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Abstract: Numerous applications require indoor localization, and one of the current research areas 

is how to leverage low-cost ubiquitous signals for indoor localization. This research designs a multi-

input convolutional neural network (Multi-CNN) localization approach to combine natural 

geomagnetic signals and universal 5G communication signals. To create the location fingerprint 

data, the geomagnetic three-component data and channel state information (CSI) must first undergo 

independent preprocessing. Subsequently, the rebuilt CSI amplitude and geomagnetic intensity are 

employed for separate offline training to efficiently extract the corresponding data features. Lastly, 

Multi-CNN is used to estimate the user’s location online. The localization outcomes for the 

conference room and hall demonstrate that the Multi-CNN algorithm can achieve average 

localization accuracies of 1.41 m and 2.66 m, respectively. These are higher than the single-input 

CNN algorithms by 21% and 15%, nd higher than backpropagation network (BPNN) algorithm by 

24% and 17%, and higher than the weighted K-nearest neighbor (WKNN) algorithm by 34% and 

28%. The Multi-CNN-based localization approach successfully fuses the diverse data, potentially 

satisfying most indoor localization applications. 

Keywords: fingerprint localization; channel state information (CSI); geomagnetic data; multi-input 

convolutional neural network 

 

1. Introduction 

The most common method used for indoor localization is fingerprint localization. In complex 

interior scenarios, the suggested technique does not require the detection of non-line-of-sight (NLOS) 

signals. For the purpose of location identification, it simply depends on the feature information of 

wireless signals [1]. Online matching and offline database generation are the two primary steps of 

the fingerprint localization approach [2]. One often used measurement of localization in fingerprint 

database is the received signal strength (RSS). It includes all of the effects of reflection, diffraction, 

and refraction combined with signal transmission [3]. In order to improve the uniqueness of signal 

characteristics and reduce the likelihood of false matches in localization, it is frequently crucial to 

evaluate the propagation characteristics of various signals. To find their resemblance, the measured 

information and the feature information kept in the fingerprint database must be compared 

throughout the fingerprint matching process. The Euclidean distance and the Manhattan distance are 

two of the main metrics used to evaluate feature similarity. Commonly used fingerprint matching 

methods include the nearest neighbor, k-nearest neighbor (KNN) and weighted k-nearest neighbor 

(WKNN) algorithms. Because deep learning algorithms are always improving, researchers are using 

more sophisticated methods, such as convolutional neural network (CNN), support vector 

regression, and clustering, for matching [4]. 

Wi-Fi signals are the most popular option for improving the usability of fingerprint localization 

systems because of their low cost, simplicity of setup, and broad compatibility [5]. The extensive 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 September 2024                   doi:10.20944/preprints202306.0882.v2

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202306.0882.v2
http://creativecommons.org/licenses/by/4.0/


 2 

 

adoption of the fifth-generation mobile communication network (5G) has attracted a lot of attention 

because of the technologies’ novel access methods, high frequency, extensive broadband, and ultra-

reliability [6]. In particular, cutting-edge location options are provided by the 5G new radio (NR)[7]. 

The fine-grained signal propagation characteristics of wireless communication links can be reflected 

by 5G channel state information (CSI). Specifically, the multi-subcarrier characteristics of CSI have 

been confirmed to support the development of more widely used indoor localization applications [8]. 

The complex interior environment has a significant impact on the positioning accuracy of a single 

positioning signal source. The geomagnetic field can be interfered with in indoor situations by 

magnetic materials like steel, iron, and alloy compounds found in structures. This disturbance results 

in geomagnetic anomalies, which change the distribution of magnetic fields in various places [9]. As 

a result, these abnormalities provide a new source of signal for fingerprint localization. By combining 

CSI with geomagnetic signals, location fingerprints could become more unique and localization 

errors could be reduced significantly. In order to establish information fusion based on the model of 

the observed value function, two popular multi-sensor fusion localization algorithms, Kalman 

filtering and factor graph algorithms, have been employed extensively in a variety of domains, 

including satellite localization [10,11]. Fuzzy theory is the foundation of deep learning algorithms, 

which use a lot of training to find the best match between input and output. Significant progress has 

been made in deep learning-based information fusion algorithms as a result of the development of 

big data technologies and the wide range of sensor types [12]. The commonly used CNN method 

consists of repeatedly modifying observations to find hidden patterns in the data with the ultimate 

goal of achieving fusion [13]. However, because CSI and geomagnetic signals have different strengths 

in terms of signal values and sensor output frequencies, synchronization processes such multi-sensor 

data alignment, interpolation, or thinning are required. Regretfully, these procedures make the data 

fusion process less useful. 

In this regard, the purpose of this article is to explore a localization system that can efficiently 

combine several sensors to estimate the whereabouts of mobile devices. We only use two types of 

sensors: 5G and geomagnetic, because indoor environments are so complex. We then go on and 

conduct field tests in indoor spaces to confirm that the suggested method. We have developed a 

system that can be adjusted to work with more kind of sensors. With the use of suitable data input 

interfaces, sensors with various output frequencies and numerical scales can be effectively fused 

together. Additionally, this positioning method is not constrained by the network and can provide 

location services to multiple users at the same time and place. It is therefore perfect for emergency 

rescue missions and other critical circumstances. Moreover, this method provides accurate placement 

for objects that can be combined with optical and inertial navigation, which are frequently utilized in 

mobile robots [14], in order to satisfy the need for increased localization accuracy. 

