]. The camera has outperformed many technologies,
even the micro-seismic networks, regarding to its capability to monitor many rocks simultaneously.
The seismic and camera-based monitoring systems are used to identify falling rocks at the time of
impact; nevertheless, they must be sufficiently effective to alert vehicles to the risk of rock-fall before
it happens. Unfortunately, this technology responds to events after causing severe damage to the
road and pedestrians. In order to get around the limitations of monitoring approaches, rock-fall
occurrences must be predicted. Recently, excellent models to forecast rock-fall dangers have been
created using machine learning technology. Various machine-learning techniques, including logistic
regression, have been utilized for predicting rock falls [9,10] and support vector machines (SVM)
[11,12]. Another approach [13] developed a tool for predicting the spatiotemporal distribution of
rock-fall using artificial neural networks and linear regression. The rock-fall risk was assessed using
several approaches, such as a (Hybrid Early Warning System for Rock-Fall Risks Reduction) [14]; this
system uses three models to predict the likelihood of rock falls the logistic regression model, the
computer vision model, and the hybrid risk reduction model, which also provides early warning and
hazard level classification. Because the model was created using insufficient historical data about a
particular location, the current prediction approaches are ineffective at reducing the rock-fall risk in
real-time.

Although this system contributed to reducing the risk of rock falls, the prediction process still
needs to be more accurate and uncertain because it inherited previous models' limitations. In order
to get over the constraints of all earlier models, offering an accurate prediction is necessary.

This study proposed a framework to reduce the rock-fall risk. The primary purpose of this
framework is to augment the prediction accuracy by eliminating the uncertainties and confusion that
plague the prediction model. In order to achieve a prediction accuracy augmentation, four different
techniques were integrated, detection model-based (Computer Vision and Micro-seismic wave),
prediction-based (Deep Learning model), Internet of Things network (IoT), and (Decision Make
Algorithm).

Finally, The following are the key contributions of this study:

e We propose IoT based framework for rock fall Early Warning.

o We created a (Deep learning model) to predict the likelihood of rock-fall events.

e We created a detection model-based (Micro-seismic wave and Computer Vision).

e We have augmented the accuracy of a prediction model by fusing the detection model with a
prediction model.

e We developed a (Decision Make Algorithm).

e We provide a baseline methodology and a prediction accuracy benchmark for future related
works.

This study's remaining sections are structured as follows. In Section 2, the study area and issues
are presented. Section 3 introduces data acquisition. Section 4 presents the methodology. Section 5
presents the results and discussion. The evaluation of the study is presented in Section 6.

2. Study Area and Problems

The study targeted two sites in southern Saudi Arabia along the( Sarawat mountain),
constituting a natural obstacle to communication between cities and population centers above the
mountains and those scattered in the plains and valleys [15]. The first site (Aqabat Shaar) a located
on the road linking the city of Abha and Mahayel Asir, and this obstacle extends a length of 14 km
on mountain ranges with a height of 2160 meters. The second site (Aqabat Dhala) a located on the
road linking the cities of Abha and Jazan. This obstacle extends 11 km along a steep mountain at 2220
meters high. These two sites have many bends and tunnels, crowded with high traffic intensity,
which increases the possibility of exposed cars at the moment of a rock fall.
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One of the most important reasons that lead to the fall of rocks in this area is the constant rainfall
throughout the summer on the mountain range, which causes an absolute nightmare for the passers-
by of the (Agabat Shaar )and (Dhala). It is stable and becomes suitable for the fall of rock masses.
Also, one of the causes of rock fall in this area is the nature of the rock formation in some locations,
where it consists of large rocky blocks interspersed with rocky rubble in addition to other areas
permeated by a limestone layer. This formation made it weak in resistance to natural factors. The
difference in temperatures between night and day characterizes these areas. These temperature
differences, in addition to ground movements, cause rock stress, which leads to cracks. This crack
expands with time, and rainwater retracts into the cracks, causing pressure on the rocks, which
reduces cohesion's strength and results in successive rock slides [16].

