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Abstract: The proliferation of the Internet of Things (IoT) has revolutionized traditional services, 

giving rise to emerging smart infrastructures by connecting the physical and digital worlds. Sensory 

data is essential in IoT-based systems for providing context-aware and location-based services. 

Hence, the accurate localization of IoT devices is paramount.  Anchor misplacement can signifi-

cantly affect location information and coverage services in IoT. We study the effect of anchor mis-

placement in typical IoT settings where sensors are randomly deployed, can be mobile and may 

belong to multiple providers. We identify sensing coverage holes formed by anchor misplacement 

and analyze their presence and impact. To mitigate the impact of anchor misplacement on network 

reliability, we propose a framework to identify the affected sensor nodes and then identify and re-

move misplaced anchor nodes. The validity of our approach is verified, and its effectiveness is 

demonstrated by several experiments with different network topologies and parameters. Our re-

sults are promising and can be utilized in multiple coverage applications, such as smart agriculture 

systems and habitat monitoring, regardless of the sensors or deployment types. It also sheds light  

on best practices and methods for a reliable design of IoT-based systems. 

Keywords: Wireless Sensor Network; Internet of Things (IoT); IoT Deployment; Localization; Sens-

ing Coverage; Reliable Services; Intra-triangle Coverage; Delaunay Triangulation 

 

1. Introduction 

The Internet of Things (IoT) applications span many domains, from smart cities to intelligent 

transportation, homes, and healthcare. The realization of the IoT requires delivering reliable services. 

Sensors' physical location and sensing coverage are two primary services of IoT applications. 

A. Localization in IoT Networks 

The IoT constructs a large-scale network that is comprised of different sensing-enabled nodes. 

Wireless sensor networks (WSNs) are considered one of the leading IoT enablers. A WSN may consist 

of thousands of low-cost and low-power sensor nodes. There are many applications for WSNs such 

as military surveillance, wildlife tracking, and environment monitoring. Determining sensors' phys-

ical location is vital for reliable IoT-based services. Localization of sensors is the basis of data collec-

tion and route planning to deliver data to the target station. For example, autonomous vehicles would 

have server safety issues without an accurate location as crashes increase, and inaccurate reports from 

sensors embedded in wildfire monitoring systems would deem the service poor. Finding the location 

of a sensor can be classified as anchor-based or anchor-free localizations. Anchors are nodes with 

more capabilities than sensors, as they know their actual location. That is why anchor nodes can be 

used as references to locate the unknown locations of sensors.  
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On the other hand, anchor-free localization uses other tools such as relative positioning, map-

ping, and embedded GPS client. In this paper, we localize IoT sensors using the anchor-based 

method. In this context, we aim to use time of arrival (ToA) or time difference of arrival (TDoA) with 

the path loss model of signals measured at the receiving sensor.  

B. Sensing Coverage in IoT Networks 

A point in a sensing field is covered if it is within sensing proximity of one of the sensor nodes. 

That is if the Euclidian distance between this point and any sensor node is less than the sensing range. 

As a result, the sensing field could have full coverage or partial coverage. However, the partial cov-

erage can be mitigated using cooperative sensor networks— deployed sensor nodes could belong to 

several owners. For example, consider heterogeneous temperature sensors deployed in a region and 

belong to three different sensing providers, sensing areas A, B, and C, as shown in Fig. 1. These col-

lective sensors can be viewed as shared resources. Their cooperation can provide a better quality of 

service (QoS). The use of such shared resources can be further enhanced with participatory sensors 

such as smartphones.    

Sensing Area C

Sensing Area B

Sink of A

Sink of B

Sink of C

 

Figure 1. Multi-hop cooperative sensing networks. 

C. Deployment Methods in IoT Networks 

The deployment strategies of sensor and anchor nodes vary according to the application, the 

target area size, the availability of information about the density and sensor locations, and whether 

or not the target region is accessible. In general, there are two deployment strategies: deterministic 

and random. 

1). Deterministic Deployment 

This deployment type depends on predefined parameters such as the shape of the network, the 

sensor's location, the distance between sensors, and the density. The deterministic deployment of 

sensors allows more control over their constrained resources. Most schemes dealing with determin-

istic deployment choose energy consumption as the most important metric to optimize [2]–[4]. An 

example of this deployment type is grid-based deployment: hexagon, square, and equilateral triangle. 

Equilateral triangle grid-based deployment guarantees complete coverage and requires a minimum 

number of sensing nodes [5]. The Art Gallery problem is a traditional problem of this type of deploy-

ment [6]. In this problem, one seeks to place a minimum number of sensor cameras such that every 

point in the gallery is monitored by at least one sensor camera. 

2). Random Deployment 

Unlike deterministic deployment, random deployment has no available information about the 

network's shape or the sensors' location. This deployment type is ideal for a large-scale network such 

as harsh and inaccessible areas like forests, mountains, and dangerous areas, viz., leaking chemical 

plants and nuclear plants. However, random deployment does not guarantee full sensing coverage 

[7]. Keeping all sensors active depletes their energy faster, consequently disconnecting the network. 
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Thus, sensing reports may not be collected from some areas in the network. Therefore, a sleep mode 

is vital in this network to prolong its lifespan [8], [9]. 

D. 1-hop vs. Multihop Communications 

In wireless communications, a longer transmission distance requires higher transmission power. 

As a result, sensors with a low power supply use a short transmission range to save energy. Conse-

quently, the aggregated sensing data is sent from a source node to a destination via multi-hops of 

intermediate nodes or relays. On the other hand, sensor nodes with a continuous power supply can 

communicate with a sink node via 1-hop communication (i.e., peer-to-peer communication).  

E. The Relationship Between Localization and Sensing Coverage 

Determining the existence of coverage holes and delineating them is a primary challenge in the 

IoT setting.  Coverage holes occur when there is partial coverage in the sensing field. IoT applica-

tions vary in their sensing coverage requirements. For example, some applications require single-

sensing coverage, meaning at least one sensor should monitor any point in the target region. In con-

trast, other applications require high coverage and, hence, require “k” sensors to monitor each point 

in the region [10].  

On the other hand, there are several ways to estimate a sensor's location. Unfortunately, GPS is 

not usually one of them due to power limitations and to keep the costs of sensors low. Alternatives 

are anchor-based and anchor-free approaches. The former approach is widely used due to its accu-

racy. While the latter approach provides coarse-grain localization accuracy. In this paper, we adopt 

the anchor-based method.  

The quality of sensing coverage is directly related to the validity of sensing reports aggregated 

at the sink node. However, these reports are affected by multiple error components, such as meas-

urement error and anchor misplacement. Error components impact the estimation of the sensors' lo-

cation. Hence, sensor nodes stamp inaccurate locations to their aggregated reports, reducing the qual-

ity of sensing service.  

F. The Impact of Anchor Misplacement 

Anchor misplacement refers to the problem where the anchor node is in a specific position but 

thinks it is in a different position [11]. For example, an anchor node B falsely perceives that it is in a 

particular position while it is in a different one. Many factors cause this problem, such as cyberattacks, 

soil erosion, a possible anchor displacement due to animal/human activities, or it could be mere hu-

man error. Localizing sensor nodes using misplaced/inaccurate anchor nodes leads to localization 

errors of sensor nodes [11], [12]. Similarly, coverage quality would be affected as erroneously esti-

mated sensor locations contribute to invalid sensing reports. Thus, the existence of anchor misplace-

ment makes the sensing coverage worse. For example, anchor misplacement could cause a smart 

agriculture system to falsely irrigate the perceived dry regions or spray pesticides on healthy plants. 

Figure 2 shows the impact of a misplaced anchor on localizing sensor nodes in a 200 × 200 target 

field that contains 80 sensor nodes and 20 anchor nodes. The actual location of this anchor is 

(13.1,115), and its perceived/declared location is (6.1,108). The figure shows the affected sensors and 

their inaccurate locations. 
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Figure 2. The impact of anchor misplacement on localizing sensor nodes. 

G. Motivation 

Cooperative sensing provides advantages to WSNs such as increasing sensing reliability and 

improving sensing coverage [12]. However, existing research on sensing coverage usually assumes a 

correct anchor node position. That is, literature research overlooked the anchor misplacement prob-

lem that impacts both localization and sensing coverage. Figure 3 shows the importance of mitigating 

the impact of the anchor misplacement problem on localization accuracy and, consequently, on the 

sensing coverage: the more misplaced anchor nodes, the more degradation in the reliability of IoT 

system services.  

 

Figure 3. Anchor misplacement influence on network reliability. 

Furthermore, related research assumes sensors are homogeneous and belong to only one sensing 

service provider. Relevant research addresses deterministic sensor placement and deployment plan-

ning to achieve higher coverage and extend the network lifetime [13], [14]. Whereas in this work, 

sensors can be heterogeneous, randomly deployed, and belong to different sensing service providers. 

In the IoT security domain, the problem of anchor misplacement is more hazardous. For in-

stance, a hacker could target anchor nodes and manipulate their locations which generates inaccuracy 

in the collected data and deems it unreliable. This problem becomes life-threatening when a soft-

ware/hardware error or a malicious attack targets autonomous vehicular sensor nodes such as LiDAR 

(Light Detection and Ranging). The LiDAR technology is supposed to provide accurate geospatial 

data promptly to support decision-making.  Thus, malicious altering of LiDAR data, such as posi-

tioning coordinates or injecting errors into distances to the surrounding vehicles or objects leads to 

serious safety issues. 
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The above discussion raises the following primary research questions: Q1: How does anchor 

misplacement affect the tradeoff between detection latency and service reliability? For a fixed number 

of misplaced anchors carrying out sensor localization, detecting misplaced anchors becomes more 

effective when more non-misplaced anchor nodes participate in validating the localization results of 

the misplaced ones. However, too many validators increase communication overhead, consequently 

increasing the latency to complete the detection phase. Q2: How does anchor misplacement affect the 

coverage of sensory data aggregation? Q3: Can we identify new types of coverage holes and calculate 

their area?  