The following are the main contributions: 

1. Fusing the two types of data, the widely utilized 5G signal and the geomagnetic signal, lowers 

the cost of indoor localization without requiring the deployment of additional base stations. 

2. A fingerprint database is created for the CSI and geomagnetic component data separately 

based on the Multi-CNN fusion localization model. Various CNN branches are then employed for 

feature extraction, which maximizes the retention of the data’s inherent features and enhances the 

localization performance. 

3. Field tests were carried out in two distinct environments, a conference room and a hall, and 

the localization and data collection strategies were created to satisfy the needs of indoor robot 

navigation. 

The sections that follow are organized as follows: This paper’s Section II looks at recent 

developments in fingerprint localization as well as the basic methods that are already in use. It also 

gives a thorough rundown of the multi-input CNN’s technical features. The fusion principle of 

merging geomagnetic data with CSI using a multi-input CNN network is presented in Section III of 

the article. In Section IV, empirical research is conducted in two different settings: a conference room 

and a teaching building hall. The results are then thoroughly analyzed. The article is summarized in 

Section V. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 September 2024                   doi:10.20944/preprints202306.0882.v2

https://doi.org/10.20944/preprints202306.0882.v2


 3 

 

2. Related Work 

Two forms of wireless signal data are employed in fingerprint localization: RSS and CSI. The 

superposition value of multiple effects in the wireless signal propagation is known as the RSS, and it 

is a type of coarse-grained information. It fluctuates with time at a fixed site, with a maximum 

variation of 30 dBm [15]. Moreover, it should be mentioned that every single transmitter can only 

provide one RSS number. As a result, many base station (BS) deployments are required to get 

improved accuracy. It can be said that localization systems based on RSS fingerprinting perform 

poorly and show a limited precision location. CSI is a information subset of comprehensive physical 

layer that makes it possible to gather subcarrier-level channel measurement data within a packet. 

This data offers an abundance of measurement information and can be obtained from a single base 

station. Moreover, it is noteworthy that when considering stationary sites, CSI demonstrates stronger 

constancy in received data than RSS. Studies have revealed that the accuracy of indoor location 

estimation using CSI in the same environment is significantly higher than RSS [16]. Using the KNN 

approach, Song et al. [17] used the CSI amplitude as a unique identifier for localization purposes. The 

localization performance attained by the authors was superior to that of RSS approaches. 

Nevertheless, because of its computational complexity, the KNN algorithm faces difficulties with 

categorization. It requires calculating the distances between every point and every other sampled 

location, which adds significantly to the computing load. Moreover, the probability of 

misclassification is increased when there is an unbalanced sample size. In order to deploy 5G 

positioning system, a large number of base station antennas must be integrated with signal 

processing methods that depend on measured CSI. This method offers a wider variety of CSI feature 

information and improves the efficacy of CSI signals [18,19]. 

It is not necessary to use additional hardware or infrastructure because indoor magnetic fields 

are commonly present. These days, geomagnetic data collection on cellphones is possible with 

minimal interference from the environment, continuous temporal stability, and positional 

fluctuations [20]. He et al. [21] combined the idea of deep learning-based image recognition with the 

creation of heat maps from geomagnetic sequences. Using deep learning methods, this technique 

made geomagnetic localization possible. Remarkably, the attained localization accuracy exceeded 1 

m. However, the narrow set of properties of geomagnetic matching limits its usefulness. This 

constraint makes it unable to discern between different situations with enough accuracy, which 

results in mismatching and major errors. Yeh et al. [22] collect geomagnetic intensity using the 

smartphone’s built-in geomagnetic field sensor, offer location services in interior spaces like airports, 

and identify mobile phones using KNN with a 71.3% accuracy rate. 

Due to poor differentiation capabilities, it is observed that certain wireless signal data inside the 

fingerprint library may correspond to many locations in circumstances when the localization range 

is large. As a result, there are notable errors that arise from this lack of differentiation. Scholars have 

investigated the integration of various sensor data to improve the accuracy of position estimation. 

The integration of geomagnetic and WiFi RSS data was accomplished by Zhang [23] using a deep 

neural network (DNN), which resulted in a significant reduction in the degree of similarity observed 

across reference sites. However, due to the low RSS data, more base stations must be deployed in 

order to obtain sufficient fingerprint information. This technique is influenced by the environment in 

which it operates. Furthermore, the two sensors cannot be directly integrated into the DNN due to 

their different type measurements. As such, scaling of the fingerprint data is required before training. 

Using geomagnetic strength and CSI amplitude data as the CNN’s input, Wang et al. [24] were able 

to attain positioning precision with an average positioning error of 1.2 m. However, CSI data has to 

be compressed during the fusion process in order to combine two different, large datasets. Sadly, this 

method was unable to fully capitalize on the wealth of data that CSI measurements were able to 

gather. 
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Table 1. Recent studies on fingerprint positioning. 

