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Article
General Quantum Gravity

Shashwata Vadurie

Language Studies, Educational Guide Centre, 75 Patharghata Main Road, Techno City, 700135 West Bengal,
India; shashwata.vadurie@gmail.com

Abstract: General Quantum Gravity (GQG) is a formalization of quantized gravity that emerges from
General Relativity through Quantum Mechanics. GQG is formalized in three different aspects, such as:
Semi-quantum Minkowski GQG, Quantum Minkowski GQG, and Quantum Non-Minkowski GQG.
Every observable (3 4+ 1)D spacetime in GQG must have internal hidden unobservable (n + 1)D
spacetime inside it which yields extra hidden dimensions by a closed continuous mapping, so
the overall system must acquire Supersymmetry. Strings are natural and universal but forever
hidden inside every (3 + 1)D observable spacetime. Strings have eleven-dimensions by nature
in GQG. If we replace Minkowski spacetime with an internal hidden spacetime, then M-theory
acquires strings inside of this observable (3 4 1) D spacetime. Obtaining type IIA string theory from
M-theory by dimensional reduction is now non-restricted for the 11 direction but universally for
any n'" direction. Instead of introducing the cosmological constant in Einstein field equation, we
yield Dark Energy as well as Dark Matter from GQG quite naturally. We have developed here
Gravitational Electroweak Dark Energy interactions (GED), where gravity and Dark Energy are
combined with electroweak symmetry. Likewise, in Gravitational Chromodynamic Dark Energy
interactions (GCD), we have combined QCD with gravitational and Dark Energy symmetries. Further
in a Dark Matter gauge symmetry model, we have combined Dark matter along with GED and
GCD. Finally, from GED, GCD and Dark Matter gauge symmetries, we have developed a Universal
Model, SU(3)gep ® SU(4)gep ® SU(5)pm € SU(7)yum, where it is clear that Dark energy field is
homogeneous, as well as non-decaying, in all kind of matter fields.

Keywords: quantum gravity; M-theory; dark energy; dark matter

1. Introduction

Only at Planck scales (~ 10! GeV), the quantum effects of gravity is believed to be showed up.
The authors of Ref. [1] proposed that the quantum effects of gravity should be testable at laboratory
scales without regarding Planck scales, and in this context, they also proposed in their paper that the
possibility of looking for the effects of Dark Energy at atomic (i.e., laboratory) scales.

Cosmological observations are inconsistent with Einstein’s equations of General Relativity in the
absence of Dark Energy (or A) and Dark Matter. If we extend the idea of Ref. [2] by manipulating
the original text of J. Frieman and O. Lahav in the following way as: “It is also theoretically possible
that the cosmological constant problem could be resolved by replacing General Relativity with an
alternative theory of gravity, with no dark components being imposed separately but comprised within
the explanation of this alternative theory of gravity”, then we can able to develop a formalism of
General Quantum Gravity (GQG), where, the above idea of Ref. [1] is automatically being included.

In GQG, we describe gravity through Quantum Mechanics without considering Planck scales
in general. But, if we consider Planck scales in this quantum gravity formalism, our proposed
scenarios immediately develop a sense of bosonic and fermionic fields for both Dark Energy and
Dark Matter quite naturally without presuming any additional conditions, such as supersymmetry,
superstrings, etc.

During the development of GQG, we have found that every (3 + 1)D observable system must
contain forever hidden string and extra dimensions, whether an external observer considers any strings
in these systems or not. This string has eleven-dimensions by nature in GQG, that is why eleven is the
maxinium spacetime dimension in which one can formulate a consistent supersymmetric theory.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Unification of gravity with Standard Model was tried previously by numerous authors, but no one
ever thought to unify gravity, Dark Energy, Dark Matter and all fundamental interactions of particles
or fields under the same Lagrangian. We are not only unified them all under a single formalism, but
successfully presented here the solutions of two open problems, viz.

1. Why Dark Matter contents 26.8% of the critical density in the Universe against 4.9% of the critical
density of baryonic matters?, or,
2. Why is the energy density of matter nearly equal to the Dark Energy density today?

We have developed here the Gravitational Electroweak Dark (GED) interaction, where gravity and
Dark Energy are unified with Electroweak interaction. In non-abelian Dark Energy gauge symmetry,
Casimir energy is considered to associate with an abelian gauge group to complete the Dark Energy
scenario properly. Likewise, in the second scheme of unification, gravity and Dark Energy are unified
with Quantum Chromodynamics and we have developed the Gravitational Chromodynamic Dark
(GCD) interaction, where we get another set of Dark particles, which are quite different from the
particles for non-abelian Dark gauge group of GED.

Finally, unifying both GED and GCD in a restricted manner, we have developed a Lagrangian to
explain Dark Matter gauge symmetry.

2. General Quantum Gravity

General Quantum Gravity (GQG) is a formalization of quantized gravity that emerges from
General Relativity through Quantum Mechanics. In the basic formalisms of GQG, we are going to
develop three different aspects of GQG, such as:

1. Semi-quantum Minkowski GQG,
2. Quantum Minkowski GQG, and
3. Quantum Non-Minkowski GQG.

In the first one, GQG Einstein field equation is a classical-like Einstein field equation in a semi-quantum
Minkowski spacetime, whereas, the second one gives us a purely Quantum Mechanical Einstein field
equation in a quantum Minkowski spacetime. But in both cases, we always get the classical Schrodinger
equation as a byproduct, though it is now in a (3 + 1) D quantum spacetime. The last one is the most
important one, which yields the Einstein field equation in a quantum Non-Minkowski spacetime and
helps us to explain Superstring/M-theory from a different angle.

No one ever ask whether Klein-Gordon and Dirac equations are the part of any large scenario. In
GQG, we generalizes that the bosonic and fermionic fields argue that the Klein-Gordon equation is a
subset of the second order equations of our quantum gravity, whereas, the Dirac equation is a subset
of the first order equations of GQG. Interestingly, these bosonic and fermionic fields are emerged
either from Einstein field equations or from the line elements of Minkowski spacetime, which is an
impossible thing in conventional physics.

