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Abstract: Visual signals are the upmost important source for robots, vehicles or machines to achieve 
human-like intelligence. Human beings heavily depend on binocular vision to understand the dy-
namically changing world. Similarly, intelligent robots or machines must also have the innate capa-
bilities of perceiving knowledge from visual signals. Until today, one of the biggest challenges faced 
by intelligent robots or machines is the matching in stereovision. In this paper, we present the details 
of a new principle toward achieving a robust matching solution which leverages on the use and 
integration of top-down image sampling strategy, hybrid feature extraction, and RCE neural net-
work for incremental learning (i.e., cognition) as well as robust match-maker (i.e., recognition). A 
preliminary version of the proposed solution has been implemented and tested with data from Mar-
itime RobotX Challenge (www.robotx.org). The contribution of this paper is to attract more research 
interest and effort toward this new direction which may eventually lead to the development of ro-
bust solutions expected by future stereovision systems in intelligent robots, vehicles and machines.  
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1. Introduction 
We are living inside an ocean of signals. Among all the signals, visual signals should 

be the ones with the upmost importance. This is because without the visual signals, hu-
man beings will not be able to undertake many activities in the physical world. Similarly, 
visual signals are extremely important to today’s autonomous robots, vehicles and ma-
chines [1]. Hence, research works on enabling robots, vehicles and machines to gain hu-
man-like intelligence from the use of visual signals should never be undermined or shad-
owed by the development of alternative sensors such as Radar [2] and LiDAR [3].  

In this paper, we present a new principle which addresses the most difficult problem 
in stereovision, which is to achieve stereo matching as robust as possible [4]. The motiva-
tion behind our research works comes from projects dedicated to the development of in-
telligent humanoid robots [5] as well as autonomous surface vehicles [6], as shown in Fig-
ure 1. 

For both platforms in Figure 1, their intelligence and autonomy greatly depend on 
the outer loop which consists of perception, planning and control. Among all possible 
modalities of doing perception, visual perception is a very important one. Especially, the 
goal toward achieving human-like visual perception must start with the use of binocular 
vision or stereovision [7]. Hence, research on human-like stereovision should be a non-
negligible topic in both artificial intelligence and robotics. Therefore, the purpose of this 
paper is to present a new principle which advances the current state of the art in develop-
ing human-like stereovision for autonomous robots, vehicles, and machines [8]. 

The remaining part of the paper is organized as follows: Section 2 outlines the biggest 
challenge faced by stereovision. Section 3 briefly discusses similar works dedicated to ste-
reo matching. Section 4 describes the proposed new principle which addresses stereo 
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matching problem. Sections 5 to 10 present the details of the key steps inside the proposed 
principle. Section 11 shows some preliminary results. The conclusions are given in Section 
12. 

 
Figure 1. Research Framework Underlying the Development of Intelligent Humanoid Robots and 
Autonomous Surface Vehicles. 

2. Problem Statement 
Stereovision enables human beings to classify entities, to identify entities, and to lo-

calize entities. Clearly, stereovision is a very powerful system or module which provides 
answers to the following questions: 

1. What are the classes of perceived entities? 
2. What are the identities of perceived entities? 
3. Where are the locations of perceived entities inside related images? 
4. Where are the locations of perceived entities inside scenes? 

A complete solution, which could fully answer the above questions, actually depends 
on the availability of the working principles underlying image sampling (NOTE: this is a 
largely overlooked sub-topic), entity cognition (NOTE: vaguely named as deep learning 
in literature [9]), entity recognition (NOTE: vaguely named as object detection in literature 
[10]), and entity matching [11] as shown in Figure 2, etc.  

 
Figure 2. Illustration of Stereo Matching. 
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As illustrated in Figure 2, when an entity is placed at location Q in a scene, its stereo 
images will appear at location a in left image and location b in right image, respectively. 
Then, the stereo matching problem could be stated as follows: 

Given the location of an entity seen by the left camera, how to determine the location 
of the same entity seen by the right camera? [12] 

The above problem implies the following two challenges: 
1. How to determine the presence of an entity in the left camera’s image plane? 
2. How to find the match in the right camera’s image plane if an entity has been 

detected in the left camera’s image plane? 
It is important to further pay attention to the root causes behind these two challenges. 

The major root causes include [13]: 
1. Variations of entities in size 
2. Variations of entities in orientation 
3. Variations of entities’ images due to lighting conditions 
4. Variations of entities’ images due to occlusions as shown in Figure 3(a) 
5. Variations of entities’ images due to image sampling process as shown in Figure 

3(b) 
 

 
Figure 3. Illustration of (a) partial view caused by occlusion in which left camera sees partial view 
of object 3 while right camera sees partial view of object 1, and (b) partial view caused by image 
sampling in which the three nearest vehicles partially appear inside samples at row 2 and row 3.  

In practice, we could cope with the issues raised by the variations of images in sizes 
and orientations if we could afford to have enough computational powers allocated to 
process images at multiple scales and multiple rotations. Also, we could cope with the 
variations of lighting conditions if we could make use of cameras with built-in functions 
of automatic illumination compensation and/or automatic contrast equalization. Hence, 
our remaining effort should focus on dealing with the issue raised by the occurrence of 
partial views faced by stereovision. 

3. Similar Works on Stereo Matching 
Stereo matching is an old problem in computer vision. In literature, there is a tremen-

dous amount of works dedicated to solving the problem faced by stereo matching. For 
example, there are: 

1. Methods which make the attempt of matching points within a pair of stereo im-
ages [14]. 

2. Methods which make the attempt of matching edges or contours within a pair 
of stereo images [15]. 
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3. Methods which make the attempt of matching line segments within a pair of 
stereo images [16]. 

