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Abstract: In recent years, several strategies have been introduced to enhance early warning systems for 

lowering the risk of rock falls. In this regard, this paper introduces a Deep learning-and (IoT) based Framework 

for Rock-fall Early Warning, devoted to reducing the rock-fall risk with high accuracy. In this framework, the 

prediction accuracy was augmented by eliminating the uncertainties and confusion plaguing the prediction 

model. In order to achieve augmented prediction accuracy, this framework fused the prediction model-based 

deep learning with a detection model-based Internet of Things. This study utilized parameters, specifically 

overall prediction performance measures based on a confusion matrix, to assess the performance of the 

framework, in addition to its ability to reduce the risk. The result indicates an increase in prediction model 

accuracy from 86% to 98.8%. In addition, a framework reduced the risk probability from (1.51 ×10-3) to (8.57 

×10-9). Our findings demonstrate the high prediction accuracy of the framework, which also offers a reliable 

decision-making mechanism for providing early warning and reducing the potential hazards of rock falls. 

Keywords: rock-fall risk; internet of things IoT; deep learning; early warning 

 

1. Introduction 

Rock-fall is a complex natural phenomenon that threatens humans and infrastructures in many 

mountain regions of the World. Because rock-fall events are random, reliable mechanisms for 

monitoring, predicting, and managing the geological risk due to rock-fall is still a challenging task. 

Many approaches have been used to model and assess rock-fall hazards in recent years. For example, 

literature [1] developed a hazard assessment model based on the frequency of rock falls, rock 

structure, and bounce height. By using a dynamic computational technique, the suggested model 

evaluated the risk of rock-fall and the quantification uncertainties. Quantitative models were also 

created to evaluate and control the danger of rock falls [2,3].  

There is another technique to detect falling rocks, such as seismic signals detection. The literature 

reports many methods to track seismic waves produced by falling rocks, as geophysical sensors were 

developed to track the seismic signals caused by falling boulders and determine how the rock's effect 

on the surface was estimated [4]. A micro-seismic approach was introduced to identify rock-fall 

occurrences in another investigation [5]. Although these methods are excellent in detecting rock-fall 

occurrences, doing so needs a large number of seismic sensors. Through the use of micro-
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electromechanical and micro-seismic networks, new methods to circumvent micro-seismic limits 

have been developed. Camera-based monitoring techniques have been recently used to monitor 

better and track fallen rocks in real time. A test version of an artificial intelligence camera was used 

to track and monitor falling rocks in real-time [8]. The camera has outperformed many technologies, 

even the micro-seismic networks, regarding to its capability to monitor many rocks simultaneously. 

The seismic and camera-based monitoring systems are used to identify falling rocks at the time of 

impact; nevertheless, they must be sufficiently effective to alert vehicles to the risk of rock-fall before 

it happens. Unfortunately, this technology responds to events after causing severe damage to the 

road and pedestrians. In order to get around the limitations of monitoring approaches, rock-fall 

occurrences must be predicted. Recently, excellent models to forecast rock-fall dangers have been 

created using machine learning technology. Various machine-learning techniques, including logistic 

regression, have been utilized for predicting rock falls [9,10] and support vector machines (SVM) 

[11,12]. Another approach [13] developed a tool for predicting the spatiotemporal distribution of 

rock-fall using artificial neural networks and linear regression. The rock-fall risk was assessed using 

several approaches, such as a (Hybrid Early Warning System for Rock-Fall Risks Reduction) [14]; this 

system uses three models to predict the likelihood of rock falls the logistic regression model, the 

computer vision model, and the hybrid risk reduction model, which also provides early warning and 

hazard level classification. Because the model was created using insufficient historical data about a 

particular location, the current prediction approaches are ineffective at reducing the rock-fall risk in 

real-time. 

Although this system contributed to reducing the risk of rock falls, the prediction process still 

needs to be more accurate and uncertain because it inherited previous models' limitations. In order 

to get over the constraints of all earlier models, offering an accurate prediction is necessary. 

This study proposed a framework to reduce the rock-fall risk. The primary purpose of this 

framework is to augment the prediction accuracy by eliminating the uncertainties and confusion that 

plague the prediction model. In order to achieve a prediction accuracy augmentation, four different 

techniques were integrated, detection model-based (Computer Vision and Micro-seismic wave), 

prediction-based (Deep Learning model), Internet of Things network (IoT), and (Decision Make 

Algorithm). 

