Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 June 2023 d0i:10.20944/preprints202306.1239.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Resilient Localization and Coverage in the Internet of

Things*

Yaser Al Mtawal, Hossam S. Hassanein 2 and Nidal Nasser 3

1 Applied Computer Science, The University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada, Email:
yalmtawa@uwinnipeg.ca

2 School of Computing, Queen's University, Kingston, Ontario K7L 3N6, Canada, Email: hos-
sam@cs.queensu.ca

3 College of Engineering, Alfaisal University, Riyadh, 11533, Saudi Arabia, Email: nnasser@alfaisal.edu

* An earlier version of this work has appeared in [1].

Abstract: The proliferation of the Internet of Things (IoT) has revolutionized traditional services,
giving rise to emerging smart infrastructures by connecting the physical and digital worlds. Sensory
data is essential in IoT-based systems for providing context-aware and location-based services.
Hence, the accurate localization of IoT devices is paramount. Anchor misplacement can signifi-
cantly affect location information and coverage services in IoT. We study the effect of anchor mis-
placement in typical IoT settings where sensors are randomly deployed, can be mobile and may
belong to multiple providers. We identify sensing coverage holes formed by anchor misplacement
and analyze their presence and impact. To mitigate the impact of anchor misplacement on network
reliability, we propose a framework to identify the affected sensor nodes and then identify and re-
move misplaced anchor nodes. The validity of our approach is verified, and its effectiveness is
demonstrated by several experiments with different network topologies and parameters. Our re-
sults are promising and can be utilized in multiple coverage applications, such as smart agriculture
systems and habitat monitoring, regardless of the sensors or deployment types. It also sheds light

on best practices and methods for a reliable design of IoT-based systems.

Keywords: Wireless Sensor Network; Internet of Things (IoT); IoT Deployment; Localization; Sens-
ing Coverage; Reliable Services; Intra-triangle Coverage; Delaunay Triangulation

1. Introduction

The Internet of Things (IoT) applications span many domains, from smart cities to intelligent
transportation, homes, and healthcare. The realization of the IoT requires delivering reliable services.
Sensors' physical location and sensing coverage are two primary services of IoT applications.

A. Localization in IoT Networks

The IoT constructs a large-scale network that is comprised of different sensing-enabled nodes.
Wireless sensor networks (WSNs) are considered one of the leading IoT enablers. A WSN may consist
of thousands of low-cost and low-power sensor nodes. There are many applications for WSNs such
as military surveillance, wildlife tracking, and environment monitoring. Determining sensors' phys-
ical location is vital for reliable IoT-based services. Localization of sensors is the basis of data collec-
tion and route planning to deliver data to the target station. For example, autonomous vehicles would
have server safety issues without an accurate location as crashes increase, and inaccurate reports from
sensors embedded in wildfire monitoring systems would deem the service poor. Finding the location
of a sensor can be classified as anchor-based or anchor-free localizations. Anchors are nodes with
more capabilities than sensors, as they know their actual location. That is why anchor nodes can be
used as references to locate the unknown locations of sensors.
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On the other hand, anchor-free localization uses other tools such as relative positioning, map-
ping, and embedded GPS client. In this paper, we localize IoT sensors using the anchor-based
method. In this context, we aim to use time of arrival (ToA) or time difference of arrival (TDoA) with
the path loss model of signals measured at the receiving sensor.

B. Sensing Coverage in IoT Networks

A point in a sensing field is covered if it is within sensing proximity of one of the sensor nodes.
That is if the Euclidian distance between this point and any sensor node is less than the sensing range.
As a result, the sensing field could have full coverage or partial coverage. However, the partial cov-
erage can be mitigated using cooperative sensor networks— deployed sensor nodes could belong to
several owners. For example, consider heterogeneous temperature sensors deployed in a region and
belong to three different sensing providers, sensing areas A, B, and C, as shown in Fig. 1. These col-
lective sensors can be viewed as shared resources. Their cooperation can provide a better quality of
service (QoS). The use of such shared resources can be further enhanced with participatory sensors
such as smartphones.

Sensing Area C

Figure 1. Multi-hop cooperative sensing networks.

C. Deployment Methods in IoT Networks

The deployment strategies of sensor and anchor nodes vary according to the application, the
target area size, the availability of information about the density and sensor locations, and whether
or not the target region is accessible. In general, there are two deployment strategies: deterministic
and random.

1). Deterministic Deployment

This deployment type depends on predefined parameters such as the shape of the network, the
sensor's location, the distance between sensors, and the density. The deterministic deployment of
sensors allows more control over their constrained resources. Most schemes dealing with determin-
istic deployment choose energy consumption as the most important metric to optimize [2]-[4]. An
example of this deployment type is grid-based deployment: hexagon, square, and equilateral triangle.
Equilateral triangle grid-based deployment guarantees complete coverage and requires a minimum
number of sensing nodes [5]. The Art Gallery problem is a traditional problem of this type of deploy-
ment [6]. In this problem, one seeks to place a minimum number of sensor cameras such that every
point in the gallery is monitored by at least one sensor camera.

2). Random Deployment

Unlike deterministic deployment, random deployment has no available information about the
network's shape or the sensors' location. This deployment type is ideal for a large-scale network such
as harsh and inaccessible areas like forests, mountains, and dangerous areas, viz., leaking chemical
plants and nuclear plants. However, random deployment does not guarantee full sensing coverage
[7]. Keeping all sensors active depletes their energy faster, consequently disconnecting the network.
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Thus, sensing reports may not be collected from some areas in the network. Therefore, a sleep mode
is vital in this network to prolong its lifespan [8], [9].

D. 1-hop vs. Multihop Communications

In wireless communications, a longer transmission distance requires higher transmission power.
As a result, sensors with a low power supply use a short transmission range to save energy. Conse-
quently, the aggregated sensing data is sent from a source node to a destination via multi-hops of
intermediate nodes or relays. On the other hand, sensor nodes with a continuous power supply can
communicate with a sink node via 1-hop communication (i.e., peer-to-peer communication).

E. The Relationship Between Localization and Sensing Coverage

Determining the existence of coverage holes and delineating them is a primary challenge in the
IoT setting. Coverage holes occur when there is partial coverage in the sensing field. IoT applica-
tions vary in their sensing coverage requirements. For example, some applications require single-
sensing coverage, meaning at least one sensor should monitor any point in the target region. In con-
trast, other applications require high coverage and, hence, require “k” sensors to monitor each point
in the region [10].

On the other hand, there are several ways to estimate a sensor's location. Unfortunately, GPS is
not usually one of them due to power limitations and to keep the costs of sensors low. Alternatives
are anchor-based and anchor-free approaches. The former approach is widely used due to its accu-
racy. While the latter approach provides coarse-grain localization accuracy. In this paper, we adopt
the anchor-based method.

The quality of sensing coverage is directly related to the validity of sensing reports aggregated
at the sink node. However, these reports are affected by multiple error components, such as meas-
urement error and anchor misplacement. Error components impact the estimation of the sensors' lo-
cation. Hence, sensor nodes stamp inaccurate locations to their aggregated reports, reducing the qual-
ity of sensing service.

