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Abstract: Visual signals are the upmost important source for robots, vehicles or machines to achieve
human-like intelligence. Human beings heavily depend on binocular vision to understand the dy-
namically changing world. Similarly, intelligent robots or machines must also have the innate capa-
bilities of perceiving knowledge from visual signals. Until today, one of the biggest challenges faced
by intelligent robots or machines is the matching in stereovision. In this paper, we present the details
of a new principle toward achieving a robust matching solution which leverages on the use and
integration of top-down image sampling strategy, hybrid feature extraction, and RCE neural net-
work for incremental learning (i.e., cognition) as well as robust match-maker (i.e., recognition). A
preliminary version of the proposed solution has been implemented and tested with data from Mar-
itime RobotX Challenge (www.robotx.org). The contribution of this paper is to attract more research
interest and effort toward this new direction which may eventually lead to the development of ro-
bust solutions expected by future stereovision systems in intelligent robots, vehicles and machines.

Keywords: Visual Signals; Stereovision; Image Sampling; Feature Extraction; Incremental Learning;
Match-Maker; Cognition; Recognition; Possibility Function.

1. Introduction

We are living inside an ocean of signals. Among all the signals, visual signals should
be the ones with the upmost importance. This is because without the visual signals, hu-
man beings will not be able to undertake many activities in the physical world. Similarly,
visual signals are extremely important to today’s autonomous robots, vehicles and ma-
chines [1]. Hence, research works on enabling robots, vehicles and machines to gain hu-
man-like intelligence from the use of visual signals should never be undermined or shad-
owed by the development of alternative sensors such as Radar [2] and LiDAR [3].

In this paper, we present a new principle which addresses the most difficult problem
in stereovision, which is to achieve stereo matching as robust as possible [4]. The motiva-
tion behind our research works comes from projects dedicated to the development of in-
telligent humanoid robots [5] as well as autonomous surface vehicles [6], as shown in Fig-
ure 1.

For both platforms in Figure 1, their intelligence and autonomy greatly depend on
the outer loop which consists of perception, planning and control. Among all possible
modalities of doing perception, visual perception is a very important one. Especially, the
goal toward achieving human-like visual perception must start with the use of binocular
vision or stereovision [7]. Hence, research on human-like stereovision should be a non-
negligible topic in both artificial intelligence and robotics. Therefore, the purpose of this
paper is to present a new principle which advances the current state of the art in develop-
ing human-like stereovision for autonomous robots, vehicles, and machines [8].

The remaining part of the paper is organized as follows: Section 2 outlines the biggest
challenge faced by stereovision. Section 3 briefly discusses similar works dedicated to ste-
reo matching. Section 4 describes the proposed new principle which addresses stereo
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matching problem. Sections 5 to 10 present the details of the key steps inside the proposed
principle. Section 11 shows some preliminary results. The conclusions are given in Section
12.
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Figure 1. Research Framework Underlying the Development of Intelligent Humanoid Robots and
Autonomous Surface Vehicles.

2. Problem Statement

Stereovision enables human beings to classify entities, to identify entities, and to lo-
calize entities. Clearly, stereovision is a very powerful system or module which provides
answers to the following questions:

1. What are the classes of perceived entities?

2. What are the identities of perceived entities?

3. Where are the locations of perceived entities inside related images?
4. Where are the locations of perceived entities inside scenes?

A complete solution, which could fully answer the above questions, actually depends
on the availability of the working principles underlying image sampling (NOTE: this is a
largely overlooked sub-topic), entity cognition (NOTE: vaguely named as deep learning
in literature [9]), entity recognition (NOTE: vaguely named as object detection in literature
[10]), and entity matching [11] as shown in Figure 2, etc.
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Figure 2. [llustration of Stereo Matching.
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As illustrated in Figure 2, when an entity is placed at location Q in a scene, its stereo
images will appear at location a in left image and location b in right image, respectively.
Then, the stereo matching problem could be stated as follows:

Given the location of an entity seen by the left camera, how to determine the location
of the same entity seen by the right camera? [12]

The above problem implies the following two challenges:

1. How to determine the presence of an entity in the left camera’s image plane?

2. How to find the match in the right camera’s image plane if an entity has been

detected in the left camera’s image plane?

It is important to further pay attention to the root causes behind these two challenges.
The major root causes include [13]:

1. Variations of entities in size
Variations of entities in orientation
Variations of entities” images due to lighting conditions
Variations of entities’ images due to occlusions as shown in Figure 3(a)
Variations of entities’ images due to image sampling process as shown in Figure
3(b)
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Figure 3. Illustration of (a) partial view caused by occlusion in which left camera sees partial view
of object 3 while right camera sees partial view of object 1, and (b) partial view caused by image
sampling in which the three nearest vehicles partially appear inside samples at row 2 and row 3.

In practice, we could cope with the issues raised by the variations of images in sizes
and orientations if we could afford to have enough computational powers allocated to
process images at multiple scales and multiple rotations. Also, we could cope with the
variations of lighting conditions if we could make use of cameras with built-in functions
of automatic illumination compensation and/or automatic contrast equalization. Hence,
our remaining effort should focus on dealing with the issue raised by the occurrence of
partial views faced by stereovision.