Finally, The following are the key contributions of this study:  

• We propose IoT based framework for rock fall Early Warning. 

• We created a (Deep learning model) to predict the likelihood of rock-fall events. 

• We created a detection model-based (Micro-seismic wave and Computer Vision). 

• We have augmented  the accuracy of a prediction model by fusing the detection model with a 

prediction model. 

• We developed a (Decision Make Algorithm) . 
• We provide a baseline methodology and a prediction accuracy benchmark for future related 

works. 

This study's remaining sections are structured as follows. In Section 2, the study area and issues 

are presented. Section 3 introduces data acquisition. Section 4 presents the methodology. Section 5 

presents the results and discussion. The evaluation of the study is presented in Section 6. 

2. Study Area and Problems 

The study targeted two sites in southern Saudi Arabia along the( Sarawat mountain), 

constituting a natural obstacle to communication between cities and population centers above the 

mountains and those scattered in the plains and valleys [15]. The first site (Aqabat Shaar) a located 

on the road linking the city of Abha and Mahayel Asir, and this obstacle extends a length of 14 km 

on mountain ranges with a height of 2160 meters. The second site (Aqabat Dhala) a located on the 

road linking the cities of Abha and Jazan. This obstacle extends 11 km along a steep mountain at 2220 

meters high. These two sites have many bends and tunnels, crowded with high traffic intensity, 

which increases the possibility of exposed cars at the moment of a rock fall. 
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One of the most important reasons that lead to the fall of rocks in this area is the constant rainfall 

throughout the summer on the mountain range, which causes an absolute nightmare for the passers-

by of the (Aqabat Shaar )and (Dhala). It is stable and becomes suitable for the fall of rock masses. 

Also, one of the causes of rock fall in this area is the nature of the rock formation in some locations, 

where it consists of large rocky blocks interspersed with rocky rubble in addition to other areas 

permeated by a limestone layer. This formation made it weak in resistance to natural factors. The 

difference in temperatures between night and day characterizes these areas. These temperature 

differences, in addition to ground movements, cause rock stress, which leads to cracks. This crack 

expands with time, and rainwater retracts into the cracks, causing pressure on the rocks, which 

reduces cohesion's strength and results in successive rock slides [16]. 

The construction work in the area led to the emergence of edges with sharp sloping angles, 

which reduced the gravity of the rock masses and made it easier to roll them downwards, increasing 

the possibility of rocks falling at any moment. 

3. Data acquisition 

3.1. Data Collection and Preparation 

The historical data of the rock-fall events, in addition to meteorological data were collected in a 

period from January 2015 to August 2021. Different sources as, KSA Civil Defense, Geological 

Hazards Research Center were used as data source. This period was divided into 2040 samples, 

which included 415 rock-fall events. During the initial filtering of the data, three non-dependent 

variables (slope angle, Rainfall, and temperature variation) and one dependent variable (rock-fall 

event) were selected. A training data set of 70% (1428 samples) and a test data set of 30% (612 

samples)were created from the rock-fall inventory data in order to training  and testing the model.  

3.2. The rockfall condition factors 

The decision to use rock-fall conditioning factors directly affects mathematical models’ accuracy. 
[17,18]. This study utilized three rock-fall conditioning factors, hydrological (rainfall), topographic 

(slope angle), and weather-related. (Temperature variation) [19].  

In considerable rock-fall events, rainfall directly affects the movement and rolling of rocks [20]. 

The rock fall events are directly proportional to the slope angle of the mountain.  The higher the 

slope angle, lead to less rock stability  [21].  The difference in temperature between day and night 

exposed rocks to expansion and contraction, which led to cracks in the rocks [22]. 

Table 1. Rock-fall conditioning factors. 

Type Factor Unit  Factor Class  

Topographic slope angle degree ( range 20 - 60 )   

Hydrological rain full mmh-1 ( range 0 - 46) 

Weather temperature variation co ( range 0 - 21 ) 

4. Methodology 

4.1. Rock-Fall Early Warning Framework Design 

This section presents a framework-based Internet of Things (IoT) for Rock-Fall Early Warning. 

Figure 1 shows our proposed framework for detecting and predicting rock-fall incidents. The 

framework consists of five layers: field layer, edge layer, fog computing layer, cloud computing layer, 

and data presentation layer. 
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Figure 1. Rock-fall early warning framework. 