Basics of these three different aspects of GQG are discussed as follows:

2.1. Semi-Quantum Minkowski GQG

Let the line element of Minkowski spacetime,

i dt?
d52:czdtz—deldx]:gwdxydx’/zWgWP”vV, 1)

where P# = mv# is the ‘Four-momentum’, hence P#v" = pov0 + pi v/ for i,j =123 and v =
0,1,2,3, whereas v is the ‘four-velocity’. Be careful that itis P¥* v" # po vo — pi v/, because Suv takes
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the “—’ sign. Also note that m # mg in Equation (1) for the rest mass mg. Thus, Equation (1) gives us
an energy-momentum invariant line element as,

2 i dx/ o o

= 8w PhvY, (2)
4s\ 2
whenT = Im (d—i) is the kinetic energy [3], that is, we have a new line element as,

2
dSVZ:m (ji) :pOVOprivj:gWP”vv, 3)

then, the rearrangement of Equation (2) gives the following equation by using Equation (1) as,

o ds\? o ds ds
— 1 ] - — 1 ] ]/l v _"
BEpviam (dt) PPV G ar

:pivj—i—PVvng. 4)

Let us consider the representation of a wave field (7, t) by superposition of a free particle (de
Broglie wave) for Equation (4) as follows,

(1) = (mlh)z exp [;{(ﬁﬂgwﬁ-ﬁ) Et}]
1

. 2
L exp [;{(ﬁ'?ert (ji) ) Et}} , (5)

where P — P# and R — 7#,as 7# = (vFt), in addition, note it that we have taken here E as total
energy for Equation (4). Thus, from Equation (5), we can get the (total) energy operator £ — i1 9; (it is
analogous with, but not exactly the same as, the Classical Quantum Mechanics, as it is now the total
energy and related to (3 + 1) D instead of 3D due to the presence of g, in Equation (5) in either ways),

the three momentum operator p — —if @i, the ‘Four-momentum’ operator,

N N d d 1 4
U . _ )iy 9 _x 9 _ (1 N
P %zhvy—{lha(ct), lhaxi} <CE, >,

X g . 0 ., 0 N
thus, Pyﬁ_lhvu{—lha(lct),_lhaxl}<E,p), (6)

c

and the mass operator,

dr\? 2 dr) 1 d
R p (N9 (AN . 1 9 -
m— —ih (ds) 3 ih <ds) 3 ih (ngyvv)l/z 3 @)

where, (%) is evidently relativistic, but % is no doubt Quantum Mechanical, so as,

u 2 az 1/2
- mdxv)/? 9 _ [ ot 97
’ /11 (g dfdx?) "odu, and 5o {a(ct)z dxidy]
= (g™} P =012, ®)

For constant velocity, we can develop an uncertainty principle describing the intrinsic indeterminacy
with which m and s can be determined as,

Am As >

N s
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The mass-energy relation, i.e.,, E = mc?, of Equation (2) yields for the mass operator 7 from
Equation (7) as,
0 v02 0
ih—ypFt)= —ih——— — (7, t), )
ot (ngyvu)l/z ds

for ¢ = v0. Thus, Equation (9) tells us that the total energy of a system directly relates to its geometry,
more precisely, to d/3s, but not v02 / (( uvFv') v 2) , since its dimensionality vanishes for v? and if

we consider then ¢ = v? = 1. For the second term of 7z in Equation (7), we can rewrite Equation (9) by
squaring its both sides after considering ¢ = v? = 1 as,

2 2 2
(‘j;) .(ihaat) Y7 1) = —hz%lp(V,t), (10)

2
which clarifies more precisely that (%) is evidently relativistic, but gs—zz is definitely Quantum
Mechanical. Additionally, Equation (10) yields the following if the total energy (so as the time) is fixed,

.. 0

dso —ih 3% (11)
Thus, Equation (10) is a very peculiar equation where the LHS spacetime is classical relativistic but the
RHS spacetime is Quantum Mechanical, and the total energy is directly related to the RHS spacetime. If
the LHS spacetime of Equation (10) changes (not more than (3 + 1) D and not less than (1 + 1)D, unless
it is a vacuum state) and the total energy remains fixed (so as time), then the spacetime of RHS should
not remain as same as before, but changes inversely against the LHS spacetime. Though, the increment
of RHS spacetime should not be observable, i.e., all extra dimensions would have to remain hidden
inside the overall system, in other words, inside the LHS observable spacetime of Equation (10). We
will discuss it below in more details very soon.

For Equation (8), we can rewrite the mass-energy relation Equation (10) as follows,

2 2
hZDlP(7,t)+<3i) -<ih§t> P(7, 1)

2
h2D¢(?,t)+(vf‘)2-<ih§t) pFEL = 0,

0,

where we have used Equation (1) in the last line. Thus, it is somehow a kind of Klein-Gordon like, but
not an exactly similar, equation of the relativistic waves due to the above quantum scenario derived
from Equation (5). (We will see at the very end of this Subsection that Klein-Gordon equation is a
subset of the Second Order Equation of Semi-quantum Minkowski GQG). This equation may yield,

[ihw Vi —vh (ih ;tﬂ ¥(7,t) =0,
where, y# are Dirac’s gamma matrices.

Remark 1. Definitely, the above quantum scenario derived from Equation (5) is analogous to, but not exactly
similar to, the Classical Quantum Mechanics since E is taken as total energy (and m is not rest mass) in
Equation (4). So, an expectation of the exactness between Classical Quantum Mechanics and the present
quantum scenario must lead a confusion and may yield wrong or faulty conclusions in a large scale. Readers are
requested to be careful about it.
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The wave field ¢ (7,t) in Equation (5) must satisfy the eigenfunctions for a discrete Lorentz
transformation as,

Y = \[¢0_72¢1_\f¢0+ lel— /

o il =y — — - _

when ' is the complex conjugate of ¢. Then, using summation convention and Equation (8), we can
write the joint state of both spacetimes as,

9 92 07 1 1

= = st =~ —= i

0s ot oxiox/ | | 2 v2iil|

S0

= T3 {splho - gt} |
82 82
_ (WT_axi ax].‘l’> - ¢ (s) 3y (13)
But, Equation (13) also intends to,
92 1 02 02
@‘PSO = ﬁ{w[%—wi]—w[%—%]} y
= Sl sy )| o= S i
= \/E of2 $o dxi oxJ i } y ﬁ {81‘2 ¥i oxi ox 4’0} p
= 5 {80130 ho— v} |+ = {8 DA - v},
— (o) ayavqf‘frguv( 3uav‘1"x,,— " (14)

for 85 = 53 = [%, %Zaxf} and g,y = guv = diag(l, -1, =1, —1], where ) implies d;’s dependency on
Y; and d,’s dependency on ), respectively. Here, p and I' have been chosen arbitrarily. Hence, the

complex conjugate of Equation (14) is,

Pyl _ [or 2 Ly Ly
02 | 7 19 oxiow N ARV A o
0
_ gW(p)ayaﬂ*‘ Lm0, ¥t =pyt| 4TV (15)
X0 Xo Xo Xp