Research work Ref. Input Algorithm Performance 

Zhang H et al. (2022)  [25] RSS WAKNN-HIF Mean error: 1.19 m 

Wu S X et al. (2022) [26] RSS CNN, virtual-AP Error < 2 m, 95% 

Liu Y T et al. (2021) [27] RSS 
Auto-encoder, 

LSTM 
Error < 1 m, 68% 

Wang B Y et al. (2020) [28] RSS APD-WKNN Error < 1 m, 70.53% 

Nkabiti K et al. (2021) [29] CSI SAMFI Accuracy rate: 86.5% 

Zhang B et al. (2022) [30] CSI AARes-CNN 
Accuracy improved by 

about 30% 

Huang X L et al. (2023) [31] CSI PSO-BPNN Mean error: 1.19 m 

Huang X D et al. (2017) [32] CSI, GS MDSKNN Mean error: ≈ 1.4 m 

Wang Y et al. (2018)  [24] CSI, GS CNN Mean error: 1.2 m 

Peihao L et al. (2020) [33] CSI, GS M-KNN, DTW Mean error < 0.5 m 

(SAMFI: self-attention mechanism; GS: geomagnetic strength; AARes-CNN: attention-augmented residual 

CNN; MDSKNN: multi-dimensional scaling k-nearest neighbor; M-KNN: multi-module data k-nearest 

neighbor). 

This work offers a recommended method for successfully fusing geomagnetic and CSI data in 

order to fully extract fingerprint data features. The technique, which is intended for positioning 

applications, is based on Multi-CNN. The Multi-CNN model is able to analyze data from multiple 

sensors at the same time, including but not limited to text and images, audio, and video. The use of 

multimodal input enables the model to obtain a more comprehensive and refined feature 

representation, hence augmenting the model’s resilience. Seismic burst recognition and bearing fault 

diagnosis are two domains where Multi-CNN has proven to be superior to single-input CNN. The 

Multi-CNN architecture has the powerful image recognition powers that come with CNN. It can 

create different network branches according to different data sources. This makes it possible to 

separately extract spatial information from any data source. Then, model fusion is executed, which 

improves the model’s ability to efficiently handle the distinct features of complicated datasets. As a 

result, the model’s capacity for generalization is enhanced. Therefore, it can be utilized to accomplish 

the unification of various data sources. 

3. Methodology 

The flow chart of the approach is depicted in Figure 1, illustrating the several stages involved, 

including data collection and preprocessing, neural network training, and online real-time 

localization. Initially, the collection of 5G raw data and geomagnetic intensity data is undertaken. 

Subsequently, the extraction of CSI amplitude information and three-axis geomagnetic intensity data 

is performed in order to generate a composite location fingerprint. In order to streamline subsequent 

CNN processing and organize the data into tensor-type format that is conducive to network 

processing. In order to streamline subsequent CNN processing and organize the data into tensor-

type format that is conducive to network processing. During the training phase of the neural network, 

the input layer consists of tensor data representing the amplitude of CSI and geomagnetic data. The 

output layer corresponds to the coordinates, and these inputs are fed into separate branches of CNN. 

The training outcomes are consistently enhanced by the adjustment of training durations and 

network architecture, while the integration of the two network branches forms a comprehensive 
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Multi-CNN network. During the online real-time localization step, the test data is fed into the trained 

multi-input network in order to determine the coordinates of the point. 

Location tag

CSI amplitude Geomagnetic strength

Concatenate indicates network（feature fusion）

CNN-2CNN-1

CSI fingerprint data
Geomagnetic 

fingerprint data

5G sensor Geomagnetic sensor

Fully Connected  Layer-1 Fully Connected  Layer-2

Position estimation
 

Figure 1. Overall process of positioning system. 

3.1. Data Collection and Preprocessing 

The fundamental concept underlying fingerprint localization is to delineate distinct 

geographical positions by using the diverse data gathered at each specific site. The distinctiveness of 

the position is determined by the distinctiveness of the data characteristic, hence the creation of the 

fingerprint data significantly impacts the total localization outcome. In the context of applications, 

the accuracy of fingerprint localization may be improved by extending the data sampling period and 

upgrading the sensor type, hence enhancing the fingerprint data characteristics. Nevertheless, the 

practical utility of fingerprint localization is diminished as the data sampling period is extended. 

Hence, it is important to thoroughly evaluate both the timeliness and accuracy aspects of localization. 

This section describes the sampling and preprocessing of CSI and geomagnetic data. 

3.1.1. CSI Data Processing 

CSI is a channel attribute of a communication link, and CSI data can be obtained by 

demodulating the baseband signal through OFDM. In this paper, a set of CSI data is 60 discrete 

samples of the channel frequency response (CFR) of a 5G NR signal. The first sampled CSI data can 

be expressed as 

𝛨(𝑓𝑘) = ‖𝛨(𝑓𝑘)‖
𝑒𝑗∠𝐻(𝑓𝑘)

  (1) 

where 𝛨(𝑓𝑘) denotes the CSI at center frequency (𝑓𝑘), ‖𝛨(𝑓𝑘)‖ and ∠𝐻(𝑓𝑘) are the amplitude and 

phase of the first subcarrier, 𝑘 ∈ (1,60). 

The collected data after processing can be represented by the matrix 𝐻  (Equation 2). Each 

element of the matrix is represented in 𝑎 + 𝑏 × 𝑖 complex form, so the amplitude information of each 

carrier 𝑆 = √𝑎2 + 𝑏2 . When constructing the data fingerprint library, the initial CSI is a discrete 

numerical matrix that cannot be directly inputted into the CNN, so it needs to be preprocessed and 

added with location labels to construct a complete location fingerprint data 
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𝐻 = [

𝐻11, ⋯ , 𝐻1𝑁
⋮ ⬚ ⋮

𝐻𝑀1, ⋯ , 𝐻𝑀𝑁

]   (2) 

The CSI encompasses the signal propagation attributes between the transmitting and receiving 

entities, encompassing factors such as signal scattering, environmental attenuation, distance 

attenuation, and related details. The amplitude of CSI is subject to variation and inconsistency due to 

the intricate and diverse nature of the propagation environment. This variability arises from the 

multiple pathways by which the signal propagates. However, it is observed that the CSI amplitude 

remains reasonably consistent over time at a certain site. Figure 2 illustrates the CSI amplitude 

pictures captured at two distinct places. The amplitude of the 60 subcarriers at the same location 

exhibits a relatively consistent stability over time. Furthermore, the variation pattern of CSI 

amplitude differs across different locations. This characteristic can be leveraged to effectively capture 

changes in location by monitoring CSI variations, thereby establishing a mapping relationship 

between CSI and location. 