In this study, we aim to answer the above research questions by designing a distributed, fast, 

and reliable scheme to detect misplaced anchors in WSNs. We aim to minimize anchor validators so 

that reliability is high with low latency. Furthermore, we analyze the impact of anchor misplacement 

on sensory coverage is instrumental in cooperative WSNs. 

H. Contributions 

The contributions of our work can be summarized as follows: 

1. We propose an effective framework to detect anchor misplacement. This requires 

minimizing the participating anchor validators so that the reliability of the service 

provided is high and the latency to converge is minimal. 

2. We demonstrate and analyze the existence of the anchor misplacement problem and 

its impact on IoT reliability. We show that localizing sensors using misplaced an-

chors results in inaccurate positioning, affecting the integrity of sensory data. 

3. We provide an insightful and detailed analytical study of the impact of anchor mis-

placement on sensor localization and sensing coverage. 

4. We propose schemes to identify coverage holes caused by anchor misplacement, cal-

culate their area size, and find upper and lower bounds for these uncovered areas. 

We utilize Delaunay Triangulation (DT) to partition the target sensing region into 

equilateral triangles. Since intra-triangle coverage holes are not uniform, our goal is 

to locally detect each hole and specify its area's upper and lower bounds. Our proce-

dure to assess Intra-triangle Coverage (ITC) is distributed and requires only each 

triangle's vertices to be involved in the calculation. Thus, the ITC procedure is scala-

ble and efficient in terms of power consumption.  

5. We demonstrate the validity and effectiveness of our proposed approach under var-

ious settings. In addition, we show that our approach offers higher localization accu-

racy and smaller perceived uncovered areas. 

To the best of our knowledge, this is the only research investigating IoT sensing coverage under 

anchor misplacement by locally identifying new coverage holes and quantifying their area.  

The organization of the rest of this paper is as follows. Section II overviews preliminary defini-

tions and models of sensing coverage using WSNs and different types of sensor deployment in WSNs. 

Section III presents the problem formulation and assumptions of our research. Preliminarily results 

using Voronoi Diagram (VD) and DT toward efficient coverage will be addressed in Section IV. Sec-

tion V is devoted to studying ITC in detail. Section VI presents the dynamics of anchor misplacement 

on sensing coverage and provides an algorithm to calculate the lower and upper bounds of sensing 

coverage holes. A resiliency framework to detect and mitigate the impact of misplaced anchors will 

be provided in Section VII. Section VIII presents experimental results to validate our proposed frame-

work and show its effectiveness. Section IX concludes the paper and discusses future research direc-

tions. 

2. preliminaries and System Model  

Sensing coverage measures to what extent the sensing reports reflect the actual physical sur-

roundings in the target sensing field. Thus, without proper coverage, sensing services may be deemed 

unreliable or even obsolete. 
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TABLE I. NOTATIONS AND ACRONYMS 

Notation Description 

𝑮(𝑽, 𝑬)  A network graph 𝑮. 

S Set of sensor nodes. 

B Set of anchor nodes (𝑩𝒃 ∪ 𝑩𝒎). 

𝑽 Set of sensor and anchor nodes (𝑺 ∪ 𝑩). 

𝑬 Set of links/edges. 

𝒏  |S|, the number of sensor nodes. 

𝒎 |B|, the number of anchor nodes. 

𝑩𝒃 Set of benign anchor nodes (i.e., not misplaced). 

𝑩𝒎 Set of misplaced anchor nodes 

𝑫𝑻 Delaunay triangulation. 

𝑽𝑫 Voronoi diagram. 

𝒅𝒂,𝒃 Euclidean distance between node 𝒂 and node/point 𝒃. 

𝒅𝒂,𝒃′ The distance between node 𝒂 and node 𝒃 measured via received signal strength (RSS) method. 

𝒔𝒊 A sensor node in a sensing field 𝑺, 𝟏 ≤   𝒊 ≤   𝒏 
 𝑹𝒔𝒊

 A sensing range of sensor node 𝒔𝒊. 

 

A. Sensing Coverage Formulation 

Sensing coverage holes are one of the main reasons that degrade the quality of sensing service. 

Coverage holes exist when any sensing node does not cover some points in the sensing field. The 

following is a definition of sensing coverage. 

Definition 1: Let S denote the target sensing field and  𝑁 =

{si: si is a sensing node; 1 ≤   i ≤   n} , where n  is the number of sensing nodes. 

( 𝑥𝑖,  𝑦𝑖) refers to the location of 𝑠𝑖 in a plane which is unknown initially. Each 𝑠𝑖 has 

estimated location ( 𝑥𝑖
′,  𝑦𝑖

′) and a sensing range 𝑅𝑠𝑖
. Let p be a point in S, then p is 

covered if there is at least one 𝑠𝑖 such that p is within a distance of 𝑅𝑠𝑖
 from 𝑠𝑖. In 

other words, {∃ 𝑠𝑖|𝑑𝑝,s𝑖
 ≤  𝑅𝑠𝑖

, 1 ≤   𝑖 ≤   𝑛}, where 𝑑𝑎,b is the Euclidean distance 

between a and b. 

B. Types of Sensing Coverage Holes Under Anchor Misplacement 

Figure 4 shows the full and partial coverage.  

(a) Full sensing coverage

(b) Sensing coverage with holes

Sink

Sink

sensor node

coverage hole

 

Figure 4. Full and partial sensing coverage using heterogeneous sensor nodes. 

Anchor misplacement poses new types of coverage holes as follows. 
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1) The perceived coverage hole. Fig. 5 (a) shows an ideal case of a sensor 𝑠1 that 

has been accurately localized with no impact of anchor misplacement. On the 

other hand, Fig. 5 (b) shows the case where 𝑠1 localized using a misplaced 

anchor. This creates a false perceived coverage hole that exists in two triangles 

𝑠1
′𝑠2

′𝑠3
′ and 𝑠1

′𝑠3
′𝑠4

′.  

s1 s1'

s2 

s3 

s4 

s2'

s3'

s4'
s5 

s6 

s8 

s6'

s7' 

s5'

 

(a)                                            (b) 

Figure 5. A triangulation in the vicinity of sensor node 𝑠1. (a) An ideal case is where there are no 

coverage holes. (b) A perceived coverage hole due to anchor misplacement. 

2) The hidden unreported actual coverage hole. Error! Reference source not 

found.6 (a) shows the existence of actual coverage holes in triangles 𝑠1𝑠6𝑠7 

and 𝑠1𝑠7𝑠2. On the other hand, Fig. 6 (b) shows that anchor misplacement 

hides these holes by inaccurate localization of sensor 𝑠1. 

s6 

s7 
s1 

s6'

s7' 

s2' 

s1' 

s2 

s3 

s4 
s5 

s3'

s4' s5'

   

(a)                   (b) 

Figure 6. An actual unreported coverage hole can be identified by investigating the triangles in the 

vicinity of the affected sensor 𝑠1. (a) Original deployment with actual coverage hole. (b) An actual 

coverage hole is masked. Thus unreported. 

C. Network and Sensing Models 

We adopt cooperative sensing where sensor nodes belong to different providers. A set N of 

nodes includes sensor nodes, while a set M includes anchor nodes. Anchor nodes are placed in places 

of interest (i.e., known positions) so that they can be used to localize sensors' positions. WSN usually 

follows a multi-hop communication to route sensed data from source sensors to a sink node. In co-

operative sensing, a source node could route its collected data to one or more sinks (i.e., data pro-

cessing centers).  

The rate at which the sensor 𝑠𝑖 generates sensed data packets will highly depend on the capa-

bility of 𝑠𝑖. However, in WSNs this rate is set low to save the sensors' battery power and avoid con-

gestion in the network. 
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Many sensing models can be constructed according to the application requirements and the sur-

rounding environment. However, most of these models agree that sensing fades as distance increases. 

The following formula reflects this observation [15]. 

𝑆𝑁(𝑠𝑖 , 𝑝) =
𝜆

(𝑑s𝑖,𝑝)𝐾
    (1) 

where SN denotes the sensibility between the sensor node 𝑠𝑖 and point p, and both 𝜆 and K are pos-

itive constants related to the sensor's technology. 

There are two types of sensing models: binary disc and probabilistic. 

1). Binary Disc Model 

A sensor node is assumed to do 360° monitoring in the binary disc model. Therefore, a point in 

the sensing field is covered if it is within the circular sensing range of at least one sensing node. 

Otherwise, it is not covered, as given in the following equation. 

C(𝑝) =  {
1    𝑖𝑓 𝑑𝑠𝑖,𝑝 ≤  𝑅𝑠𝑖

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
  (2) 

Thus, the binary disc model abstracts the sensing coverage of 𝑠𝑖  by a disc of radius 𝑅𝑠𝑖
as shown in 

Fig. 7. 

2). Probabilistic Sensing Model 

This model depends on the uncertainty of sensor detection. It utilizes the detection probability 

when a point 𝑝 is at a distance larger than the value of uncertainty, but within the range [16]. 