3. Similar Works on Stereo Matching

Stereo matching is an old problem in computer vision. In literature, there is a tremen-
dous amount of works dedicated to solving the problem faced by stereo matching. For
example, there are:

1. Methods which make the attempt of matching points within a pair of stereo im-

ages [14].
2. Methods which make the attempt of matching edges or contours within a pair
of stereo images [15].
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3. Methods which make the attempt of matching line segments within a pair of
stereo images [16].

4.  Methods which make the attempt of matching curves within a pair of stereo
images [17].

5. Methods which make the attempt of matching regions within a pair of stereo
images [18].

6. Methods which make the attempts of matching objects within a pair of stereo
images [19].

The proposed principle in this paper falls into the category of making the attempt of
matching entities within a pair of stereo images. Here, an entity may broadly refer to an
object, a person, an animal, a building, or a machine, etc. In the literature, the existing
solution in this category focuses on the use of deep convolution to do feature extraction
which is then followed by the use of artificial neural network to do tuning and prediction.
Such methods actually depend on the process of bottom-up optimization (e.g., back prop-
agation algorithm) and the use of features in time-domain. In contrast, our proposed prin-
ciple advocates the use of top-down design process in which we promote the use of hybrid
features (i.e., features from both time-domain and frequency domain) as well as the use
of the improved version of RCE neural work [20]. RCE neural network [21-23], which was
discovered in 1970s by a research team led by a laureate [23] of Nobel prize in 1969, is
fundamentally different from artificial neural network. So far, to the best of our
knowledge, there is no other better way of designing human-like cognition and recogni-
tion than the use of RCE neural work or its improved versions [20-23].

It is worth acknowledging that despite the huge amount of research works dedicated
to stereovision, the achieved results are far behind the performance of human beings’ ste-
reovision. Obviously, we should not stop the continuous investigation which aims at look-
ing for better principles of, or solutions to, human-like stereovision.

4. The Outline of Proposed Principle

Human vision is attention-driven in a top-down manner. The attention could be trig-
gered by the occurrences of reference entities such as appearances of persons, appearances
of animals, appearances of objects, appearances of machines, appearances of geometries
(e.g., lines, curves, surfaces, volumes, etc), appearances of photometry (e.g., chrominance
and luminance, etc), appearances of textures, etc. Such reference entities could be learnt
by a cognition process incrementally in real-time. However, the occurrences of familiar
reference entities should be the responses of an internal recognition process.

Inspired by the innate processes of human vision, we propose a new principle which
imitates the attention-driven behavior of human vision. The main idea of the proposed
new principle is outlined in Figure 4.
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Figure 4. Outline of Proposed New Principle Toward Achieving Robust Matching in Human-like
Stereovision.
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Without loss of generality, we assume that the attention is to be recognized from the
video streams of the left camera. The key steps involved in the proposed new principle
include:

1. Image acquisition by both cameras.

2. Image sampling on video stream from left camera.

3. Hybrid feature extraction for each image sample.

4. Cognition of image samples if they correspond to the training data of reference

entities inside training images.

5. Recognition of image samples if they correspond to the possible occurrences of
reference entities inside real-time images.

6. Forward/Inverse processes of template matching, which work together so as to
find the occurrence of matched candidate in the right image, if a recognized en-
tity is present in the left image.

In the subsequent sections, we will describe the details of key steps 2 to 6.

5. Top-Down Strategy of Doing Image Sampling

An image may contain many entities of interest. One of the biggest challenges faced
by image understanding or image segmentation/grouping is to divide an image into a
matrix of image samples, each of which just contains the occurrence or appearance of a
single entity. In theory and in practice, there is no solution which could generally guaran-
tee such results expected by the subsequent visual processes in stereovision.

In addition, the problem of finding better ways to do image sampling did not receive
enough attention in the research community. One major reason is because many people
believe that it is good enough to use a sub-window to scan an input image so as to obtain
all the possible image samples. However, this way of doing image sampling has serious
drawbacks such as:

1. Itis difficult to determine, or to justify, the size of sub-window which is used to
scan an input image. If the size of sub-window is allowed to be dynamically
changed, then the next question is how to do such dynamic adjustment of sizes.

2. The number of obtained image samples is independent of the content inside an
input image. For example, an input image may contain a single entity. In this
case, the scanning method will still produce many image samples which will be
the input to subsequent visual processes of classification, identification, and
grouping, etc. Obviously, irrelevant image samples may potentially cause trou-
bles to these visual processes of recognition.

In this paper, we advocate a top-down strategy which iteratively divides an input
image into a list of sets which contain linearly growing numbers of image samples of dif-
ferent sizes. If we denote S, a set which contains k image samples, one way to obtain S
is to uniformly divide an input image into a matrix of d, X d, samples, in which
d, X dy, = k. For example, if we iteratively divide an input image into:

1. S, with one sample, then k =1 and d, X d; € [1 X 1].

2. S, with two samples, then k =2 and d, X dj, € [1 X 2,2 X 1].

3. S, with three samples, then k =3 and d, x d, € [1 x 3,3 x 1].

4. S, with four samples, then k =4 and d, xd, € [1 x4,4x1,2 x2].
5. and so on.

This top-down strategy of doing image sampling is suitable for both parallel imple-
mentation and sequential implementation.