  

(a) (b) 

Figure 2. 3-D images of CSI data collected at different locations(a) Location A. (b) Location B. 

3.1.2. Geomagnetic Data Processing 

The spatial distribution features of the Earth’s magnetic field may be inferred from geomagnetic 

intensity. It is crucial to acknowledge that geomagnetic data in interior settings can be influenced by 

the presence of steel-framed building structures, such as reinforced concrete, leading to the 

occurrence of geomagnetic anomalies. However, this abnormality imparts a distinctive texture to the 

adjacent structures, hence enabling its utilization for indoor fingerprint location. Furthermore, unlike 

the propagation paths of wireless signals, which can be influenced by the spatial arrangement of 

indoor objects, the geomagnetic data remains unaffected by the intricate nature of indoor 

environments. Moreover, once the position of an object capable of generating magnetic fields is 

relatively established, the localization remains relatively stable. Figure 3 depicts the three-

dimensional spatial arrangement of the geomagnetic field within a conference room. The unit of 

measurement employed in this context is μT, while the range of colors employed, transitioning from 

dark blue to dark red, serves to visually represent the progressive rise in magnetic field intensity. It 

is evident that there exists variation in geomagnetic intensity across different geographical regions. 

The steel reinforcement in close proximity to the load-bearing columns exhibits a high density, 

resulting in elevated magnetic interference intensity. Consequently, the magnetic field value inside 

the red area is notably greater compared to other regions. In regions located at a significant distance 

from the load-bearing columns, there is a discernible inclination for the magnetic field strength to 

diminish. This observation demonstrates that there exist variations in geomagnetic strength across 

different geographical regions, hence enabling the utilization of these intensity variances to represent 

distinctions in location. 
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Figure 3. Geomagnetic intensity distribution. 

The magnetometer employed in this study gathered geomagnetic data, namely the intensity 

values of the X, Y, and Z axis geomagnetic components, as well as the geomagnetic mode values. The 

coordinate system utilized is defined by the instrument itself. When the data-gathering device is 

oriented in a specific manner, its X-axis is positioned horizontally to the right, the Y-axis is oriented 

vertically upward, and the Z-axis, along with the X and Y axes, forms a right-handed, orthogonal 

coordinate system. Insufficient differentiation ability leads to the correspondence of geomagnetic 

intensity with various sites, as a consequence of the expanded gathering range. The geomagnetic 

triaxial and comprehensive intensity of several places exhibit consistent trends, as seen in Figure 4. 

The uniformity of comprehensive geomagnetic strength across various locations hinders the effective 

differentiation of magnetic field intensity variations caused by changes in position. Conversely, the 

distinctiveness of geomagnetic triaxial strength changes in different locations enables an effective 

description of positional changes. Therefore, this study opts for employing geomagnetic triaxial 

strength for the construction of geomagnetic fingerprints. 

 

Figure 4. Magnetic field strength at different locations. 

Since CNN have been shown to have excellent capabilities in image feature extraction, the 

triaxial component data of the geomagnetism was reconfigured before constructing the fingerprint 

library, and the initial geomagnetism data was formatted as 3 × 100 (Equation (3)). 

 𝑁 = [

𝑋1 ⋯ 𝑋100
𝑌1 ⋯ 𝑌100
𝑍1 ⋯ 𝑍100

]      (3) 

The initial data structure is reconstructed by the ‘reshape’ function. Firstly, the data on each axis 

component is taken out and filled into a matrix in order. Subsequently, the three axis components are 
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combined using the ‘Vstack’ function to create the desired data format. Lastly, position labels are 

incorporated into the dataset, resulting in the formation of a comprehensive fingerprint database. 

3.2. Multi-CNN 

The effectiveness of placement is directly influenced by the performance of the matching 

algorithm. Given the inherent limitations of the low-cost geomagnetic sensor in terms of accuracy, it 

becomes imperative to undertake algorithm modification in order to enhance the precision of 

location. This section provides an overview of the network design and the various parameter settings 

connected to the network. 

3.2.1. Network Architecture Setup 

Figure 5 shows the schematic diagram of the Multi-CNN framework. The model is constructed 

based on ‘Keras API’, where the two input branches are the CSI magnitude and the reconfigured 

geomagnetic triaxial component data. We set the two networks up to four and three convolutional 

layers, respectively, depending on the size of the data. 

First, in order to fully extract the features of the input data, the two branches are designed as 

different network structures according to different data types. In order to speed up the convergence 

of the network, batch normalization (BN) is performed after each convolutional layer of the above 

two branches. 