C(𝑝) =  {
1
0

𝑒−𝛼𝛽𝛾

𝑖𝑓 𝑑s𝑖,𝑝 ≤ 𝑅𝑠𝑖 − 𝜖

𝑖𝑓 𝑑s𝑖,𝑝 ≥ 𝑅𝑠𝑖 + 𝜖

               𝑖𝑓𝑅𝑠𝑖 − 𝜖 < 𝑑s𝑖,𝑝 <  𝑅𝑠𝑖
+ 𝜖

  (3) 

where 𝜖 is the uncertainty value in the sensor's detection, 𝛽 = 𝑑s𝑖,𝑝 − ( 𝑅𝑠𝑖
− 𝜖), and both 𝛼 and 𝛾 

are parameters that measure the probability of detection when p is at a distance greater than 𝜖 but 

still within a range of  𝑅𝑠𝑖
. Different values of these parameters reflect the characteristics of different 

types of sensors and, consequently, different detection probability scales. 

In this research, we adopt the binary disk sensing model for the sake of simplicity. Fig. 7 shows 

the disk model representation of the overlapped region in Fig. 1. 

Sink

 

Figure 7. Disk model of overlapped IoT sensing providers with coverage holes. 

D.  Channel Model 
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Both anchor and sensor nodes are equipped with wireless transceivers. The transmission power 

of a node 𝑠𝑖  is denoted by 𝑃𝑠𝑖 , and communicates with other nodes over wireless channels, following 

the standard path-loss model. The path loss between nodes 𝑠𝑖 and 𝑠𝑗 of Euclidean distance 𝑑 is 

given in the db scale by the following formula. 

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10 η log (
𝑑

𝑑0

)  (3) 

where 𝑃𝐿(𝑑0) is the path loss at the reference distance 𝑑0, and η is the path loss exponent. 

To better estimate the distance between the IoT nodes s𝑖  and s𝑗 , we follow the formulation 

adopted in [17] for the variance:  

𝜎s𝑖,s𝑗

2 =
𝑑s𝑖,s𝑗

2

𝑆𝑁𝑅
 

    

(4) 
where SNR is the signal-to-noise ratio. 

E. Communication Model 

Two sensor nodes are adjacent/neighbors if they can communicate directly (i.e., have 1-hop wire-

less-link communication). We define 𝑁𝐻(𝑠𝑖) to denote the set of sensor nodes in the neighborhood 

of 𝑠𝑖, that is, 𝑁𝐻(𝑠𝑖) = {𝑠𝑗|𝑑s𝑖,s𝑗
≤   𝑃𝑠𝑖  𝑎𝑛𝑑 𝑑s𝑖,s𝑗

 ≤   𝑃𝑠𝑗  , 𝑠𝑖  ≠  𝑠𝑗 , 𝑠𝑗  ∈  𝑁}. Each sensor node that re-

ceives this information is able to estimate its distance from the emitting sensor using a signal strength 

indicator (SSI). The graph induced by all sensor nodes and wireless links is called a routing graph. 

Multiple routing paths could connect the source sensor node to a sink in a routing graph. A routing 

path is a sequence of wireless links that starts with a source sensor towards the sink with no node 

repetition. 

During the validation of anchor misplacement, a node can be either a sender or a receiver of a 

message. The message is disseminated either in 1-hop or multi-hop manners. As discussed in subsec-

tion I.D, a node needs more power to communicate with other nodes in a single-hop way. Let 𝑃𝑠𝑖,𝑠 be 

the transmission power required by the node 𝑠𝑖 to communicate with any node in the target field 

using a single-hop protocol. Similarly, let 𝑃𝑠𝑖,𝑚 be the transmission power required by the node 𝑠𝑖 to 

multi-hop to the base station through its neighboring nodes. Clearly, 𝑃𝑠𝑖,𝑠 ≥ 𝑃𝑠𝑖,𝑚 . A node usually 

uses a single-hop communication to broadcast messages to all other nodes. 

3. Problem description 

Anchor misplacement degrades IoT-based system reliability and leads to special types of cover-

age holes due to inaccurate localization of the affected sensor nodes. Let 𝐵𝑗  be a misplaced anchor 

node and let 𝑀′ ⊆ 𝑀 be the set of misplaced anchor nodes. Similar to the neighborhood of sensor 

nodes presented in Section II.C, the neighborhood, 𝑁𝐻𝐵(𝐵𝑗), of the anchor node, 𝐵𝑗 , is the set of all 

anchor nodes that are connected with 𝐵𝑗  via 1-hop connection.  

This paper addresses the impact of anchor misplacement on sensing coverage. Given a random 

deployment of sensor nodes and a localization error posed by some misplaced anchors on some sen-

sor nodes, we investigate the new types of coverage holes, detect them, and find the size ratio of each 

type of coverage hole to the total area. Furthermore, we are interested in providing upper and lower 

bounds on coverage holes in a distributed manner.  

Our analysis will utilize powerful structures in computational geometry, such as Voronoi Dia-

gram (VD) and Delaunay Triangulation (DT). Our approach to detecting and bound coverage holes 

depends on the locality of each convex polygon of the computational structure that represents the 

sensing field. 

A. Assumptions 

For this research, we make the following assumptions: 
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• First, IoT sensors can send/receive packets to/from their neighbors. This assumption 

is important to exchange the sensors' information locally to build our computational 

structure in a distributed way.  

• The locations of sensors are calculated priory. This assumption helps to construct the 

VD and DT. 

• No three neighboring sensors are collinear. This will enable the construction of the 

Delaunay Triangulation. 

• The sensing target field is bounded, which is the case for most IoT applications.  

4. computational geometry tools for analyzing Sensing Coverage: auxiliary results 

This section provides auxiliary lemmas and corollaries to use later to detect coverage holes and 

their ratios. These auxiliary results rely on well-known computational geometry structures: Voronoi 

diagram (VD) and Delaunay Triangulation (DT). Next, we investigate the existence of full sensing 

coverage of a target field S.  

Let p be a point in S. We call  s𝑖 a dominant sensor of point p if s𝑖 has the shortest distance to 

p among all other sensors in S. That is  

𝑑𝑜𝑚(𝑝) = {s𝑖|𝑑s𝑖,𝑝 = min (𝑑s𝑗,𝑝, 1 ≤   j ≤   n)}, where s𝑖, s𝑗 ∈ S.  

Let MaxMin(𝑆) = Max
𝑝∈𝑆

 (𝑑𝑑𝑜𝑚(𝑝),𝑝) . Assume 𝑠𝑖 = 𝑑𝑜𝑚(𝑝)  has the maximum distance to a point 𝑝 

among all other sensor nodes; if MaxMin(S) ≤ 𝑅𝑠𝑖
 then S is fully covered. However, calculating 

MaxMin(S) over an infinite number of points 𝑝 in S is not feasible. To overcome this problem, we 

utilize VD to cluster the sensing field S into adjacent convex polygons, called cells and denoted by 

Vor(s1), Vor(s2), ….., Vor(sn). Each cell Vor(si) is associated with only one sensor s𝑖, 1 ≤   𝑖 ≤   𝑛 as 

shown in Fig 8.  

The perpendicular bisector of the line segment connecting sensors 𝑠𝑖  and 𝑠𝑗  splits the plane 

into two half-planes. Let ℎ(𝑠𝑖 , 𝑠𝑗) denote the half-plane that contains 𝑠𝑖 , while ℎ(𝑠𝑗 , 𝑠𝑖) denote the 

half-plane that contains 𝑠𝑗.  Note that a point 𝑝 ∈ ℎ(𝑠𝑖 , 𝑠𝑗) if and only if  𝑑s𝑖,𝑝 <  𝑑s𝑗,𝑝. Thus Vor(𝑠𝑖) 

is the intersection of all half-planes generated by the perpendicular bisectors of the line segments of 

𝑠𝑖 and each sensor in its neiborhood, i.e., 𝑁𝐻(𝑠𝑖).  Each bisector line segment is called an edge, and 

the endpoints of this edge are called vertices. For any point 𝑝 in 𝑉𝑜𝑟( s𝑖), 1 ≤   𝑖 ≤   𝑛, s𝑖  the closest 

sensor to p. Note that if p is on a common edge of two neighboring polygons, then it is equidistant 

from the two sensors associated with these polygons [1].  

 

Figure 8. VD partitions sensing field into convex cells. 

The following lemma provides the necessary and sufficient conditions to have full coverage in 

VD. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1239.v1

https://doi.org/10.20944/preprints202306.1239.v1


 

 

Lemma 1 [1]: Sensing field S is fully covered if and only if all vertices in its corre-

sponding Voronoi diagram have a distance less or equal to 𝑅𝑠𝑖
 to at least one of their 

associated sensors, s𝑖. 
The coverage problem of sensing field S is now converted, by Lemma 1, from checking a non-

finite set of points in S into testing a finite set1 of points representing the cell's VD vertices. This 

lowers the computational cost, adding to the feasibility of the solution. If 𝑀𝑎𝑥Min(S) ≤ 𝑅𝑠𝑖
 is main-

tained, the full coverage of S is guaranteed. Thus, VD is a powerful tool to show the existence of 

coverage holes in WSNs. However, VD is unable to quantify the area size of coverage holes. This is 

due to the fact that Voronoi polygons have different convex shapes with various numbers of edges 

and have a non-unit-circular model. Therefore, VD does not provide much information about the 

location and the size of each coverage hole in the field. 