The construction work in the area led to the emergence of edges with sharp sloping angles,
which reduced the gravity of the rock masses and made it easier to roll them downwards, increasing
the possibility of rocks falling at any moment.

3. Data acquisition
3.1. Data Collection and Preparation

The historical data of the rock-fall events, in addition to meteorological data were collected in a
period from January 2015 to August 2021. Different sources as, KSA Civil Defense, Geological
Hazards Research Center were used as data source. This period was divided into 2040 samples,
which included 415 rock-fall events. During the initial filtering of the data, three non-dependent
variables (slope angle, Rainfall, and temperature variation) and one dependent variable (rock-fall
event) were selected. A training data set of 70% (1428 samples) and a test data set of 30% (612
samples)were created from the rock-fall inventory data in order to training and testing the model.

3.2. The rockfall condition factors

The decision to use rock-fall conditioning factors directly affects mathematical models” accuracy.
[17,18]. This study utilized three rock-fall conditioning factors, hydrological (rainfall), topographic
(slope angle), and weather-related. (Temperature variation) [19].

In considerable rock-fall events, rainfall directly affects the movement and rolling of rocks [20].
The rock fall events are directly proportional to the slope angle of the mountain. The higher the
slope angle, lead to less rock stability [21]. The difference in temperature between day and night
exposed rocks to expansion and contraction, which led to cracks in the rocks [22].

Table 1. Rock-fall conditioning factors.

Type Factor Unit Factor Class
Topographic slope angle degree (range 20 - 60 )
Hydrological rain full mmbh-! (range 0 - 46)
Weather temperature variation Co (range 0-21)

4. Methodology

4.1. Rock-Fall Early Warning Framework Design

This section presents a framework-based Internet of Things (IoT) for Rock-Fall Early Warning.
Figure 1 shows our proposed framework for detecting and predicting rock-fall incidents. The
framework consists of five layers: field layer, edge layer, fog computing layer, cloud computing layer,
and data presentation layer.


https://doi.org/10.20944/preprints202306.0739.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2023 doi:10.20944/preprints202306.0739.v1

< { N
L H H
k=] 1
L Mobile Dashboard |
o
g9 | H
§ 7 i + Present the early warning alarm +Present the early warning alarm !
: i +system administrator access i
& i H
a H |
E A
Internet-Gateway {T\_‘Lb
o~ “
i ]
g K = >y
%‘ H Blynk Cloud i
- 1 1
o | Provide communication service by Cloud :
3 | streams data Storage !
"2 H
H 1
i i
\ 2
Internet-Gateway (EP
; Y
i
g i
7 |
;', i Detecting rock-fall Deep learning model Rock-fall Risk + High Level Decision
2 i events for Predicting rock-fall Assessment Make
H events
H
| /
LoRa-WAN {’Eib
# .
e
ES
q + Collect Data From Sensors + Collect Data From Sensors + Image Processing
L + Data Processing + Data Processing + Event detection
B + Delivers early warning action
Y H
\ : ; v
1 ;
T g A,
s oA
& ] H h
T H
g v
: D)
n
o
;E IoT Voice Light
= Temperature Rain-full Seismic Temperature Rain-full Seismic Camera Module Panel
Sensor Sensor Sensor Sensor Sensor Sensor

Figure 1. Rock-fall early warning framework.

4.1.1. Things layer

Includes the actual sensors to measure the physical parameters of interest; these include rainfall,
air temperature, air humidity, a seismic sensor for detecting seismic waves, and a camera for rock
movement detection; the field layer also expanded to accommodate intelligent voice module and
light panel to run out the early warning action.

4.1.2. Edge Computing layer

In order to decrease network traffic and energy consumption, the edge nodes gather input from
the sensors and conduct data and image processing algorithms. The main goal is to locally generate
fundamental model properties of the specific process, which pass on to the fog computing compactly.
Also, execute commands incoming from higher-level systems to deliver an early warning action and
make local decisions, thus preventing upper-layer latency.