Before sending the image samples to the next visual process of extracting features, it
is necessary to normalize the size of image samples so as to make them to be comparable
in size. In practice, it is trivial to scale up or down the size of an image sample to any
chosen standard value. By now, we could represent image sample set S, as follows:

S, = {I]-_r(u, v), I g(u,v), i ,(w,v),u €[0,U—-1],veE [0,V —1],j €[], k1} (1)
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where (r, g, b) are the three primary color components at index coordinates (u, v)
inside set Sj’s j*" image sample I;(u,v) which has the size of V x U. Hence, by default,
each image acquisition module in stereovision outputs color images, each of which is rep-
resented by a set of three matrices such as I, (u, v), l; 4(u,v),1;,(u,v) in Equation 1.

6. Feature Extraction from Sample Image in Time-Domain

Mathematically speaking, the periodicity in space is equivalent to the periodicity in
time. Hence, without loss of generality, we consider the spatial axes of an image or image
sample as time axes. In this way, we could focus our discussions on how to extract features
in time domain as well as in frequency domain.

Feature extraction in time domain has been extensively investigated by the research
community of image processing and computer vision. In general, the basic operations in-
clude the computations of n-order derivatives where n could be equal to 0, 1, 2, 3, and any
other larger value of integer. Here, the zero-order derivatives could refer to the results
obtained by the operation of image smoothing for noise reduction (e.g., to use Gaussian
filters).

In the literature, there are also many advanced studies which explore the use of La-
placian filters, Gabor filters, Wavelet filters, Moravec corner filter, Harris-Stephens corner
filter, and Shi-Tomasi corner filter, etc. Hence, feature extraction in time domain is a very
rich topic.

O-order First-order Second-order Third-order Forth-order

Figure 5. Examples of results from the computations of zero-order derivatives, first-order deriva-
tives, second-order derivatives, third-order derivatives, and forth-order derivatives.

From the results shown in Figure 5, it is clear to us that higher order derivatives do
not significantly provide extra information. The data of zero-order derivatives and first-
order derivatives should be good enough for us to extract meaningful features in time
domain.

In practice, the zero-order derivatives could be obtained by convoluting set S;’s j*
image sample I;(u,v) with a discrete Gaussian filter such as:

1 2 1
G(u,v) = T 2 4 2] ,v € [0,2],u € [0,2] ()
1 2 1

If we represent the results (i.e., a matrix of zero-order derivatives of all the color com-
ponents) of zero-order derivatives as follows:

Sko = {ijro(u, v), 1 g, (W, v), Ijp,(w,v),u € [0,U —1],v € [0,V —1],j € [1, k]} 3)

Then, the first-order derivatives could be obtained by convoluting each matrix in S
with the following two Sobel filters:

+1 42 +1
Cwv)=|0 0 0] vel02]uel02] (4)
-1 -2 -1

and
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C,(w,v) =|+2 0 —Zl,v € [0,2],u € [0,2] (5)
+1 0 -1

Clearly, the convolution with filter in Equation 4 will result in the horizontal compo-
nents of the first-order derivatives while the convolution with filter in Equation 5 will
result in the vertical components of the first-order derivatives. The L? norms computed
from these two components will yield the results of the first-order derivatives of image
samples S ,, which could be represented by:

S = L, W 0), I g, w,0), L, (w,v), u € [0,U —1],v € [0,V —1],j € [LKI}  (6)

Therefore, for image sample j in set Sy, it actually has six image matrices which are:
[ ro (u, v), 1 g, (W, v), Ij p, (w, )] in Equation 3 and [I;,, (u,v),I; 4, (w, v), I; p, (u, V)] in equa-
tion 6. Then, the next question is how to determine a feature vector F; which meaning-
fully represents image sample j in set Sy.

A simple answer to the above question could be to convert the six image matrices of
a sample into their vector representations (i.e., a 2D matrix is re-arranged as a 1D vector).
Then, by putting these six image vectors together, we will obtain feature vector F;. The
advantage of this method is its simplicity. However, the noticeable drawback is the large
dimension of feature vector F;. Then, we may want to know whether there is a better way
of determining feature vector F; from image matrices, or not.

So far, there is no theoretical answer to this question. Maybe, a practical way is to
design workable solutions which could be suitable for applications in hands. In this way,
a library of workable solutions may empower autonomous robots, vehicles, or machines
to adapt their behaviors to real-time situations or applications. Clearly, this topic still of-
fers opportunities for further or continuous research works.

Here, we propose a simple and practical way of determining feature vector F; from
image matrices. The idea is to compute statistics from a set of image matrices. Interest-
ingly, the two obvious types of statistics are the mean values and standard deviations.

For example, if {I(u,v),u € [0,U — 1],v € [0,V — 1]} is an image matrix of single val-
ues such as red components, green components, blue components, or their individual
first-order derivatives, each value in {I(u,v),u € [0,U — 1],v € [0,V — 1]} could be con-
sidered as a kind of measurement of approximate electromagnetic energy. Therefore, we
could compute the following four meaningful statistics from {I(u,v),u € [0,U —1],v €
[0,V — 1]}, which are:

1. The mean value of approximate electromagnetic energy:

1 V-1U-1
=gy ). . @) ™
v=0 u=0
2. The square-root of the variance of approximate electromagnetic energy:
Yoo Loz, v) — 1,)? (8)
oy =
uv

3. The horizontal distribution of approximate electromagnetic energy:

Yvoo XN T(w,v) X (u—u)?
Oy = V_1vU-1 )
Zy:() Zu:() I(ul 17)
with:
BN v) X ) o

u =
¢ e TYIiI(w,v)
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and
L SES RN y) x v ob)
T Do Xuse Iw )
4. The vertical distribution of approximate electromagnetic energy:
— 2
O'v — Z Z {I(u v) X (17 vC) } (10)
v=0 Lu=o 1w, v)

As a result, any image matrix such as {I(u,v),u € [0,U — 1],v € [0,V — 1]} could be
represented by feature vector F as follows:

F= [Ia:alrau: Uv] (11)

In time domain, if image sample j in set S, has six image matrices, its feature vector
F; will contain 24 feature values.