Consequently, there is a need for a more efficient structure to control and track the boundary of 

each coverage hole. To achieve this, we need to transform each VD cell into basic shapes that allow 

us to track closely and locally coverage holes. That is why we triangulate each Voronoi cell, where 

the vertices of the generated triangles are the sensors. Two sensors s𝑖 and s𝑗 form a triangle edge if 

Vor(s𝑖) and Vor(s𝑗) have a Voronoi edge e in common. This implies that a triangle edge, 𝑠𝑖𝑠𝑗, that 

connects s𝑖 and s𝑗  is perpendicular to e and is bisected by e. This triangulation is called Delaunay 

Triangulation (DT) which provides angle-optimal planar triangles such that the circle that circum-

scribes any triangle, with non-collinear sensors, is devoid of any other sensors. Note that the strong 

property of convexity in VD is still held in DT as any triangle is a basic convex polygon. Fig. 9 illus-

trates some triangulations of Voronoi cells. Next, we provide a corollary that links the coverage prob-

lem to the edges of DT. 

 

Figure 9. Sample DT of VD: Triangulations incident to sensor 𝑠𝑖. 

Corollary 1 [1]: If a sensing field is fully covered, then the length of every edge, 

𝑠𝑖𝑠𝑗, of triangles is at most 𝑅𝑠𝑖
+ 𝑅𝑠𝑗

. 

In Delaunay triangulation of sensing field 𝑆, let 𝑠𝑖 and 𝑠𝑗 be two triangle vertices that have 

sensing ranges 𝑅𝑠𝑖
 and 𝑅𝑠𝑗

, respectively, then the following lemma holds. 

Lemma 2: Let ∆ be a Delaunay (acute) triangle with vertices 𝑠𝑖, 𝑠𝑗, and 𝑠𝑘, and let 

𝑟 be a radius of the circle that circumscribes ∆.  ∆ is fully covered if and only if the 

following formula holds.  

𝑅𝑠𝑖

2 + 𝑅𝑠𝑗

2 + 𝑅𝑠𝑘

2 ≥
9√3

2𝜋
 𝑟2  (6) 

     Proof. Assume ∆ is fully covered. Let c be the center of the circle of radius 𝑟 that circumscribes 

∆. c is the furthest point in ∆ to the vertices 𝑠𝑖, 𝑠𝑗, and 𝑠𝑘. The distance from any of the three vertices 

 
1 The size of this set is at most 2n-5 [24]. 
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to c is equal to 𝑟, the circumscribed circle. Each of the sensor vertices will contribute to covering the 

intra-triangle of ∆. This contribution depends on the sensing range of each sensor vertex. Figure 10 

illustrates the concept of sensing and intra-triangle coverage.   Since ∆ is covered, then every point 

within ∆ including c is covered as well. Since ∆ is fully covered, the sum of contributions of the three 

sensors must cover the entire intra-triangle of ∆. This is formulated as follows: 

𝐶𝑁𝑇(𝑠𝑖, ∆) + 𝐶𝑁𝑇(𝑠𝑗, ∆) + 𝐶𝑁𝑇(𝑠𝑘, ∆)
≥ 𝐴(∆) 

 (7) 

Where 𝐶𝑁𝑇(𝑠𝑙 , ∆) denotes the contribution of sensor 𝑠𝑙 in covering the area of triangle ∆. This con-

tribution represents a sector area with a radius 𝑅𝑠𝑙
. 

𝐶𝑁𝑇(𝑠𝑙 , ∆) =
𝛼

2
𝑅𝑠𝑙

2  (8) 

For acute triangulation, 𝛼 =
𝜋

3
 . 𝐴(∆) =

√3

4
𝑎2, where 𝑎 is ∆′s side length. Consequently (7) can 

be written as follows: 

𝜋

6
𝑅𝑠𝑖

2 +
𝜋

6
𝑅𝑠𝑗

2 +
𝜋

6
𝑅𝑠𝑘

2 ≥
√3

4
(√3 𝑟)2  (9) 

This completes the proof of the “if” part. 

Circumscribed circle si 

sj sk

c

r

rr

Sensing disk of sensor si

 

Figure 10. An illustration of sensing coverage using the concept of the intra-triangle contribution of a 

sensor node. 

To prove the (only if) part, assume the formula (6) is held. Let us prove the full coverage of ∆ by 

contradiction. Assume that ∆ is not fully covered. Consequently, there exists a point 𝑝 in ∆ that is 

not covered by any sensor, i.e., 𝑑(𝑝, 𝑠𝑙) > 𝑅𝑠𝑙
, where 𝑙 ∈ {𝑖, 𝑗, 𝑘}. This means 

𝐶𝑁𝑇(𝑠𝑖, ∆) + 𝐶𝑁𝑇(𝑠𝑗 , ∆) + 𝐶𝑁𝑇(𝑠𝑘, ∆) < 𝐴(∆)                ∎ 
In the case of homogeneous sensors, we derive the following corollary about a lower bound for 

sensing coverage. 

Corollary 2: A field of cooperative sensing that uses homogeneous sensors with a 

sensing range 𝑅𝑠𝑙
 is fully covered if the following formula holds. 

𝑅𝑠𝑙

2 ≥
3√3

2𝜋
 𝑟2  (10) 

Fig. 11 shows homogeneous and heterogeneous sensors' lower bound sensing ranges to achieve 

full sensing coverage in a triangle ∆. For example, it is enough for homogeneous sensors to have a 

sensing range of at least 0.91𝑟 to guarantee a full sensing coverage, as shown in the circle-marked 

blue curve. On the other hand, the square root of the left-hand side of the formula (10) should be 

lower bound by the red curve in order to achieve full sensing coverage. 
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Figure 11. An illustration of sensing ranges lower bounds presented by lemma 2 and corollary 2. 

In the next section, we investigate how to detect and define the bounds of each uncovered area 

in DT. 

5. Intra-triangle coverage: beyond ideality 

The coverage problem is reduced by DT to studying the coverage of each individual triangle in 

the whole triangulation. According to Lemma 2, if the condition of Lemma 2 is not fulfilled,  then 

there is an uncovered area in the circumcircle of ∆. According to the largest angle 𝜃 in ∆, we differ-

entiate three scenarios of the circumcenter: the circumcenter is inside ∆ if 𝜃 <
𝜋

2
  , outside ∆ if 𝜃 >

𝜋

2
, 

or on the longest side opposite to 𝜃 =
𝜋

2
. Although DT provides the best possible optimal-angle pla-

nar triangles (angles around 
𝜋

3
), in random deployment, it is possible to find the largest angles greater 

than 
𝜋

3
 . The following question then arises: What is the minimum density of sensors such that DT is 

well-behaved?   

Let 𝑅𝑠𝑙
 be the minimum sensing range among all IoT sensors in the target field 𝑆. In optimal 

cases, all angles of ∆ are equal to 
𝜋

3
 (i.e., equilateral triangle) and the length of the triangle's side is 

𝑎 = √3𝑅𝑠𝑙
 [18]. Thus the area of the triangle in this case is 

3√3

4
𝑅𝑠𝑙

2. Furthermore, the number of tri-

angles in any triangulation is 2N-2-𝛽, where N is the number of sensors and 𝛽 is the number of 

which are on the convex hull boundary of field S [19]. Assume the sensing field S has a size L x L; the 

area size that should be covered by each triangle is 
𝐿2

2𝑁−2−𝛽
. Therefore,  

𝐿2

2𝑁 − 2 − 𝛽
<

3√3

4
𝑅𝑠𝑙

2 (11) 

This gives  
2𝐿2

3√3𝑅𝑠𝑙

2
+

2 + 𝛽

2
 < 𝑁 (12) 

We assume that the minimum density is achieved.  As illustrated in the proof of lemma 2, the 

coverage contribution of a sensor 𝑠𝑙 is the size of the angular sector centered at 𝑠𝑙 with radius 𝑅𝑠𝑙
. 

Calculating the contribution of 𝑠𝑖 in ∆ requires the angle at 𝑠𝑙 as shown in (8). Since the lengths of 

all edges of ∆ are known, we use the cosine formula to extract the angle at each sensor. That is 

𝛼 = 𝑐𝑜𝑠−1 (
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
)  (13) 

where a, b and c are the lengths of  ∆'s sides, and 𝛼 is the angle opposite to the side of length c. 

Therefore, 𝛼 is plugged into (8) to get 𝐶𝑁𝑇(𝑠𝑙 , ∆), where 𝛼 is the angle at 𝑠𝑙 in a triangle ∆. The 

following formula gives the intra-triangle coverage of ∆, denoted by 𝐼𝑇𝐶(∆). That is  

𝐼𝑇𝐶(∆) = ∑ 𝐶𝑁𝑇(𝑠𝑙 , ∆)

𝑠𝑙∈𝑉(∆)

− 𝐴𝑚𝑢𝑡 ,  (14) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1239.v1

https://doi.org/10.20944/preprints202306.1239.v1


 

 

where 𝐴𝑚𝑢𝑡 = (𝐴1,2 + 𝐴1,3 + 𝐴2,3) − 𝐴1,2,3, V(∆) is the set of the three vertices of ∆, and 𝐴𝑖,𝑗  is the com-

mon area size contributed by both angular sectors centered, respectively, at vertices 𝑠𝑖 and 𝑠𝑗 , and 

𝐴1,2,3 is the area covered by all three vertices. 