4. Methods which make the attempt of matching curves within a pair of stereo 
images [17]. 

5. Methods which make the attempt of matching regions within a pair of stereo 
images [18]. 

6. Methods which make the attempts of matching objects within a pair of stereo 
images [19]. 

The proposed principle in this paper falls into the category of making the attempt of 
matching entities within a pair of stereo images. Here, an entity may broadly refer to an 
object, a person, an animal, a building, or a machine, etc. In the literature, the existing 
solution in this category focuses on the use of deep convolution to do feature extraction 
which is then followed by the use of artificial neural network to do tuning and prediction. 
Such methods actually depend on the process of bottom-up optimization (e.g., back prop-
agation algorithm) and the use of features in time-domain. In contrast, our proposed prin-
ciple advocates the use of top-down design process in which we promote the use of hybrid 
features (i.e., features from both time-domain and frequency domain) as well as the use 
of the improved version of RCE neural work [20]. RCE neural network [21-23], which was 
discovered in 1970s by a research team led by a laureate [23] of Nobel prize in 1969, is 
fundamentally different from artificial neural network. So far, to the best of our 
knowledge, there is no other better way of designing human-like cognition and recogni-
tion than the use of RCE neural work or its improved versions [20-23]. 

It is worth acknowledging that despite the huge amount of research works dedicated 
to stereovision, the achieved results are far behind the performance of human beings’ ste-
reovision. Obviously, we should not stop the continuous investigation which aims at look-
ing for better principles of, or solutions to, human-like stereovision. 

4. The Outline of Proposed Principle 
Human vision is attention-driven in a top-down manner. The attention could be trig-

gered by the occurrences of reference entities such as appearances of persons, appearances 
of animals, appearances of objects, appearances of machines, appearances of geometries 
(e.g., lines, curves, surfaces, volumes, etc), appearances of photometry (e.g., chrominance 
and luminance, etc), appearances of textures, etc. Such reference entities could be learnt 
by a cognition process incrementally in real-time. However, the occurrences of familiar 
reference entities should be the responses of an internal recognition process. 

Inspired by the innate processes of human vision, we propose a new principle which 
imitates the attention-driven behavior of human vision. The main idea of the proposed 
new principle is outlined in Figure 4. 

 
Figure 4. Outline of Proposed New Principle Toward Achieving Robust Matching in Human-like 
Stereovision. 
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Without loss of generality, we assume that the attention is to be recognized from the 
video streams of the left camera. The key steps involved in the proposed new principle 
include: 

1. Image acquisition by both cameras.  
2. Image sampling on video stream from left camera. 
3. Hybrid feature extraction for each image sample. 
4. Cognition of image samples if they correspond to the training data of reference 

entities inside training images. 
5. Recognition of image samples if they correspond to the possible occurrences of 

reference entities inside real-time images. 
6. Forward/Inverse processes of template matching, which work together so as to 

find the occurrence of matched candidate in the right image, if a recognized en-
tity is present in the left image. 

In the subsequent sections, we will describe the details of key steps 2 to 6. 

5. Top-Down Strategy of Doing Image Sampling 
An image may contain many entities of interest. One of the biggest challenges faced 

by image understanding or image segmentation/grouping is to divide an image into a 
matrix of image samples, each of which just contains the occurrence or appearance of a 
single entity. In theory and in practice, there is no solution which could generally guaran-
tee such results expected by the subsequent visual processes in stereovision. 

In addition, the problem of finding better ways to do image sampling did not receive 
enough attention in the research community. One major reason is because many people 
believe that it is good enough to use a sub-window to scan an input image so as to obtain 
all the possible image samples. However, this way of doing image sampling has serious 
drawbacks such as: 

1. It is difficult to determine, or to justify, the size of sub-window which is used to 
scan an input image. If the size of sub-window is allowed to be dynamically 
changed, then the next question is how to do such dynamic adjustment of sizes.  

2. The number of obtained image samples is independent of the content inside an 
input image. For example, an input image may contain a single entity. In this 
case, the scanning method will still produce many image samples which will be 
the input to subsequent visual processes of classification, identification, and 
grouping, etc. Obviously, irrelevant image samples may potentially cause trou-
bles to these visual processes of recognition. 

In this paper, we advocate a top-down strategy which iteratively divides an input 
image into a list of sets which contain linearly growing numbers of image samples of dif-
ferent sizes. If we denote 𝑆𝑆𝑘𝑘 a set which contains k image samples, one way to obtain 𝑆𝑆𝑘𝑘 
is to uniformly divide an input image into a matrix of 𝑑𝑑𝑣𝑣 × 𝑑𝑑ℎ  samples, in which 
𝑑𝑑𝑣𝑣 × 𝑑𝑑ℎ = 𝑘𝑘. For example, if we iteratively divide an input image into: 

1. 𝑆𝑆𝑘𝑘 with one sample, then 𝑘𝑘 = 1 and 𝑑𝑑𝑣𝑣 × 𝑑𝑑ℎ ∈ [1 × 1]. 
2. 𝑆𝑆𝑘𝑘 with two samples, then 𝑘𝑘 = 2 and 𝑑𝑑𝑣𝑣 × 𝑑𝑑ℎ ∈ [1 × 2, 2 × 1]. 
3. 𝑆𝑆𝑘𝑘 with three samples, then 𝑘𝑘 = 3 and 𝑑𝑑𝑣𝑣 × 𝑑𝑑ℎ ∈ [1 × 3, 3 × 1]. 
4. 𝑆𝑆𝑘𝑘 with four samples, then 𝑘𝑘 = 4 and 𝑑𝑑𝑣𝑣 × 𝑑𝑑ℎ ∈ [1 × 4, 4 × 1, 2 × 2]. 
5. and so on. 

This top-down strategy of doing image sampling is suitable for both parallel imple-
mentation and sequential implementation.  

Before sending the image samples to the next visual process of extracting features, it 
is necessary to normalize the size of image samples so as to make them to be comparable 
in size. In practice, it is trivial to scale up or down the size of an image sample to any 
chosen standard value. By now, we could represent image sample set 𝑆𝑆𝑘𝑘 as follows: 

𝑆𝑆𝑘𝑘 = �𝐼𝐼𝑗𝑗,𝑟𝑟(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑔𝑔(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑏𝑏(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1], 𝑗𝑗 ∈ [1, 𝑘𝑘]� (1) 
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where (𝑟𝑟,𝑔𝑔, 𝑏𝑏) are the three primary color components at index coordinates (𝑢𝑢, 𝑣𝑣) 
inside set 𝑆𝑆𝑘𝑘’s 𝑗𝑗𝑡𝑡ℎ image sample 𝐼𝐼𝑗𝑗(𝑢𝑢, 𝑣𝑣) which has the size of 𝑉𝑉 × 𝑈𝑈. Hence, by default, 
each image acquisition module in stereovision outputs color images, each of which is rep-
resented by a set of three matrices such as 𝐼𝐼𝑗𝑗,𝑟𝑟(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑔𝑔(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑏𝑏(𝑢𝑢, 𝑣𝑣) in Equation 1.  