Then, due to the relatively small dimensions of the two datasets, the ‘padding’ parameter of the 

convolutional layer is set to ‘same’ in order to ensure that the input and output dimensions of the 

convolutional layer are the same. To further reduce the number of neurons, a 2 × 2 ‘max-pooling’ 

layer is added before the full unfolding layer to obtain N sets of matrices of the format (𝑚, 𝑛). The 

convolutional layer is then expanded by the ‘Flat’ parameter. It is then fully expanded and spliced 

into a one-dimensional array of 𝑁 ×𝑚 × 𝑛 by the ‘Flat’ function. 

Finally, the ‘concatenate’ function is used to concatenate the two sets of data. After the number 

of elements is large, add ‘Dropout’ to randomly discard some neurons to prevent overfitting of the 

network. After adding multiple dense layers, the number of elements in the array can be significantly 

reduced after passing through multiple dense layers. After the fully connected layer, the mapping 

relationship between the output array and the corresponding position coordinates is established by 

the ‘Linear’ linear activation function, and the number of output neurons in the last dense layer is set 

to 2, representing x and y of the output position respectively. 

CSI data
Conv-2D Conv-2D Conv-2D

10×60×1

10×60×16 10×60×32
10×60×64 5×30×64

Geomagnetic 

data

10×10×3
10×10×16 10×10×32

5×5×32

Max-

pooling

Max-

pooling

Conv-2D Conv-2D

Concatenate
Dropout 

Dense Dense Output

Flat1

Flat2

Position

 

Figure 5. Schematic diagram of multi-input convolutional neural network framework (blue is 5G 

fingerprint feature input network; gray is geomagnetic fingerprint feature input network; black is 

fused data after concatenation; Conv-2D indicates that the convolution type adopted is 2-dimensional 

convolution). 

3.2.2. Network Parameter Setting 

The Multi-CNN architecture comprises of several CNN branches that operate independently of 

each other. Each branch is designed with distinct network structures that are tailored to the specific 

characteristics of the input data. The CNN architecture typically has three main components: the 
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convolutional layer, the pooling layer, and the fully connected layer. To address various challenges, 

it is often important to create distinct configurations of the three layers and adjust the respective 

parameters to develop CNN models that are tailored to diverse applications. 

(1) Convolutional layer 

The main function of the convolutional layer is to extract features from the input data through 

the utilization of convolutional kernels. Each convolution kernel is assigned to a specific channel and 

is responsible for extracting features from that channel independently. This method enhances the 

efficiency of the network’s forward computation. The process of convolution involves the continuous 

sliding of a kernel across an input matrix. During this process, the elements of the kernel are 

multiplied by the corresponding elements of the local matrix at each sliding location, and the 

resulting products are then summed. 

 𝑥𝑗
𝑛 = 𝑓 (∑ 𝑥𝑖

𝑛−1 ∗ 𝑘𝑖𝑗
𝑛 + 𝑏𝑖

𝑛
𝑖∈𝑀𝑗

)      (4) 

where 𝑥𝑗
𝑛 is the 𝑗 feature map of layer 𝑛; 𝑓 is the activation function; 𝑀 is the set of input feature 

maps; ∗  denotes the convolution operation; 𝑘  is the convolution kernel; 𝑏  is the bias. At the 

beginning of the operation, a convolution kernel is randomly generated and adjusted according to 

the loss in the backpropagation process. After several tests, the convolution kernel size is set to 3. 

(2) Activation function 

Activation functions are a crucial component of neural networks as they facilitate the 

establishment of a functional link between the output of a higher-level node and the input of a lower-

level node. The selection of the activation function has significant importance in neural networks. 

The Rectified Linear Unit (ReLU) is a type of piecewise linear function that falls under the category 

of unilateral suppression functions (Equation 5). It is known for its ability to enhance the training 

speed of neural networks by promoting sparse activation. Additionally, the derivative of the positive 

part of ReLU is constant and equal to 1, which effectively mitigates the issues of gradient vanishing 

and exploding during backpropagation. Hence, the authors of this article have chosen the ReLU 

function as the activation function for the convolution layer. 

 𝑦 = {
𝑥, (𝑥 > 0)

0, (𝑥 ≤ 0)
      (5) 

The final layer is the output layer, which is used for regression prediction. The output layer 

activation function is a ‘Linear’ function. Specifically, assuming that the final data after processing 

through the fully connected layer is 𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛], the expression for the predicted value is 

 𝑦̂ = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏      (6) 

where, 𝑤𝑖  is the weight parameter corresponding to the 𝑖  feature; 𝑏  is the bias term; 𝑦̂  is the 

predicted value used to distinguish the true value 𝑦. 

(3) Optimizer 

To improve the network’s loss function and update its hidden parameters using gradient 

information, it is necessary to establish an optimizer for the network. This study employs the adaptive 

moment estimation (Adam) technique for parameter optimization, which integrates the strengths of 

the ‘AdaGrade’ algorithm with the ‘RMSProp’ optimization algorithm. The thorough consideration 

of both the first and second moment estimation of the gradient is undertaken, followed by the 

calculation of the update step. Additionally, the preservation of previous gradient information is 

implemented to prevent convergence to the global optimum. The given expression represents a 

mathematical function. 

𝑚𝑡 = 𝛿1𝑚𝑡−1 + (1 − 𝛿1)𝑔𝑡 

𝑣𝑡 = 𝛿2𝑣𝑡−2 + (1 − 𝛿2)𝑔𝑡
2    (7) 

where, 𝑚𝑡  and 𝑣𝑡  are the estimated values of the first and second moments of the gradient, 

respectively, 𝛿1 and 𝛿2 are the exponential decay rates of the current estimate, respectively, 𝑔𝑡 is 

the gradient calculated in this iteration. 
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Before the iteration, the estimates of the first and second moments can deviate significantly, so 

a correction is needed. The corrected function is shown as: 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛿1
𝑡 

𝑣̂𝑡 =
𝑣

1−𝛿2
𝑡    (8) 

where, 𝑚̂𝑡  and 𝑣̂𝑡  are the corrected estimates of the first-order and second-order moments, 

respectively, 𝑡is the current number of iterations. 