F. The Impact of Anchor Misplacement

Anchor misplacement refers to the problem where the anchor node is in a specific position but
thinks it is in a different position [11]. For example, an anchor node B falsely perceives that it is in a
particular position while it is in a different one. Many factors cause this problem, such as cyberattacks,
soil erosion, a possible anchor displacement due to animal/human activities, or it could be mere hu-
man error. Localizing sensor nodes using misplaced/inaccurate anchor nodes leads to localization
errors of sensor nodes [11], [12]. Similarly, coverage quality would be affected as erroneously esti-
mated sensor locations contribute to invalid sensing reports. Thus, the existence of anchor misplace-
ment makes the sensing coverage worse. For example, anchor misplacement could cause a smart
agriculture system to falsely irrigate the perceived dry regions or spray pesticides on healthy plants.
Figure 2 shows the impact of a misplaced anchor on localizing sensor nodes in a 200 X 200 target
field that contains 80 sensor nodes and 20 anchor nodes. The actual location of this anchor is
(13.1,115), and its perceived/declared location is (6.1,108). The figure shows the affected sensors and
their inaccurate locations.
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Figure 2. The impact of anchor misplacement on localizing sensor nodes.

G. Motivation

Cooperative sensing provides advantages to WSNs such as increasing sensing reliability and
improving sensing coverage [12]. However, existing research on sensing coverage usually assumes a
correct anchor node position. That is, literature research overlooked the anchor misplacement prob-
lem that impacts both localization and sensing coverage. Figure 3 shows the importance of mitigating
the impact of the anchor misplacement problem on localization accuracy and, consequently, on the
sensing coverage: the more misplaced anchor nodes, the more degradation in the reliability of IoT
system services.
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Figure 3. Anchor misplacement influence on network reliability.

Furthermore, related research assumes sensors are homogeneous and belong to only one sensing
service provider. Relevant research addresses deterministic sensor placement and deployment plan-
ning to achieve higher coverage and extend the network lifetime [13], [14]. Whereas in this work,
sensors can be heterogeneous, randomly deployed, and belong to different sensing service providers.

In the IoT security domain, the problem of anchor misplacement is more hazardous. For in-
stance, a hacker could target anchor nodes and manipulate their locations which generates inaccuracy
in the collected data and deems it unreliable. This problem becomes life-threatening when a soft-
ware/hardware error or a malicious attack targets autonomous vehicular sensor nodes such as LIDAR
(Light Detection and Ranging). The LiDAR technology is supposed to provide accurate geospatial
data promptly to support decision-making. Thus, malicious altering of LiDAR data, such as posi-
tioning coordinates or injecting errors into distances to the surrounding vehicles or objects leads to
serious safety issues.
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The above discussion raises the following primary research questions: Q1: How does anchor
misplacement affect the tradeoff between detection latency and service reliability? For a fixed number
of misplaced anchors carrying out sensor localization, detecting misplaced anchors becomes more
effective when more non-misplaced anchor nodes participate in validating the localization results of
the misplaced ones. However, too many validators increase communication overhead, consequently
increasing the latency to complete the detection phase. Q2: How does anchor misplacement affect the
coverage of sensory data aggregation? Q3: Can we identify new types of coverage holes and calculate
their area?

In this study, we aim to answer the above research questions by designing a distributed, fast,
and reliable scheme to detect misplaced anchors in WSNs. We aim to minimize anchor validators so
that reliability is high with low latency. Furthermore, we analyze the impact of anchor misplacement
on sensory coverage is instrumental in cooperative WSNs.

H. Contributions

The contributions of our work can be summarized as follows:

1. We propose an effective framework to detect anchor misplacement. This requires
minimizing the participating anchor validators so that the reliability of the service
provided is high and the latency to converge is minimal.

2. We demonstrate and analyze the existence of the anchor misplacement problem and
its impact on IoT reliability. We show that localizing sensors using misplaced an-
chors results in inaccurate positioning, affecting the integrity of sensory data.

3. We provide an insightful and detailed analytical study of the impact of anchor mis-
placement on sensor localization and sensing coverage.

4. We propose schemes to identify coverage holes caused by anchor misplacement, cal-
culate their area size, and find upper and lower bounds for these uncovered areas.
We utilize Delaunay Triangulation (DT) to partition the target sensing region into
equilateral triangles. Since intra-triangle coverage holes are not uniform, our goal is
to locally detect each hole and specify its area's upper and lower bounds. Our proce-
dure to assess Intra-triangle Coverage (ITC) is distributed and requires only each
triangle's vertices to be involved in the calculation. Thus, the ITC procedure is scala-
ble and efficient in terms of power consumption.

5. We demonstrate the validity and effectiveness of our proposed approach under var-
ious settings. In addition, we show that our approach offers higher localization accu-
racy and smaller perceived uncovered areas.

To the best of our knowledge, this is the only research investigating IoT sensing coverage under
anchor misplacement by locally identifying new coverage holes and quantifying their area.

The organization of the rest of this paper is as follows. Section II overviews preliminary defini-
tions and models of sensing coverage using WSNs and different types of sensor deployment in WSNSs.
Section III presents the problem formulation and assumptions of our research. Preliminarily results
using Voronoi Diagram (VD) and DT toward efficient coverage will be addressed in Section IV. Sec-
tion V is devoted to studying ITC in detail. Section VI presents the dynamics of anchor misplacement
on sensing coverage and provides an algorithm to calculate the lower and upper bounds of sensing
coverage holes. A resiliency framework to detect and mitigate the impact of misplaced anchors will
be provided in Section VII. Section VIII presents experimental results to validate our proposed frame-
work and show its effectiveness. Section IX concludes the paper and discusses future research direc-
tions.

2. preliminaries and System Model

Sensing coverage measures to what extent the sensing reports reflect the actual physical sur-
roundings in the target sensing field. Thus, without proper coverage, sensing services may be deemed
unreliable or even obsolete.
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TABLE I. NOTATIONS AND ACRONYMS

Notation Description
G(V_E\ A network gravh G.

S Set of sensor nodes.

B Set of anchor nodes (B, U B.,,,).

14 Set of sensor and anchor nodes (S U B).

E Set of links/edges.

n |S|, the number of sensor nodes.

m IBI, the number of anchor nodes.

B.. Set of benign anchor nodes (i.e., not misplaced).
B.. Set of misplaced anchor nodes

DT Delaunay triangulation.

VD Voronoi diagram.

d,p Euclidean distance between node a and node/point b.
da,b,

The distance between node a and node b measured via received signal strength (RSS) method.

A sensornodeinasensingfield §, 1 < i < n
si A sensing range of sensor node ;.

A. Sensing Coverage Formulation

Sensing coverage holes are one of the main reasons that degrade the quality of sensing service.

Coverage holes exist when any sensing node does not cover some points in the sensing field. The
following is a definition of sensing coverage.