4.1.3. Fog Computing layer

It bridges the gap between the cloud and edge nodes by enabling computations such as rock-fall
monitoring, rock-fall prediction, deep learning model, rock-fall risk Assessment, networking, data
management, and decision making. Blynk cloud was used in this study (Blynk cloud); it's a
comprehensive software package needed to deploy and remotely manage linked electrical devices at
any size, from small-scale home IoT projects to millions of commercially connected items.
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4.1.4. Cloud computing layer

The cloud was chosen to provide communication service by streaming data between the fog
computing and data presentation layersand providing a medium for data storage. The Blynk utilizes
HTTPS (API) to report telemetry and regularly fetch DataStream. Additionally, it offers open-source
hardware libraries so that any device may connect to Blynk Cloud.

4.1.5. Data presentation layer

Concerned with the software systems that convey the data analysis results to end-users or
decision-makers. In this study, Web and Mobile app dashboards are used to present the early
warning alarm in the case of event detection, in addition to affording the system administrator access
privileges and decision-makers.

4.2. Rock-fall detection model

This study obtained a robust rock-fall detection model by gathering two detection processes.
First, computer vision algorithm was used to detect rock-fall event. Secondly, seismic wave sensors
were used to detect the vibrations from rock cracking or falling.

4.2.1. Rock-fall detection-based computer vision

The computer vision algorithms detect the rock-fall events in three steps, as in Figure 6. filtering
the image frame, background subtraction, and performing frame manipulation as in Figure 6. In the
first step, the (Blurring Gaussian Filter) was used to filter out the noise from the captured images.
Secondly, the moving rocks were detected from the video frame sequence. Due to weather conditions
and daytime, the video frame sequence suffers from background illumination variations, so the
(Adaptive Gaussian Mixture Model) was used to overcome this problem.

( Filter the Image Frames

Performing Background Subtraction

Performing Frame Manipulation J

Figure 2. Rock-fall detection model.

The model treats each pixel as a composite of Gaussians before learning the image's backdrop
and categorizing each pixel as background or foreground. The background model is represented by
Equation 1.

P@|xr,BG) = XM _ ) Rty N (% fhym, G21) (1)

where P(%|xr,BG) represents the estimated background, X is the grayscale of the pixel value at
time t, M is the number of the Gaussian components, yrrepresents the training set, the weight #,,
indicates how much of the data is part of the m component of the GMM, fi, is estimated means, I
represents an identity matrix, and 63 is the estimates variances.

The (Bayesian) was used to classify pixels as background or foreground from moving rocks
video frame [23]. The frame manipulation was used to overcome imperfections in the segmentation
process.
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4.2.2. Rock-fall Detection based micro-seismic wave

The seismic wave is generated in two cases, at the moment rocks crack or when rocks fall. Thus,
the seismic wave sensor can be used to detect rock fall events. This study characterized the micro-
seismic wave by its frequency component, classified into three frequency domains. A significant
frequency spectrum band between 100 and 1000 Hz was present in the first domain. These signals
are generated several hours prior to the rock's fall. The second domain is in the higher frequency
band between 500 and 1000 Hz.

The third domain is in the lower frequency spectrum, 100 to 500 Hz. These signals precede the
rockfall event by a few moments. The relationship between Rock-fall incidents and seismic wave
frequency domains was quantified using the spectral amplitudes ratio (R). The spectral amplitude
ratio (R) is calculated according to Equation(2) [24].

" Ayax(500Hz — 1000Hz)

2

where Amax(100Hz-500Hz) is the maximum amplitude of the frequency spectrum 100 Hz to 500 Hz,
Amax (500Hz-1000Hz) is the maximum amplitude of the frequency spectrum 500 Hz to 1000 Hz. The
average amplitude ratio R for all frequency domains is shown in Table 2.