After correction, the gradient can be updated to: 

 𝑤𝑡 = 𝑤𝑡−1 −
𝛼⋅𝑚̂𝑡

√𝑣̂𝑡+𝜀
     (9) 

where, 𝑤 is the gradient, 𝛼 is the learning rate, 𝜀 is a small constant that avoids going to zero in the 

denominator. 

(4) Loss function 

In order to measure the gap between the output value of the network model and the real value, 

and to adjust the corresponding parameters according to this gap, a loss function is required. The 

mean square error (MSE) loss function is the most commonly used loss function in regression 

calculation. The loss function index is MSE shown as: 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝐿̂(𝑥̂, 𝑦̂) − 𝐿(𝑥, 𝑦))

2
𝑛
𝑖=1      (10) 

where, 𝐿̂ and 𝐿 are the predicted and true values of the coordinates, respectively. 

(5) Batch_size and epoch 

The appropriate setting for the batch size should be determined based on the magnitude of the 

data volume. If the batch size is insufficiently large, the convergence of the network will not be 

achieved. When the batch_size is increased over a certain threshold, the duration of each iteration is 

extended. The process of a whole data set passing through the neural network once and being 

returned once is referred to as an epoch. If the epoch size is insufficient, the frequency of weight 

updates in the neural network will decrease, resulting in an underfitted fitted curve that is not 

suitable for accurate regression prediction. When the epoch is excessively big, the time required for 

weight updates in the neural network will grow. Consequently, the fitting curve will exhibit over-

fitting, which entails a satisfactory fit for the training dataset but a suboptimal fit for the test dataset. 

Hence, it is imperative to select an optimal batch size and epoch in order to minimize the loss 

function. Following a series of experimental evaluations, it has been determined that the optimal 

values for the epoch and batch_size parameters are 60 and 6, respectively. 

4. Experiments Validation 

In order to assess the accuracy of the suggested method’s positioning performance, a more 

effective technique for constructing finger-print data is initially chosen, employing a 5G sensor. 

Subsequently, the geo-magnetic sensor data is integrated to enhance the overall accuracy. Field 

testing often carried out within controlled indoor environments. 

Table 1 displays the apparatus utilized in the conducted experiment. The device employed for 

the purpose of collecting geomagnetic data is the Wit-motion device. The sampling frequency of this 

device has been configured to operate at 100 Hz, while maintaining a magnetic field precision of 1 

μT and 5G. The existing geomagnetic gathering applications on smartphones have demonstrated the 

capability to attain the same level of accuracy as dedicated devices as Physics Tools, in terms of 

sample frequency and data precision. 

The two laboratory experiment scenarios are shown in Figure 5a,b respectively, in which the 

circular point is the sampling point and the triangular point is the undetermined point. 
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(a) Conference room 

 

(b) Interior hall 

Figure 6. The floor plans of the two experiments with measurement routes. 

4.1. Experiment on Positioning Efficiency of 5G Single Base Station 

The distinctiveness of location fingerprints and the efficacy of real-time localization are 

significant metrics for evaluating fingerprint localization methods. This paper presents a study that 

aims to build an experiment to determine the optimal frequency of data collecting for constructing 

valid fingerprint data. In the conference room scenario, data is gathered at each point in time, 

particularly at 1 s, 2 s, 3 s, 4 s, and 5 s. The test sites are strategically positioned outside the fingerprint 

collecting spots, ensuring an equitable distribution across the conference room. Given the fact that 

individuals on foot would traverse a specific location within a brief timeframe during the process of 

dynamic localization, the sampling rate for localization has been established at 10 Hz. Figure 7 

displays the cumulative distribution function (CDF) of localization errors for various collecting times, 

while Table 2 presents the statistical outcomes of different approaches. It is evident that as the 

duration of fingerprint data sampling rises, there is a steady enhancement in the overall accuracy of 

localization. However, this increase in sampling time also significantly amplifies the effort associated 

with updating the fingerprint database in subsequent stages. After conducting a full evaluation of 

both accuracy and workload, the decision has been made to set the collecting time at 3 s. 

Table 2. Experimental equipment parameters. 

Name Type  

Magnetometer 
Wit-motion HWT901B-

232 

Output frequency: 100 Hz 

Accuracy: 1 μT 

5G Receiver LWB210XT 

Output frequency: 50 Hz 

Sub-carriers: 60 

Receiver antenna: 1 

Transmitter antenna: 2 
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Figure 7. Cumulative distribution of errors in indoor offices (The vertical is the cumulative 

distribution of errors, and the horizontal is the error). 

4.2. Positioning Test in Conference Room 

In order to verify the superiority of the proposed multi-input fusion localization algorithm, the 

proposed algorithm is compared with WKNN, CNN and other matching algorithms. Figure 8 shows 

the CDF of different methods, and Figure 9 shows the positioning error at each point. Table 3 

compares the positioning errors of the three positioning methods. 

Table 3. Statistical errors of different combinations. 