Definition 1: Let S denote the target sensing field and N =
{si:sjisasensingnode;1 < i < n}, where n is the number of sensing nodes.
(x;, y;) refers to the location of s; in a plane which is unknown initially. Each s; has
estimated location ( x;’, ¥;") and a sensing range R,. Let p be a point in S, then p is
covered if there is at least one s; such that p is within a distance of Ry, from s;. In

other words, {EI Sildp,si SRy, 1< i<s n}, where dg), is the Euclidean distance
between a and b.

B. Types of Sensing Coverage Holes Under Anchor Misplacement

Figure 4 shows the full and partial coverage.

‘ (b) Sensing coverage with holes ‘

Figure 4. Full and partial sensing coverage using heterogeneous sensor nodes.

Anchor misplacement poses new types of coverage holes as follows.

do0i:10.20944/preprints202306.1239.v1
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1) The perceived coverage hole. Fig. 5 (a) shows an ideal case of a sensor s; that
has been accurately localized with no impact of anchor misplacement. On the
other hand, Fig. 5 (b) shows the case where s; localized using a misplaced
anchor. This creates a false perceived coverage hole that exists in two triangles
s;'s,'ss" and s;'s3's,’".

Figure 5. A triangulation in the vicinity of sensor node s;. (a) An ideal case is where there are no
coverage holes. (b) A perceived coverage hole due to anchor misplacement.

2) The hidden unreported actual coverage hole. Error! Reference source not
found.6 (a) shows the existence of actual coverage holes in triangles s;5¢s;
and 5;575;. On the other hand, Fig. 6 (b) shows that anchor misplacement
hides these holes by inaccurate localization of sensor s;.

(a) (b)

Figure 6. An actual unreported coverage hole can be identified by investigating the triangles in the
vicinity of the affected sensor s;. (a) Original deployment with actual coverage hole. (b) An actual
coverage hole is masked. Thus unreported.

C. Network and Sensing Models

We adopt cooperative sensing where sensor nodes belong to different providers. A set N of
nodes includes sensor nodes, while a set M includes anchor nodes. Anchor nodes are placed in places
of interest (i.e., known positions) so that they can be used to localize sensors' positions. WSN usually
follows a multi-hop communication to route sensed data from source sensors to a sink node. In co-
operative sensing, a source node could route its collected data to one or more sinks (i.e., data pro-
cessing centers).

The rate at which the sensor s; generates sensed data packets will highly depend on the capa-
bility of s;. However, in WSNs this rate is set low to save the sensors' battery power and avoid con-
gestion in the network.
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Many sensing models can be constructed according to the application requirements and the sur-
rounding environment. However, most of these models agree that sensing fades as distance increases.
The following formula reflects this observation [15].

SN(s;,p) = @ )F 1)
where SN denotes the sensibility between the sensor node s; and point p, and both A and K are pos-
itive constants related to the sensor's technology.

There are two types of sensing models: binary disc and probabilistic.

1). Binary Disc Model

A sensor node is assumed to do 360° monitoring in the binary disc model. Therefore, a point in
the sensing field is covered if it is within the circular sensing range of at least one sensing node.
Otherwise, it is not covered, as given in the following equation.

1 ifds, < Rs,
C = { SiD Si
®) 0 otherwise @
Thus, the binary disc model abstracts the sensing coverage of s; by a disc of radius Ry,as shown in

Fig. 7.

2). Probabilistic Sensing Model

This model depends on the uncertainty of sensor detection. It utilizes the detection probability
when a point p is at a distance larger than the value of uncertainty, but within the range [16].

1 lf dsi.p < Rsi — €
Clp) = 0 if ds,p Z R+ € 3)
e’ ifRg—€<dsp < R, +€

where € is the uncertainty value in the sensor's detection, f = d,, — (Rs, — €), and both a and y
are parameters that measure the probability of detection when p is at a distance greater than € but
still within a range of Rj,. Different values of these parameters reflect the characteristics of different
types of sensors and, consequently, different detection probability scales.

In this research, we adopt the binary disk sensing model for the sake of simplicity. Fig. 7 shows

the disk model representation of the overlapped region in Fig. 1.

Figure 7. Disk model of overlapped IoT sensing providers with coverage holes.

D. Channel Model
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Both anchor and sensor nodes are equipped with wireless transceivers. The transmission power
ofanode s; isdenoted by P, and communicates with other nodes over wireless channels, following
the standard path-loss model. The path loss between nodes s; and s; of Euclidean distance d is
given in the db scale by the following formula.

d
PL(d) = PL(d,) + 107 log (d—) @3)
0
where PL(d,) is the path loss at the reference distance d,, and 1 is the path loss exponent.

To better estimate the distance between the IoT nodes s; ands;, we follow the formulation

adopted in [17] for the variance:

2
2 dSl‘,Sj

Isisi = SNR (4)

where SNR is the signal-to-noise ratio.

E. Communication Model

Two sensor nodes are adjacent/neighbors if they can communicate directly (i.e., have 1-hop wire-
less-link communication). We define NH(s;) to denote the set of sensor nodes in the neighborhood
of s;, thatis, NH(s;) = {Sjldsi,sj < B, and dsi,sj < st ,S; # S;,8; € N}. Each sensor node that re-
ceives this information is able to estimate its distance from the emitting sensor using a signal strength
indicator (SSI). The graph induced by all sensor nodes and wireless links is called a routing graph.
Multiple routing paths could connect the source sensor node to a sink in a routing graph. A routing
path is a sequence of wireless links that starts with a source sensor towards the sink with no node
repetition.

During the validation of anchor misplacement, a node can be either a sender or a receiver of a
message. The message is disseminated either in 1-hop or multi-hop manners. As discussed in subsec-
tion LD, a node needs more power to communicate with other nodes in a single-hop way. Let F ¢ be
the transmission power required by the node s; to communicate with any node in the target field
using a single-hop protocol. Similarly, let P, ,, be the transmission power required by the node s; to
multi-hop to the base station through its neighboring nodes. Clearly, A, = P, m - A node usually
uses a single-hop communication to broadcast messages to all other nodes.

3. Problem description

Anchor misplacement degrades IoT-based system reliability and leads to special types of cover-
age holes due to inaccurate localization of the affected sensor nodes. Let B; be a misplaced anchor
node and let M" S M be the set of misplaced anchor nodes. Similar to the neighborhood of sensor
nodes presented in Section IL.C, the neighborhood, NHg(B;), of the anchor node, B;, is the set of all
anchor nodes that are connected with B; via 1-hop connection.

This paper addresses the impact of anchor misplacement on sensing coverage. Given a random
deployment of sensor nodes and a localization error posed by some misplaced anchors on some sen-
sor nodes, we investigate the new types of coverage holes, detect them, and find the size ratio of each
type of coverage hole to the total area. Furthermore, we are interested in providing upper and lower
bounds on coverage holes in a distributed manner.