6. Feature Extraction from Sample Image in Time-Domain 
Mathematically speaking, the periodicity in space is equivalent to the periodicity in 

time. Hence, without loss of generality, we consider the spatial axes of an image or image 
sample as time axes. In this way, we could focus our discussions on how to extract features 
in time domain as well as in frequency domain. 

Feature extraction in time domain has been extensively investigated by the research 
community of image processing and computer vision. In general, the basic operations in-
clude the computations of n-order derivatives where n could be equal to 0, 1, 2, 3, and any 
other larger value of integer. Here, the zero-order derivatives could refer to the results 
obtained by the operation of image smoothing for noise reduction (e.g., to use Gaussian 
filters).  

In the literature, there are also many advanced studies which explore the use of La-
placian filters, Gabor filters, Wavelet filters, Moravec corner filter, Harris-Stephens corner 
filter, and Shi-Tomasi corner filter, etc. Hence, feature extraction in time domain is a very 
rich topic. 

 
Figure 5. Examples of results from the computations of zero-order derivatives, first-order deriva-
tives, second-order derivatives, third-order derivatives, and forth-order derivatives. 

From the results shown in Figure 5, it is clear to us that higher order derivatives do 
not significantly provide extra information. The data of zero-order derivatives and first-
order derivatives should be good enough for us to extract meaningful features in time 
domain.  

In practice, the zero-order derivatives could be obtained by convoluting set 𝑆𝑆𝑘𝑘’s 𝑗𝑗𝑡𝑡ℎ 
image sample 𝐼𝐼𝑗𝑗(𝑢𝑢, 𝑣𝑣) with a discrete Gaussian filter such as: 

𝐺𝐺(𝑢𝑢, 𝑣𝑣) =
1

16
�
1 2 1
2 4 2
1 2 1

� , 𝑣𝑣 ∈ [0,2],𝑢𝑢 ∈ [0,2] (2) 

If we represent the results (i.e., a matrix of zero-order derivatives of all the color com-
ponents) of zero-order derivatives as follows: 

𝑆𝑆𝑘𝑘,0 = �𝐼𝐼𝑗𝑗,𝑟𝑟0(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑔𝑔0(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑏𝑏0(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1], 𝑗𝑗 ∈ [1, 𝑘𝑘]� (3) 

Then, the first-order derivatives could be obtained by convoluting each matrix in 𝑆𝑆𝑘𝑘,0 
with the following two Sobel filters:   

𝐶𝐶ℎ(𝑢𝑢, 𝑣𝑣) = �
+1 +2 +1
0 0 0
−1 −2 −1

� , 𝑣𝑣 ∈ [0,2],𝑢𝑢 ∈ [0,2] (4) 

and 
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𝐶𝐶𝑣𝑣(𝑢𝑢, 𝑣𝑣) = �
+1 0 −1
+2 0 −2
+1 0 −1

� , 𝑣𝑣 ∈ [0,2],𝑢𝑢 ∈ [0,2] (5) 

 
Clearly, the convolution with filter in Equation 4 will result in the horizontal compo-

nents of the first-order derivatives while the convolution with filter in Equation 5 will 
result in the vertical components of the first-order derivatives. The 𝐿𝐿2 norms computed 
from these two components will yield the results of the first-order derivatives of image 
samples 𝑆𝑆𝑘𝑘,0, which could be represented by: 

𝑆𝑆𝑘𝑘,1 = �𝐼𝐼𝑗𝑗,𝑟𝑟1(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑔𝑔1(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑏𝑏1(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1], 𝑗𝑗 ∈ [1, k]� (6) 

Therefore, for image sample j in set 𝑆𝑆𝑘𝑘, it actually has six image matrices which are: 
[𝐼𝐼𝑗𝑗,𝑟𝑟0(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑔𝑔0(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑏𝑏0(𝑢𝑢, 𝑣𝑣)] in Equation 3 and [𝐼𝐼𝑗𝑗,𝑟𝑟1(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑔𝑔1(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑏𝑏1(𝑢𝑢, 𝑣𝑣)] in equa-
tion 6. Then, the next question is how to determine a feature vector 𝐹𝐹𝑗𝑗 which meaning-
fully represents image sample j in set 𝑆𝑆𝑘𝑘. 

A simple answer to the above question could be to convert the six image matrices of 
a sample into their vector representations (i.e., a 2D matrix is re-arranged as a 1D vector). 
Then, by putting these six image vectors together, we will obtain feature vector 𝐹𝐹𝑗𝑗. The 
advantage of this method is its simplicity. However, the noticeable drawback is the large 
dimension of feature vector 𝐹𝐹𝑗𝑗. Then, we may want to know whether there is a better way 
of determining feature vector 𝐹𝐹𝑗𝑗 from image matrices, or not.  

So far, there is no theoretical answer to this question. Maybe, a practical way is to 
design workable solutions which could be suitable for applications in hands. In this way, 
a library of workable solutions may empower autonomous robots, vehicles, or machines 
to adapt their behaviors to real-time situations or applications. Clearly, this topic still of-
fers opportunities for further or continuous research works. 

Here, we propose a simple and practical way of determining feature vector 𝐹𝐹𝑗𝑗 from 
image matrices. The idea is to compute statistics from a set of image matrices. Interest-
ingly, the two obvious types of statistics are the mean values and standard deviations. 