Table 2. The average spectral amplitudes ratio R.

frequency domain frequency spectrum R

first domain 100Hz-1000Hz 1.5+0.08
second domain 500Hz-1000Hz 2.7+0.32
third domain 100Hz-500Hz 7.1+0.68

4.3. Rock-fall Prediction Model

Due to the randomness of a rock-fall occurrence, the function of the rock-fall event probability
P = £«(1, s, t) is uncertain; therefore, mapping the relationship of the rock-fall possibility P, the slope
angle s, the rain-full r, and the temperature variation t cannot be strictly described. To solve the
uncertainty of the mapping function, the BP (backpack) artificial neural network can learn the
relationships between the input and the output of the corresponding procedure by analyzing the
sample data and adopting a model to give the expected output value when given the input value
[25].

4.3.1. Deep Learning Model.

In this paper, we proposed a deep learning model for a rock-fall occurrence prediction. It is one
of the machine learning process. It is a complex mathematical model that simulates the biological
neuron structure and self-learning function; It uses mathematical methods that are based on the idea
of linked layers of nodes. [26]. As seen in Figure 4, it has an output layer, three hidden layers, and a
three-parameter input layer.

Rain Full (r) j

Temperature Variation (t) Rockfall Possibility (P)

S\ope Angle (s)

Input Layer Qutput Layer

Hidden Layer
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Figure 3. Deep learning model design.

As shown in Figure 4, each node in this neural network is a neuron, and each neuron has six
major components, including inputs (xi), biases (bj), weights (wi), sum functions (uj), activation
functions (f), and outputs (yj). The information from neurons or the outside world that is used as a
decision variable is referred to as an input. Weights are values that translate how the influence of
inputs on one another. The sum function (Equation (3)) is an operation that takes into account a bias
value and reflects the impacts of inputs and weights[27].

W)= X, wii + b (3)
where:

i is the i input neuron

j is the jth output neuron

n is number of elements in the it input vector.

bj is the bias value (also known as the activation threshold) connected to the jt node.

According to the equation in Equation (4), the activation function is in charge of converting the
node's summed weighted input into the activation of the node or output for that input.

1

1+ e~ @

yi=f(w)=

where yjrepresents the output of the j* neuron, controls the slope of the rectified linear activation
function, and is typically equal to 1.

Input bias Sum fuction H Activation function Output

Figure 4. The neuron’s main parts.

4.3.2. Training Methods

The SciKit-Learn neural network package was used to create the neural network models that
were used in this study. The model was generated with three hidden layers. In our method, the
training process used 70% of the entire data, while the validation process used 30% of the remaining
data. The training process was operated using the multilayer perceptron (MLP). The MLP was chosen
because it provides quick predictions after training. It utilizes a supervised learning technique called
backpropagation for training with the rectifier linear unit (ReLU). The learning algorithm performs
backpropagation, which calculates the correct gradient for nonlinear multilayer networks to reduce
errors (the gap between prediction and actual values)[28].

In this study, a gradient descent method was used as an optimization model. This method is to
update the variables iteratively in the (opposite) direction of the gradients of the objective function.
Equation (5) performs the gradient descent algorithm. It updates the weight and bias parameters
iteratively in the negative gradient direction to minimize the loss function £(0).

d
ei=ei—a*d—9if(6) )
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where a is a learning rate, f(0) is a loss function, 0j is the weight or bias parameter, which we need
to update.

4.3.3. Model Performance Validation

In this section, the overall model performance (recall, specificity, precision, F1-Score, and
accuracy), as well as the mean squared error (MSE) and area under a receiver operating characteristic
(ROC) curve (AUC), were used to validate the model's ability to distinguish between the occurrence
of a rock-fall and a non-rock-fall event. The system performance was calculated using the confusion
matrix. [29]. The first metric is recall, which referred to as sensitivity or the true positive rate. The
following calculation measures how well the model predicted the rock-fall event:

Recall = — & x100 % ©6)
A = TP Y FN 0

The second metric, Specificity, is used to assess a system's capacity to verify the absence of a rock-fall
event, which is described as

TN
Specificity = —-——=5"100 % @)

The third metric is precision, it is used to determine how many samples really fall into the positive
class out of all those that the model projected would.