But, if we take, ds™2¢ = (dt* — Y. dx'dx/)"'g, where ¢ is an operator, we can say that,
(df? — Y dxi dad) 1 # dt 2 — ¥ (dx'dx/)~1, so, we may assume without any objection that, (dt? —

Ydxida/)l = i

=z -y < ax, ax] — IT, for some value of I'T. Thus,

o 02 02 02 02
24 = 2 _qxidy) leg=02¢ [29, 99 TP\ _
ds ¢ (dt* —dx'dd!) e { pY) <8x2 + 32 ton IIg

82
= @(P_H‘Pzgwauaﬂ”_nﬁﬂ- (16)
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Mathematically, Equation (16) contradicts Equation (8), unless otherwise I1is an unobservable property.
Let us check it.

Proposition 1. Equation (16) implies Equation (8), if I (so as I1) is an unobservable property.

Proof. No more combinations are possible from Equation (14) apart from p, I' and Equation (13)
itself. The arrangement of p and T implies that g, (s) = %(guv(p) + §u(T)). Thus, Equation (14)
should be rewritten by using Equation (13), Equation (14) and additionally replacing g, (s) with

g (s) = 1 (gyu(p) + §uu (T) as follows,

1

(8" (p) +3M(T)) 0,0, ¥ = g"(p) 9,0, ¥ . (17)
2 *o

& +g"(T)0,0,¥

}l
X0

Note that, IT exclusively has to depend upon spacetime. Comparing Equation (16) with Equation (14),
let us say that,

2

Fekd

— 1Y
%

(18)

X,

w’
S0 0

where I' — — I, suppose. Since guv(s) # %(guw(p) — §uw(II)) = 0 as long as g = Zuw =
diag[1, —1, -1, —1], then,

(5" (0)+8" ()22, ¥| , = " (0) Y|, +8" (3,3, [

” (19)

N —

It is impossible to decompose both the LHS of Equation (17) and Equation (19) as they are only
depended upon 9, thus,

1. The spacetimes of p and I (so as I1) are not easily dissociative even upto a very high energy scale.

2. The spacetime of I (so as IT) must be an internal hidden property of the overall system (in other
words, inside the observable spacetime of p) since g, (s) is independent of 9. The observable
spacetime is always d-dependent.

Thus, Equation (16) implies Equation (8), since I' (so as II) is an unobservable property. [J

But, the RHS of Equation (19) gives us,

{|[¥) e Vo V:E[¥) =|¥)} =Sym?V,
{[¥) e VRV F¥) = —|¥)} = Anti?V,

where, the swap operator F|¥) = exp [i 8] for some phase exp [i 6], whereas V is a vector space. Then
the corresponding eigenspaces are called the symmetric and antisymmetric subspaces and are denoted
by the state spaces Sym? V and Anti? V, respectively. Note that, we are not intended here p and IT
are the two indistinguishable particles for the state spaces Sym? V and Anti? V; the above equations
are just the generalization forms of their kinds, because p and Il do not have distinguished (opposite)
spins until otherwise they are dissociated as free particles; so, the observable spin is always the spin of
p, since Il is an internal hidden property of the overall system. Thus, Equation (19) tells us that, if we
allow IT to be dissociated as a free particle at very high energy, the internal hidden spacetime of I1
must be transformed into a fermionic particle, whereas, the overall system remains bosonic, since, the
observable spacetime is always d-dependent.
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Similarly, Equation (15) yields,

= p¥' 119"

v (20)

v g""(p) 90y [—¥]

w
X0

(8" (p) + 8" (11)) 0,0y [ ¥]

y + g"(I1) 9,0,¥ o
0

0

N =

this tells us that the internal hidden spacetime of II must be now bosonic, whereas, the overall system
is fermionic, since, the observable spacetime is always d-dependent. So, whatever Equation (19) and
Equation (20) want to tell us is that the overall system has Supersymmetry and since the spacetimes
of p and its supersymmetric partner I1 are not easily dissociative even upto a very high energy scale;
thus, IT must require extremely high energy to dissociate itself from the overall system as a free
particle. Instead of being a free supersymmetric partner, I1 actually works quite differently inside
of the observable spacetime p, though, at the same time, IT is still satisfying all the properties of
Supersymmetry, and we will show you IT’s actual purpose very soon in the below. But Supersymmetry
needs extra dimensions and we will discuss it below.
By the way, we can also develop a §-dependent scenario as follows,

92
—¥ = IIY| —p¥| ., 21
= PRledw (21)
50
1, ~ = R ~ =
E(gﬂv(l‘[) +8"(p)) 0udv ¥ o gM(I1) 9,0, ¥ - +¢"(p) 040y [~ Y] e
0 0 0
and the complex conjugate of ¥ is,
P ot t t
= YY" —p¥' ., 22
52 o TP (22)

(§"(I1) +¢"(p)) 9,0y [¥] |, = &"(I1)3ydy [~

: RTRIOLER
It is not important which state spaces satisfy such bosonic or fermionic representations of Equation (21)
and Equation (22), here, the most important thing is that the overall system as a free observable particle
at very high energy is must not be baryonic because now only the internal hidden spacetime of p
has ‘proper’ spacetime arrangement for its d-dependency, whereas, the overall (observable) system’s
spacetime arrangement is quite “improper’ as it is g-dependent. Despite of p’s d-dependency, here,
being a supersymmetric partner, if it is allowed to be free at very high energy, it must not be baryonic
either. We should not be confused with it. We will discuss about its property in Section 4 below.