For example, if {𝐼𝐼(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} is an image matrix of single val-
ues such as red components, green components, blue components, or their individual 
first-order derivatives, each value in {𝐼𝐼(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} could be con-
sidered as a kind of measurement of approximate electromagnetic energy. Therefore, we 
could compute the following four meaningful statistics from {𝐼𝐼(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈
[0,𝑉𝑉 − 1]}, which are: 

1. The mean value of approximate electromagnetic energy:  

𝐼𝐼𝑎𝑎 =
1
𝑈𝑈𝑈𝑈

��𝐼𝐼(𝑢𝑢, 𝑣𝑣)
𝑈𝑈−1

𝑢𝑢=0

𝑉𝑉−1

𝑣𝑣=0

 (7) 

2. The square-root of the variance of approximate electromagnetic energy: 

𝜎𝜎𝐼𝐼 = �∑ ∑ (𝐼𝐼(𝑢𝑢, 𝑣𝑣) − 𝐼𝐼𝑎𝑎)2𝑈𝑈−1
𝑢𝑢=0

𝑉𝑉−1
𝑣𝑣=0

𝑈𝑈𝑈𝑈
 (8) 

3. The horizontal distribution of approximate electromagnetic energy: 

𝜎𝜎𝑢𝑢 = �
∑ ∑ 𝐼𝐼(𝑢𝑢, 𝑣𝑣) × (𝑢𝑢 − 𝑢𝑢𝑐𝑐)2𝑁𝑁−1

𝑢𝑢=0
𝑉𝑉−1
𝑣𝑣=0

∑ ∑ 𝐼𝐼(𝑢𝑢, 𝑣𝑣)𝑈𝑈−1
𝑢𝑢=0

𝑉𝑉−1
𝑣𝑣=0

 (9) 

with: 

𝑢𝑢𝑐𝑐 =
∑ ∑ {𝐼𝐼(𝑢𝑢, 𝑣𝑣) × 𝑢𝑢}𝑁𝑁−1

𝑢𝑢=0
𝑉𝑉−1
𝑣𝑣=0

∑ ∑ 𝐼𝐼(𝑢𝑢, 𝑣𝑣)𝑈𝑈−1
𝑢𝑢=0

𝑉𝑉−1
𝑣𝑣=0

 (9a) 
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and 

𝑣𝑣𝑐𝑐 =
∑ ∑ {𝐼𝐼(𝑢𝑢, 𝑣𝑣) × 𝑣𝑣}𝑁𝑁−1

𝑢𝑢=0
𝑉𝑉−1
𝑣𝑣=0

∑ ∑ 𝐼𝐼(𝑢𝑢, 𝑣𝑣)𝑈𝑈−1
𝑢𝑢=0

𝑉𝑉−1
𝑣𝑣=0

 (9b) 

4. The vertical distribution of approximate electromagnetic energy: 

𝜎𝜎𝑣𝑣 = �
∑ ∑ {𝐼𝐼(𝑢𝑢, 𝑣𝑣) × (𝑣𝑣 − 𝑣𝑣𝑐𝑐)2}𝑁𝑁−1

𝑢𝑢=0
𝑉𝑉−1
𝑣𝑣=0

∑ ∑ 𝐼𝐼(𝑢𝑢, 𝑣𝑣)𝑈𝑈−1
𝑢𝑢=0

𝑉𝑉−1
𝑣𝑣=0

 (10) 

As a result, any image matrix such as {𝐼𝐼(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} could be 
represented by feature vector 𝐹𝐹 as follows: 

𝐹𝐹 = [𝐼𝐼𝑎𝑎 ,𝜎𝜎𝐼𝐼 ,𝜎𝜎𝑢𝑢 ,𝜎𝜎𝑣𝑣] (11) 

In time domain, if image sample j in set 𝑆𝑆𝑘𝑘 has six image matrices, its feature vector 
𝐹𝐹𝑗𝑗 will contain 24 feature values. 

7. Feature Extraction from Sample Image in Frequency-Domain 
In mathematics, a very important discovery was Fourier Transform which tells us 

that any signal is the (finite or infinite) sum of sine functions. In engineering, one of the 
greatest inventors was Nikolas Tesla who told us that the secret of the universe could be 
understood by simply thinking in terms of energy, vibration, and frequency. Such state-
ment explicitly advises us to look for feature space and feature vector in frequency domain 
if we would like to understand the secret of machine intelligence. 

Given image matrix {𝐼𝐼(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1]}, it could be represented by, 
or decomposed into, its Fourier series in terms of complex exponentials 𝑒𝑒±𝑖𝑖𝑖𝑖 (in which 
𝑖𝑖 = √−1) which could be computed as follows: 

𝐼𝐼(𝑢𝑢, 𝑣𝑣) =
1
𝑈𝑈𝑈𝑈

� � 𝐼𝐼(𝜔𝜔𝑢𝑢,𝜔𝜔𝑣𝑣)𝑒𝑒𝑖𝑖�
2𝜋𝜋𝜔𝜔𝑢𝑢𝑢𝑢

𝑈𝑈 �𝑒𝑒𝑖𝑖�
2𝜋𝜋𝜔𝜔𝑣𝑣𝑣𝑣

𝑉𝑉 �
𝑈𝑈−1

𝜔𝜔𝑢𝑢=0

 
𝑉𝑉−1

𝜔𝜔𝑣𝑣=0

 (12) 

 
with 0 ≤ 𝑢𝑢 ≤ 𝑈𝑈 − 1, 0 ≤ 𝑣𝑣 ≤ 𝑉𝑉 − 1 and: 

𝐼𝐼(𝜔𝜔𝑢𝑢,𝜔𝜔𝑣𝑣) = ��𝐼𝐼(𝑢𝑢, 𝑣𝑣)𝑒𝑒−𝑖𝑖(
2𝜋𝜋𝜔𝜔𝑢𝑢𝑢𝑢

𝑈𝑈 )𝑒𝑒−𝑖𝑖(
2𝜋𝜋𝜔𝜔𝑣𝑣𝑣𝑣

𝑉𝑉 )
𝑈𝑈−1

𝑢𝑢=0

𝑉𝑉−1

𝑣𝑣=0

 (13) 

in which 0 ≤ 𝜔𝜔𝑢𝑢 ≤ 𝑈𝑈 − 1  and 0 ≤ 𝜔𝜔𝑣𝑣 ≤ 𝑉𝑉 − 1 . With continuous signals or data, 
Equation 12 will become inverse Fourier Transform while Equation 3 will become forward 
Fourier transform. 

It is interesting to take note that each value 𝐼𝐼(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣) in Equation (13) is a complex 
number or more precisely a vector. Mathematically speaking, a vector indicates a position 
in a space. Hence, Fourier coefficient vectors (or complex numbers), which are stored in-
side complex matrix {𝐼𝐼(𝜔𝜔𝑢𝑢,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} , nicely define a feature 
space. Such a feature space could be called as Fourier feature space. 