TP
1Si = 7)( 0, 8
Precision TP T FP 100 % 8)

The fourth metric is F1 score, is used as a model's predictively assessment. The F1 score is derived by
combining the accuracy score and the recall score of a model, and its definition is as follows:
Precision * Recall

F1 =2 9
score * Precision + Recall ©)

The fifth metric is accuracy, which is a reflection of how accurately the system can identify the rock-
fall event, its defined as follows:

Accuracy = (TN +TP) *100 % (10)
(FP + FN + TN + TP)

Whereas true positive (TP) indicates that all events were indeed discovered, false negative (FN)
indicates that some events took place but went undetected, and true negative (TN) indicates that no
events took place. A false positive (FP) event is absent, yet the system records it as present. The system
reports an absent event.

Equation (11) uses the Mean Squared Error (MSE) to calculate the average squared difference
between the values of real and predicted data points in order to quantify the degree of error in the
learning model.

1o _
MSE = - 2 (¥ — 7)? (11)
n i=1

where n is the total number of data points in the dataset, Yi is the actual data point values, and i is
the projected data point values. The overall performance of a prediction is measured using the area
under a receiver operating characteristic (ROC) curve (AUC), which is based on a confusion matrix.

4.4. Rock-fall Risk Assessment

The likelihood that a rock-fall event will occur at a specific location and at a specified time and
impose a specific level of damage to roads, automobiles, and pedestrians was characterized as rock-
fall risk. Then the risk is calculated in terms of the temporal and spatial information on the effect of
precipitation. Based on the possibility that cars are available in a certain position and time period
affected by rocks falling, the temporal-spatial probability and susceptibility were determined [30].
Equation (12) shows the risk probability's value.


https://doi.org/10.20944/preprints202306.0739.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2023 doi:10.20944/preprints202306.0739.v1

Prisicy = fr X P(S:T) X P(r) x V(u) (12)

where P(Risk) denotes the likelihood that a rock fall incident will occur within a given hour and fr
denotes the frequency of rock falls. The possibility that a rock will fall and impact the car is P(r). The
susceptibility of the vehicle to rock-fall occurrences, or V(u), has two possible values: 1 if the rock
actually hits the car, and 0 if it doesn't. The likelihood that automobiles will be accessible at a
particular location and time is known as P(S:T). There is (temporal-spatial probability) that a car
traveling the entire path will be impacted at the moment of impact. It is determined using Equation
(13) [31].

MW v 1
PsT) = 54 % To00 X vy (13)

where Nv is the average daily number of vehicles, Lv is the average length of a vehicle in meters, and
Vo is the average speed of a vehicle in kilometers per hour..

4.5. Rock-fall Prediction Model Augmentation

The prediction made by the Deep Learning model is subject to noise, model errors, and
uncertainty [32]. Therefore, it is highly desired for any Al-based system to represent uncertainty in a
reliable manner. In this part of the article, the prediction model had been enhanced by increasing the
overall level of model accuracy so that a precise decision could be made to reduce the chance of a
rock fall.

For our proposed model, noise in data and inadequate knowledge lead to uncertainty in data;
subsequently, The naturally uncertain nature of the data is modeled by the predictions, making it
irreducible. In this study, to address this problem, a new method was proposed to decrease the
uncertainty by diminishing Two instances of confusion: situations of certain events occurring but not
being identified as false negatives (FN) and cases of some events occurring but not being recognized
as false positives (FP).

The augmented rock-fall prediction probability P(J), obtained by applying (the union of not
mutually exclusive probabilities theory), between the probability of the rock-fall risk according to the
detection models P(D), as well as the possibility of a rock fall according to the prediction models.
P(p), The procedure of deriving the joint rock-fall probabilities using detection and prediction models

is depicted in (Figure 5).
Rock-fall Prediction
Model

Rock-fall Detection Rock-fall Detection based
based micro-seismic computer vision

P Y

P(P)

o . — — — ———_———————————

Figure 5. Union of not mutually exclusive probabilities process.


https://doi.org/10.20944/preprints202306.0739.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2023 doi:10.20944/preprints202306.0739.v1

10

The rock-fall probability of the detection models calculated from the, micro-seismic detection
model and computer vision detection model, then the joint probability is calculated as in Equation
(14).