Sampling time (s) Mean error (m) Maximum error (m) Minimum error (m) 

1 2.31 6.25 0.16 

2 2.20 5.81 0.04 

3 1.83 4.62 0.17 

4 1.71 4.31 0.02 

5 1.63 3.48 0.08 

The figure illustrates that the fusion of 5G and geomagnetic data through the application of 

APD-WKNN and single-input AARes-CNN algorithms leads to a reduction in the maximum 

positioning error. However, the overall improvement is not deemed significant. This can be 

attributed to the fusion of the two types of data prior to utilizing the same convolutional network for 

data feature extraction. Consequently, the network fails to effectively extract features from the two 

distinct data types, which possess varying dimensions and properties. In contrast, the Multi-CNN 

method exhibits a positioning error mostly confined to a range of 2 m, which is generally considered 

more desirable. Furthermore, the approach achieves a notable reduction in maximum positioning 

error, leading to a substantial improvement in total localization accuracy. The reason for fusing the 

Multi-CNN algorithm at the final localization level is to fully consider the characteristics of the data 

during the previous convolutional operation. This is achieved by extracting features from different 

network branches that capture the distinct dimensions and properties of the data. The fusion process 

at the final positioning level enhances the model’s ability to acquire a more comprehensive and 

diverse set of feature information. Furthermore, the Multi-CNN method demonstrates enhanced 

capability in managing the connection between CSI and geomagnetism. This is achieved by 

effectively leveraging the complimentary information provided by the two sensors, resulting in 

improved resilience and generalization capacity of the model. Hence, the Multi-CNN approach 

exhibits superior performance in terms of overall stability. 
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Figure 8. CDF of different methods (red for APD-WKNN, orange for PSO-BPNN, yellow for single-

input AARes-CNN, blue for Multi-CNN). 

 

Figure 9. Heat map of point errors of different positioning methods. 

Table 3 presents the statistical data regarding the localization outcomes achieved by various 

localization methods. The APD-WKNN algorithm exhibits an average localization error of 2.13 m, 

the BPNN algorithm exhibits an average localization error of 1.93 m while the single-input AARes-

CNN localization method demonstrates an average error of 1.78 m. On the other hand, the Multi-

CNN localization approach yields an average error of 1.41 m, resulting in an enhancement of 

approximately 33.8% and 26.9% in overall localization accuracy compared to the APD-WKNN and 

PSO-BPNN method. Furthermore, the single-input AARes-CNN method enhances the overall 

localization accuracy by approximately 20.8%. The multi-input fusion approach that we present 

demonstrates superior effectiveness in terms of both stability and localization accuracy. We think the 

reason is that for APD-WKNN, PSO-BPNN, and single-input AARes-CNN algorithms, the data from 

different sensors need to be spliced before extracting the data features in order to build a unified 

location fingerprint library, but based on the different values obtained by two sensors and the large 

difference in the magnitude of the different values and the different influence of the different values, 

the single-input algorithms can not deal with this kind of directly spliced data effectively. However, 

Multi-CNN assigns distinct access points for each data sets and does not need data splicing, hence 

disregarding the impact of varied values. Multi-CNN constructs distinct libraries for the two sensors, 

ensuring that the fingerprint libraries remain unaffected by each other. This effectively mitigates the 

impact of sensor instability on the fingerprint library’s quality. Furthermore, the convolutional layer 

and pooling layer of CNN has a remarkable capacity to extract data features. They excel at capturing 
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local characteristics, efficiently processing network structure data, and extracting spatial features 

from the data. 

4.3. Positioning Test in Interior Hall 

To enhance the validation of the fusion positioning algorithm’s positioning capability, an 

experiment was conducted within an indoor hall. Figure 6b depicts the experimental setting. The 

depicted picture encompasses a hallway with an approximate area of 275 m2, surpassing that of the 

conference room. It features shorter passageways, load-bearing columns, and a continuous flow of 

people, rendering it more conducive to practical utilization. Figure 10 depicts the CDF of several 

approaches, whereas Figure 11 illustrates the positioning inaccuracy observed at each individual 

point. 

The data presented in Figure 10 demonstrates that the expansion of the experimental range, in 

comparison to the conference room setting, leads to an increase in the number of sample points 

gathered for the construction of the fingerprint library. Consequently, this increase in sample points 

results in a higher level of similarity. As a result, when comparing the localization results of the test 

points to those of the conference room, an overall decrease is observed. Furthermore, it is evident 

from Figure 11 that the localization error in the corridor exhibits a notable increase. This may be 

attributed to the constrained nature of the corridor, where the limited area and substantial signal 

obstructions diminish the discernibility of signal features. Nevertheless, the approach presented in 

this study exhibits superior performance in terms of localization stability, resulting in a 

predominantly confined inaccuracy within a 3 m range. The reason for the effectiveness of Multi-

CNN lies in its capacity to use the information from each input data source more efficiently. This is 

achieved by doing feature extraction on distinct inputs individually and subsequently merging these 

features in successive layers. As a result, the overall stability of the model is enhanced. Furthermore, 

the Multi-CNN network architecture is designed to be more adaptable, allowing for improved 

management of the interdependencies among various inputs. 

 

Figure 10. CDF of different methods (red for APD-WKNN, orange for PSO-BPNN, yellow for single-

input AARes-CNN, blue for Multi-CNN). 
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Figure 11. Heat map of point errors of different positioning methods. 