In mathematics, complex matrix {𝐼𝐼(𝜔𝜔𝑢𝑢,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} could be 
split into two ordinary matrices {𝐴𝐴(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]}  and 
{𝐵𝐵(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]}, where 𝐴𝐴(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣) is the real part of complex 
number (or vector) 𝐼𝐼(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣) and 𝐵𝐵(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣) is the imaginary part of complex number (or 
vector) 𝐼𝐼(𝜔𝜔𝑢𝑢,𝜔𝜔𝑣𝑣). Both matrices A and B are Fourier coefficient matrices. 

Therefore, in frequency domain, a straightforward way of determining feature vector 
𝐹𝐹 which characterizes image matrix {𝐼𝐼(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} taken from im-
age sample j in set 𝑆𝑆𝑘𝑘  is to re-arrange the corresponding Fourier coefficient matrix 
{𝐴𝐴(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]}  or {𝐵𝐵(𝜔𝜔𝑢𝑢,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} 
into a vector. 
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Alternatively, we could use equations, which are the same to Equations (7) to (10), to 
compute the mean values (𝜔𝜔𝑢𝑢,𝑐𝑐 ,𝜔𝜔𝑣𝑣,𝑐𝑐)  of frequencies and their standard deviations 
(𝜎𝜎𝜔𝜔,𝑢𝑢,𝜎𝜎𝜔𝜔,𝑣𝑣) from Fourier coefficient matrix {𝐴𝐴(𝜔𝜔𝑢𝑢,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} or 
{𝐵𝐵(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]}. In this way, frequency domain’s feature vector 
corresponding to each Fourier coefficient matrix {𝐴𝐴(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} or 
{𝐵𝐵(𝜔𝜔𝑢𝑢 ,𝜔𝜔𝑣𝑣),𝜔𝜔𝑢𝑢 ∈ [0,𝑈𝑈 − 1],𝜔𝜔𝑣𝑣 ∈ [0,𝑉𝑉 − 1]} could be as follows: 

𝐹𝐹𝑗𝑗 = [𝜔𝜔𝑢𝑢,𝑐𝑐,𝜔𝜔𝑣𝑣,𝑐𝑐 ,𝜎𝜎𝜔𝜔,𝑢𝑢 ,𝜎𝜎𝜔𝜔,𝑣𝑣] (14) 

In time domain, each image sample j in set 𝑆𝑆𝑘𝑘 has three color component images. 
Each color component image could yield two Fourier coefficient matrices. In total, there 
will be six Fourier coefficient matrices for any given image sample j in set 𝑆𝑆𝑘𝑘. As a result, 
in frequency domain, feature vector 𝐹𝐹𝑗𝑗 of image sample j in set 𝑆𝑆𝑘𝑘 will also contain 24 
feature values. 

8. Cognition Process Using RCE Neural Network 
Today, many researchers still believe that our mind arises from our brain. This opin-

ion makes a lot of people or young researchers believe that the blueprint of mind is part 
of the blueprint of brain. For those who are familiar with microprocessors and operating 
systems, it is clear to us that the blueprints of operating systems are not part of the blue-
prints of microprocessors.  

Here, we advocate the truth which states that mind is mind while brain is brain. Most 
importantly, the basic functions of brain are to support memorizations and computations 
which are intended by mind. With this truth in mind, the future research in artificial intel-
ligence or machine intelligence should be focused on the physical principles behind the 
design of human-like minds which could transform signals into the cognitive states of 
knowing the conceptual meanings behind the signals.  

In the previous sections, we have discussed the details of feature extraction. The re-
sults are lists of feature vectors in time domain, frequency domain, or both. Then, the next 
question will be how to learn the conceptual meaning behind a set of feature vectors cor-
responding to the same class of sample images or the same identity of sample images. The 
good news is that RCE neural network discovered in 1970s provides us a better version of 
answers, so far.  

 
Figure 6. Structure of RCE Neural Network. 
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As shown in Figure 6, both cognition and recognition could be implemented with the 
use of RCE neural network which consists of three layers. There is a single vector at the 
input layer. Also, there is a single vector at the output layer. However, inside the middle 
layer, there is a dynamically growing number of nodes, each of which memorizes the fea-
ture vectors from a set of sample images provided by a training session of cognition.  

Clearly, RCE neural network is fundamentally different from the so-called artificial 
neural network which is simply a graphical representation of a system of equations with 
coefficients to be tuned in some simple or deep manners (e.g., back-propagation method). 

Refer to Figure 6. With training session 𝑖𝑖’s feature vectors, we could easily compute 
the mean vector and the standard deviation of the distances from the training session’s 
feature vectors to their mean vector.  

For example, if training session 𝑖𝑖 has 𝑘𝑘𝑖𝑖 sample images which form the following 
set: 

𝑆𝑆𝑘𝑘𝑖𝑖 = �𝐼𝐼𝑗𝑗,𝑟𝑟(𝑢𝑢, 𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑔𝑔(𝑢𝑢,𝑣𝑣), 𝐼𝐼𝑗𝑗,𝑏𝑏(𝑢𝑢, 𝑣𝑣),𝑢𝑢 ∈ [0,𝑈𝑈 − 1], 𝑣𝑣 ∈ [0,𝑉𝑉 − 1], 𝑗𝑗 ∈ [1, 𝑘𝑘𝑖𝑖]� (15) 

then training session 𝑖𝑖’s set of feature vectors computed by feature extraction mod-
ule could be denoted by {𝐹𝐹𝑖𝑖,𝑗𝑗 , 𝑗𝑗 ∈ [1, 𝑘𝑘𝑖𝑖]} where 𝑗𝑗 is the index of image sample 𝑗𝑗 in set 
𝑆𝑆𝑘𝑘𝑖𝑖 . Subsequently, the mean vector of {𝐹𝐹𝑖𝑖,𝑗𝑗 , 𝑗𝑗 ∈ [1, 𝑘𝑘𝑖𝑖]} could be calculated by: 

𝐹𝐹𝑖𝑖,𝑎𝑎 =
1
𝑘𝑘𝑖𝑖
�𝐹𝐹𝑖𝑖,𝑗𝑗

𝑘𝑘𝑖𝑖

𝑗𝑗=1

 (16) 

and the standard deviation of the distances from {𝐹𝐹𝑖𝑖,𝑗𝑗 , 𝑗𝑗 ∈ [1, 𝑘𝑘𝑖𝑖]} to the mean vector 
could be computed by: 