Next, we employ our analysis of intra-triangle coverage to detect coverage holes in a sensing 

target field. 

6. A Deeper Look at the Effect of Anchor Misplacement on Sensing Coverage 

We recall that anchor misplacement creates two new types of coverage holes: false perceived 

and hidden unreported actual coverage holes. We utilize our analysis in the previous section to ad-

dress these new coverage holes in the vicinity of the sensor nodes that are affected by anchor mis-

placement (i.e., localized using misplaced anchor nodes). Let 𝑁′ ⊆ 𝑁, be the set of affected sensor 

nodes. Further, let 𝐶𝑠𝑖
 denotes the actual sensing coverage area that is covered by sensor node 𝑠𝑖. 

Next, we introduce several important auxiliary definitions. 

Definition 2: The collective actual sensing coverage (𝐶𝑎𝑐𝑡) of all affected sensor 

nodes in WSN is defined as a union of their physical sensing coverage in the target 

field. That is, 

 𝐶𝑎𝑐𝑡 = ⋃ 𝐶𝑠𝑖

|𝑁′|

𝑖=1 . 
Let 𝑠𝑖

′ be the erroneous estimated location of 𝑠𝑖. 𝑠𝑖 will report sensed data from an inaccurate 

location which creates a perceived coverage around 𝑠𝑖
′. Further, let 𝐶𝑠𝑖

′ denotes the perceived sensing 

coverage area that is covered by the affected sensor node 𝑠𝑖 as if 𝑠𝑖 is in  𝑠𝑖
′ coordinates. 

Definition 3: The collective perceived sensing coverage (𝐶𝑝𝑒𝑟) of all affected sensor 

nodes in WSN is defined as follows.  𝐶𝑝𝑒𝑟 = ⋃ 𝐶𝑠𝑖
′

|𝑁′|

𝑖=1 . 
In practice, to compare 𝐶𝑠𝑖

  and 𝐶′𝑠𝑖
 and characterize which scenarios lead to which type of 

coverage holes, we use Delaunay Triangulation to study this problem in the locality of each affected 

sensor node. We use the implementation of a distributed algorithm in [20] to construct the DT that 

represents the target sensing field S. Lemma 2 provides a good criterion to show the existence of 

coverage holes. From the analysis in Section V, subtracting 𝐼𝑇𝐶(∆) from the full area size of ∆ gives 

the uncovered area inside ∆ as follows.  

𝑈𝑁𝐶(∆, 𝐺) = 𝐴(∆) − 𝐼𝑇𝐶(∆) 
 (15) 

where 𝐴(∆) refers to the area size of ∆ and it is given by the following equation. 

                                    𝐴(∆) = √𝑑(𝑑 − 𝑎)(𝑑 − 𝑏)(𝑑 − 𝑐) , where 

𝑑 =
𝑎+𝑏+𝑐

2
 and a, b and c are the length of the sides of ∆. 

Let 𝑠2 be an affected sensor node by anchor misplacement. Its erroneous estimated location is 

denoted by 𝑠2
′with coordinates (𝑥′, 𝑦′). Let 𝑣⃗ = (∆𝑥, ∆𝑦) be its localization error vector. The cor-

rected coordinates of the 𝑠2's position are (𝑥′ − ∆𝑥, 𝑦′ − ∆𝑦). Fig. 12 shows the structural change of 

the Delaunay triangle due to the impact of anchor misplacement on localizing sensor 𝑠2. 

s3
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Figure 12. An example of structural change on DT due to correcting the location of 𝑠2′ to 𝑠2. 

In order to measure the sensing coverage holes posed by anchor misplacement, we need to cal-

culate the sensing coverage in two cases: with and without the existence of anchor misplacement. 

That is, for each affected sensor node 𝑠𝑖, we measure the coverage hole by comparing the sensing 

coverage of 𝑠𝑖  and its neighbors on the one hand, and 𝑠𝑖 ′ and its neighbors on the other hand. This 

allows us to compare 𝐶𝑠𝑖
  and 𝐶𝑠𝑖

′ in their vicinities. Error! Reference source not found. 5 and 6 

show the vicinity of affected sensor  𝑠1  (i.e., 𝑠2𝑠3𝑠4𝑠5𝑠6𝑠7 ) and the vicinity of  𝑠1
′

 (i.e., 

 𝑠2
′𝑠3

′𝑠4
′𝑠5

′𝑠6
′𝑠7

′). The triangulation of these vicinities enables us to study the noncovered areas in 

each triangle. 

Next, we utilize the concept of history in graph theory to demonstrate the above analysis and 

calculate the sensing coverage for each affected sensor node with and without the presence of anchor 

misplacement. 

A. Anchor Misplacement as a Graph Operator 

Let  D𝑇 be a Delaunay Triangulation of IoT sensors in the target field with no anchor misplace-

ment. Anchor misplacement triggers a change in  D𝑇  which impacts the localization accuracy of 

sensor nodes. The change in  D𝑇 could be either in length metric of edges or in D𝑇 structure as some 

sensors become connected or disconnected according to their erroneous location. Let  D𝑇′ denote the 

new triangulation after anchor misplacement. Having all these effects, anchor misplacement can be 

considered as a graph operator that maps an input-given graph (i.e., D𝑇) into a new graph  D𝑇′. If 

𝑠𝑖 ∈ D𝑇 is an affected sensor, then 𝑠𝑖′ ∈ D𝑇′, meaning 𝑠𝑖  has been localized correctly (before anchor 

misplacement), while it has been localized incorrectly after anchor misplacement, we call it  𝑠𝑖
′ in 

this case. Accordingly, 𝑠𝑖 and 𝑠𝑖′ can be visualized as different sensors from a geolocational per-

spective.  

Let D𝑇(𝑠𝑖)  represents all triangles in D𝑇  that are induced by 𝑠𝑖  and its neighbors, i.e.,  

𝑁𝐻( 𝑠𝑖). Similarly, let D𝑇′(𝑠𝑖′) represents all triangles in D𝑇′ that are induced by 𝑠𝑖′ and its neigh-

bors, i.e.,  𝑁𝐻( 𝑠𝑖). For example, the triangulation of D𝑇(𝑠1) includes all triangles in D𝑇 induced by 

𝑠1 and its vicinity, i.e.,  𝑁𝐻( 𝑠1) = { 𝑠2,  𝑠3 𝑠4 𝑠5 , 𝑠6,  𝑠7} in Error! Reference source not found.5 and 

6. To this end, we call D𝑇(𝑠𝑖) the graph history of D𝑇′(𝑠𝑖′) since it is the previous graph state before 

anchor misplacement. We denote it D𝑇ℎ′(𝑠𝑖′). That is, D𝑇ℎ′(𝑠𝑖 ′) = D𝑇(𝑠𝑖).  The concept of graph his-

tory is not new in graph theory; it has been used in the literature in various domains such as charac-

terizing the asymptotic behavior of iterated line and path graphs [21], [22].  

Clearly, the subgraphs D𝑇′(𝑠𝑖′) and its history, D𝑇ℎ′(𝑠𝑖′), may not be the same. Indeed, the erro-

neous localization of sensors drifts some vertices to be in D𝑇′(𝑠𝑖′) but not in D𝑇ℎ′(𝑠𝑖 ′) or vice versa. 

The location of each sensor in the target field is a key point in our study as both subgraphs D𝑇′(𝑠𝑖′) 

and D𝑇ℎ′(𝑠𝑖′)  could be isomorphic2 but yet different in terms of edge lengths. Error! Reference 

source not found.13 shows one triangle of 𝐷𝑇′(𝑠2′)and its graph history, 𝐷𝑇ℎ′(𝑠2′). 

s3

s’2s1
e

h

x’

s2

s3

s1

s2

x

 

 One triangle of 
𝐷𝑇ℎ′(𝑠2′)  

 The triangle in 
𝐷𝑇′(𝑠2′) 

 
2 Two graphs are isomorphic if they contain the same objects (i.e., vertices) linked in the same way. 
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Figure 13. A partial snapshot of 𝐷𝑇′(𝑠2′) and its history. 

We can construct 𝐷𝑇ℎ′ from 𝐷𝑇′ in the following way: Identify the misplaced anchor nodes, 

then remove the affected sensor nodes 𝑠𝑖 with their linked edges and insert them again in their cor-

rect positions. Lastly, construct the triangulation in their locality. The average number of neighbors 

of 𝑠𝑖 ,  |𝑁𝐻(𝑠𝑖)|, is at most 6 and, therefore, the average number of triangles in both subgraphs 

𝐷𝑇′(𝑠𝑖)  and 𝐷𝑇ℎ′(𝑠𝑖) will not exceed 6 [19]. This shows the low computational cost of our approach. 

B. Identifying Coverage Holes under Anchor Misplacement 

In this subsection, we detect/delineate the false perceived and hidden unreported actual cover-

age holes. To achieve this, we are interested in the common triangles of both 𝐷𝑇′(𝑠𝑖 ′)  and 𝐷𝑇ℎ′(𝑠𝑖′). 

The empty intersection indicates that 𝐷𝑇ℎ′(𝑠𝑖 ′) is a totally new structure and none of 𝑁𝐻(𝑠𝑖) be-

longs to 𝐷𝑇′(𝑠𝑖′). This happens when anchor misplacement poses an extremely high inaccurate loca-

tion for sensor 𝑠𝑖 such that the estimated location 𝑠𝑖 ′ is out of the vicinity of 𝑠𝑖. We recognize the 

following categories of a possible common triangle ∆ between 𝐷𝑇′(𝑠𝑖 ′)  and 𝐷𝑇ℎ′(𝑠𝑖′). 