7. Feature Extraction from Sample Image in Frequency-Domain

In mathematics, a very important discovery was Fourier Transform which tells us
that any signal is the (finite or infinite) sum of sine functions. In engineering, one of the
greatest inventors was Nikolas Tesla who told us that the secret of the universe could be
understood by simply thinking in terms of energy, vibration, and frequency. Such state-
ment explicitly advises us to look for feature space and feature vector in frequency domain
if we would like to understand the secret of machine intelligence.

Given image matrix {I(u,v),u € [0,U — 1],v € [0,V — 1]}, it could be represented by,
or decomposed into, its Fourier series in terms of complex exponentials e** (in which
i = vV—1) which could be computed as follows:

V-1 U-1

) =55 . . Ty T ) (12)

wy=0 wy=0

with 0<u<U-1,0<v<V-1 and:

V-1U-

_ L 2TwyU, L 2Ty
(wy, w,) =zz (w,v)e 'CT e TV ) (13)

v=0 u=0

in which 0 <w, <U-1 and 0 £ w, <V — 1. With continuous signals or data,
Equation 12 will become inverse Fourier Transform while Equation 3 will become forward
Fourier transform.

It is interesting to take note that each value [(w,, w,) in Equation (13) is a complex
number or more precisely a vector. Mathematically speaking, a vector indicates a position
in a space. Hence, Fourier coefficient vectors (or complex numbers), which are stored in-
side complex matrix {{(wy,, w,), w, € [0,U — 1], w, € [0,V — 1]}, nicely define a feature
space. Such a feature space could be called as Fourier feature space.

In mathematics, complex matrix {I(w,, ), w, € [0,U — 1], w, € [0,V — 1]} could be
split into two ordinary matrices {A(w,, w,) w, €[0,U—1],w, € [0,V —1]} and
{B(wy, wy), w, €[0,U—1],w, € [0,V — 1]}, where A(w,, w,) is the real part of complex
number (or vector) [(w,, ,) and B(w,, w,) is the imaginary part of complex number (or
vector) [(w,, w,). Both matrices A and B are Fourier coefficient matrices.

Therefore, in frequency domain, a straightforward way of determining feature vector
F which characterizes image matrix {I(u,v),u € [0,U —1],v € [0,V — 1]} taken from im-
age sample j in set S is to re-arrange the corresponding Fourier coefficient matrix
{A(wy, w,), w, €[0,U —1],w, €0,V —1]} or {B(wy w,), w, €[0,U—1],w, € [0,V —1]}
into a vector.
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Alternatively, we could use equations, which are the same to Equations (7) to (10), to
compute the mean values (w,., w,.) of frequencies and their standard deviations
(6w 0up) from Fourier coefficient matrix {4(w,, w,), w, € [0,U — 1], w, € [0,V — 1]} or
{B(wy, wy), w, €[0,U —1],w, € [0,V — 1]}. In this way, frequency domain’s feature vector
corresponding to each Fourier coefficient matrix {A(u,v),u € [0,U —1],v € [0,V — 1]} or
{B(wy, wy), wy, €[0,U—1],w, € [0,V —1]} could be as follows:

P}' = [(‘)u,c' Wy,c) O, Uw,v] (14)

In time domain, each image sample j in set Sy has three color component images.
Each color component image could yield two Fourier coefficient matrices. In total, there
will be six Fourier coefficient matrices for any given image sample j in set S;. As a result,
in frequency domain, feature vector F; of image sample j in set S, will also contain 24
feature values.

8. Cognition Process Using RCE Neural Network

Today, many researchers still believe that our mind arises from our brain. This opin-
ion makes a lot of people or young researchers believe that the blueprint of mind is part
of the blueprint of brain. For those who are familiar with microprocessors and operating
systems, it is clear to us that the blueprints of operating systems are not part of the blue-
prints of microprocessors.

Here, we advocate the truth which states that mind is mind while brain is brain. Most
importantly, the basic functions of brain are to support memorizations and computations
which are intended by mind. With this truth in mind, the future research in artificial intel-
ligence or machine intelligence should be focused on the physical principles behind the
design of human-like minds which could transform signals into the cognitive states of
knowing the conceptual meanings behind the signals.

In the previous sections, we have discussed the details of feature extraction. The re-
sults are lists of feature vectors in time domain, frequency domain, or both. Then, the next
question will be how to learn the conceptual meaning behind a set of feature vectors cor-
responding to the same class of sample images or the same identity of sample images. The
good news is that RCE neural network discovered in 1970s provides us a better version of
answers, so far.
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Figure 6. Structure of RCE Neural Network.
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As shown in Figure 6, both cognition and recognition could be implemented with the
use of RCE neural network which consists of three layers. There is a single vector at the
input layer. Also, there is a single vector at the output layer. However, inside the middle
layer, there is a dynamically growing number of nodes, each of which memorizes the fea-
ture vectors from a set of sample images provided by a training session of cognition.

Clearly, RCE neural network is fundamentally different from the so-called artificial
neural network which is simply a graphical representation of a system of equations with
coefficients to be tuned in some simple or deep manners (e.g., back-propagation method).