𝜎𝜎𝑖𝑖 = �
1
𝑘𝑘𝑖𝑖
�(𝐹𝐹𝑖𝑖,𝑗𝑗 − 𝐹𝐹𝑖𝑖,𝑎𝑎)𝑇𝑇(𝐹𝐹𝑖𝑖,𝑗𝑗 − 𝐹𝐹𝑖𝑖,𝑎𝑎)
𝑘𝑘𝑖𝑖

𝑗𝑗=1

 (17) 

 
By now, we could explain he physical meaning of node 𝑖𝑖 (i.e., outcome of training 

session 𝑖𝑖) in RCE neural network, which is simply the representation of hyper-sphere [21] 
with its center at 𝐹𝐹𝑖𝑖,𝑎𝑎 and its radius to be equal to 3𝜎𝜎𝑖𝑖. Since 𝑖𝑖 could dynamically grow, 
RCE neural network naturally supports the process of incrementally learning as well as 
the process of deep learning which is widely discussed about in the literature.  

As we mentioned above, the deep tuning of parameters inside a complex artificial 
neural network, which is a graphical representation of a system of equations, has nothing 
to do with deep learning, and the true nature of deep learning is outlined in Figure 6. 

In summary, a training session for cognizing entity n consists of supplying a set of 
entity n’s image samples in Equation (15) and entity n’s conceptual meaning 𝐿𝐿𝑛𝑛 which is 
a label or a word in a natural language such as English.   

9. Recognition Process Using Possibility Function 
Refer to Figure 6 again. With a trained RCE neural network by a cognition process 

for each entity of interest (e.g., entity n), the output layer is primarily for the purpose of 
executing recognition process when the feature vector computed from any arbitrary im-
age sample is given to the input layer. 

In the literature, many researchers believe that recognition is a process of determin-
ing the chances of occurrences. As a result, probability functions are widely used inside a 
recognition module.  

Here, we advocate the truth which states that recognition is a process of evaluating 
the beliefs about the identities and categories of any arbitrary image sample at input. This 
truth is in line with the fact that our mind consists of many sub-systems of beliefs. Hence, 
the function for estimating the degrees of beliefs should be a probability function such as: 
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𝑝𝑝𝑗𝑗,𝑛𝑛(𝑖𝑖) = 𝑒𝑒
− 1
2𝜎𝜎𝑖𝑖

2�𝐹𝐹0,𝑗𝑗−𝐹𝐹𝑖𝑖,𝑎𝑎�
𝑇𝑇

(𝐹𝐹0,𝑗𝑗−𝐹𝐹𝑖𝑖,𝑎𝑎)
 (18) 

where (𝐹𝐹𝑖𝑖,𝑎𝑎,𝜎𝜎𝑖𝑖) is the parameter vector of the hyper-sphere obtained from training 
session 𝑖𝑖 while 𝐹𝐹0,𝑗𝑗 is the feature vector computed from image sample 𝑗𝑗 during recog-
nition process, and 𝑝𝑝𝑗𝑗,𝑛𝑛(𝑖𝑖) is the possibility for image sample 𝑗𝑗 to belong to learnt entity 
𝑛𝑛 according to training session 𝑖𝑖’s parameter vector. 

Since RCE neural network intrinsically supports incremental learning as well as deep 
learning, the single node in the output layer must include a Soft-Max function such as: 

𝑃𝑃𝑗𝑗,𝑛𝑛 = max
𝑖𝑖

{𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝𝑗𝑗,𝑛𝑛(𝑖𝑖)} (19) 

where 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum value of acceptable possibility (e.g., 0.5). In practice, if 
𝑃𝑃𝑗𝑗,𝑛𝑛 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 , the interpretation could be stated as follows: input 𝐹𝐹0,𝑗𝑗 does not support the 
belief that image sample 𝑗𝑗 belongs to learnt entity 𝑛𝑛. Otherwise, if 𝑃𝑃𝑗𝑗,𝑛𝑛 > 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, it means 
that the output of recognition will be (𝐿𝐿𝑛𝑛 ,𝑃𝑃𝑗𝑗,𝑛𝑛) in which 𝐿𝐿𝑛𝑛 is the conceptual meanings of 
image sample 𝑗𝑗. 

10. Forward/Inverse Processes of Template Matching 
In the previous sections, we have discussed the key details about the modules of im-

age sampling, hybrid feature extraction, cognition, and recognition. In a human-like ste-
reovision system, these modules will produce the output of recognized entities inside left 
camera’s image plane, as illustrated by Figure 4. Then, the next question will be how to 
determine the match in right camera if a recognized entity in left camera is given. This 
question describes the famous problem of stereo matching faced by today’s stereovision 
systems.  

In the literature, stereo matching is a widely investigated problem. So far, there is no 
solution which could achieve the performance close to, or as good as, the one of human 
being’s stereovision system. Hence, better solutions for improved performance are still 
expected from future research works in this area. 

In this paper, we present a new strategy which could cope with the problem of stereo 
matching in a better way. This new strategy consists of the interplay between forward 
template matching and inverse template matching. 

In stereovision, the only geometrical constraint is the so-called epipolar line which 
indicates the possible locations of a match (e.g., at location b in Figure 7) in right image 
plane if a location in left image plane is given (e.g., location a in Figure 7).  

 
Figure 7. Illustration of Forward Template Matching in Stereovision. 

As shown in Figure 7, if recognized sample 𝑗𝑗 at location a is given in left image plane, 
the forward process of template matching will consist of the following steps: 

1. Determine the equation of epipolar line from both stereovision’s calibration pa-
rameters (NOTE: such knowledge could be found in any textbook of computer 
vision) and location a’s coordinates. 

2. Scan the epipolar line location by location.  
3. Take image sample 𝑒𝑒 at currently scanned location e. 
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4. Compute the feature vector of image sample 𝑒𝑒. 
5. Compute the cosine distance between image sample 𝑗𝑗’s feature vector and im-

age sample 𝑒𝑒’s feature vector. 
6. Repeat the scanning until it is completed. 
7. Choose the image sample to be the candidate of matched sample 𝑗𝑗′ if it mini-

mizes the cosine distance. 
8. Use the cosine distance between recognized sample 𝑗𝑗 and the chosen candidate 

of matched sample 𝑗𝑗′  to compute the possibility value of match (i.e., to use 
Equation 18). 