• Full local coverage of ∆ is maintained in both 𝐷𝑇′(𝑠𝑖′)  and 𝐷𝑇ℎ′(𝑠𝑖 ′). 

• Full local coverage of ∆ exists in 𝐷𝑇ℎ′(𝑠𝑖′), but not in 𝐷𝑇′(𝑠𝑖′). This is the case of false 

perceived coverage hole. 

• There is no full coverage in both 𝐷𝑇′(𝑠𝑖′) and 𝐷𝑇ℎ′(𝑠𝑖 ′). 

• The full local coverage of ∆ exists in 𝐷𝑇′(𝑠𝑖′), but not in 𝐷𝑇ℎ′(𝑠𝑖 ′).   This is the case 

of hidden actual unreported coverage holes as shown in Fig. 14. 

Categories 1 and 3 deal with extreme cases where the triangle ∆ is either covered in both 𝐷𝑇′(𝑠𝑖′) 

and its history or not.  
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Coverage hole in 

𝐷𝑇ℎ′(𝑠2′) 

 The hole is masked 

in 𝐷𝑇′(𝑠2′) 

Figure 14. Actual unreported coverage hole with center x. 

We are interested in detecting, identifying, and finding the size of the coverage holes that belong 

to categories 2) and 4). Our analysis in Section IV allows us to detect the coverage whole. The ap-

proach we followed in Section V, i.e., intra-triangle coverage, provides an effective tool to calculate 

the size of the coverage hole. Identifying the type of coverage hole can be achieved using the concept 

of history illustrated in this subsection. Next, we find the coverage ratio of the perceived sensing, 𝐶′𝑠𝑖
 

to the actual sensing coverage, 𝐶𝑠𝑖
. The coverage ratio in the categories 1-4 is denoted CRC1-CRC4, 

respectively. 

𝐶𝑅𝐶1 =
𝐴𝑟𝑒𝑎( ∆,  𝐷𝑇′(𝑠𝑖′))

𝐴𝑟𝑒𝑎( ∆,  𝐷𝑇ℎ′(𝑠𝑖′))
 

𝐶𝑅𝐶2 =
𝑈𝑁𝐶(∆,  𝐷𝑇′(𝑠𝑖′))

 𝐴𝑟𝑒𝑎( ∆,  𝐷𝑇′(𝑠𝑖′))
 

𝐶𝑅𝐶3 =
𝑈𝑁𝐶(∆,  𝐷𝑇′(𝑠𝑖′))

𝑈𝑁𝐶(∆,  𝐷𝑇ℎ′(𝑠𝑖′))
 

(16) 
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𝐶𝑅𝐶4 =
𝑈𝑁𝐶(∆,  𝐷𝑇ℎ′(𝑠𝑖′))

 𝐴𝑟𝑒𝑎( ∆,  𝐷𝑇ℎ′(𝑠𝑖 ′))
 

Where 𝐴𝑟𝑒𝑎( ∆, 𝐺) refers to the area of triangle ∆ in graph 𝐺. 𝑈𝑁𝐶(∆, 𝐺) refers to the size of the 

uncovered area in ∆ as per (15). Note that if the ratio is not equal to 1 in both categories 1 and 3, then 

there is inaccurate sensing reporting of ∆ sensor nodes. In this case, the actual coverage in the history 

is either underestimated or overestimated.  

The same approach is still valid if more than one sensor is affected in a triangle ∆. Assume 𝑠𝑖 

and 𝑠𝑗 are two affected sensors and neighbors in 𝐷𝑇ℎ′(𝑠𝑖′). There will be some redundant calcula-

tions because 𝐷𝑇ℎ′(𝑠𝑖 ′) and 𝐷𝑇ℎ′(𝑠𝑗′) will have a triangle in common. Consequently, the 𝐼𝑇𝐶(∆) 

will be calculated twice as both 𝑠𝑖 and 𝑠𝑗 are affected. Therefore, the value of the whole 𝐼𝑇𝐶 should 

be adjusted accordingly in both 𝐷𝑇′(𝑠𝑖 ′)  and 𝐷𝑇ℎ′(𝑠𝑖′). 

The coverage ratio in (16) is straightforward. We apply it to the intra-triangle to identify the 

different types of coverage holes posed by anchor misplacement and calculate the percentage of each 

one. We later utilize our resilience framework to identify the misplaced anchors and find the set of 

affected sensor nodes. 

C. Calculating Lower and Upper Bounds of Coverage Holes 

The intra-triangle coverage holes (or uncovered areas) have different shapes; however, we 

model the upper and lower bounds of each uncovered area in a triangle ∆ as circles. The lower bound 

circle is a circle centered in the centroid of the polygon that strictly contains the uncovered area in ∆; 

it is the largest circle that can be inscribed inside the uncovered area. On the other hand, the upper 

bound circle is the minimum circle that circumscribes the uncovered area of ∆. To compute lower and 

upper bounds for the uncovered area in ∆, we apply the following procedure: first, we find a set 𝑈  

of intersection points, namely the intersection points between angular sectors and the edges of ∆, and 

the intersection points of the angular sectors themselves. Let 𝑠𝑖 and 𝑠𝑗 be two vertices in ∆. If 𝑅𝑠𝑖
+

𝑅𝑠𝑗
> 𝑑(𝑠𝑖 , 𝑠𝑗) we exclude the intersection points between the circles centered in 𝑠𝑖 and 𝑠𝑗 and the 

edge 𝑠𝑖𝑠𝑗 . Let 𝑈′ be the new set of intersection points. The points of 𝑈′ form a polygon 𝑃. Our goal 

is to find the minimum/maximum circle that circumscribes/inscribed-in 𝑃. To achieve this, we need 

to determine the centroid c of this polygon. The coordinates of the centroid are given by the following 

formula [23]: 

𝑐𝑥 =  
1

6𝐴
∑ (𝑥𝑖 + 𝑥𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

|𝑈′|−1

𝑖=0

  (17) 

𝑐𝑦 =  
1

6𝐴
∑ (𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

|𝑈′|−1

𝑖=0

 (18) 

where A is the area and is given by 𝐴 = 1

2
 ∑ (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

|𝑈′|−1

𝑖=0
, and (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) are 

two consecutive points on 𝑃's hull. Let 𝑅𝑙 = 𝑀𝑖𝑛𝑝𝑖∈𝑈′  𝑑(𝑐, 𝑝𝑖)). The circle centered in c with radius 

𝑅𝑙 represents a lower bound of the uncovered area in ∆. Likewise, let 𝑅𝑢 = 𝑀𝑎𝑥𝑝𝑖∈𝑈′  𝑑(𝑐, 𝑝𝑖)). Then 

𝜋𝑅𝑢
2 represents the size of the minimum circle that circumscribes 𝑃 and, hence, considers as an 

upper bound of the uncovered area in ∆. Therefore, we have the following bounding formula: 

𝜋𝑅𝑙
2 < 𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝐴𝑟𝑒𝑎 < 𝜋𝑅𝑢

2 where both bounding circles are centered at the centroid of a 

polygon 𝑃 that contains the uncovered area. It should be noted here that the use of centroid c instead 

of the circumcenter of ∆ is more effective for the following reasons: 1) the circumcenter of ∆ does not 

always belong to the uncovered area due to the variation of IoT sensor ranges. 2) The circumcenter 

could be outside ∆ which makes the calculation of intra-triangle coverage irrelevant. 3) The bounds 

using the centroid c are tighter as it represents the uncovered area more fairly. Next, we present the 

algorithm that takes a triangle as an input and provides a uniform upper and lower bound for the 

uncovered areas. 

The steps of our above analysis to compute lower and upper bounds are summarized in the 

following algorithm.  
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Algorithm 3 [1]: Lower and Upper Bounds (LUB) 

Input: triangle ∆ 

Output: c, lowerBound, upperBound 

If HasCoverageHole(∆) then 

P    = findPolygon(∆); 

c    =  findCentroid(P); 

Rl  = findRadiusLowerBound(P, c); 

Ru = findRadiusUpperBound(P, c); 

return c, lowerBound, upperBound; 

End if 

LUB algorithm assumes that all sensors have been localized, and their locations are known. 

While DT is being constructed, each sensor recognizes its neighbors in each triangle ∆ in DT. LUB 

algorithm first checks the existence of a coverage hole by calling  HasCoverageHole(∆) function which 

simply checks ∆ against the coverage criteria  in Lemma 2. If a coverage hole is discovered, the func-

tion findPolygon(∆) is invoked to find the polygon that strictly circumscribed the uncovered region as 

discussed in this section. findCentroid(𝑃) will apply the equations (17) and (18) to find the centroid of 

𝑃. The remaining is to call findRaduisLowerBound(𝑃, c) to calculate the shortest distance between 𝑃's 

vertices and c which is the radius of the lower bound. Similarly, findRaduisUpperBound(𝑃, c) returns 

the longest distance between 𝑃's vertices and c. 

7. resiliency approach for misplaced anchors 

In this article, we propose a distributed scheme that takes input from affected sensors during the 

validation processes, and outputs the set of misplaced anchors. 

A. The Proposed Scheme 

The proposed scheme aims to determine the localization's validity and, consequently, the sens-

ing coverage's validity by identifying the misplaced anchors through their affected sensors. 