4.1.1. Things layer 

Includes the actual sensors to measure the physical parameters of interest; these include rainfall, 

air temperature, air humidity, a seismic sensor for detecting seismic waves, and a camera for rock 

movement detection; the field layer also expanded to accommodate intelligent voice module and 

light panel to run out the early warning action.  

4.1.2. Edge Computing layer 

In order to decrease network traffic and energy consumption, the edge nodes gather input from 

the sensors and conduct data and image processing algorithms. The main goal is to locally generate 

fundamental model properties of the specific process, which pass on to the fog computing compactly. 

Also, execute commands incoming from higher-level systems to deliver an early warning action and 

make local decisions, thus preventing upper-layer latency.               

4.1.3. Fog Computing layer 

It bridges the gap between the cloud and edge nodes by enabling computations such as rock-fall 

monitoring, rock-fall prediction, deep learning model, rock-fall risk Assessment, networking, data 

management, and decision making. Blynk cloud was used in this study (Blynk cloud); it's a 

comprehensive software package needed to deploy and remotely manage linked electrical devices at 

any size, from small-scale home IoT projects to millions of commercially connected items.  
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4.1.4. Cloud computing layer 

The cloud was chosen to provide communication service by streaming data between the fog 

computing and data presentation layers   and  providing a medium for data storage. The Blynk utilizes 

HTTPS (API) to report telemetry and regularly fetch DataStream. Additionally, it offers open-source 

hardware libraries so that any device may connect to Blynk Cloud. 

4.1.5. Data presentation layer 

Concerned with the software systems that convey the data analysis results to end-users or 

decision-makers. In this study, Web and Mobile app dashboards are used to present the early 

warning alarm in the case of event detection, in addition to affording the system administrator access 

privileges and decision-makers. 

4.2. Rock-fall detection model 

This study obtained a robust rock-fall detection model by gathering two detection processes. 

First, computer vision algorithm was used to detect rock-fall event. Secondly, seismic wave sensors 

were used to detect the vibrations from rock cracking or falling. 

4.2.1. Rock-fall detection-based computer vision 

The computer vision algorithms detect the rock-fall events in three steps, as in Figure 6. filtering 

the image frame, background subtraction, and performing frame manipulation as in Figure 6. In the 

first step, the (Blurring Gaussian Filter) was used to filter out the noise from the captured images. 

Secondly, the moving rocks were detected from the video frame sequence. Due to weather conditions 

and daytime, the video frame sequence suffers from background illumination variations, so the 

(Adaptive Gaussian Mixture Model) was used to overcome this problem.  

 

Figure 2. Rock-fall detection model. 

The model treats each pixel as a composite of Gaussians before learning the image's backdrop 

and categorizing each pixel as background or foreground. The background model is represented by 

Equation 1. 𝑃̂(𝑥⃗|𝜒𝑇 , 𝐵𝐺) = ∑ 𝜋̂𝑚𝑀𝑚=1 𝒩(𝑥⃗; 𝜇̂⃗𝑚, 𝜎̂𝑚2 𝐼)  (1) 

where 𝑃̂(𝑥⃗|𝜒𝑇 , 𝐵𝐺) represents the estimated background, 𝑥⃗ is the grayscale of the pixel value at 

time t, M is the number of the Gaussian components, 𝜒𝑇 represents the training set, the weight 𝜋̂𝑚 

indicates how much of the data is part of the m component of the GMM, 𝜇̂⃗𝑚 is estimated means, I 

represents an identity matrix, and 𝜎̂𝑚2  is the estimates variances. 

The (Bayesian) was used to classify pixels as background or foreground from moving rocks 

video frame [23]. The frame manipulation was used to overcome imperfections in the segmentation 

process. 
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4.2.2. Rock-fall Detection based micro-seismic wave 

The seismic wave is generated in two cases, at the moment rocks crack or when rocks fall. Thus, 

the seismic wave sensor can be used to detect rock fall events. This study characterized the micro-

seismic wave by its frequency component, classified into three frequency domains. A significant 

frequency spectrum band between 100 and 1000 Hz was present in the first domain. These signals 

are generated several hours prior to the rock's fall. The second domain is in the higher frequency 

band between 500 and 1000 Hz.  