Our analysis will utilize powerful structures in computational geometry, such as Voronoi Dia-
gram (VD) and Delaunay Triangulation (DT). Our approach to detecting and bound coverage holes
depends on the locality of each convex polygon of the computational structure that represents the
sensing field.

A. Assumptions

For this research, we make the following assumptions:
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e First, IoT sensors can send/receive packets to/from their neighbors. This assumption
is important to exchange the sensors' information locally to build our computational
structure in a distributed way.

e Thelocations of sensors are calculated priory. This assumption helps to construct the
VD and DT.

¢ No three neighboring sensors are collinear. This will enable the construction of the
Delaunay Triangulation.

e The sensing target field is bounded, which is the case for most IoT applications.

4. computational geometry tools for analyzing Sensing Coverage: auxiliary results

This section provides auxiliary lemmas and corollaries to use later to detect coverage holes and
their ratios. These auxiliary results rely on well-known computational geometry structures: Voronoi
diagram (VD) and Delaunay Triangulation (DT). Next, we investigate the existence of full sensing
coverage of a target field S.

Let p be a point in S. We call s; a dominant sensor of point p if s; has the shortest distance to
p among all other sensors in S. That is

dom(p) = {si ds,p = min (dsj,p' 1<j< n)}, where s;, s; € S.

Let MaxMin(S) = IX:;‘ (ddom(p)_p). Assume s; = dom(p) has the maximum distance to a point p

among all other sensor nodes; if MaxMin(S) < R, then § is fully covered. However, calculating
MaxMin(S) over an infinite number of points p in S is not feasible. To overcome this problem, we
utilize VD to cluster the sensing field S into adjacent convex polygons, called cells and denoted by
Vor(s1), Vor(s2), ....., Vor(ss). Each cell Vor(si) is associated with only one sensor s;, 1 < i < n as
shown in Fig 8.

The perpendicular bisector of the line segment connecting sensors s; and s; splits the plane
into two half-planes. Let h(s;,s;) denote the half-plane that contains s;, while h(s;,s;) denote the
half-plane that contains s;. Note that a point p € h(s;,s;) if and only if dy,, < dsj’p. Thus Vor(s;)
is the intersection of all half-planes generated by the perpendicular bisectors of the line segments of
s; and each sensor in its neiborhood, i.e., NH(s;). Each bisector line segment is called an edge, and
the endpoints of this edge are called vertices. For any point p inVor(s;),1 < i < n, s; the closest
sensor to p. Note that if p is on a common edge of two neighboring polygons, then it is equidistant
from the two sensors associated with these polygons [1].

'gv/\

L \ -
> )

Figure 8. VD partitions sensing field into convex cells.

The following lemma provides the necessary and sufficient conditions to have full coverage in
VD.
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Lemma 1 [1]: Sensing field S is fully covered if and only if all vertices in its corre-
sponding Voronoi diagram have a distance less or equal to R, to atleast one of their

associated sensors, s;.

The coverage problem of sensing field S is now converted, by Lemma 1, from checking a non-
finite set of points in S into testing a finite set' of points representing the cell's VD vertices. This
lowers the computational cost, adding to the feasibility of the solution. If MaxMin(S) < R, is main-
tained, the full coverage of S is guaranteed. Thus, VD is a powerful tool to show the existence of
coverage holes in WSNs. However, VD is unable to quantify the area size of coverage holes. This is
due to the fact that Voronoi polygons have different convex shapes with various numbers of edges
and have a non-unit-circular model. Therefore, VD does not provide much information about the
location and the size of each coverage hole in the field.

Consequently, there is a need for a more efficient structure to control and track the boundary of
each coverage hole. To achieve this, we need to transform each VD cell into basic shapes that allow
us to track closely and locally coverage holes. That is why we triangulate each Voronoi cell, where
the vertices of the generated triangles are the sensors. Two sensors s; and s; form a triangle edge if
Vor(s;) and Vor(s;) have a Voronoi edge e in common. This implies that a triangle edge, s;s;, that
connects s; and s; is perpendicular to e and is bisected by e. This triangulation is called Delaunay
Triangulation (DT) which provides angle-optimal planar triangles such that the circle that circum-
scribes any triangle, with non-collinear sensors, is devoid of any other sensors. Note that the strong
property of convexity in VD is still held in DT as any triangle is a basic convex polygon. Fig. 9 illus-
trates some triangulations of Voronoi cells. Next, we provide a corollary that links the coverage prob-
lem to the edges of DT.

Figure 9. Sample DT of VD: Triangulations incident to sensor s;.

Corollary 1 [1]: If a sensing field is fully covered, then the length of every edge,
s;sj, of triangles is at most R, + RS]..
In Delaunay triangulation of sensing field S, let s; and s; be two triangle vertices that have
sensing ranges Ry, and R, respectively, then the following lemma holds.
Lemma 2: Let A be a Delaunay (acute) triangle with vertices s;, s;, and s, and let
r be a radius of the circle that circumscribes A. A is fully covered if and only if the
following formula holds.

Ry +Ry* + Ry 25— ©)

Proof. Assume A is fully covered. Let c be the center of the circle of radius r that circumscribes
A. c is the furthest point in A to the vertices s;, s;, and s;. The distance from any of the three vertices

I The size of this set is at most 2n-5 [24].
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to cis equal to 7, the circumscribed circle. Each of the sensor vertices will contribute to covering the
intra-triangle of A. This contribution depends on the sensing range of each sensor vertex. Figure 10
illustrates the concept of sensing and intra-triangle coverage.  Since A is covered, then every point
within A including c is covered as well. Since A is fully covered, the sum of contributions of the three
sensors must cover the entire intra-triangle of A. This is formulated as follows:
CNT(sy, A) + CNT(sj,A) + CNT (sy,, A)
)
> A(A)

Where CNT(s;,A) denotes the contribution of sensor s; in covering the area of triangle A. This con-
tribution represents a sector area with a radius Ry,.

CNT(sy, ) = SR,” ®)

V3

For acute triangulation, « =§ . AQ) = Taz,where a is A's side length. Consequently (7) can

be written as follows:

V3
T 2, T 2, Tp 2 2 9
Rs +oRs,” +eRs” 2 (V37) ©)
This completes the proof of the “if” part.

T TR T~
— ~
// ~
- ~
N

Y. Sensing disk of sensor S N

Figure 10. An illustration of sensing coverage using the concept of the intra-triangle contribution of a
sensor node.

To prove the (only if) part, assume the formula (6) is held. Let us prove the full coverage of A by
contradiction. Assume that A is not fully covered. Consequently, there exists a point p in A that is
not covered by any sensor, i.e., d(p, s;) > Ry, where [ € {i,}, k}. This means

CNT(s;,A) + CNT(Sj,A) + CNT (s, A) < A(D) |

In the case of homogeneous sensors, we derive the following corollary about a lower bound for
sensing coverage.

Corollary 2: A field of cooperative sensing that uses homogeneous sensors with a
sensing range Ry, is fully covered if the following formula holds.