Refer to Figure 6. With training session i’s feature vectors, we could easily compute
the mean vector and the standard deviation of the distances from the training session’s
feature vectors to their mean vector.

For example, if training session i has k; sample images which form the following
set:

Ski = {Ij,r(ul U), Ij_g (ul U)I lj,b (ul U)Iu € [01 U - 1]1 v E [01 V - 1]1] € [11 kl,]} (15)

then training session i’s set of feature vectors computed by feature extraction mod-
ule could be denoted by {F;;,j € [1,k;]} where j is the index of image sample j in set
Sk;- Subsequently, the mean vector of {F; ;,j € [1,k;]} could be calculated by:

Fi,a = — Fi,j (16)

and the standard deviation of the distances from {F;;,j € [1,k;]} to the mean vector
could be computed by:

ke
1
0; = FZ(FLJ‘ = Fi)"(Fij = Fia) (17)
[ s
j=1

By now, we could explain he physical meaning of node i (i.e., outcome of training
session i) in RCE neural network, which is simply the representation of hyper-sphere [21]
with its center at F;, and its radius to be equal to 3g;. Since i could dynamically grow,
RCE neural network naturally supports the process of incrementally learning as well as
the process of deep learning which is widely discussed about in the literature.

As we mentioned above, the deep tuning of parameters inside a complex artificial
neural network, which is a graphical representation of a system of equations, has nothing
to do with deep learning, and the true nature of deep learning is outlined in Figure 6.

In summary, a training session for cognizing entity n consists of supplying a set of
entity n’s image samples in Equation (15) and entity n’s conceptual meaning L, which is
a label or a word in a natural language such as English.

9. Recognition Process Using Possibility Function

Refer to Figure 6 again. With a trained RCE neural network by a cognition process
for each entity of interest (e.g., entity n), the output layer is primarily for the purpose of
executing recognition process when the feature vector computed from any arbitrary im-
age sample is given to the input layer.

In the literature, many researchers believe that recognition is a process of determin-
ing the chances of occurrences. As a result, probability functions are widely used inside a
recognition module.

Here, we advocate the truth which states that recognition is a process of evaluating
the beliefs about the identities and categories of any arbitrary image sample at input. This
truth is in line with the fact that our mind consists of many sub-systems of beliefs. Hence,
the function for estimating the degrees of beliefs should be a probability function such as:
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) = ¢ 270 i) Cor7Fio (18)
where (F;4,0;) is the parameter vector of the hyper-sphere obtained from training
session i while F; is the feature vector computed from image sample j during recog-
nition process, and p;, (i) is the possibility for image sample j to belong to learnt entity
n according to training session i’s parameter vector.
Since RCE neural network intrinsically supports incremental learning as well as deep
learning, the single node in the output layer must include a Soft-Max function such as:

By = max{Pmin, Pjn (1)} (19)

where p,,;, is the minimum value of acceptable possibility (e.g., 0.5). In practice, if
P, = Pmin, the interpretation could be stated as follows: input F,; does not support the
belief that image sample j belongs to learnt entity n. Otherwise, if P;,, > pp;n, it means
that the output of recognition will be (L, P;,,) in which L, is the conceptual meanings of
image sample j.

10. Forward/Inverse Processes of Template Matching

In the previous sections, we have discussed the key details about the modules of im-
age sampling, hybrid feature extraction, cognition, and recognition. In a human-like ste-
reovision system, these modules will produce the output of recognized entities inside left
camera’s image plane, as illustrated by Figure 4. Then, the next question will be how to
determine the match in right camera if a recognized entity in left camera is given. This
question describes the famous problem of stereo matching faced by today’s stereovision
systems.

In the literature, stereo matching is a widely investigated problem. So far, there is no
solution which could achieve the performance close to, or as good as, the one of human
being’s stereovision system. Hence, better solutions for improved performance are still
expected from future research works in this area.

In this paper, we present a new strategy which could cope with the problem of stereo
matching in a better way. This new strategy consists of the interplay between forward
template matching and inverse template matching.

In stereovision, the only geometrical constraint is the so-called epipolar line which
indicates the possible locations of a match (e.g., at location b in Figure 7) in right image
plane if a location in left image plane is given (e.g., location a in Figure 7).

u u
Recognized Sample
*
a
Scanned Sample e e
Matched Sample |’ e -
e K
Epipolar Line e \
,,M_?_ J - Location e
v Left Image v Right Image

Figure 7. [llustration of Forward Template Matching in Stereovision.

Asshown in Figure 7, if recognized sample j atlocation ais givenin leftimage plane,

the forward process of template matching will consist of the following steps:

1. Determine the equation of epipolar line from both stereovision’s calibration pa-
rameters (NOTE: such knowledge could be found in any textbook of computer
vision) and location a’s coordinates.

2. Scan the epipolar line location by location.

3. Take image sample e at currently scanned location e.
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4. Compute the feature vector of image sample e.

5. Compute the cosine distance between image sample j’s feature vector and im-
age sample e’s feature vector.

6. Repeat the scanning until it is completed.

7. Choose the image sample to be the candidate of matched sample j' if it mini-
mizes the cosine distance.

8.  Use the cosine distance between recognized sample j and the chosen candidate
of matched sample j' to compute the possibility value of match (i.e., to use
Equation 18).