The third domain is in the lower frequency spectrum, 100 to 500 Hz. These signals precede the 

rockfall event by a few moments. The relationship between Rock-fall incidents and seismic wave 

frequency domains was quantified using the spectral amplitudes ratio (R). The spectral amplitude 

ratio (R) is calculated according to Equation(2) [24]. 𝑅 =  A𝑀𝐴𝑋(100𝐻𝑧 − 500𝐻𝑧)A𝑀𝐴𝑋(500𝐻𝑧 − 1000𝐻𝑧) (2) 

where AMAX(100Hz−500Hz) is the maximum amplitude of the frequency spectrum 100 Hz to 500 Hz, 

AMAX (500Hz−1000Hz) is the maximum amplitude of the frequency spectrum 500 Hz to 1000 Hz. The 

average amplitude ratio R for all frequency domains is shown in Table 2. 

Table 2. The average spectral amplitudes ratio R. 

frequency domain  frequency spectrum R 

first domain 100Hz−1000Hz 1.5±0.08 

second domain 500Hz−1000Hz 2.7±0.32 

third domain 100Hz−500Hz 7.1±0.68 

4.3. Rock-fall Prediction Model 

Due to the randomness of a rock-fall occurrence, the function of the rock-fall event probability 

P = fx(r, s, t) is uncertain; therefore, mapping the relationship of the rock-fall possibility P, the slope 

angle s, the rain-full r, and the temperature variation t cannot be strictly described. To solve the 

uncertainty of the mapping function, the BP (backpack) artificial neural network can learn the 

relationships between the input and the output of the corresponding procedure by analyzing the 

sample data and adopting a model to give the expected output value when given the input value 

[25]. 

4.3.1. Deep Learning Model. 

In this paper, we proposed a deep learning model for a rock-fall occurrence prediction. It is one 

of the machine learning process. It is a complex mathematical model that simulates the biological 

neuron structure and self-learning function; It uses mathematical methods that are based on the idea 

of linked layers of nodes. [26]. As seen in Figure 4, it has an output layer, three hidden layers, and a 

three-parameter input layer. 
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Figure 3. Deep learning model design. 

As shown in Figure 4, each node in this neural network is a neuron, and each neuron has six 

major components, including inputs (xi), biases (bj), weights (wij), sum functions (uj), activation 

functions (f), and outputs (yj). The information from neurons or the outside world that is used as a 

decision variable is referred to as an input. Weights are values that translate how the influence of 

inputs on one another. The sum function (Equation (3)) is an operation that takes into account a bias 

value and reflects the impacts of inputs and weights[27]. (𝑢)𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖𝑛𝑖=1 + 𝑏𝑗  (3) 

where: 

i is the ith input neuron 

j is the jth output neuron 

n is number of elements in the ith input vector. 

bj is the bias value (also known as the activation threshold) connected to the jth node. 

According to the equation in Equation (4), the activation function is in charge of converting the 

node's summed weighted input into the activation of the node or output for that input. 𝑦𝑗 = 𝑓(𝑢𝑗) = 11 + 𝑒−∝(𝑢𝑗) (4) 

where yj represents the output of the jth neuron, controls the slope of the rectified linear activation 

function, and is typically equal to 1. 

 

Figure 4. The neuron’s main parts. 

4.3.2. Training Methods 

The SciKit-Learn neural network package was used to create the neural network models that 

were used in this study. The model was generated with three hidden layers. In our method, the 

training process used 70% of the entire data, while the validation process used 30% of the remaining 

data. The training process was operated using the multilayer perceptron (MLP). The MLP was chosen 

because it provides quick predictions after training. It utilizes a supervised learning technique called 

backpropagation for training with the rectifier linear unit (ReLU). The learning algorithm performs 

backpropagation, which calculates the correct gradient for nonlinear multilayer networks to reduce 

errors (the gap between prediction and actual values)[28]. 

In this study, a gradient descent method was used as an optimization model. This method is to 

update the variables iteratively in the (opposite) direction of the gradients of the objective function. 

Equation (5) performs the gradient descent algorithm. It updates the weight and bias parameters 

iteratively in the negative gradient direction to minimize the loss function f(θ). 𝜃ᵢ = 𝜃ᵢ − 𝛼 ∗  𝑑𝑑𝜃ᵢ  𝑓(𝛳) (5) 
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where α is a learning rate, f(θ) is a loss function, θj is the weight or bias parameter, which we need 

to update. 