9. Accept matched sample 𝑗𝑗′  if the possibility value of match is greater than a 
chosen threshold value (e.g., 0.5). 

In the above process, if 𝐹𝐹𝑗𝑗 is the feature vector of image sample 𝑗𝑗 while 𝐹𝐹𝑒𝑒 is the 
feature vector of image sample 𝑒𝑒, the cosine distance 𝑑𝑑𝑗𝑗,𝑒𝑒 between those two vectors is 
simply calculated according to their inner product, which is: 

𝑑𝑑𝑗𝑗,𝑒𝑒 =
𝐹𝐹𝑗𝑗𝑇𝑇 × 𝐹𝐹𝑒𝑒

�𝐹𝐹𝑗𝑗� × ‖𝐹𝐹𝑒𝑒‖
 (20) 

and the corresponding possibility value is calculated as follows: 

𝑃𝑃𝑗𝑗,𝑒𝑒 = 𝑒𝑒
− 1
2𝜎𝜎0

2𝑑𝑑𝑗𝑗,𝑒𝑒
2

 (21) 

where 𝜎𝜎0 is a default value of standard deviation which could be self-determined 
by robots, vehicles, or machines during a training session of cognition process. 

According to the illustration shown in Figure 3, the forward process of template 
matching will work only if there is no partial view due to either occlusion or image sam-
pling. If matched sample 𝑗𝑗′ in right image contains partial view of recognized sample 𝑗𝑗 
in left image, the inverse process of template matching will perform better than its coun-
terpart of forward process.  

 
Figure 8. Illustration of Inverse Template Matching in Stereovision. 

As shown in Figure 8, if recognized sample 𝑗𝑗 at location a is given in left image plane, 
the inverse process of template matching consists of the following steps: 

1. Determine the equation of epipolar line from both the stereovision’s calibration 
parameters and the location a’s coordinates. 

2. Scan the epipolar line location by location.  
3. Take image sample 𝑒𝑒 at currently scanned location e. 
4. Divide image sample e into a matrix of sub-samples {𝑒𝑒𝑖𝑖, 𝑖𝑖 = 1,2,3, … }. 
5. Use each sub-sample in {𝑒𝑒𝑖𝑖, 𝑖𝑖 = 1,2,3, … } as template and do forward template 

matching with recognized sample 𝑗𝑗. 
6. Compute the mean value of all the possibility values which measure the match 

between all the sub-samples in {𝑒𝑒𝑖𝑖 , 𝑖𝑖 = 1,2,3, … } and recognized sample 𝑗𝑗. This 
mean value represents the possibility value for image sample 𝑒𝑒 in right image 
to match with recognized sample 𝑗𝑗 in left image. 

7. Repeat the scanning until it is completed. 
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8. Choose the image sample to be the candidate of matched sample 𝑗𝑗′ if it mini-
mizes the possibility values of match (i.e., calculated by Equation 21). 

9. Accept the match if the possibility value of match is greater than a chosen 
threshold value (e.g., 0.5). 

In practice, we could run both forward process and inverse process of template 
matching in parallel. In this way, a better decision of match in right image could be made 
if recognized sample 𝑗𝑗 in left image is given. 

11. Implementation and Results 
The proposed new principle has been implemented in Python. Preliminary tests have 

been with image data from public domain. Especially, we use image data which are 
posted to public domain by maritime RobotX challenge (www.robotx.org). Figure 9 shows 
two typical examples of scenes constructed by maritime RobotX challenge.  

 
Figure 9. Typical scenes constructed by maritime RobotX challenge. 

The tasks to be undertaken by an autonomous surface vehicle include stereovision-
guided delivery of objects, stereovision-guided parking into the docking bay, etc. In the 
following sections, we share some of our experimental results. 

 
11.1. Results of Top-down Sampling Strategy of Input Images 

Our proposed top-down sampling strategy of input images (e.g., images from left 
camera) is to divide an input image from left camera into a list of sets 𝑆𝑆𝑘𝑘 which contain 
increasing number of image samples (i.e., k = 1, 2, 3, …). Figure 10 shows an example of 
results (i.e., k = 28) from our proposed top-down sampling strategy of an input image. At 
this level of sampling, a red floating post clearly appears inside one of these 28 samples. 

 
Figure 10. One Result of Top-down Sampling Strategy of Input Image. 
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11.2. Examples of Training Data for Cognition (i.e., Learning) 
The proposed new principle involves the use of cognition and recognition modules. 

For cognition module, it is necessary to train it with training data of reference entities. 
Without loss of generality, we simply use a set of 10 samples to train the cognition module 
which is specifically dedicated to an entity of interest. It is amazing to see that the pro-
posed solution could achieve successful results with 10 samples inside a dataset of train-
ing for each entity of interest. 

Figure 11 shows the scenario of autonomous parking into a docking bay by an au-
tonomous surface vehicle. In this task, the mental capabilities of the autonomous surface 
vehicle include a) cognition of triangle, cross and circle, and b) recognition of triangle, 
cross and circle. Hence, for the training of cognition module dedicated to each entity 
among triangle, cross and circle, we simply take ten samples as shown in Figure 11. 

 
Figure 11. Ten Sample Images for Training Cognition Module Dedicated to Each Entity Among 
Triangle, Cross and Circle. 

 
11.3. Results of Feature Extraction in Time Domain 

For each sample image in Figure 10, we calculate its feature vector in time domain. 
Here, we share the results of feature vectors computed from the ten image samples of 
triangle in Figure 11. These results are shown in Figure 12, which also gives the result of 
the mean vector and its standard deviation. 

 
Figure 12. The Values of Ten Feature Vectors Computed from Ten Sample Images of Triangle in 
Time Domain. 
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11.4. Results of Feature Extraction in Frequency Domain 
For each sample image in Figure 10, we calculate its feature vector in frequency do-

main. Similarly, we share the results of feature vectors computed from the ten image sam-
ples of triangle in Figure 11. These results are shown in Figure 13, which also gives the 
result of the mean vector and its standard deviation. 