9.  Accept matched sample j' if the possibility value of match is greater than a
chosen threshold value (e.g., 0.5).

In the above process, if F; is the feature vector of image sample j while F, is the

feature vector of image sample e, the cosine distance d;, between those two vectors is
simply calculated according to their inner product, which is:

d: = M (20)
N (R T
and the corresponding possibility value is calculated as follows:
B, = ¢ 2% e1)

].e

where ¢, is a default value of standard deviation which could be self-determined
by robots, vehicles, or machines during a training session of cognition process.

According to the illustration shown in Figure 3, the forward process of template
matching will work only if there is no partial view due to either occlusion or image sam-
pling. If matched sample j' in right image contains partial view of recognized sample j
in left image, the inverse process of template matching will perform better than its coun-
terpart of forward process.

Recognized Sample |
Scanned Sample e
which is divided into

a matrix of sub-samples e

Matched Sample | | )

Epipolar Line _- S _
H Location e

v Left Image v Right Image

Figure 8. [llustration of Inverse Template Matching in Stereovision.

As shown in Figure 8, if recognized sample j atlocation a is givenin leftimage plane,
the inverse process of template matching consists of the following steps:

1.  Determine the equation of epipolar line from both the stereovision’s calibration
parameters and the location a’s coordinates.

Scan the epipolar line location by location.

Take image sample e at currently scanned location e.

Divide image sample e into a matrix of sub-samples {e;,i = 1,2,3,...}.

Use each sub-sample in {e;,i = 1,2,3,...} as template and do forward template

matching with recognized sample ;.

6. Compute the mean value of all the possibility values which measure the match
between all the sub-samples in {e;,i = 1,2,3, ...} and recognized sample j. This
mean value represents the possibility value for image sample e in right image
to match with recognized sample j in left image.

7.  Repeat the scanning until it is completed.

G LN
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8. Choose the image sample to be the candidate of matched sample j if it mini-
mizes the possibility values of match (i.e., calculated by Equation 21).
9.  Accept the match if the possibility value of match is greater than a chosen
threshold value (e.g., 0.5).
In practice, we could run both forward process and inverse process of template
matching in parallel. In this way, a better decision of match in right image could be made
if recognized sample j in left image is given.

11. Implementation and Results

The proposed new principle has been implemented in Python. Preliminary tests have
been with image data from public domain. Especially, we use image data which are
posted to public domain by maritime RobotX challenge (www.robotx.org). Figure 9 shows
two typical examples of scenes constructed by maritime RobotX challenge.

Docking Bay

Delivery Tower

-
Autonomous Surface Vehicle

L4
Floating Post Y

Image at t1 Image at t2

Figure 9. Typical scenes constructed by maritime RobotX challenge.

The tasks to be undertaken by an autonomous surface vehicle include stereovision-
guided delivery of objects, stereovision-guided parking into the docking bay, etc. In the
following sections, we share some of our experimental results.

11.1. Results of Top-down Sampling Strategy of Input Images

Our proposed top-down sampling strategy of input images (e.g., images from left
camera) is to divide an input image from left camera into a list of sets S, which contain
increasing number of image samples (i.e, k=1, 2, 3, ...). Figure 10 shows an example of
results (i.e., k = 28) from our proposed top-down sampling strategy of an input image. At
this level of sampling, a red floating post clearly appears inside one of these 28 samples.

4x7 image samples in set 5,5

Image E-:EEE-H
o
e A EE

Image at t1

Figure 10. One Result of Top-down Sampling Strategy of Input Image.
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11.2. Examples of Training Data for Cognition (i.e., Learning)

The proposed new principle involves the use of cognition and recognition modules.
For cognition module, it is necessary to train it with training data of reference entities.
Without loss of generality, we simply use a set of 10 samples to train the cognition module
which is specifically dedicated to an entity of interest. It is amazing to see that the pro-
posed solution could achieve successful results with 10 samples inside a dataset of train-
ing for each entity of interest.

Figure 11 shows the scenario of autonomous parking into a docking bay by an au-
tonomous surface vehicle. In this task, the mental capabilities of the autonomous surface
vehicle include a) cognition of triangle, cross and circle, and b) recognition of triangle,
cross and circle. Hence, for the training of cognition module dedicated to each entity
among triangle, cross and circle, we simply take ten samples as shown in Figure 11.

VIVVYY

docking_bay re  docking bay_re docking bayre  docking bayre  docking bay_re
d_trianglel d_triangled d_triangle3 d_triangled d_triangle

AR AAA 4

docking _bay re  docking bay re  docking bay re  docking bay re  docking bay_re
d triangle§ d triangle? d triangled d_triangled d_triangle10

docking bay bl docking bay bl docking bay bl docking bay bl docking bay bl docking bay bl docking bay bl docking bay bl docking bay bl docking_bay bl
e _grosst ue_cross2 we_cross3 ue_crossd e _crosss ue_grosss e _crossT ue_crossd ue_crosss ue_cross10

docking bay gr  docking bay gr  docking bay gr  docking bay gr  docking bay gr  docking bay gr  docking bay gr  docking bay.or  docking bay.gr  docking_bay_ar
een_circlel een_circled een_circled een_circled een_circle$ een _circhef een_circleT een_circled een_circled een_circleld

Figure 11. Ten Sample Images for Training Cognition Module Dedicated to Each Entity Among
Triangle, Cross and Circle.