4.3.3. Model Performance Validation 

In this section, the overall model performance (recall, specificity, precision, F1-Score, and 

accuracy), as well as the mean squared error (MSE) and area under a receiver operating characteristic 

(ROC) curve (AUC), were used to validate the model's ability to distinguish between the occurrence 

of a rock-fall and a non-rock-fall event. The system performance was calculated using the confusion 

matrix. [29]. The first metric is recall, which referred to as sensitivity or the true positive rate. The 

following calculation measures how well the model predicted the rock-fall event: Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 ˟ 100 % (6) 

The second metric, Specificity, is used to assess a system's capacity to verify the absence of a rock-fall 

event, which is described as Specificity = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 ˟ 100 % (7) 

The third metric is precision, it is used to determine how many samples really fall into the positive 

class out of all those that the model projected would. Precision = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 ˟ 100 % (8) 

The fourth metric is F1 score, is used as a model's predictively assessment. The F1 score is derived by 

combining the accuracy score and the recall score of a model, and its definition is as follows: F1 score = 2 ∗ Precision ∗ RecallPrecision + Recall (9) 

The fifth metric is accuracy, which is a reflection of how accurately the system can identify the rock-

fall event, its defined as follows: Accuracy = (TN + TP)(FP + FN + TN + TP) ˟ 100 % (10) 

Whereas true positive (TP) indicates that all events were indeed discovered, false negative (FN) 

indicates that some events took place but went undetected, and true negative (TN) indicates that no 

events took place. A false positive (FP) event is absent, yet the system records it as present. The system 

reports an absent event. 

Equation (11) uses the Mean Squared Error (MSE) to calculate the average squared difference 

between the values of real and predicted data points in order to quantify the degree of error in the 

learning model. MSE = 1n ∑ (Yi − Ŷi)2ni=1  (11) 

where n is the total number of data points in the dataset, Yi is the actual data point values, and i is 

the projected data point values. The overall performance of a prediction is measured using the area 

under a receiver operating characteristic (ROC) curve (AUC), which is based on a confusion matrix. 

4.4. Rock-fall Risk Assessment 

The likelihood that a rock-fall event will occur at a specific location and at a specified time and 

impose a specific level of damage to roads, automobiles, and pedestrians was characterized as rock-

fall risk. Then the risk is calculated in terms of the temporal and spatial information on the effect of 

precipitation. Based on the possibility that cars are available in a certain position and time period 

affected by rocks falling, the temporal-spatial probability and susceptibility were determined [30]. 

Equation (12) shows the risk probability's value. 
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𝑃(𝑅𝑖𝑠𝑘) = 𝑓𝑟 × 𝑃(𝑆: 𝑇) × 𝑃(𝑟) × 𝑉(𝑢) (12) 

where P(Risk) denotes the likelihood that a rock fall incident will occur within a given hour and fr 

denotes the frequency of rock falls. The possibility that a rock will fall and impact the car is P(r). The 

susceptibility of the vehicle to rock-fall occurrences, or V(u), has two possible values: 1 if the rock 

actually hits the car, and 0 if it doesn't. The likelihood that automobiles will be accessible at a 

particular location and time is known as P(S:T). There is (temporal-spatial probability) that a car 

traveling the entire path will be impacted at the moment of impact. It is determined using Equation 

(13) [31]. 𝑝(𝑆:𝑇) = 𝑁𝑉24 × 𝐿𝑣1000 × 1𝑉𝑣  (13) 

where Nv is the average daily number of vehicles, Lv is the average length of a vehicle in meters, and 

Vv is the average speed of a vehicle in kilometers per hour.. 

4.5. Rock-fall Prediction Model Augmentation 

The prediction made by the Deep Learning model is subject to noise, model errors, and 

uncertainty [32]. Therefore, it is highly desired for any AI-based system to represent uncertainty in a 

reliable manner. In this part of the article, the prediction model had been enhanced by increasing the 

overall level of model accuracy so that a precise decision could be made to reduce the chance of a 

rock fall. 

For our proposed model, noise in data and inadequate knowledge lead to uncertainty in data; 

subsequently, The naturally uncertain nature of the data is modeled by the predictions, making it 

irreducible. In this study, to address this problem, a new method was proposed to decrease the 

uncertainty by diminishing Two instances of confusion: situations of certain events occurring but not 

being identified as false negatives (FN) and cases of some events occurring but not being recognized 

as false positives (FP).  