3v3
Rsl2 2 E Tz (10)
Fig. 11 shows homogeneous and heterogeneous sensors' lower bound sensing ranges to achieve
full sensing coverage in a triangle A. For example, it is enough for homogeneous sensors to have a
sensing range of at least 0.91r to guarantee a full sensing coverage, as shown in the circle-marked
blue curve. On the other hand, the square root of the left-hand side of the formula (10) should be

lower bound by the red curve in order to achieve full sensing coverage.
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Figure 11. An illustration of sensing ranges lower bounds presented by lemma 2 and corollary 2.

In the next section, we investigate how to detect and define the bounds of each uncovered area
in DT.

5. Intra-triangle coverage: beyond ideality

The coverage problem is reduced by DT to studying the coverage of each individual triangle in
the whole triangulation. According to Lemma 2, if the condition of Lemma 2 is not fulfilled, then
there is an uncovered area in the circumcircle of A. According to the largest angle 6 in A, we differ-
entiate three scenarios of the circumcenter: the circumcenter is inside A if 6 < g ,outside Aif 6 > %,

. . T . . .
or on the longest side opposie to 6 = -. Although DT provides the best possible optimal-angle pla-
nar triangles (angles around 7), in random deployment, it is possible to find the largest angles greater
than % . The following question then arises: What is the minimum density of sensors such that DT is
well-behaved?

Let R,, be the minimum sensing range among all IoT sensors in the target field S. In optimal
cases, all angles of A are equal to g (i.e., equilateral triangle) and the length of the triangle's side is

a= \/§Rsl [18]. Thus the area of the triangle in this case is ¥ Rslz. Furthermore, the number of tri-

angles in any triangulation is 2N-2-f, where N is the number of sensors and f is the number of
which are on the convex hull boundary of field S [19]. Assume the sensing field S has a size L x L; the

2
area size that should be covered by each triangle is Y Therefore,
2N-2-f
L2 3v3
—— <—R.*? (11)
2N-2-p 4 7
This gives
217 N 2+ <N b
R 2 (12)

We assume that the minimum density is achieved. As illustrated in the proof of lemma 2, the
coverage contribution of a sensor s, is the size of the angular sector centered at s; with radius Ry,.
Calculating the contribution of s; in A requires the angle at s; as shown in (8). Since the lengths of
all edges of A are known, we use the cosine formula to extract the angle at each sensor. That is

a =cos™! (7612 b CZ) (13)
2ab
where g, b and c are the lengths of A's sides, and « is the angle opposite to the side of length c.
Therefore, a is plugged into (8) to get CNT(s;,A), where « is the angle at s; in a triangle A. The
following formula gives the intra-triangle coverage of A, denoted by ITC(A). That is
ITC(A) = Z CNT (s, A) = Ay, (14)

SIEV(D)
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where A, = (AL2 +A3+ A2_3) — A3, V(A) is the set of the three vertices of A, and 4; ; is the com-
mon area size contributed by both angular sectors centered, respectively, at vertices s; and s; and
A1 3 is the area covered by all three vertices.

Next, we employ our analysis of intra-triangle coverage to detect coverage holes in a sensing
target field.

6. A Deeper Look at the Effect of Anchor Misplacement on Sensing Coverage

We recall that anchor misplacement creates two new types of coverage holes: false perceived
and hidden unreported actual coverage holes. We utilize our analysis in the previous section to ad-
dress these new coverage holes in the vicinity of the sensor nodes that are affected by anchor mis-
placement (i.e., localized using misplaced anchor nodes). Let N’ € N, be the set of affected sensor
nodes. Further, let C;, denotes the actual sensing coverage area that is covered by sensor node s;.
Next, we introduce several important auxiliary definitions.

Definition 2: The collective actual sensing coverage (C,) of all affected sensor
nodes in WSN is defined as a union of their physical sensing coverage in the target
field. That is,

!

Cact = U|1111| Csi-

Let s; be the erroneous estimated location of s;. s; will report sensed data from an inaccurate
location which creates a perceived coverage around s;. Further, let C;' denotes the perceived sensing
coverage area that is covered by the affected sensor node s; asif s; isin s; coordinates.

Definition 3: The collective perceived sensing coverage (Cy,,) of all affected sensor

!
nodes in WSN is defined as follows. (., = Ullllll Cs,'.
In practice, to compare C;; and C’s; and characterize which scenarios lead to which type of
coverage holes, we use Delaunay Triangulation to study this problem in the locality of each affected
sensor node. We use the implementation of a distributed algorithm in [20] to construct the DT that
represents the target sensing field S. Lemma 2 provides a good criterion to show the existence of
coverage holes. From the analysis in Section V, subtracting ITC(A) from the full area size of A gives

the uncovered area inside A as follows.
UNC(A G) = A(A) — ITC(A) (15)
where A(A) refers to the area size of A and it is given by the following equation.

A(D) =./d(d —a)(d —b)(d —c), where
and 4, b and c are the length of the sides of A.

a+b+c

d=

Let s, be an affected sensor node by anchor misplacement. Its erroneous estimated location is
denoted by s,'with coordinates (x',y"). Let ¥ = (Ax,Ay) be its localization error vector. The cor-
rected coordinates of the s,'s position are (x' — Ax,y’ — Ay). Fig. 12 shows the structural change of
the Delaunay triangle due to the impact of anchor misplacement on localizing sensor s,.
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Figure 12. An example of structural change on DT due to correcting the location of s," to s,.

In order to measure the sensing coverage holes posed by anchor misplacement, we need to cal-
culate the sensing coverage in two cases: with and without the existence of anchor misplacement.
That is, for each affected sensor node s;, we measure the coverage hole by comparing the sensing
coverage of s; and its neighbors on the one hand, and s;" and its neighbors on the other hand. This
allows us to compare C;; and C,' in their vicinities. Error! Reference source not found. 5 and 6
show the vicinity of affected sensor s; (i.e., $,535,555¢Sy ) and the vicinity of s;" (i.e.,
5,'53's,'s5's6's;"). The triangulation of these vicinities enables us to study the noncovered areas in
each triangle.

Next, we utilize the concept of history in graph theory to demonstrate the above analysis and
calculate the sensing coverage for each affected sensor node with and without the presence of anchor
misplacement.

A. Anchor Misplacement as a Graph Operator

Let Dy be aDelaunay Triangulation of IoT sensors in the target field with no anchor misplace-
ment. Anchor misplacement triggers a change in D; which impacts the localization accuracy of
sensor nodes. The changein Dy could be either in length metric of edgesorin Dy structure assome
sensors become connected or disconnected according to their erroneous location. Let D;’ denote the
new triangulation after anchor misplacement. Having all these effects, anchor misplacement can be
considered as a graph operator that maps an input-given graph (i.e.,, D) into a new graph D;'. If
s; € Dy is an affected sensor, then s;' € D;’, meaning s; has been localized correctly (before anchor
misplacement), while it has been localized incorrectly after anchor misplacement, we call it s;" in
this case. Accordingly, s; and s;' can be visualized as different sensors from a geolocational per-
spective.