The internal hidden spacetime of Il in Equations (19) and (20) also provides us some
additional geometry for its gV (I1) §M§V [£¥] structures. Suppose, for gH'(T) 5H§V [¥], we have,
\%2 {% [—¢i] — ﬁ;j [Yo] }, where, neither spacetime arrangements are matched with one another in
either combinations within the curvey brackets. These ‘wrong’ arrangements must have a noticeable
effect on the acceptable spacetime, i.e., its temporal part must influence over the spatially depended ¢;,
or its spatial part must influence over the temporally depended ¢y, or vice versa. In other words, the
acceptable spacetime should not have to be four-dimensional in this case. Let us check it. Suppose,
for \% {% [—u;] — %;xf [Yo] }, we can consider a dimension function (see Ref. [4]; we also strongly

follow Nagata’s work throughout this paragraph and omit all the proofs hereabout as they are well
explained in his book),

dim (%i] @W[w]) Vie {123}, (23)
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and the space (5[%,1.] ®T[i,0]) satisfies a normal Tj-space. Let U be a collection in a (3 +1)D
topological spacetime (5[% q® Y[l’ﬂ])/ i.e., dim (3[% 1® T[i,o}) = (3+1) (which is actually hidden
inside the (3 + 1)D observable spacetime (a[%/i] ®‘I’[O,i]), i.e., dim (a[%/i] ®‘I’[0/i]) = (3+1), too)
and p a point of (5[% i ®T[i,0]>’ then the order of U/ at p should be denoted by, ordUf =
sup {ordpu |pe (3[% 7® T[i,0]> }, where, ord, U is the number of members of &/ which contain
p. If for any finite open covering U of the topological spacetime (5[%) i ®‘F[i,o]) there exists an
open covering B such that B < U/, ordB < n+ 1, then (5[20 q® T[w]) has covering dimension

< n, ie., dim (5[% i ®‘I’[i,0]> < n. If U can be decomposed as U = |2, U; for locally finite

(star-finite, discrete, etc.) collections Uf;, then U is called a o-locally finite (o-star-finite, o-discrete,
2
[0,d]

ie., Ind (3[%/1.] ® T[i,o]) = —1,if (3[%),1'] ® T[i,o]) = @. If for any disjoint closed sets F and G of the

etc.) collection. The topological spacetime (5 ®T[i,0]) has strong inductive dimension —1,
topological spacetime (5[% q® ‘F[i,o]) there exists an open set U such that F C U C (3[% q® T[i,o]) -G,
and Ind B(U) < n — 1, where B(U) denotes the boundary of U, then (3[% i ®1F[i,0]) has strong
inductive dimension < #, i.e., Ind (5[% i
of (5@] ® T[i,o])- If Ind (5[%/1.] ®‘I’[i,0]) < n, then there exists a o-locally finite open basis B of
(3@1 ® ‘Y[i,o}) such that, Ind B(V) < n —1 for every V € B. If a spacetime (5[%,1,] ® T[i,o]) has a

® T[w]) < n. Let V is an open set and V is a closed set

o-locally finite open basis B such that, B(V) = @ for every V € B, then Ind (5[% 19 lP[i,o]) <0.

Again, Ind (5[% q® W[Z‘D]) < n if and only if there exists a o-locally finite open basis B such that
IndB(V) < n—1 for every V € B. For every subset A = |J{B(V)|V € B}, for any integer
n > 0, of a spacetime (5[% i ®‘*I’[i,0]>, we have, Ind A < Ind (5[% i ®1Y[i,0})- Hence, if and only

if (3[%,1.] ®‘F[i,0]> = U?ill A; for some n + 1 subsets A; withIndA; < 0,i = 1,...,n+ 1. For the

spacetime (5[20,1.] ® ‘I’[ilo]), we have then dim (5[20,1.] ® ‘-I"[Z-,O]> = Ind (5[%’1.] ® ¥y ) Let A be a subset

of a spacetime (5[20,1‘

(3[% 1® ‘Y[i,o}) x I such that U D A x I, then there exists an open set V of (52

[0,i
A C V,and V x I C U. Let F be a closed set of (3[%,1'] ®T[i,0]) with dim F < n. Let F, and U,,
a < T, be closed and open sets, respectively such that F, C Uy, and {Uy | @ < T} is locally finite.
Then there exist open sets V, satisfying F, C V, C V, C Uy, anddimBy <n—k, k=1,...,n+1,
where, By = {p| p € F,ord, B(8) > k},and B = {Vi| a < 7}. Let F, F, and U, satisfy the same
condition as above, then there exist open sets V, Wy, a < T satisfying, Fx C V, C V, C Wy C Uy, and
ord, {Wy — Vol <1} <nforeveryp € F. Let Gy, k =0,...,n, be closed sets with dim Gy < n —k

of the spacetime (5[% 0 ® T[z‘,o])- Let {Fy| « < 7} be a closed collection and {U, | « < T} a locally
finite open collection such that F, C U,. Then there exists an open collection, B = {V, | « < T}, such

that, F, C V, C V, C Uy, and ord, B(®B) < n — k for every p € G;. A mapping f of the spacetime

| ® T[i,o]) and I the unit segment. If U is an open set of the topological product
| ® ‘I’[LO]) such that

(5[%,1.] ® Y[i,o}) into a spacetime S is a closed (open) mapping if the image of every closed (open) set of
(3[% N® ‘Y[i,o}) is closed (open) in S. Then the continuous mappings which lower dimensions of the

spacetime (3[% q® T[i,o]) should be defined as follows (see Theorem IIL.6 in Ref. [4]),
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Theorem 1. Let f be a closed continuous mapping of the (3 + 1) D spacetime (5[20 N® T[z‘,o]) onto the spacetime
S such that dim f~1(q) < k for every q € S. Then,

dim (%3 @ ¥y ) < dim S +dimK, (24)
where dim K < k for the space K, when 0 < dim S < 2, since i should not be zero in Equation (23).

Since, the temporal axis is unaltered in Lorentz transformation, as we have already seen it
in Equation (12), we can express the maximal continuous mapping of the (3 4+ 1)D spacetime

(3[%,1-] ® T[l‘ﬂ}) onto the spacetime S of Equation (24) as,

XH(t,0)

IN

{<§[%ﬂ ®1Y[ir0]> =5 ‘ 5= (5[%),1] ®1P[1,0])} /

thus, X < SUK inside the (3 + 1)D observable spacetime (8@] ® T[O,i]) ,
since i should not be zero in Equation (23), if the considered state is not vacuum; then the spacetime
S definitely intends the basic structure of a 2-dimensional worldsheet X¥ (7, ) with the joint states,
% {a% [—¢o] — % [lpr}} for the spacetime X, where S is a (1 + 1) D spacetime, but for the space K,
we will like to discuss it below in more details in the Theorem 2. Obviously, a string can sweep out the
2-dimensional worldsheet X* (7, o) for the spacetime X*.