The scheme consists of two phases: Phase 1 (identify affected sensors) in this phase, each node 

measures its distance to all other nodes in two ways: a) Euclidean distance and b) using the received 

signal strength (RSS). Let 𝑑s𝑖,s𝑗
 and 𝑑s𝑖,s𝑗

′ be the distance between nodes s𝑖 and s𝑗 using Euclidean 

distance and RSS, respectively. 

We define 𝑥(𝑖) to be the distortion vector between 𝑑s𝑖,s𝑗
, and 𝑑s𝑖,s𝑗

′ for node s𝑖 and all other 

nodes s𝑗 as follows. 

𝑥(𝑖) = ‖𝑑s𝑖,s𝑗
− 𝑑s𝑖,s𝑗

′‖
2

   (19) 

Where 𝑗 ∈ [1, 𝑛], 𝑗 ≠ 𝑖. Clearly, the number of vectors is a multiple of the number of sensor nodes. 

Calculating all of them to get the average of the two-way distances, i.e.,  𝑑s𝑖,s𝑗
and 𝑑s𝑗,s𝑖

 and the same 

for 𝑑s𝑖,s𝑗
′ and 𝑑s𝑗,s𝑖

′ adds up to the overhead computation and consequently increases the latency of 

detecting misplaced anchors. To this end, we explore two cases: 1) calculate only one vector, from 

one sensor to all other sensors. For more efficiency, we opt to choose a sensor node close to the center 

of the target field. 2) calculate several vectors and get the average of two-way distances. Regardless 

of the cases used, phase 1 will output one vector. We sort this vector in descending order from high 

to low distortions. In either case, we use the K-means algorithm with K=2 clusters to classify the 

elements of the vector into two classes: relatively accurate and erroneous sensors localized by mis-

placed anchors. 

Phase 2 (identifying misplaced anchors) this phase aims to use the result of the K-means in the 

previous phase to identify the set of misplaced anchors. Out of the two generated classes, the one 

with a high mean localization error value indicates the affected sensors. Consequently, the misplaced 

anchors are among those which have localized the affected sensors. To find the misplaced anchors 

set, let 𝐵𝐿(s𝑖) = {𝑏𝑘 , 𝑘 = {1,2,3}} be a set of anchors that participated in localizing sensor node s𝑖 us-

ing the trilateration method. Further, let 𝑆𝑎 ⊆ 𝑆 be a set of relatively accurate locations of sensor 
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nodes. We define benign anchors, 𝐵𝑏 , as a union set of anchor nodes that participated in localizing 

all relatively accurate sensors as follows. 

𝐵𝑏 =  ⋃ 𝐵𝐿(s𝑖)

s𝑖∈𝑆𝑎

    

(20) 
Consequently, the misplaced anchors, 𝐵𝑚, belong to the complement set as follows. 𝐵𝑚 = 𝐵\𝐵𝑏 . 

Note that 𝐵𝑚  and 𝐵𝑏 .  need not be mutually exclusive. Indeed, misplaced anchors may participate in 

localizing some sensors, yet, K-means considers them to have relatively accurate locations. Next, we 

enhance the detection scheme to address this point. 

B. Enhanced Detection Scheme 

The previously proposed scheme could result in high false alarms of misplaced anchors. To mit-

igate this, we propose the following refinement procedure. First, we sort the class/group of relatively 

accurate sensors in descending order of localization error. Second, we test the sensors of the sorted 

group one by one. Let s𝑖 be the sensor with the highest localization error among other sensors in the 

sorted class. Further, let 𝑏1, 𝑏2, and 𝑏3 are the anchors that participated in localizing s𝑖 . We test 

these three anchors against the following criteria: if any of these anchors is closer to the centroid of 

the affected group rather than the centroid of the relatively accurate sensors group, and its distortion 

from a benign anchor is greater than a threshold, then this anchor is switched to be 𝐵𝑚. A threshold 

depends on historical data which considers SNR. To test an anchor, 𝑏𝑗, we adopt a similar approach 

to our previous discussion of distortion between the Euclidean and RSS-based distances as follows. 

‖𝑑𝑏𝑖,𝑏𝑗
− 𝑑𝑏𝑖,𝑏𝑗

′‖
2

≥ 𝜀  (21) 

where 𝑏𝑖  is a benign anchor. We repeat the second step as long as there is at least one anchor partic-

ipating in localizing sensor s𝑖 that satisfies the given criteria. To ensure the effectiveness of this pro-

cedure, we chose 𝑏𝑖 out of benign anchors that contributed to localizing sensors of the highest accu-

racy. 

8. numerical results and discussion 

A. Simulation Results 

In this section, we validate our resiliency approach and show its effectiveness. We conduct our 

experiments using a homogeneous and a heterogeneous network and apply the proposed framework 

to determine their network reliability. All the simulation results are obtained by repeating the exper-

iments for a certain number of times and averaging the corresponding results. This number is related 

to the result convergence and variance. For example, if the results converge and come to a stable state 

with minimum variance after x number of runs, then we adopt x (or higher than x) as a reasonable 

number of runs. 

B. Validation 

We first show the validation of our approach in identifying the affected sensors and then mis-

placed anchors. 

We intend to classify the two groups of sensors using K-means clustering. We use the experi-

mental setting depicted in Fig. 2. Running phase 1 of our approach results in Fig. 15, showing the 

groups of affected and relatively non-affected sensors with their centroids. The majority of affected 

sensors are correctly included in group 1. 
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Figure 15. An illustration of K-means application on sensors, generating two ployhsape re-

gions/groups of sensors: affected and relatively non-affected by anchor misplacement. 

We continue to validate our approach by running the enhanced version of phase 2. We calcu-

lated localization errors of the two anchor classes for different trials (1, 2, 7, 11, 16, 20, 27, 40). We 

found that the result converges after 16 trials. Measuring the variance of localization errors suggests 

that 20 iterations are enough to provide convergent and stable results. Thus, each experiment is re-

peated 20 times for any given network topology.  We take a random sample of 15 observations of 

averaged localization error values generated by the two anchor groups per iteration. To analyze the 

statistical significance of the difference between the localization errors generated by the two anchor 

classes, we adopt the following hypotheses: 

• Null hypothesis 𝐻0: 𝜇 = 0, which means the true difference of means for 

the corresponding anchor groups is equal to zero. 

• Alternative hypothesis 𝐻𝑎: 𝜇 ≠ 0.   
We use a 95% confidence interval which is equivalent to a significance level of α=0.05. We reject 

the null hypothesis if the p-value ≤ α. Rejecting the null hypothesis means that the difference between 

the localization error caused by these two anchor classes is statistically significant, which means that 

the test favors the alternative hypothesis. In this case, the zero value is not contained in the confidence 

interval. 

The p-value of 1.9551e-04 suggests rejection of the null hypothesis, meaning the means of the 

two groups are significantly different. The lower and upper limits of the confidence intervals of the 

difference of means, [-4.505, -3.4446], confirmed this result. 

The results show our approach's validation in identifying misplaced anchors with 95% confi-

dence. 

C. Verify the Effectiveness 

In this section, we show the robustness of our framework against unreliable nodes. We verify 

the effectiveness of our framework by mitigating the impact of misplaced anchors on IoT nodes and 

lift their burden by excluding them as much as possible from the localization process.  

We use NS-3 to simulate different scenarios of the conducted experiments where random non-

uniform IoT sensors are deployed in the target field. These experiments intend to show the effective-

ness of our framework. We also use the implementation of a distributed algorithm in [20] to construct 

the DT that represents the target sensing field. The simulation settings are summarized in Table I. 

TABLE I. SIMULATION SETTINGS 

Parameter Range 
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Target Field Area 300 × 300 𝑚2  (divided into 

2x2 grid) 

Number of sensor nodes (per 

cell) 

125  

Number of anchor nodes 

(per cell) 

30 

Transmission range 50-100 𝑚 

Sensing range 5 𝑚  (with a variance of 

2 𝑚) 

Anchor displacement value  7 𝑚  (with a variance of 

2 𝑚) 

SNR 30 db 

 

1). The Effectiveness of Localization and Perceived Coverage 

This experiment aims to show the impact on RMSD and perceived coverage holes as the pro-

posed framework detects and excludes more misplaced anchors.  

We use the Root Mean Square Distance (RMSD) to measure the localization error in the network. 

𝑅𝑀𝑆𝐷 = √
∑ ((𝑥𝑗 − 𝑥𝑗′)

2
+ (𝑦𝑗 − 𝑦𝑗′)

2
)𝑛

𝑗=1

𝑛
  (22) 

where (𝑥𝑗 − 𝑥𝑗′)and (𝑦𝑗 − 𝑦𝑗′) respectively are the actual and estimated positions of sensor node 𝑗 

and 𝑛 is the total number of sensor nodes. RMSD is widely used in the literature for the comparison 

of the estimation error in different localization algorithms. 

Fig. 16 shows the effectiveness of our proposed framework in decreasing both localization 

RMSD and the percentage of perceived coverage holes as the number of anchor nodes detected and 

excluded by our framework increases. The perceived lack of coverage has a sharper steep than the 

RMSD due to the fact that it is directly associated with the number of misplaced anchors in the net-

work, while RMSD is more related to the quality of sensor localization, which is related to multiple 

factors such as the existence of enough number of reliable anchor nodes per sensor and the impact of 

SNR to the quality of distance measurements. 