Let Dr(s;) represents all triangles in Dy that are induced by s; and its neighbors, i.e.,
NH(s;). Similarly, let D;'(s;") represents all triangles in D’ that are induced by s;" and its neigh-
bors,ie., NH(s;). For example, the triangulation of D7 (s;) includes all trianglesin D; induced by
s, and its vicinity, i.e., NH(sy) = { s, 5354 S5, S S7} in Error! Reference source not found.5 and
6. To this end, we call D(s;) the graph history of D;'(s;") since it is the previous graph state before
anchor misplacement. We denote it Dr,'(s;"). Thatis, Dyy'(s;") = D¢(s;). The concept of graph his-
tory is not new in graph theory; it has been used in the literature in various domains such as charac-
terizing the asymptotic behavior of iterated line and path graphs [21], [22].

Clearly, the subgraphs D7;'(s;") and its history, Dr;'(s;"), may not be the same. Indeed, the erro-
neous localization of sensors drifts some vertices to be in D;'(s;") butnotin Dy,'(s;") or vice versa.
The location of each sensor in the target field is a key point in our study as both subgraphs D7'(s;")
and Dr,'(s;") could be isomorphic? but yet different in terms of edge lengths. Error! Reference
source not found.13 shows one triangle of D;'(s,")and its graph history, Dr,'(s;).

S:

S3_

One triangle of The triangle in
Dry'(s2") Dr'(s;")

2 Two graphs are isomorphic if they contain the same objects (i.e., vertices) linked in the same way.
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Figure 13. A partial snapshot of D;'(s,") and its history.

We can construct Dy’ from D7’ in the following way: Identify the misplaced anchor nodes,
then remove the affected sensor nodes s; with their linked edges and insert them again in their cor-
rect positions. Lastly, construct the triangulation in their locality. The average number of neighbors
of s;, |NH(s;)|, is at most 6 and, therefore, the average number of triangles in both subgraphs
D;'(s;)) and Dr,'(s;) willnotexceed 6 [19]. This shows the low computational cost of our approach.

B. Identifying Coverage Holes under Anchor Misplacement

In this subsection, we detect/delineate the false perceived and hidden unreported actual cover-
age holes. To achieve this, we are interested in the common triangles of both D;'(s;") and Dyy'(s;").
The empty intersection indicates that Dr,'(s;") is a totally new structure and none of NH(s;) be-
longs to D;'(s;"). This happens when anchor misplacement poses an extremely high inaccurate loca-
tion for sensor s; such that the estimated location s;" is out of the vicinity of s;. We recognize the
following categories of a possible common triangle A between D;'(s;") and Dr,'(s;").

e Fulllocal coverage of A is maintained in both D;'(s;") and Dgy'(s;).

e Fulllocal coverage of A exists in Dr,'(s;"), butnotin D;'(s;"). This is the case of false
perceived coverage hole.

e There is no full coverage in both D;'(s;") and Dpy'(s;").

e The full local coverage of A exists in D;'(s;"), but notin Dr,'(s;").  This is the case
of hidden actual unreported coverage holes as shown in Fig. 14.

Categories 1 and 3 deal with extreme cases where the triangle A is either covered in both D;'(s;")
and its history or not.

The hole is masked
in Dr'(s,")

Coverage hole in
Dry/(s2")

Figure 14. Actual unreported coverage hole with center x.

We are interested in detecting, identifying, and finding the size of the coverage holes that belong
to categories 2) and 4). Our analysis in Section IV allows us to detect the coverage whole. The ap-
proach we followed in Section V, i.e., intra-triangle coverage, provides an effective tool to calculate
the size of the coverage hole. Identifying the type of coverage hole can be achieved using the concept
of history illustrated in this subsection. Next, we find the coverage ratio of the perceived sensing, C's,
to the actual sensing coverage, C,. The coverage ratio in the categories 1-4 is denoted CRC1-CRC4,
respectively.

Area( A, D+'(s;’
CRC1 = (4, Dr'si))
Area( A, Dg,'(si')

_ UNC(4, Dy'(s))
CRCz = Area( A, Dr'(s;")) (16)

UNC(A, Dr'(s;))
UNC(A, Dry'(si))

CRC3 =
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UNC(A, Drp'(s))
Area(d, Dry' (s)
Where Area(A,G) refers to the area of triangle A in graph G. UNC(A,G) refers to the size of the
uncovered areain A as per (15). Note that if the ratio is not equal to 1 in both categories 1 and 3, then
there is inaccurate sensing reporting of A sensor nodes. In this case, the actual coverage in the history
is either underestimated or overestimated.
The same approach is still valid if more than one sensor is affected in a triangle A. Assume s;
and s; are two affected sensors and neighbors in Drj,'(s;"). There will be some redundant calcula-

CRC4 =

tions because Dry'(s;) and Dr,'(s;") will have a triangle in common. Consequently, the ITC(A)
will be calculated twice asboth s; and s; are affected. Therefore, the value of the whole ITC should
be adjusted accordingly in both D;'(s;") and Dgy'(s;).

The coverage ratio in (16) is straightforward. We apply it to the intra-triangle to identify the
different types of coverage holes posed by anchor misplacement and calculate the percentage of each
one. We later utilize our resilience framework to identify the misplaced anchors and find the set of
affected sensor nodes.

C. Calculating Lower and Upper Bounds of Coverage Holes

The intra-triangle coverage holes (or uncovered areas) have different shapes; however, we
model the upper and lower bounds of each uncovered area in a triangle A as circles. The lower bound
circle is a circle centered in the centroid of the polygon that strictly contains the uncovered area in A;
it is the largest circle that can be inscribed inside the uncovered area. On the other hand, the upper
bound circle is the minimum circle that circumscribes the uncovered area of A. To compute lower and
upper bounds for the uncovered area in A, we apply the following procedure: first, we find a set U
of intersection points, namely the intersection points between angular sectors and the edges of A, and
the intersection points of the angular sectors themselves. Let s; and s; be two verticesin A. If R, +
Ry, > d(s;,s;) we exclude the intersection points between the circles centered in s; and s; and the
edge s;s;. Let U’ be the new set of intersection points. The points of U’ form a polygon P.Our goal
is to find the minimum/maximum circle that circumscribes/inscribed-in P. To achieve this, we need
to determine the centroid c of this polygon. The coordinates of the centroid are given by the following
formula [23]:

[u'|-1
1
Cx = oz Z (i + Xip1) (KiYier = Xi1Yi) 7)
i=0
]2
Cy = é Z i + Yir) (X Yiz1 — Xiz1Yi) (18)
i=0
where A is the area and is given by 4 = % LliO'_l(xinl —x;+1Y;), and (x;,y;) and (x;.4,¥;41) are

two consecutive points on P's hull. Let R, = Min,, ;7 d(c,p;)). The circle centered in ¢ with radius
R, represents a lower bound of the uncovered area in A. Likewise, let R, = Max,, ¢, d(c,p;)). Then
mR,* represents the size of the minimum circle that circumscribes P and, hence, considers as an
upper bound of the uncovered area in A. Therefore, we have the following bounding formula:

nR,* < Uncovered Area < mR,* where both bounding circles are centered at the centroid of a
polygon P that contains the uncovered area. It should be noted here that the use of centroid c instead
of the circumcenter of A is more effective for the following reasons: 1) the circumcenter of A does not
always belong to the uncovered area due to the variation of IoT sensor ranges. 2) The circumcenter
could be outside A which makes the calculation of intra-triangle coverage irrelevant. 3) The bounds
using the centroid c are tighter as it represents the uncovered area more fairly. Next, we present the
algorithm that takes a triangle as an input and provides a uniform upper and lower bound for the
uncovered areas.