If the internal hidden spacetime of I1 is considered as the LHS spacetime of Equation (10) and
let it to be changed from (3 + 1)D to (1 4 1)D when its total energy remains fixed (so as its time),
then the spacetime X¥ of RHS of Equation (10) changes inversely against the spacetime of I1. Since
the spacetime of I1 is hidden inside the overall system of Equation (19), i.e., in other words, inside the
observable spacetime of p, then the increment of RHS spacetime X# of Equation (10) should not be
observable by any means, i.e., the extra dimensions of X* remain hidden forever inside the observable
spacetime of p. As these internal hidden extra dimensions inside the observable spacetime of p are
considered as the representation of the spacetime S and the space K, thus, we can conclude,

1. Strings (for the hidden spacetime X#) are natural and universal but forever hidden inside every
(3 +1)D observable system (i.e., the spacetime (8 [%, q9® ‘Y[O,i}>) in Quantum Mechanics.

2. Every (3 + 1)D observable system in Quantum Mechanics must contain forever hidden extra
dimensions (i.e., the space K) whether an external observer considers any strings in these systems
or not (for more details, see Equation (25) below and its following text therein).

But the space K should raise more extra hidden dimensions by a closed continuous mapping beyond
dim K < k by adopting the following theorem (see Theorem II.7 in Ref. [4]),

Theorem 2. Let f be a closed continuous mapping of a space R onto a space K such that for each point q
of K, B(f~1(q)) contains at most m + 1 points (m > 0); then dimK < dim R + dim M, when dimR <
[dim (8[%’1.] ® T[i,o]) —dim S] and dim M < m, where dim (8[%,1,] ® W[m]) < (3+4+1).

Then, we can say for the overall spacetime X/, za; ;. that,

%%VERALL < { (a[%,i] ®"P[o,i]> USUK ‘ 5 < (5[%/1] ®‘I’[1,0]) and

K< [(gﬁ)’i]®‘1’[iro]>—S]UMVdimMnglsz}, (25)
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for which,
ﬂgsquGM®YmOuM\fmmMgmamzomMNm@+nD

observable spacetime (a[%),i] ® T[O,i]) . (26)

Note here that stringy spacetime S vanishes in the overall spacetime X%,z of Equation (25) for

the space K leaving behind the forever hidden extra dimensions # in X/)ygga. - Thus, in other words,

strings are experimentally unobservable forever, whereas, their actions are mandatory in the purpose

of particle interactions. Also notice that Supersymmetry (now having extra dimensions m for X* due to

Equation (26)) remains unaffected in X%, zx A1 of Equation (25). Thus, with these extra dimensions, the

above scenario is now perfect for Supersymmetry and String Theory without any further objections.
Along with Theorem 1, what Equation (26) actually wants to say us is,

(5[%’1-] ® \P[i,O]) <3t < (3[%11} ® ‘P[i,O]) UM,
when X# < SU K, which yields,
(98 ¥i0) — 8] <K< [(38@ %) — S| UM, 27)

Since S < (3[% 1 ® 11}[1,0}> in Equation (25), let the LHS of Equation (27) gives,

[ (3@ ¥in) = (0 @ ¥un)| < { (02 © Yoo ) U (9 ¥on) }- .

The most disturbing thing here is that the temporal axis is a part of S spacetime but not the part of K
space, but both (5[20,2] ® T[z,o]) and (5[%’3] ® ‘{’[3,0]) spaces are influenced by the (mutual) temporal
axis, despite neither of them have contained any temporal axis within themselves. On the other hand,
it is evidence that only an influence should not sufficient to emerge a temporal axis within M (or K)
space. Moreover, Theorem 2 yields no temporal axis for M (or K) space either. But the influenced of
the temporal axis should not ease to be avoided in Equation (28).

From Theorem 2, if we think that the dimension of M space depends only on (5[%11.] ® ‘Ij[i,o}) =

{(5[%,1] ® ‘P[w}) , (3[%,2] ® 11][2,0]) , (3[%,3] ®‘I’[3,0]) }, then we should be mistaken, M is not
independent from either elements of the set (5[%,1.] ® T[w}) . Thinking otherwise, let (3[20,1.] ® T[i,o]) are

related to new quantities Q; and T;, differently, which are the curvilinear coordinates of (5[%),1] ® T[i,o} )
Let the corresponding members {11, T, T3} C T are determining vy, then if each pair of members from
the either sides of these curvilinear coordinates joining the pairs of points Q; and T; (i = 1,2, 3) meet in
points m; € M separately, then the three points of intersection U; of the pairs of coordinates g; and ¢;
(i = 1,2,3) lie on a line. Let each of the pairs of coordinates Q;, T; (i = 1,2, 3) consists of two distinct
coordinates and in which g; # t; V i. Let the coordinate vectors of m; be denoted by 3;, that of Q; by t;
(i =1,2,3) and that of T; by y; (i = 1,2, 3). Then 3; can be represented by a linear combination of the t;

and v; for each i = 1,2, 3, say,

3=t +y =2+ =1r3+93.

Hence,
tp—t = hr—b,
T, —t3 = 93—y,
33—t = P —D3.
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Let us choose two set of coordinates,
a; = (a1,a2,03) = \2 {E?:Z [—¢il = axlale [Gﬂo]} (a[%,i] ®(P[i,0]> €A
bi = (b,bybs) = \1@ {E?; [—ai] — ax?j)x] [QO]} (a[%,i] ® Q[i,o}) €A, (29)

fori,j =1,2,3,such that {a;} € v;, {b;} € v; and {a,b} is a basis of A, whereas AN Q; = {O}, where
Q; is the interior of Q and O is the origin, i.e., A is admissible for Q. Let the quadratic form,

Q (9@ ¥p0) (935 @ ¥pa))
= L % [(ai 4 (5[20,2] ®‘I’[2’0}) + (bi — b)) (5[%,3] ®T[3,0]>}

1<i,j<3

_ % [A (5[%2@‘1’[2,0]) +2B( [02]®‘T’[20]) ( [03]®‘I’[30]) +c(a[03] ®‘I’[30]>2]

say, is reduced. The last fact means that 2 |B| < A < C, so that 342 < 4 (A2 — B2) <4 (AC- Bz).
Since A is admissible for Q, the coordinates a + mc (m an integer) do not belong to int Q. Thus,

{|(m+ay) (m+ap) (m+a3)| > 1V integers m} ,
this implies that,

A = (m-a)+ (@ —a) + (13— )
= 2(a12+a22+a32)—2(u1a2+a2a3+a3a1).