P(D) =P(SUV) =P(S)+P(V)=P(SNV) (14)

where P(D) is the rock-fall probability of the detection models, P(S U V) is the union probability, P(S)
is the rock-fall probability determined by the micro-seismic detection, P(V) is the rock-fall probability
determined by the computer vision detection model, P(S n V) is the probability of P(S) and, P(V) are
mutually exclusive occur. In this study P(S) was determined from the spectral amplitudes Ratio (R)
of the micro-seismic event, as in Equation (15).

P(S) = (15)

Ruax
where R is the spectral amplitudes ratio of a micro-seismic event, it takes the values from (1.5+0.08)
to (7.1£0.68), as mentioned in Section (4.2), Rmax is the ratio of the spectral amplitude when the rock-fall
occurrence is confirmed, and its value is equal to (7.78). The P(V) value is 0 in case of no rock fall is
detected, and it is valued is 1 in case of rock-fall is detected. By Substituting the values of the
probabilities into equation 6, we get Equation 16

P(D) =

778 " P - (7.78)

x P(V) (16)

The rock-fall occurrence probability (P*) which obtained from the prediction model (Artificial Neural
Network) was used to determine the rock-fall risk probability. Finally, the augmented rock-fall
prediction probability P(j) was calculated by joint the rock-fall probability of the detection
models P(D) with the rock-fall risk probability of the prediction models P(P), Equation (17).

P() =P(D) + (1 - P(D)) x P(P) (17)
The overall accuracy of the augmented model can be obtained by Equation 18.

(TN + TP)

AU = TN TP) + 5(FN + FP)

100 % (18)

where Au is the augmented model accuracy, and 0 is the uncertainty decreasing factor.
d=01-4,) (19)

Aua is the average accuracy of the detection model.

4.6. Rock-fall Risk Reduction Process

The risk reduction process is carried out by preventing cars and pedestrians from entering the
vulnerable area. This study used an early warning to prevent cars from entering a hazard zone. The
likelihood that vehicles would not enter the danger zone after receiving the early warning signal at
the time of the incident was used to determine the risk reduction [33]. In this study, the value of a
risk reduction was calculated using the risk reduction probability, which includes the system
reliability, the average number of cars, and the likelihood of vehicle response as in Equation (20).

Pr)= Ay, *No xPus) (20)

where P(R) refers to the possibility that the risk will be reduced, P(rs) refers to the probability that a
given vehicle will not reach the affected road segment after getting the warning signal, Nv refers to
the average number of vehicles, and Au refers to the overall accuracy of the enhanced model. The
value of P(re) is determined by applying Equation (21):

Total Stopping Distance)

Po=1- ( 21
rs) Safe Distance to Stop @1)

Based on the physical force distance, response time, and brake contact distance, the overall
stopping distance was calculated. The safe distance is determined by the reaction time of the
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vehicle driver. The reaction time of the driver vary randomly in range between 0.4 and 2 seconds.
The Physical Force Distance can be calculated by dividing the vehicle's speed by the amount of time
it takes for the brakes to react. When its acceleration of 10 m/s2 is implied [34].

4.7. Decision Make Algorithm

This algorithm was developed to make the appropriate decision about reducing the rock-fall
risk. It fusion the outputs of the rock-fall prediction model (deep learning model) with the outputs of
(the detection model) in order to obtain the augmented prediction, as well as calculating the risk of a
rockfall, categorizing it into three levels, and creating a warning strategy to handle a severe hazard
situation. The subsequent steps demonstrate how the proposed (Algorithm 1) utilizes and controls a
rock-fall danger level.

Algorithm 1 was performed in order to figure out the rock-fall risk, identify the risk level, and
carry out the rock-fall risk reduction process.