11.3. Results of Feature Extraction in Time Domain

For each sample image in Figure 10, we calculate its feature vector in time domain.
Here, we share the results of feature vectors computed from the ten image samples of
triangle in Figure 11. These results are shown in Figure 12, which also gives the result of
the mean vector and its standard deviation.

Feature

Vi F1 F2 F3 F4 F§ F& FT Fg& F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F22 F24

triangle1 139.17 97.99 8502 60.55 119.80 104.33 6759 58.82 20164 1228 7387 6284 37685 13036 7312 7237 389.91 14226 7298 71.80 125.09 327.99 7862 7672
tiangle2 148.58 79.29 114.61 113.28 148.10 69.73 113.36 11243 201.66 10.32 102.88 105.39 230.17 BE2.01 100.77 111.73 201.56 772.23 99.51 11277 99.78 219.85 102.26 116.57
triangle3 131.71 86.98 104.64 91.83 116.82 96.17 107.31 91.42 18574 1515 9288 90.06 243.84 924.38 8987 98.68 260.01 10058 85.00 5779 EH4T 20521 9254 101.24
tiangled 140.74 93.76 128,50 91,38 124.02 102.00 13211 8992 19581 1422 11260 9215 256.12 BO3.81 104.84 105.82 266.24 932.18 104,60 105.27 107.72 271.19 108.26 113.54
triangle5 137.12 81.36 136,07 96.16 124.29 77.05 137.13 100.15 182,55 1582 118.84 94.80 235.03 905,66 113.29 103.87 223.48 654.27 112,88 103.65 124.49 341.27 120.32 108.79
tiangleG 102.16 B2.82 90.36 80.36 9143 B5.85 0249 7863 14499 2521 B063 8460 2B7.43 1039.5 81.83 9591 290.31 1047, B1.61 9535 13491 374.56 B4.65 0565
tiangle? 131.41 B4.91 147.48 83.00 104.50 8544 152.72 8238 17716 19.71 126,64 8260 260.75 10158 123.44 9241 276.05 1016.0 123.90 0063 138.10 374.24 13208 02.32
triangle8 130,95 96.53 143,88 106.02 115.19 101.41 147.55 104.84 182.04 21.93 126,51 106.23 244.12 1006.3 126.51 119.39 253.70 1050.3 126.46 119.23 126.00 401.51 134.71 125.14
tiangled 14575 91.81 135,66 104.88 134.16 03.43 137.01 103.96 200.55 11.63 119,13 100,89 240,50 945,92 114.07 110,00 248.16 938.21 113.95 109.92 121,63 297.53 122.30 113.05
triangle10 119.66 T6.76 131.60 91.14 10252 B2.54 13562 9190 175.79 18.30 11446 86.64 278.21 653.81 113.97 93.04 288.07 10023 114.30 8202 153.78 379.13 113.98 9455

Mean 13270 87.20 121.80 5220 118.10 B9.80 124.30 91.40 18480 16.50 106.90 90.60 267.10 994.10 104.20 100.30 269.70 1004.0 103.90 $9.80 122.10 319.20 109.00 103.80

| Standard Deviation of Mean Vector = 108.22

Figure 12. The Values of Ten Feature Vectors Computed from Ten Sample Images of Triangle in
Time Domain.
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11.4. Results of Feature Extraction in Frequency Domain

For each sample image in Figure 10, we calculate its feature vector in frequency do-
main. Similarly, we share the results of feature vectors computed from the ten image sam-
ples of triangle in Figure 11. These results are shown in Figure 13, which also gives the
result of the mean vector and its standard deviation.
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Figure 13. The Values of Ten Feature Vectors Computed from Ten Sample Images of Triangle in
Frequency Domain.

11.5. Results of Cognition

The mean vector and its standard deviation, which are obtained from each training
session for any entity of interest, will be stored inside a node at the middle layer of the
RCE neural network which is allocated to an entity’s cognition module. If there are N
entities of interest, there will be a set of N RCE neural networks which support N pairs of
cognizers and recognizers such as {(Cognizer n, Recognizern), n=1, 2, 3, ..., N}. As illus-
trated in Figure 14, N could incrementally grow very deeply.

A
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Hybrid Feature Extraction
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Image
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Image Divided into 1 Sample
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RCE Network 2
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RCE Network N

Recognizer N =»
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Figure 14. Results of Cognition in the Form of N Cognizers (i.e., 1,2, 3, ..., N).

11.6. Results of Recognition
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With N pairs of cognizers and recognizers such as {(Cognizer n, Recognizer n), n=1,
2,3, ..., N} in place, an autonomous surface vehicle or robot is ready to recognize familiar
or learnt entities inside images of left camera.

Figure 15 shows two examples of results of recognition in time domain. Each exam-
ple contains seven image samples as input. Among these seven inputs, three of them are
totally out of the class dedicated to the pair of cognizer and recognizer. We can see that
recognition module performs quite successfully in recognizing the correct entries. Please
take note that the feature vectors of image samples at input are all in time domain.

Seven Image Samples for Testing Recognition Seven Image Samples for Testing Recognition
docking bay re  dotking bay e docking bey e dothing bay e L L i & . M = By ” ﬁ‘b MI ‘ - rar el mﬂ»
[ Possibility Values of Recognitign | Possibility Values of Reoogmtlc*n
o8
as
- F4
5 2
: 2“ IIII..—
oy
[+ [+
£t & ot [§F F £t
i ¢ ¢ P JF 0§ : :
Recognition with Features in Time Domain Recognmon with Fealures in Tlme Domain

Figure 15. Two Examples of Results of Recognition Using Feature Vectors in Time Domain.