The augmented rock-fall prediction probability P(J), obtained by applying (the union of not 

mutually exclusive probabilities theory), between the probability of the rock-fall risk according to the 

detection models P(D), as well as the possibility of a rock fall according to the prediction models. 

P(p), The procedure of deriving the joint rock-fall probabilities using detection and prediction models 

is depicted in (Figure 5). 

 

Figure 5. Union of not mutually exclusive probabilities process. 
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The rock-fall probability of the detection models calculated from the, micro-seismic detection 

model and computer vision detection model, then the joint probability is calculated as in Equation 

(14). 𝑃(𝐷) = 𝑃(𝑆 ∪ 𝑉) = 𝑃(𝑆) + 𝑃(𝑉) − 𝑃(𝑆 ∩ 𝑉) (14) 

where P(D) is the rock-fall probability of the detection models, P(S ∪ V) is the union probability, P(S) 

is the rock-fall probability determined by the micro-seismic detection, P(V) is the rock-fall probability 

determined by the computer vision detection model, P)S ∩ V) is the probability of P(S) and, P(V) are 

mutually exclusive occur. In this study P(S) was determined from the spectral amplitudes Ratio (R) 

of the micro-seismic event, as in Equation (15). 𝑃(𝑆) = 𝑅𝑅𝑀𝐴𝑋 (15) 

where R is the spectral amplitudes ratio of a micro-seismic event, it takes the values from  )1.5±0.08) 

to (7.1±0.68), as mentioned in Section (4.2), RMAX is the ratio of the spectral amplitude when the rock-fall 

occurrence is confirmed, and its value is equal to (7.78). The P(V) value is 0 in case of no rock fall is 

detected, and it is valued is 1 in case of rock-fall is detected.  By Substituting the values of the 

probabilities into equation 6, we get Equation 16 𝑃(𝐷) = 𝑅(7.78) + 𝑃(𝑉) − 𝑅(7.78) × 𝑃(𝑉) (16) 

The rock-fall occurrence probability (P*) which obtained from the prediction model (Artificial Neural 

Network) was used to determine the rock-fall risk probability. Finally, the augmented rock-fall 

prediction probability P(j) was calculated by joint the rock-fall probability of the detection 

models P(D) with the rock-fall risk probability of the prediction models P(P), Equation (17). 𝑃(𝑗) = 𝑃(𝐷) + (1 − 𝑃(𝐷)) × 𝑃(𝑃) (17) 

The overall accuracy of the augmented model can be obtained by Equation 18 . 𝐴𝑢 = (TN + TP)(TN + TP) + 𝛿(FN + FP) ˟ 100 % (18) 

where Au is the augmented model accuracy, and δ is the uncertainty decreasing factor. 𝛿 = (1 − 𝐴𝑑) (19) 

Ad is the average accuracy of the detection model. 

4.6. Rock-fall Risk Reduction Process 

The risk reduction process is carried out by preventing cars and pedestrians from entering the 

vulnerable area. This study used an early warning to prevent cars from entering a hazard zone. The 

likelihood that vehicles would not enter the danger zone after receiving the early warning signal at 

the time of the incident was used to determine the risk reduction [33]. In this study, the value of a 

risk reduction was calculated using the risk reduction probability, which includes the system 

reliability, the average number of cars, and the likelihood of vehicle response as in Equation (20). 

P(R) = 𝐴𝑢×Nv ×P(rs) (20) 

where P(R) refers to the possibility that the risk will be reduced, P(rs) refers to the probability that a 

given vehicle will not reach the affected road segment after getting the warning signal, Nv refers to 

the average number of vehicles, and Au refers to the overall accuracy of the enhanced model. The 

value of P(re) is determined by applying Equation (21):  𝑃(𝑟𝑠) = 1 − (𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑎𝑓𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑆𝑡𝑜𝑝 ) (21) 

Based on the physical force distance, response time, and brake contact distance, the overall 

stopping distance was calculated. The safe distance is determined by the reaction time of the 
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vehicle  driver. The reaction time of the driver vary randomly in range between 0.4 and 2 seconds. 

The Physical Force Distance can be calculated by dividing the vehicle's speed by the amount of time 

it takes for the brakes to react. When its acceleration of 10 m/s2 is implied [34]. 

4.7. Decision Make Algorithm 

This algorithm was developed to make the appropriate decision about reducing the rock-fall 

risk. It fusion the outputs of the rock-fall prediction model (deep learning model) with the outputs of 

(the detection model) in order to obtain the augmented prediction, as well as calculating the risk of a 

rockfall, categorizing it into three levels, and creating a warning strategy to handle a severe hazard 

situation. The subsequent steps demonstrate how the proposed (Algorithm 1) utilizes and controls a 

rock-fall danger level. 