 

Figure 16. The behavior of RMSD and perceived coverage as the number of anchors detected and 

excluded increase. 

2). The Effectiveness of Perceived Coverage Holes for Different Sensing Range Values 
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To show the effectiveness of our approach for a heterogeneous network with different sensing 

range values, we simulate the following scenarios: given 40 objects in terrain, such as gas pipes. The 

sensor nodes have been deployed to fully monitor gas leakage for all pipes. We assume anchor-based 

localization is used to localize sensors. If anchor misplacement is incurred, we are interested in show-

ing the impact of our proposed scheme on the percentage of miss-reported objects. To what extent 

does our framework help to overcome the false perceived coverage as more misplaced anchors are 

detected and excluded from the network services? The results are shown in Error! Reference source 

not found.17.   

 

Figure 17. Number of misplaced anchors vs. percentage of miss-reported objects. 

The 95% confidence interval shows that the percentage of miss-report objects of the three curves 

becomes statistically insignificant as more misplaced anchor nodes are detected and excluded. This 

is because regardless of the sensing range, the more misplaced anchors eliminated, the better the 

sensing reports' validity and, consequently, the fewer miss-reported objects. Our results suggest that 

using fewer sensing nodes with broader sensing ranges provides faster healing from anchors mis-

placement. In other words, the proposed framework significantly reduces miss-reported objects as 

the sensing range increases. 

3). The Effectiveness of Perceived Coverage Holes for Different SNR Values 

In these experiments, we demonstrate the performance effectiveness of our proposed framework 

for SNR values 10, 20, and 30 db. The idea is to assess the impact of anchor misplacement and meas-

urement error on localization accuracy. Fig. 18 shows that our framework is more effective for higher 

SNR. This can be interpreted as follows: as SNR values decrease, measurement error magnitude in-

creases because the signal becomes weaker, reducing the reliability of the localization service. For 

SNR= 10 db, RMSD stays almost constant to the point that excluding more misplaced anchors nodes 

does not reduce the RMSD. Moreover, the 95% confidence interval shows the statistical significance 

of RMSD values for the various SNRs curves. This shows the severity of lower SNR values on sensing 

reliability. 
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Figure 18. Number of misplaced anchors detected and excluded vs. localization RMSD. 

9. Conclusion 

In this paper, we propose a resilience framework to detect anchor misplacement, identify cover-

age holes, and quantify their area. Toward this, we conduct an in-depth computational geometry-

based analysis of the target sensing field under the presence of error components, especially anchor 

misplacement. We utilized Voronoi Diagrams (VD) and Delaunay Triangulation (DT) to cluster the 

sensing field to efficiently assess the lack of coverage. Using VD and DT, we addressed the coverage 

hole problem using a limited number of points in the target sensing field, lowering the computational 

cost and increasing the feasibility of our schemes in the IoT environment. We assessed the intra-tri-

angle coverage to show the existence of new types of coverage holes: actual unreported and perceived 

coverage holes.  

Our experiments showed the validation and effectiveness of the proposed resilience framework 

in improving localization accuracy and sensing coverage, reinforcing the overall IoT-based system 

reliability. Our findings provide solid input for cooperative and overlapped IoT systems to optimize 

resource sharing by either tolerating coverage loss or deploying extra sensors to cover the coverage 

gap.   

Future work includes designing a framework that extends the life expectancy of IoT networks 

by employing cooperative sensing and utilizing the intra-triangle analytics of this study. For example, 

overlapped sensors of multiple network operators can plan an intelligent sleep mode scheduling ac-

cording to the role of each sensor. Mobile sensors can also be used to back up low-energy sensors and 

cover actual unreported sensing holes.   

REFERENCES   

[1] Y. Al Mtawa, H. S. Hassanein, and N. Nasser, “Identifying Bounds on Sensing Coverage Holes in IoT De-

ployments,” in EEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec. 2015. 

[2] A. Mondal, D. Mishra, G. Prasad, and A. Hossain, “Joint Optimization Framework for Minimization of 

Device Energy Consumption in Transmission Rate Constrained UAV-Assisted IoT Network,” IEEE Internet 

Things J., vol. 9, no. 12, pp. 9591–9607, Jun. 2022. 

[3] S. M. Raza, J. Jeong, M. Kim, B. Kang, and H. Choo, “Empirical Performance and Energy Consumption 

Evaluation of Container Solutions on Resource Constrained IoT Gateways,” Sensors 2021, Vol. 21, Page 1378, 

vol. 21, no. 4, p. 1378, Feb. 2021. 

[4] O. Martínez Rosabal, O. L. A. López, D. E. Pérez, M. Shehab, H. Hilleshein, and H. Alves, “Minimization 

of the Worst Case Average Energy Consumption in UAV-Assisted IoT Networks,” IEEE Internet Things J., 

vol. 9, no. 17, pp. 15827–15838, Sep. 2022. 

[5] K. Xu, G. Takahara, and H. Hassanein, “On the robustness of grid-based deployment in wireless sensor 

networks,” IWCMC 2006 - Proc. 2006 Int. Wirel. Commun. Mob. Comput. Conf., vol. 2006, pp. 1183–1188, 2006. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1239.v1

https://doi.org/10.20944/preprints202306.1239.v1


 

 

[6] A. Bottino and A. Laurentini, “A nearly optimal algorithm for covering the interior of an Art Gallery,” 

Pattern Recognit., vol. 44, no. 5, pp. 1048–1056, May 2011. 

[7] R. Kumar, T. Amgoth, and D. K. Sah, “Deployment of Sensor Nodes for Connectivity Restoration and Cov-

erage Maximization in WSNs,” 2021 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2021, 

pp. 209–213, Mar. 2021. 

[8] D. L. Shanthi, “Maximization of Disjoint K-cover Using Computation Intelligence to Improve WSN Life-

time,” Lect. Notes Networks Syst., vol. 458, pp. 223–238, 2022. 

[9] H. Touati, A. Aboud, and B. Hnich, “Named Data Networking-based communication model for Internet 

of Things using energy aware forwarding strategy and smart sleep mode,” Concurr. Comput. Pract. Exp., 

vol. 34, no. 3, p. e6584, Feb. 2022. 

[10] S. C. Wang, H. C. W. Hsiao, C. C. Lin, and H. H. Chin, “Multi-Objective Wireless Sensor Network Deploy-

ment Problem with Cooperative Distance-Based Sensing Coverage,” Mob. Networks Appl. 2021 271, vol. 27, 

no. 1, pp. 3–14, Jan. 2021. 

[11] Y. Al Mtawa, N. Nasser, and H. S. Hassanein, “Mitigating anchor misplacement errors in wireless sensor 

networks,” in 11th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 

569–575, Oct. 2015. 

[12] F. B. Sorbelli, S. K. Das, C. M. Pinotti, S. Silvestri, and S. Sil, “Precise Localization in Sparse Sensor Networks 

using a Drone with Directional Antennas,” Proc. 19th Int. Conf. Distrib. Comput. Netw., 2018. 

[13] A. Maheshwari and N. Chand, “A Survey on Wireless Sensor Networks Coverage Problems,” Lect. Notes 

Networks Syst., vol. 46, pp. 153–164, 2019. 

[14] M. Farsi, M. A. Elhosseini, M. Badawy, H. Arafat Ali, and H. Zain Eldin, “Deployment techniques in wire-

less sensor networks, coverage and connectivity: A survey,” IEEE Access, vol. 7, pp. 28940–28954, 2019. 

[15] S. K. Sowe, T. Kimata, M. Dong, and K. Zettsu, “Managing heterogeneous sensor data on a big data plat-

form: IoT services for data-intensive science,” Proc. - IEEE 38th Annu. Int. Comput. Softw. Appl. Conf. Work. 

COMPSACW 2014, pp. 295–300, Sep. 2014. 

[16] V. V. Shakhov and I. Koo, “Experiment Design for Parameter Estimation in Probabilistic Sensing Models,” 

IEEE Sens. J., vol. 17, no. 24, pp. 8431–8437, Dec. 2017. 

[17] Y. Al Mtawa, H. S. Hassanein, and N. Nasser, “Measuring the validity of sensing coverage in the presence 

of anchor misplacement,” in IEEE International Conference on Communications (ICC), pp. 1–6, Jul. 2017. 

[18] G. Takahara, K. Xu, and H. Hassanein, “Efficient coverage planning for grid-based wireless sensor net-

works,” IEEE Int. Conf. Commun., pp. 3522–3526, 2007. 

[19] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, “Delaunay Triangulations,” in Computational 

Geometry, Springer, Berlin, Heidelberg, 2008, pp. 191–218. 

[20] “Delaunay Triangulation C++ Library for 2D and 2.5D point clouds.” https://www.geom.at/prod-

ucts/fade2d/ (accessed Aug. 14, 2022). 

[21] Y. Al-Mtawa and M. Jazzer, “On Independence Problem of P2-Graph,” Int. J. Comput. Sci. Netw. Secur., vol. 

9, no. 1, p. 205, 2009. 

[22] Y. Al Mtawa, “Histories of Iterated Path Graphs,” J. Comb. Inf. \& Syst. Sci., vol. 32, pp. 175–188, 2007. 

[23] P. Bourke, “‘Calculating the area and centroid of a polygon’ - Google Scholar,” 1988. 

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, “Voronoi Diagrams,” in Computational Geometry, 

Springer, Berlin, Heidelberg, 2008, pp. 147–171. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1239.v1

https://doi.org/10.20944/preprints202306.1239.v1