With the same image samples at input, Figure 16 shows the results of recognition in
frequency domain. We can see that recognition module also performs quite successfully
in recognizing the correct entries. Please take note that the feature vectors of image sam-
ples at input are all in frequency domain.

Seven Image Samples for Testing Recognition Seven Image Samples for Testing Recognition
ibility Values of R - JI | Possibility Values of Raoogniti4n
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Figure 16. Two Examples of Results of Recognition Using Feature Vectors in Frequency Domain.

By now, people may ask whether the proposed new principle could work well with
other more complex entities. For the sake of responding to such doubt, we give two more
examples of results which make use of the feature vectors in frequency domain to do cog-
nition and recognition. For each reference entity (e.g., car and dog), the cognition module


https://doi.org/10.20944/preprints202306.1313.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2023 d0i:10.20944/preprints202306.1313.v1

17 of 20

is trained with ten image samples while the recognition process is tested with six image
samples as input.

In Figure 17, we show the experimental results of cognizing and recognizing cars in
frequency domain. The results are judged to be very good.

Ten Image Samples for Training Cognition
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r
earl card card card car5

e i

carf car? carl card carll

“[JEE
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Possibility Values of Recognition in Frequency Domain

gl

2 cat

Figure 17. Example of Cognizing and Recognizing Cars in Frequency Domain.

In Figure 18, we show the experimental results of cognizing and recognizing dogs in
frequency domain. The results are also judged to be very good.
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Figure 18. Example of Cognizing and Recognizing Dogs in Frequency Domain.

g e |

-M’uaﬂ{

11.7. Results of Stereo Matching

Mathematically, a pair of images is good enough to validate a stereo matching algo-
rithm. In practice, a pair of images could come from a binocular vision system which is
normally named as stereovision system. Alternatively, a pair of images could come from
a mobile monocular vision system. Since we use the image dataset from the public do-
main, it is easier for us to take two images from an image sequence captured by a mobile
camera.

Here, we share one example of results in Figure 19, Figure 20, and Figure 21. In Figure
19, we let the stereovision system undergo the cognition process in which ten sample im-
ages of a floating post are used to train the RCE neural network inside the cognizer allo-
cated to learn the red floating post. After the training of the cognizer’s RCE neural net-
work, the so-called stereovision system is ready to enter the recognition process which
takes any set of new images as input.

In Figure 19, seven image samples are selected for testing the validity of trained RCE
neural network. The possibility values show good outcome from the recognition process.
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Now, we could start the process of stereo matching. As shown in Figure 20, the first
step is to do image sampling. When the so-called left image is sampled into a matrix of
4x7 image samples, the occurrence of a red floating post could be recognized. Please take
note that the image sample of this recognized occurrence is named as image sample 1a by
our testing program.

Ten Image Samples for Training Cognition

3 N A
L1 v 1]

Seven Input Images for Testing Recognition

EEETE+Y

training water? mb«; b-. B mbwg b
Figure 19. Results of Cognizing and Recognizing Red Floating Posts in Frequency Domain.
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Figure 20. Results of Testing Recognition with Seven Image Samples, after Doing Cognition with
Ten Image Samples Which Have Certain Level of Intended Variations for the Purpose of Appreci-
ating Robustness.
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Figure 21. Results of Stere Matching Among Three Pairs: (1a, 1b), (1a, 1c), and (1a, 1d).
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Subsequently, in the so-called right image, we could determine a line (i.e., equivalent
to epipolar line) which will guide the search for the best match candidate.

For the purpose of illustration, we take three image samples to compute the stereo
matching results. Among these three image samples, image sample 1b is the best match.
In general, the best match is the one which maximizes the possibility value (i.e., computed
by Equation 21 with oy, = 10) between image sample 6a in left image and all the possible
image samples in right image. Figure 21 shows the possibility values computed for three
pairs of possible matches, which are (1a, 1b), (1a, 1c), and (1a, 1d). Clearly, pair (1a, 1b)
stands out to be the best match.

12. Conclusions

In this paper, we have described the details of the key steps in a proposed new prin-
ciple which aims at achieving robust stereo matching in human-like stereovision. The
main idea is to undertake stereo matching at a cognitive level. The significant contribu-
tions from this paper include: First, the introduction of a top-down sampling strategy will
lighten the burden of subsequent processes in stereovision. This is because it will provide
better versions of image samples, which will in return diminish the chance of committing
errors by the subsequent processes in stereovision. Secondly, we advocate the process of
feature extraction in both time domain and frequency domain. In this way, key character-
istics of a visual entity will be able to be preserved as much as possible. Especially, we
have highlighted the importance of Fourier series and Fourier coefficients in the process
of extracting visual features from images. Thirdly, we have shown the important differ-
ence between artificial neural network and RCE neural network. Most importantly, we
have introduced the possibility function to improve RCE neural network so as to make it
a better way to support the process of cognition (including deep learning) as well as the
process of recognition. Fourthly, we have introduced the inverse strategy of template
matching. This is a better solution to cope with the problem of partial views due to occlu-
sions or mis-aligned sampling of images. Last, but not the least, the key steps in the pro-
posed new principle have been validated by experiments with real image data under the
context of maritime RobotX challenge. The obtained results are very encouraging. We
hope that more results and progress will emerge in this new direction of research.
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