Algorithm 1 was performed in order to figure out the rock-fall risk, identify the risk level, and 

carry out the rock-fall risk reduction process.  

The first step: Gathering information with the things layer 

    Read Rainfall by (Rain sensors)  

     Read temperature by (temperature sensors) 

     Read (IoT camera) video frames 

     Read seismic waves by (seismic sensor) 

The second step: Detection of falling rocks  

     in accordance to Equation (1) 

The third step: Determine the rock-fall occurrence probability(P) 

     in accordance to Deep Learning model        

The fourth step: Compute the total rock-fall risk probability P(j) 

     in accordance to Equation (17)  

The fifth step: Classifying the hazard in to three levels: 
     When 𝑃(𝑅𝑖𝑠𝑘) is greater than or equal to  ( 1 × 10−3) 

       then hazard in unacceptable level. 

     When 𝑃(𝑅𝑖𝑠𝑘) is greater than(1 × 10−6) and less than ( 1 × 10−3) 

       then hazard in tolerable level. 

     When 𝑃(𝑅𝑖𝑠𝑘) is less than or equal to ( 1 × 10−6) 

       then hazard in acceptable level. 

The sixth step: performing the risk reduction action     
       Reducing the risk of rock falls by sounding and lighting warnings 

           Turn on the (Red light + sound), when the hazard at unacceptable level. 

           Turn on the (Yellow light), when the hazard at tolerable level. 

           Turn on the (Green light), when the hazard at acceptable level.  

The seventh step: Return to first step . 

5. Results and Discussion 

The research, findings, and framework discussion were presented in this section. The findings 

of the experiment provide demonstration for three different terms. First is the Deep-Learning model 

validation. First comes the validation of the deep learning model. The second is a risk assessment for 

rock falls. The assessment of the risk reduction comes last.  

5.1 Deep Learning Model Validation 

Performance metrics were obtained based on the four possibilities from the con-fusion matrix of 

TP, TN, FP, and FN, and were used to validate the proposed deep learning model (Table 3). These 

metrics included specificity, accuracy, precision, F1-Score, and area under a receiver operating 

characteristic (ROC) curve (AUC) metrics. In addition to Mean Squared Error (MSE). 
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Table 3. The confusion matrix. 

 
Predicted (Even) 

Not occurs 0 Occurs 1 
A
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) 
Not occurs 0 TN = 304 FP = 51 

Occurs 1 FN = 35 TP = 222 

A report on the deep learning model for the 612 testing sample obtained through the confusion 

matrix (Table 3). It shows that the actual detected events(TP) were 222, the number of events that 

occurred but were not detected(FN) was 35, the number of events that did not occur and  the system 

generated an absence event report(TN) was 304, and the number of events was absent. However, the 

system reported it as present(FP) is 51. Additionally, the outcome demonstrates an ability to ignore 

fake occurrences, with an average specificity of 85.6%. The accuracy of 86% reflects the percentage of 

times a model produced a prediction throughout the entirety of the dataset. 

The classification report (Table 4) shows the validation data average recall (sensitivity) for the 

both class (rock-fall even not occur 0) and (rock-fall even occurs 1) is 86%. That means, at the lowest 

sensitivity levels, only 14% of the rock-fall occurrences were improperly recognized. The average 

precision of 85% shows the amount of the positive predictions made by the model were correct. The 

average F1-Score is 86%. 

Table 4. Clasification report. 

Class  Precision Recall F1-Score Support 

Rock-Fall Even (Not occur 0 ) 91% 86% 88% 355 

Rock-Fall Even (Occurs 1 ) 81% 86% 84% 275 

Accuracy   86% 612 

Macro avg  85% 86% 86% 612 

The deep learning model's loss curve for 200 iterations is shown in Figure 6. In contrast, during 

the neural network training session, the cost value drops with each iteration. As a result, reflecting 

the performance of the learning through time. Finally, the cost value eventually dropped to less than 

0.14 points, which is regarded as an acceptable Mean Squared Error (MSE) score. 

 

Figure 6. The Mean Squared Error (MSE) curve. 