The first step: Gathering information with the things layer
Read Rainfall by (Rain sensors)
Read temperature by (temperature sensors)
Read (IoT camera) video frames
Read seismic waves by (seismic sensor)
The second step: Detection of falling rocks
in accordance to Equation (1)
The third step: Determine the rock-fall occurrence probability(P)
in accordance to Deep Learning model
The fourth step: Compute the total rock-fall risk probability P(j)
in accordance to Equation (17)
The fifth step: Classifying the hazard in to three levels:
When Pgisi) is greater than or equal to (11 X 1073)
then hazard in unacceptable level.
When P(gisky is greater than(1 x 107°) and less than ( 1 x 1073)
then hazard in tolerable level.
When Pgisi) is less than or equal to ( 1 X 107¢)
then hazard in acceptable level.
The sixth step: performing the risk reduction action
Reducing the risk of rock falls by sounding and lighting warnings
Turn on the (Red light + sound), when the hazard at unacceptable level.
Turn on the (Yellow light), when the hazard at tolerable level.
Turn on the (Green light), when the hazard at acceptable level.
The seventh step: Return to first step.

5. Results and Discussion

The research, findings, and framework discussion were presented in this section. The findings
of the experiment provide demonstration for three different terms. First is the Deep-Learning model
validation. First comes the validation of the deep learning model. The second is a risk assessment for
rock falls. The assessment of the risk reduction comes last.

5.1 Deep Learning Model Validation

Performance metrics were obtained based on the four possibilities from the con-fusion matrix of
TP, TN, FP, and FN, and were used to validate the proposed deep learning model (Table 3). These
metrics included specificity, accuracy, precision, F1-Score, and area under a receiver operating
characteristic (ROC) curve (AUC) metrics. In addition to Mean Squared Error (MSE).
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Table 3. The confusion matrix.

Predicted (Even)
Not occurs 0 Occurs 1
Not occurs 0 TN =304 FP =51
<& Occurs 1 FN =35 TP =222

A report on the deep learning model for the 612 testing sample obtained through the confusion
matrix (Table 3). It shows that the actual detected events(TP) were 222, the number of events that
occurred but were not detected(FN) was 35, the number of events that did not occur and the system
generated an absence event report(TN) was 304, and the number of events was absent. However, the
system reported it as present(FP) is 51. Additionally, the outcome demonstrates an ability to ignore
fake occurrences, with an average specificity of 85.6%. The accuracy of 86% reflects the percentage of
times a model produced a prediction throughout the entirety of the dataset.

The classification report (Table 4) shows the validation data average recall (sensitivity) for the
both class (rock-fall even not occur 0) and (rock-fall even occurs 1) is 86%. That means, at the lowest
sensitivity levels, only 14% of the rock-fall occurrences were improperly recognized. The average
precision of 85% shows the amount of the positive predictions made by the model were correct. The
average F1-Score is 86%.

Table 4. Clasification report.

Class Precision Recall F1-Score Support
Rock-Fall Even (Not occur 0) 91% 86% 88% 355
Rock-Fall Even (Occurs 1) 81% 86% 84% 275
Accuracy 86% 612
Macro avg 85% 86% 86% 612

The deep learning model's loss curve for 200 iterations is shown in Figure 6. In contrast, during
the neural network training session, the cost value drops with each iteration. As a result, reflecting
the performance of the learning through time. Finally, the cost value eventually dropped to less than
0.14 points, which is regarded as an acceptable Mean Squared Error (MSE) score.

Loss Curve

071

0 % 5 75 100 125 150 175
iterations

Figure 6. The Mean Squared Error (MSE) curve.

The ROC curve shown in Figure 7 demonstrates the model's accuracy in predicting the
occurrence of rock falls. The area under the ROC curve (AUC) value has reached 0.946.
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Figure 7. The ROC curve (for validation data set).

5.2. Rock-fall risk assessment result

The method outlined in Section 4.4 (Equation 12) of this study was applied to calculate the Rock-
fall Risk Probability. The Python environment was used as a simulation tool The settings and
configurations used for the simulation are listed in (Table 5).

Table 5. Simulation setups.