Statistics on positioning results of different positioning methods are shown in Table 4. The 

average positioning error of APD-WKNN method is 3.70 m, the average positioning error of BPNN 

method is 3.21 m, that of single-input CNN method is 3.13m, and that of Multi-CNN method is 2.66 

m. Compared with APD-WKNN, PSO-BPNN and single-input AARes-CNN, the overall positioning 

accuracy is improved by 28.1% 17.1% and 15% respectively. It can be seen that in a large range of 

scenes, the positioning performance of the fusion method proposed by us is more superior in terms 

of stability and positioning accuracy, and can improve the accuracy of indoor positioning. 

Table 4. Positioning errors of different positioning methods (m). 

Algorithm Mean error Maximum error Minimum error 

APD-WKNN Error! 

Reference source not 

found. 

2.13 5.74 0.41 

PSO-BPNN Error! 

Reference source not 

found. 

1.93 5.90 0.32 

AARes-CNN Error! 

Reference source not 

found. 

1.78 5.65 0.14 

Multi-CNN 1.41 4.81 0.11 

Table 4 presents the statistical data pertaining to the outcomes of various placement strategies. 

The APD-WKNN technique exhibits an average positioning error of 3.70 m, while the single-input 
AARes-CNN method demonstrates an average positioning error of 3.13 m. In contrast, the Multi-

CNN method displays a lower average positioning error of 2.66 m. When comparing the performance 

of APD-WKNN and ingle-input AARes-CNN, it is seen that the overall accuracy of placement is 

enhanced by 28.1% and 15% correspondingly. The fusion approach presented by our research team 

demonstrates greater stability and positioning accuracy over a wide range of scenarios, hence 

enhancing the precision of indoor positioning. The reason is that in order to create a unified location 

fingerprint library, the data from different sensors needs to be combined before extracting the data 

features for APD-WKNN, PSO-BPNN, and single-input AARes-CNN algorithms. However, due to 

the varying values obtained by two sensors, the significant difference in magnitude, and the diverse 
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impact of these values, the single-input algorithms are unable to effectively handle this directly 

combined data. However, Multi-CNN assigns distinct access points for each data sets and does not 

need data splicing, hence disregarding the impact of varied values. Multi-CNN constructs distinct 

libraries for the two sensors, ensuring that the fingerprint libraries remain unaffected by each other. 

This effectively mitigates the impact of sensor instability on the fingerprint library’s quality. 

Furthermore, the convolutional layer and pooling layer of CNN has a remarkable capacity to extract 

data features. They excel at capturing local characteristics, efficiently processing network structure 

data, and extracting spatial features from the data. 

Table 4. Positioning errors of different positioning methods (m). 

Algorithm Mean error Maximum error Minimum error 

APD-WKNN Error! 

Reference source not 

found. 

3.70 10.05 1.00 

PSO-BPNN Error! 

Reference source not 

found. 

3.21 10.09 0.37 

AARes-CNN Error! 

Reference source not 

found. 

3.13 9.69 0.70 

Multi-CNN 2.66 9.59 0.36 

5. Conclusions 

In order to increase indoor localization accuracy and decrease fingerprint localization mismatch, 

this research suggests a fusion localization approach based on the Multi-CNN model for CSI and 

geomagnetic data. Based on these two types of data, we build fingerprint feature libraries, 

respectively. Due to variable data format and sampling frequency, the present technique, known as 

the classic WKNN, BPNN and CNN algorithm, finds it difficult to fully utilize the advantages of each 

sensor’s data. 

The main conclusions are as follows. 

1. Research balancing positioning efficiency and accuracy show that while appropriately 

extending the data sampling period will improve positioning accuracy, an abundance of data will 

undoubtedly lengthen the time required for data processing and reduce positioning efficiency. A 3 s 

collecting data can more efficiently meet the 10 Hz positioning requirements. 

2. The placement accuracy of the Multi-CNN approach is around 31% better than that of the 

conventional WKNN algorithm. This effectively overcomes the inadequacy of a single similarity 

index (Euclidean distance or Manhattan distance) and reduces the positioning mismatching rate. 

3. When comparing the Multi-CNN technique to the BPNN and CNN algorithm, the location 

accuracy is improved by around 22% and 18%. Furthermore, it avoids carrying out extra compression 

or transformation processing before fusion, retaining most of the properties of the sensor data. 

The effectiveness of using the Multi-CNN algorithm as a positioning method to integrate CSI 

and geomagnetic intensity is examined in this study. The results indicate that, in future research, 

increasing the number of positioning sensors included into the system may help to some extent with 

positioning accuracy. Geomagnetic signals and readily available cell communication data are also 

utilized in this investigation. The study’s geomagnetic sensor is inexpensive and offers accuracy on 

par with built-in sensors from smartphones. It also holds a lot of promise for enhancing indoor 

location techniques. Nevertheless, manual debugging is still necessary for network training in order 

to perform tasks like choosing training batches and changing various parameters. To create a data-

driven system, the next stage will be to integrate optimization mechanisms across the entire network. 
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The method now in use, single-point acquisition, is time-consuming. Additionally, the original 

fingerprint library needs to be updated in case the localization scenario changes. Therefore, in order 

to accomplish dynamic updating of the fingerprint library in the future, we wish to use the 

crowdsourcing data approach. Moreover, the existing approach is unable to effectively utilize the 

fingerprint data’s temporal information. Consequently, in order to more effectively extract the data 

features from diverse sensors, we will integrate LSTM and other approaches. Next, we will assess 

how well this method works in dynamic scenarios using unmanned vehicles. 
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