The steps of our above analysis to compute lower and upper bounds are summarized in the
following algorithm.
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Algorithm 3 [1]: Lower and Upper Bounds (LUB)
Input: triangle A

Output: ¢, lowerBound, upperBound
1f HasCoverageHole(A) then
P =findPolygon(A);
c = findCentroid(P);
Ri = findRadiusLowerBound(P, c);
Ru = findRadiusUpperBound(P, c);
return ¢, lowerBound, upperBound;
End if
LUB algorithm assumes that all sensors have been localized, and their locations are known.

While DT is being constructed, each sensor recognizes its neighbors in each triangle A in DT. LUB
algorithm first checks the existence of a coverage hole by calling HasCoverageHole(A) function which
simply checks A against the coverage criteria in Lemma 2. If a coverage hole is discovered, the func-
tion findPolygon(A) is invoked to find the polygon that strictly circumscribed the uncovered region as
discussed in this section. findCentroid(P) will apply the equations (17) and (18) to find the centroid of
P. The remaining is to call findRaduisLowerBound(P, c) to calculate the shortest distance between P's
vertices and ¢ which is the radius of the lower bound. Similarly, findRaduisUpperBound(P, c) returns
the longest distance between P's vertices and c.

7. resiliency approach for misplaced anchors

In this article, we propose a distributed scheme that takes input from affected sensors during the
validation processes, and outputs the set of misplaced anchors.

A. The Proposed Scheme

The proposed scheme aims to determine the localization's validity and, consequently, the sens-
ing coverage's validity by identifying the misplaced anchors through their affected sensors.

The scheme consists of two phases: Phase 1 (identify affected sensors) in this phase, each node
measures its distance to all other nodes in two ways: a) Euclidean distance and b) using the received
signal strength (RSS). Let dsi,s]- and dsi,s]-’ be the distance between nodes s; and s; using Euclidean

distance and RSS, respectively.
We define x® to be the distortion vector between ds;s; and dgs;" for node s; and all other
nodes s; as follows.
x® = |

!

b (19)

dsi,s]- - dsi,s]-

Where j € [1,n],j # i. Clearly, the number of vectors is a multiple of the number of sensor nodes.
Calculating all of them to get the average of the two-way distances, i.e,, dssand ds s, and the same

for dg.s." and ds s." adds up to the overhead computation and consequently increases the latency of
iSj jrSi

detecting misplaced anchors. To this end, we explore two cases: 1) calculate only one vector, from
one sensor to all other sensors. For more efficiency, we opt to choose a sensor node close to the center
of the target field. 2) calculate several vectors and get the average of two-way distances. Regardless
of the cases used, phase 1 will output one vector. We sort this vector in descending order from high
to low distortions. In either case, we use the K-means algorithm with K=2 clusters to classify the
elements of the vector into two classes: relatively accurate and erroneous sensors localized by mis-
placed anchors.

Phase 2 (identifying misplaced anchors) this phase aims to use the result of the K-means in the
previous phase to identify the set of misplaced anchors. Out of the two generated classes, the one
with a high mean localization error value indicates the affected sensors. Consequently, the misplaced
anchors are among those which have localized the affected sensors. To find the misplaced anchors
set, let BL(s;) = {by, k = {1,2,3}} be a set of anchors that participated in localizing sensor node s; us-
ing the trilateration method. Further, let S, S S be a set of relatively accurate locations of sensor
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nodes. We define benign anchors, B, as a union set of anchor nodes that participated in localizing
all relatively accurate sensors as follows.

B, = | ] BLGso o0)

S;iESH
Consequently, the misplaced anchors, By, belong to the complement set as follows. B, = B\B,.
Note that B,, and B;,. need not be mutually exclusive. Indeed, misplaced anchors may participate in
localizing some sensors, yet, K-means considers them to have relatively accurate locations. Next, we
enhance the detection scheme to address this point.

B. Enhanced Detection Scheme

The previously proposed scheme could result in high false alarms of misplaced anchors. To mit-
igate this, we propose the following refinement procedure. First, we sort the class/group of relatively
accurate sensors in descending order of localization error. Second, we test the sensors of the sorted
group one by one. Let s; be the sensor with the highest localization error among other sensors in the
sorted class. Further, let by, b,, and bz are the anchors that participated in localizing s;. We test
these three anchors against the following criteria: if any of these anchors is closer to the centroid of
the affected group rather than the centroid of the relatively accurate sensors group, and its distortion
from a benign anchor is greater than a threshold, then this anchor is switched to be B,,;. A threshold
depends on historical data which considers SNR. To test an anchor, b;, we adopt a similar approach
to our previous discussion of distortion between the Euclidean and RSS-based distances as follows.

| dous, = s, ”2 =€ (21)

where b; is a benign anchor. We repeat the second step as long as there is at least one anchor partic-
ipating in localizing sensor s; that satisfies the given criteria. To ensure the effectiveness of this pro-
cedure, we chose b; out of benign anchors that contributed to localizing sensors of the highest accu-
racy.

8. numerical results and discussion

A. Simulation Results

In this section, we validate our resiliency approach and show its effectiveness. We conduct our
experiments using a homogeneous and a heterogeneous network and apply the proposed framework
to determine their network reliability. All the simulation results are obtained by repeating the exper-
iments for a certain number of times and averaging the corresponding results. This number is related
to the result convergence and variance. For example, if the results converge and come to a stable state
with minimum variance after x number of runs, then we adopt x (or higher than x) as a reasonable
number of runs.

B. Validation

We first show the validation of our approach in identifying the affected sensors and then mis-
placed anchors.

We intend to classify the two groups of sensors using K-means clustering. We use the experi-
mental setting depicted in Fig. 2. Running phase 1 of our approach results in Fig. 15, showing the
groups of affected and relatively non-affected sensors with their centroids. The majority of affected
sensors are correctly included in group 1.
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Figure 15. An illustration of K-means application on sensors, generating two ployhsape re-
gions/groups of sensors: affected and relatively non-affected by anchor misplacement.