Note it here that a;a; # 0if i = jand a;a; = 0if i # j do not hold due to Equation (29). So as,

C = (hi—b)’+(ba—b3)*+ (b3 —1y)°
2 (b2 + b3 +b3) = 2(br by + by b+ b3 by) .

and we can easily find that B = 0. Here,

2
(5[%,2] ®T[2,0])2 = [\} {aa; (=] - axzazaxz[lPO]H
VA {82 —$2] — axixz [lPO]} \2 {aa; (=] - axfzxz[%]}

0 92 92
= 2{2 atZ[ le]—m[lPo]Xﬁ[—lpz]—

02 02 02
- Tl x 5l + sl % gy liel )

82 2 82 2 82 82
{(aﬂ [‘4’2]) + <8x28x2[¢0]) } - ﬁ[%] 292 [~ 2]

(35* ¥2 4 0F \fg) — 2%, 02 Y,. (30)

NI~ N[~
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Similarly,
) 2 1 (& P 2
(3[0,3] ®T[3,0]> = [\/5 {atz [—4s] — W[%]H
1 02 1 [ 02 02
Y {at2 ]~ gl NG {3 )~ szl
1
= 5(61‘{’3 Jr33"110) 9§ Y003 ¥s. (31)
In the same way,
(3[%/2} ® T[zro]) (5[%/3] ® ‘F[3,0]>
1 (02 02 1 (02 02
= NAEZ [—2] — WWJO] X NAEZ [—3] — W[%]
= gl x ) — gl x 2 (4] -
2102 TV X gp T gaga il X g 1o ¥s
92 92 92 92
= 37 ) % s+ gt bl s ol
_1 ﬁ{, ]xai[, ]+872[ ]Xi[ 14—
o e TPl X ga sl 5 aga bl X g ags v
1 02 92 92
-5 ﬁ[%] 22 [—3] + 393 [—2]
1/~ =~ 1
) (861 1{/{22,3} + afz,a} 1{,02) Y ag Yo (8{22,3} ® 11[{3,2}) ) (32)

In the last line we have used subscripts { }, which are quite different from the subscripts [ | we
have used earlier and their purposes are quite obvious here. Since, the temporal axis is a part of S

spacetime but not the part of K space, so both ( 02 ® Y, 0]) and (8[% 3 ® 11}[3,0]) spaces, as well as
a; and b; spaces of Equation (29), are influenced by the (mutual) temporal axis and neither of them

have contained any temporal axis within themselves, then we can say that all axes of 4; (3[% 2 ® T[2,0]>
and b; (3[% 3 ® T[3,0]) (fori,j = 1,2,3) in K space are interrelated with the (mutual) temporal axis of
string spacetime S, since the temporal axis is a part of S = (5[% 1 ® T[l,o]) but not the part of K space,

thus, a; (3[%’2] ® ‘I’[Q,O]) and b; (5[%,3] ® Y[s,o]) (fori,j = 1,2,3) in K space have individual existences

as independent axes x (1+1) and x (1+0+0) (for ¢ = max i) influenced by the (mutual) temporal axis x°.
Let us assume that g; (3[%’2] ® ‘P[z,o]) and b; (3[%,3] & ‘F[3,o]> (fori,j =1,2,3) in K space have maximal

weight as 1 of each dimension as an independent axis for x (1+1) and x +0+0) which yields,

dim {(ﬂl +ax + a3) (5[%,2] & T[Z,O})} <3,
dmkm+m+@m%ﬂ®ﬂmﬂgg. (33)

Hence, they have the “proper” dimensions. Comparing the last line of Equation (32) with
Equation (30) and Equation (31), we can determine that if Equation (30) and Equation (31) give
us some “proper” dimensions, then Equation (32) definitely gives us an “improper” dimension, as
both (8 Y {22 3p T 5}32’3} ‘1’02> and (8 {22,3} @Y {3,2}> are depended on x2 and x? axes, simultaneously.
Since a and b are satisfying Equation (29), then a;a; and b;b; (for i,j = 1,2,3, i # j) must give us

“improper” dimensions, too. If we consider these “improper” dimensions (a; a;) 12 (3[% 2 ® T[z,o]) and
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~

(b; b]-)l/2 (8[% 5 @ ‘I’Blo]) (fori,j =1,2,3,i # j) in K space have individual existences as independent

(1+(i+0)+1 /) (1+(i42)
b

1
axes X, and x +2)) (since they are depended on x2 and x3 axes, simultaneously)
influenced by the (mutual) temporal axis x?, then, on the contrary of Equation (33), let us assume that
they have maximal weight as 0.5 of each dimension for xa(H(lM)Jr 2/) and xb(H(IM)Jr 7))

give x (1HH0+) = xﬂ(l+(z‘+f)+%f) n xb(1+(i+€)+%j)

, 50 as they can

, thus, we can say that,

dim H(ﬂh a2)""% + (a2a3)"% + (a3 ﬂl)l/z} (3[20,21 ®‘F[z,o]>} <15,

dim [{(bl by)'/? + (b2 b3)"/? + (b3 bl)l/Z} (3[%/3] ® ‘1’[3,0])} <15.

Hence, altogether they have,

dim| {(m02)" + (@200 + (301) 2} (331 @ ¥

U (a1 +az + a3) (5[%2} ®‘Y[2,0]) < 45,
dim { {(0182)77 + (b2 b0)' /% + (b3 1) ?} (335 @ ¥ 3 )

U (b1 + by + b3) (5[%),3] ©¥p 0]) < 45.

Since B = 0, the K space yields,

K = {(m +ay + a3) (5[%,2] ® ‘Y[LO])
o o+ )} ()
U (b1 + b2 + b3) (5[%,3} ® ‘P[3,0]>
U{b102)"2 4 (b2 b3)' 2 + (b3 11)' 2 } (3 5 @ ¥ 3 ) } /
ie.,
dimK < (45+45)=9.