Parameter Value
Average daily number of vehicles on the road (Nv) 8325 vehicles
Average vehicle lengths 54m
Brake Engagement time 2s
Driver reaction time (04to2)s
Average acceleration 10 m/s?

The findings indicate that the values for the highest and lowest rock-fall risk probability were,
respectively (1.51 x10-3) and (7.98 x10-6). Moreover, the relationship between the local time and the
rock-fall risk probability (Figure 8) shows that the high-risk probabilities are concentrated in the local
time period between 12 pm and 18 pm.

0.0002
0.00015
0.0001

0.00005

ROCK-FALL RISK PROBABILITY

12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24

-0.00005
LOCAL TIME

Figure 8. The Rockfall Risk Probability.

In order to classify the risk values into three levels, The outcomes were compared to the triangle
of safety-critical regulation and management thresholds, which is shown in Figure 9 (ALARP)[35].
The result shows that the risk probability values were spread among all (ALARP) levels. 29.1% of
values are unacceptable, and the remaining risk values are divided between acceptable and tolerable
levels by 16.6% and 54.2%, respectively.
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Figure 9. ALARP thresholds triangle.

5.3. Rock-fall risk reduction

The risk reduction was obtained by applying a decision-making algorithm. Figure 10 shows that
the Rock-fall risk probability was decreased to values ranging from (8.57 x10°) to (8.21 x107). When
these values were compared with (ALARP) levels, we found that all values were less than (1 x10-),
and therefore all values were Located at acceptable levels.
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£38.00E-07
@
g6 00E-07
6.
o
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§4.00E—07
o
22.00E-07
N
o
<0.00E+00

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24
-2.00E-07
LOCAL TIME
Figure 10. The rock fall risk reduction.
Table 6. Rock-fall Risk probability before and after reduction.
Rock-fall Risk Probability Minimum Maximum
Before Reduction 7.98 x10- 1.51 x103
After Reduction 8.57 x10° 8.21 x107

The overall accuracy of the augmented model was obtained by substituting the detection
model's average accuracy into Equation (19). We found that the overall accuracy after augmentation
increased from 86% to 98.8%, as in (Table 7). This result confirms the effectiveness of the
augmentation in raising the model accuracy and reducing the confusion associated with the
prediction process.

Table 7. Model accuracy before and after augmentation.

Rock fall Risk Prediction Model Accuracy

Before Augmentation 86%

After Augmentation 98.8%
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6. Conclusions

In this study, an early warning framework was developed to reduce the risk of rock falls. First,
2040 samples of historical rock-fall events data were gathered from various sources, and randomly
split into two groups, with 70% going for deep-learning model training and 30% going for model
validation. Next, the model prediction accuracy was augmented using a real-time rock-fall detection
model based on (IoT) and computer vision. Finally, the decision-making algorithm assesses the risk
of a rockfall, categorizing it into three levels, and producing a warning reaction to handle the critical
hazard situation.

This study utilized parameters and overall prediction performance measures based on a
confusion matrix to compare the performance of the model before and after augmentation. The
results showed that the models had acceptable performance. The results show that the overall model
accuracy before augmentation was 86%, which became 98.8%after the augmentation. Additionally,
as shown in (Table 6), a framework can lower the risk probability from (1.51 x10°) to (8.57 x10).

By comparing our new augmented model with our model in a previous study [14] based on
performance and the ability to reduce the risk of rock fall, we discovered that the new proposed
model's prediction accuracy was 98.8%. In comparison, the previous study’s accuracy was 97.9%. In
addition, the new model reduced the risk probability to (8.57 x10), while the previous study reduced
the risk to (1.13 x10%). This result indicates that although the previous model had acceptable
performance, the augmented model outperformed this model. It can be considered a promising
technique for predicting and reducing a rock-fall risk.

In future studies, we suggest enhancing the real-time rock-fall detection process by increasing
the number of seismic sensors to achieve a higher detection accuracy and enhancing the current DL
prediction model accuracy by adding more rock-fall conditioning factors.
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