 
Figure 13. The Values of Ten Feature Vectors Computed from Ten Sample Images of Triangle in 
Frequency Domain. 

 
11.5. Results of Cognition 

The mean vector and its standard deviation, which are obtained from each training 
session for any entity of interest, will be stored inside a node at the middle layer of the 
RCE neural network which is allocated to an entity’s cognition module. If there are N 
entities of interest, there will be a set of N RCE neural networks which support N pairs of 
cognizers and recognizers such as {(Cognizer n, Recognizer n), n = 1, 2, 3, …, N}. As illus-
trated in Figure 14, N could incrementally grow very deeply. 

 
Figure 14. Results of Cognition in the Form of N Cognizers (i.e., 1, 2, 3, ..., N). 

 

11.6. Results of Recognition 
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With N pairs of cognizers and recognizers such as {(Cognizer n, Recognizer n), n = 1, 
2, 3, …, N} in place, an autonomous surface vehicle or robot is ready to recognize familiar 
or learnt entities inside images of left camera.  

Figure 15 shows two examples of results of recognition in time domain. Each exam-
ple contains seven image samples as input. Among these seven inputs, three of them are 
totally out of the class dedicated to the pair of cognizer and recognizer. We can see that 
recognition module performs quite successfully in recognizing the correct entries. Please 
take note that the feature vectors of image samples at input are all in time domain.  

 
Figure 15. Two Examples of Results of Recognition Using Feature Vectors in Time Domain. 

With the same image samples at input, Figure 16 shows the results of recognition in 
frequency domain. We can see that recognition module also performs quite successfully 
in recognizing the correct entries. Please take note that the feature vectors of image sam-
ples at input are all in frequency domain. 

 
Figure 16. Two Examples of Results of Recognition Using Feature Vectors in Frequency Domain. 

By now, people may ask whether the proposed new principle could work well with 
other more complex entities. For the sake of responding to such doubt, we give two more 
examples of results which make use of the feature vectors in frequency domain to do cog-
nition and recognition. For each reference entity (e.g., car and dog), the cognition module 
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is trained with ten image samples while the recognition process is tested with six image 
samples as input. 

In Figure 17, we show the experimental results of cognizing and recognizing cars in 
frequency domain. The results are judged to be very good. 

 
Figure 17. Example of Cognizing and Recognizing Cars in Frequency Domain. 

In Figure 18, we show the experimental results of cognizing and recognizing dogs in 
frequency domain. The results are also judged to be very good. 

 
Figure 18. Example of Cognizing and Recognizing Dogs in Frequency Domain. 

 
11.7. Results of Stereo Matching 

Mathematically, a pair of images is good enough to validate a stereo matching algo-
rithm. In practice, a pair of images could come from a binocular vision system which is 
normally named as stereovision system. Alternatively, a pair of images could come from 
a mobile monocular vision system. Since we use the image dataset from the public do-
main, it is easier for us to take two images from an image sequence captured by a mobile 
camera. 

Here, we share one example of results in Figure 19, Figure 20, and Figure 21. In Figure 
19, we let the stereovision system undergo the cognition process in which ten sample im-
ages of a floating post are used to train the RCE neural network inside the cognizer allo-
cated to learn the red floating post. After the training of the cognizer’s RCE neural net-
work, the so-called stereovision system is ready to enter the recognition process which 
takes any set of new images as input.  

In Figure 19, seven image samples are selected for testing the validity of trained RCE 
neural network. The possibility values show good outcome from the recognition process. 
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Now, we could start the process of stereo matching. As shown in Figure 20, the first 
step is to do image sampling. When the so-called left image is sampled into a matrix of 
4x7 image samples, the occurrence of a red floating post could be recognized. Please take 
note that the image sample of this recognized occurrence is named as image sample 1a by 
our testing program.  

 
Figure 19. Results of Cognizing and Recognizing Red Floating Posts in Frequency Domain.  

 
Figure 20. Results of Testing Recognition with Seven Image Samples, after Doing Cognition with 
Ten Image Samples Which Have Certain Level of Intended Variations for the Purpose of Appreci-
ating Robustness. 

 
Figure 21. Results of Stere Matching Among Three Pairs: (1a, 1b), (1a, 1c), and (1a, 1d). 
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Subsequently, in the so-called right image, we could determine a line (i.e., equivalent 
to epipolar line) which will guide the search for the best match candidate.  

For the purpose of illustration, we take three image samples to compute the stereo 
matching results. Among these three image samples, image sample 1b is the best match. 
In general, the best match is the one which maximizes the possibility value (i.e., computed 
by Equation 21 with 𝜎𝜎0 = 10) between image sample 6a in left image and all the possible 
image samples in right image. Figure 21 shows the possibility values computed for three 
pairs of possible matches, which are (1a, 1b), (1a, 1c), and (1a, 1d). Clearly, pair (1a, 1b) 
stands out to be the best match. 

12. Conclusions 
In this paper, we have described the details of the key steps in a proposed new prin-

ciple which aims at achieving robust stereo matching in human-like stereovision. The 
main idea is to undertake stereo matching at a cognitive level. The significant contribu-
tions from this paper include: First, the introduction of a top-down sampling strategy will 
lighten the burden of subsequent processes in stereovision. This is because it will provide 
better versions of image samples, which will in return diminish the chance of committing 
errors by the subsequent processes in stereovision. Secondly, we advocate the process of 
feature extraction in both time domain and frequency domain. In this way, key character-
istics of a visual entity will be able to be preserved as much as possible. Especially, we 
have highlighted the importance of Fourier series and Fourier coefficients in the process 
of extracting visual features from images. Thirdly, we have shown the important differ-
ence between artificial neural network and RCE neural network. Most importantly, we 
have introduced the possibility function to improve RCE neural network so as to make it 
a better way to support the process of cognition (including deep learning) as well as the 
process of recognition. Fourthly, we have introduced the inverse strategy of template 
matching. This is a better solution to cope with the problem of partial views due to occlu-
sions or mis-aligned sampling of images. Last, but not the least, the key steps in the pro-
posed new principle have been validated by experiments with real image data under the 
context of maritime RobotX challenge. The obtained results are very encouraging. We 
hope that more results and progress will emerge in this new direction of research. 
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