Thus, X* < S U K has the spacetime axes as (using summation convention),

22 22 a2
[ (a[Orl] ® ‘f[LO]) /i (8[0,2] ® IIJ[2,0]> bi <a[0,3] ® 1I’[3,0]) ,
1/2 (& 1/2 (5
{(uia]-) (8[%,2} ®‘I’[2,0]) + (bib)) (a[%,g] ®‘Y[3,0]) }}
N (xO’xlrx (1+i)1x(1+(i+€))lx(l+(i+€)+j)) e xi, (34)
fori,j=1,2,3,i # jand ¢ = maxi. So, Equation (34) achieves,
dim ¥ < dim (SUK) < (2+9) =11,

i.e., string has eleven-dimensions by nature, that is why eleven is the maxinium spacetime dimension
in which one can formulate a consistent supersymmetric theory.
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Now, returning to our main purpose and using the first two terms of Equation (5), we can generate

the following wave equation for Equation (4) as,
itvO Vo (7, t) +ihv/ V(7 t) —ihguv' Vuy(7,t) =0, (35)

where V = (0/9 (v°t)) for x% = (vOt), while the Four-momentum’ operator is P' = in @,4, and
the three momentum operatoris p — —ih Vi

Remark 2. The signature of the metric gy, i.e., (4+,—,—,—), has been absorbed and retained unaltered by
the last term of Equation (35), as long as it satisfies Equations (3) and (4). Thus, readers are requested to be
careful not to presume space and time separately in Equation (35), what we usually assume in the conventional
Quantum Mechanics.

Again rearranging Equation (35) by using Equation (6), we may get,
inv® (1= goo) Vo7, ) +invi (1+g5) ViR, 1) =0,

or, simply discarding (1 — goo) = (1 + g;;) = 0, we can have the First Variance of the First Order
Equation of Semi-quantum Minkowski GQG as,

ihvO V(7 t) +ihvi V(7 t) =0,
ihilp(7,t) +ihvI V(7 t) =0.

o (36)
Evidently, Equation (36) may take the form E¢(7,t) = —ihv/ V;9(7,t) for the energy operator
E — ind;. Setting the Hamiltonian operator as H ¢(7,t) = —ihv/ V;p(7,t) = pv/ (7, t), where

the three momentum operator p — — i1 V;, we can therefore have, £ (7, t) = H(7,t) . Interested
readers can easily check it that Equation (36) is nothing but the gravitational form of the Classical
Schrodinger equation, where E is total energy, and now the equation has been rewritten with v/ along
with the signature of the metric (+, —, —, —).

It is also possible to develop a Second Variance of the First Order Equation of Semi-quantum
Minkowski GQG from Equation (35) as follows,

ihv' A, (7 t) —ihguv' Vuy(7,t) =0,

where it A, — [Py, —ﬁ]T — [ihVy, ik V] T
Now, let us multiply both sides of Equation (35) by (dt?/m), so as,

Ldt? oo Ldt? o . dt? -
Zh;vovow(r,t)+1h7V]Vi¢(T,t) = lFl?gyyvvalP(r,t)
dtz vAaH 2
= 8wV Py(rt) (37)

which has the form of a general inhomogeneous Lorentz transformation (or Poincaré transformation).
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Note it that Equation (37) is exactly equivalent to ds? = (dt?/m) guy P*v" of Equation (1),
Le., ds? = (dt?/m) guy PHvY = ds2 (7, t) = (dt2/m) gu v’ P" ¢(7,1), for the ‘Four-momentum’
operator P " in @,4 . In other words, we can say that the quantum line element is,

2
ds?y(7,t) = ih %g,ﬂ,vv V(7 t)

vi [ dt? - .
= V7 <lhmg’1yvvv‘u> l[J(T,t)

1 (. dxH# - N
= W(zhmgwdxvvy>lp(r,t)

_ (ingu dx"dx" ¥, ) p(7,1),

(i m)

hence, by considering £ = (v/ m) _1, we have,
ds?y(7,t) = ihE guudx" dx" V, p(7,1). (38)

Proposition 2. In Equation (11), relativistic spacetime is showing a relation with the quantum spacetime, if
the energy of the system remains fixed (so as its time). The wave field (7, t) itself in Equation (5) is relativistic
due to gy in its either terms. Equally, Equation (35) also assures us that Quantum Mechanics and Relativity
are must be correlated for the presence of gy in the last term of wave equation Equation (35). Lastly, the exact
equivalency of Equations (37) and (1), i.e.,

ds? = (dt?/m) gu v/ P*  +——  ds?y(7t) = (dt?/m) guv VP @,

for the ‘Four-momentum’ operator P 7] ﬁy, can say us that Quantum Mechanics and Relativity are
correlated in the wave field (7, t). So, we have a sufficient reason to accept the transformation of relativistic to
quantum relations, and vice versa, as,

P = P

ie, mvt <— ih@y.

We will use Proposition 2 throughout our work. This Proposition is quite straightforward than
some commonly used textbook procedures, for example, Ref. [5].

Remark 3. Technically, £ and i h ﬁy should cancel each other in Equation (38) for the Proposition 2, leaving
behind a classical-like line element. More explicitly we can say that the quantum line element, ds> ¢ (7,t) =
ih& guydxtdx? 6# (7, t), can transform into the classical line element, ds® (7, t) = gy dx¥ dx" ¢(7,1),

in a quantum spacetime, as € and i i @H are canceling each other.

Let us consider V }’t = ((5 /ox P‘), etc., and let us also consider that g, would transform as,

dx® 9xP ax* oxP \ (inV, () ()
gﬂl/:gtxﬁ (axﬂ axv> l—>g1xﬁ (axy axv> (lhﬁz :g’u/ — uv' s (39)
where fy(f ) is a ‘semi-quantum Lorentzian tensor” in a semi-quantum Minkowski spacetime, i.e.,

() () [0x* axP inV]
= Fap \ 37 3w invy )
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so as the ‘semi-quantum Lorentzian tensor’ fy(f ) and the pure Lorentzian metric tensor gy, should
establish a relation as follows,

. . « oxb in%
inVyefl = inV,ef (ax o lhv"‘)

dxH oxV ihﬁ}’l

e ox® 9xP\ (inV)
= 171Vy®ga‘5<waxv> (lh?ﬁ)

) 9x®* oxP \ = , =
= lhg“‘B (axllaxlf> VDL :lhg‘uv Va, (40)
thus, for Equation (39),
. = /
w (MY
= = . 41
f;w <ih A Suv (41)

Without any loss of generality, we may assume that the ‘quantum metric tensor’ is symmetric:
fy(f ) = fv(;f ), and det ( fy(f )) # 0. It has an inverse matrix f ~! whose components are themselves the
components of matrix f, as their product gives: f ! f = identity matrix, i.e., in terms of components,
fy(f ) f{; g = f(':f)l fy(ff ) = 5,/, where, 6, is the Kronecker delta.