We continue to validate our approach by running the enhanced version of phase 2. We calcu-
lated localization errors of the two anchor classes for different trials (1, 2, 7, 11, 16, 20, 27, 40). We
found that the result converges after 16 trials. Measuring the variance of localization errors suggests
that 20 iterations are enough to provide convergent and stable results. Thus, each experiment is re-
peated 20 times for any given network topology. We take a random sample of 15 observations of
averaged localization error values generated by the two anchor groups per iteration. To analyze the
statistical significance of the difference between the localization errors generated by the two anchor
classes, we adopt the following hypotheses:

e Null hypothesis Hy: u = 0, which means the true difference of means for
the corresponding anchor groups is equal to zero.
e Alternative hypothesis H,: u # 0.

We use a 95% confidence interval which is equivalent to a significance level of a=0.05. We reject
the null hypothesis if the p-value < a. Rejecting the null hypothesis means that the difference between
the localization error caused by these two anchor classes is statistically significant, which means that
the test favors the alternative hypothesis. In this case, the zero value is not contained in the confidence
interval.

The p-value of 1.9551e-04 suggests rejection of the null hypothesis, meaning the means of the
two groups are significantly different. The lower and upper limits of the confidence intervals of the
difference of means, [-4.505, -3.4446], confirmed this result.

The results show our approach's validation in identifying misplaced anchors with 95% confi-
dence.

C. Verify the Effectiveness

In this section, we show the robustness of our framework against unreliable nodes. We verify
the effectiveness of our framework by mitigating the impact of misplaced anchors on IoT nodes and
lift their burden by excluding them as much as possible from the localization process.

We use NS-3 to simulate different scenarios of the conducted experiments where random non-
uniform IoT sensors are deployed in the target field. These experiments intend to show the effective-
ness of our framework. We also use the implementation of a distributed algorithm in [20] to construct
the DT that represents the target sensing field. The simulation settings are summarized in Table 1.

TABLE I. SIMULATION SETTINGS
Parameter | Range |
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Target Field Area 300 x 300 m? (divided into
2x2 grid)

Number of sensor nodes (per | 125

cell)

Number of anchor nodes | 30

(per cell)

Transmission range 50-100 m

Sensing range

5 m (with a variance of
2m)

Anchor displacement value

7 m (with a variance of
2m)

SNR

30 db

1). The Effectiveness of Localization and Perceived Coverage

This experiment aims to show the impact on RMSD and perceived coverage holes as the pro-
posed framework detects and excludes more misplaced anchors.
We use the Root Mean Square Distance (RMSD) to measure the localization error in the network.

12 12
RMSD:J ;'l=1((xj_xj) +(yf_3’j))
n

where (x; —x;")and (y; — ;') respectively are the actual and estimated positions of sensor node j
and n is the total number of sensor nodes. RMSD is widely used in the literature for the comparison
of the estimation error in different localization algorithms.

(22)

Fig. 16 shows the effectiveness of our proposed framework in decreasing both localization
RMSD and the percentage of perceived coverage holes as the number of anchor nodes detected and
excluded by our framework increases. The perceived lack of coverage has a sharper steep than the
RMSD due to the fact that it is directly associated with the number of misplaced anchors in the net-
work, while RMSD is more related to the quality of sensor localization, which is related to multiple
factors such as the existence of enough number of reliable anchor nodes per sensor and the impact of
SNR to the quality of distance measurements.

100 T T T T T T T 10

Perceived Coverage Holes (%)
RMSD (m)

0 . . . . . . . 0
1 2 3 4 5 6 7 8 9

Number of anchors detected and excluded

Figure 16. The behavior of RMSD and perceived coverage as the number of anchors detected and
excluded increase.

2). The Effectiveness of Perceived Coverage Holes for Different Sensing Range Values
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To show the effectiveness of our approach for a heterogeneous network with different sensing
range values, we simulate the following scenarios: given 40 objects in terrain, such as gas pipes. The
sensor nodes have been deployed to fully monitor gas leakage for all pipes. We assume anchor-based
localization is used to localize sensors. If anchor misplacement is incurred, we are interested in show-
ing the impact of our proposed scheme on the percentage of miss-reported objects. To what extent
does our framework help to overcome the false perceived coverage as more misplaced anchors are
detected and excluded from the network services? The results are shown in Error! Reference source
not found.17.

—A—r=5
80 —e —r=7 |

Miss-reported objects (%)

0 L | | L

4 5 6 7 8 9
Number of anchors detected and excluded

Figure 17. Number of misplaced anchors vs. percentage of miss-reported objects.

The 95% confidence interval shows that the percentage of miss-report objects of the three curves
becomes statistically insignificant as more misplaced anchor nodes are detected and excluded. This
is because regardless of the sensing range, the more misplaced anchors eliminated, the better the
sensing reports' validity and, consequently, the fewer miss-reported objects. Our results suggest that
using fewer sensing nodes with broader sensing ranges provides faster healing from anchors mis-
placement. In other words, the proposed framework significantly reduces miss-reported objects as
the sensing range increases.

3). The Effectiveness of Perceived Coverage Holes for Different SNR Values

In these experiments, we demonstrate the performance effectiveness of our proposed framework
for SNR values 10, 20, and 30 db. The idea is to assess the impact of anchor misplacement and meas-
urement error on localization accuracy. Fig. 18 shows that our framework is more effective for higher
SNR. This can be interpreted as follows: as SNR values decrease, measurement error magnitude in-
creases because the signal becomes weaker, reducing the reliability of the localization service. For
SNR= 10 db, RMSD stays almost constant to the point that excluding more misplaced anchors nodes
does not reduce the RMSD. Moreover, the 95% confidence interval shows the statistical significance
of RMSD values for the various SNRs curves. This shows the severity of lower SNR values on sensing
reliability.
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Figure 18. Number of misplaced anchors detected and excluded vs. localization RMSD.

9. Conclusion

In this paper, we propose a resilience framework to detect anchor misplacement, identify cover-
age holes, and quantify their area. Toward this, we conduct an in-depth computational geometry-
based analysis of the target sensing field under the presence of error components, especially anchor
misplacement. We utilized Voronoi Diagrams (VD) and Delaunay Triangulation (DT) to cluster the
sensing field to efficiently assess the lack of coverage. Using VD and DT, we addressed the coverage
hole problem using a limited number of points in the target sensing field, lowering the computational
cost and increasing the feasibility of our schemes in the IoT environment. We assessed the intra-tri-
angle coverage to show the existence of new types of coverage holes: actual unreported and perceived
coverage holes.

Our experiments showed the validation and effectiveness of the proposed resilience framework
in improving localization accuracy and sensing coverage, reinforcing the overall IoT-based system
reliability. Our findings provide solid input for cooperative and overlapped IoT systems to optimize
resource sharing by either tolerating coverage loss or deploying extra sensors to cover the coverage
gap.

Future work includes designing a framework that extends the life expectancy of IoT networks
by employing cooperative sensing and utilizing the intra-triangle analytics of this study. For example,
overlapped sensors of multiple network operators can plan an intelligent sleep mode scheduling ac-
cording to the role of each sensor. Mobile sensors can also be used to back up low-energy sensors and
cover actual unreported sensing holes.
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