The ROC curve shown in Figure 7 demonstrates the model's accuracy in predicting the 

occurrence of rock falls. The area under the ROC curve (AUC) value has reached 0.946. 
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Figure 7. The ROC curve (for validation data set). 

5.2. Rock-fall risk assessment result 

The method outlined in Section 4.4 (Equation 12) of this study was applied to calculate the Rock-

fall Risk Probability. The Python environment was used as a simulation tool The settings and 

configurations used for the simulation are listed in (Table 5).  

Table 5. Simulation setups. 

Parameter Value 

Average daily number of vehicles on the road (NV) 8325 vehicles 

Average vehicle lengths 5.4 m 

Brake Engagement time 2 s 

Driver reaction time (0.4 to 2) s 

Average acceleration 10 m/s2 

The findings indicate that the values for the highest and lowest rock-fall risk probability were, 

respectively (1.51 ×10-3) and (7.98 ×10-6). Moreover, the relationship between the local time and the 

rock-fall risk probability (Figure 8) shows that the high-risk probabilities are concentrated in the local 

time period between 12 pm and 18 pm.  

 

Figure 8. The Rockfall Risk Probability. 

In order to classify the risk values into three levels, The outcomes were compared to the triangle 

of safety-critical regulation and management thresholds, which is shown in Figure 9 (ALARP)[35]. 

The result shows that the risk probability values were spread among all (ALARP) levels. 29.1% of 

values are unacceptable, and the remaining risk values are divided between acceptable and tolerable 

levels by 16.6% and 54.2%, respectively. 
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Figure 9. ALARP thresholds triangle. 

5.3. Rock-fall risk reduction 

The risk reduction was obtained by applying a decision-making algorithm. Figure 10 shows that 

the Rock-fall risk probability was decreased to values ranging from (8.57 ×10-9) to (8.21 ×10-7). When 

these values were compared with (ALARP) levels, we found that all values were less than (1 ×10-6), 

and therefore all values were Located at acceptable levels. 

 

Figure 10. The rock fall risk reduction. 

Table 6. Rock-fall Risk probability before and after reduction. 

Rock-fall Risk Probability Minimum Maximum 

Before Reduction 7.98 ×10-6 1.51 ×10-3 

After Reduction 8.57 ×10-9 8.21 ×10-7 

The overall accuracy of the augmented model was obtained by substituting the detection 

model's average accuracy into Equation (19). We found that the overall accuracy after augmentation 

increased from 86% to 98.8%, as in (Table 7). This result confirms the effectiveness of the 

augmentation in raising the model accuracy and reducing the confusion associated with the 

prediction process. 

Table 7. Model accuracy before and after augmentation. 

Rock fall Risk Prediction Model Accuracy 

Before Augmentation 86% 

After Augmentation 98 .8% 
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6. Conclusions 

In this study, an early warning framework was developed to reduce the risk of rock falls. First, 

2040 samples of historical rock-fall events data were gathered from various sources, and randomly 

split into two groups, with 70% going for deep-learning model training and 30% going for model 

validation.  Next, the model prediction accuracy was augmented using a real-time rock-fall detection 

model based on (IoT) and computer vision. Finally, the decision-making algorithm assesses the risk 

of a rockfall, categorizing it into three levels, and producing a warning reaction to handle the critical 

hazard situation. 

This study utilized parameters and overall prediction performance measures based on a 

confusion matrix to compare the performance of the model before and after augmentation. The 

results showed that the models had acceptable performance. The results show that the overall model 

accuracy before augmentation was 86%, which became 98.8%after the augmentation. Additionally, 

as shown in (Table 6), a framework can lower the risk probability from (1.51 ×10-3 ) to (8.57 ×10-9). 

By comparing our new augmented model with our model in a previous study [14] based on 

performance and the ability to reduce the risk of rock fall, we discovered that the new proposed 

model's prediction accuracy was 98.8%. In comparison, the previous study’s accuracy was 97.9%. In 

addition, the new model reduced the risk probability to (8.57 ×10-9), while the previous study reduced 

the risk to (1.13 ×10-8). This result indicates that although the previous model had acceptable 

performance, the augmented model outperformed this model. It can be considered a promising 

technique for predicting and reducing a rock-fall risk. 

In future studies, we suggest enhancing the real-time rock-fall detection process by increasing 

the number of seismic sensors to achieve a higher detection accuracy and enhancing the current DL 

prediction model accuracy by adding more rock-fall conditioning factors. 
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