Hence, Equation (38) should be rewritten as,

S AV
PR @ (9x* ) [oxF ) [ihV] . o invy\
ds*p(7, ) = £fy (axudx a7 I iw;,lw” ey ) VY
e (2t axb 9L (i)
Wo\oxt ox invy ) \inv)

) dx? dx”@,l (7, t)
= ihEfY iV dx#dx’ V, (7, t)
"o\inv, rr

= ihEgudx” dx"ﬁyt/)(?,t).

Let us vary the length of a curve [6-9] as,

SLly[ (7 t)

Il
—
>,
—N—
=t
t
=
==
VR
=t
. 1| <t
=~
~__—
=
=
=
<
<
-
—
—
S~
¥
Q.
,—‘
=
=~
=

This gives,
{ihé’aefy(f) ARV, —ihEd, f w2V, —ingd, I 512V T, } Y7 1)

—2inE (P 20V, p(F 1),
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then the Christoffel symbol l"ﬁv should be defined by,

such that the Christoffel symbols are symmetric in the lower indices: F]fv = 1"1‘,5”.
After a little exercise, we can yield the curvature tensor,

are,  arg )
Rgfyé lp( ) ( ax“Y ox? 27 +r/},e 1/5 Féerery> lp(rl t)/

thus we find,

o 1 S

which satisfies the properties like symmetry, antisymmetry and cyclicity as usual. Without much ado,
we can easily obtain the Semi-quantum Minkowski GQG Einstein field equations as,

1 g} ;
[Rey - S £ R| (7, 1) = 87G Toy p (7, 1), (42)

where 7Tz, is the quantum energy momentum tensor, it is what the graviton field couples to, and G
is the gravitational coupling. Let us develop an unusual gravitational coupling G in Planck scale
using Equation (41) as follows by using Ref. [10],

dep)® @2 2
G = (dfp)” d Epz = ni; d EPZ (dfp)2 = % (dfp) = 1—;1323@7 d@lgdfg
mp o (dtp)? mE (dtp) mp mp
Fp . ih@é T o1
_ I — & ) deSaer, 43
m2 Joy invy ) PF “

where Fp = mp {dzég/(dtp)z}.
Since R¢; = f(’}\’g Ragy, R = fé’; Ry and f A(,j‘ ) f(’}\’g = gy gV, the LHS of Equation (42) may give

us the purely Einsteinian form, i.e., {R o~ % 8oy R} , if we use Equation (40) as follows,

(ih%)@(iwé)@[Rgv—%féﬁf)n} — —h2[Rgﬂ—%g&7R A

Similarly, we can get the Einsteinian energy momentum tensor T, from the quantum energy
momentum tensor 7z, of Equation (42), if we assume 7, depends on (quantum) metric tensor
(for example, Ty = —« 2 (019 guv — 0"y gur — 019y §ua + 90y &7 — My 0207 8¢ + 1w 9797 810 ),
or the electrodynamic Ty, = — Iz FU” +1 8oy FW Fuv = —ggy Fou F oyl 8zy F' Fuy, etc.). By using
Equation (43) in Equation (42), we can get the modified GQG field equation as,

(ih%)@(ihﬂ)@[73@7—%)%(,7 R| (7, 1)
= (inV) @ (inV%) @ (871G Ty ) (7 1),

1 e -
—n? [Rg,7 — 580 R} Vi VIEp(E ) = —h28TG Ty Vu Vg7 t). (44)

Note it that Equations (42) and (44) are exactly the same thing despite their different appearances.
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Remark 4. It is necessary to remember that,

1. We should not introduce the cosmological constant A in Equation (44), because we can get Dark Energy
from Einstein field equation quite naturally (see the last equation of Equation (68) in Section 2.2 below for
more details). Introduction of the cosmological constant A in Equation (44) should intend to double entry
of Dark Energy in the same gravitational field of GQG, which should obviously be wrong. Though, in
Equation (70) below, we will develop a field equation containing A, which is slightly different from the
Classical Einstein field equation.

2. Equation (44) tells us that gravitation is an interaction in orthogonal curvilinear coordinates x¢ (i.e.,
outer surface) of point P(x#) rather than at that very spacetime x* (i.e., core). Since ih @H - 0 for
a particle field, then the Einstein tensor must be unity, i.e., Rz, — % 8oy R — 1, in Equation (44)
at the core x ¥, and there, spacetime x ¥ behaves strongly Quantum Mechanical so as the other particle
interactions (i.e., Quantum Chromodynamics and Electroweak) are prioritized there locally. On the other
hand, gravitational effects only start effective beyond the core x ¥, i.e., in orthogonal curvilinear coordinates
x% outside the core x*, in other words, the outer surface of x .

3. If we consider a cutoff energy E,, then we can say that gravitons only appear in an energy zone Eir < E,
as E, < Eppanck, and beyond that state, i.e., Eyy > E,, other particle interactions (i.e., Quantum
Chromodynamics and Electroweak) are prioritized, where Eig is the infra red energy zone, whereas
Euv S Epranck is the ultra violet energy zone. Thus, for gravity in Equation (44), ultra violet zone
is automatically ignored, i.e., the sum over Erg intends the Feynman graphs to be finite. In the energy
zone Eig < E,, all gravitons behave as real particles. Let us assume additionally that E pp anck 1S not an
external energy state, but the kernel of all energy states of a particle, then we can assume the enerqy states
of a particle from the kernel energy of the core x ¥ to its outer surface energy for x& as:

(EPLANCK) KERNEL OF THE COREXH (EUV) CoRExH (E*) OUTER SURFACE x ¢

. (45)

(EIR) BEYOND THE PARTICLE

Between core and outer surface energies, i.e., at Eyy > E,, Electroweak and Quantum Chromodynamic
interactions take place, whereas, outside these states (i.e., at Eir < E,) gravity starts being prioritized.

4. For the RHS factor h? G of Equation (44), the gravitational coupling G, which has the dimension of a
negative power of mass, now has lost its mass dimension due to >, Consequently, if divergences are to be
present, they could now be disposed of by the technique of renormalization (though, this will not play a
role in our present discussion, but we can develop a renormalizable scenario by using a purely quantum
form of gravity, which will be discussed in Section 2.3 below).

Remark 5. Equation (43) is true for the outer surface x°, but it is seemingly true for the core x*, too, due to
the universality of gravitational coupling G. So, we can choose the indexes either ways.

Now, considering d’Alembertian operator (] = V u VH, as wellasU = (8 G Ty ), and inputting
the ‘Four-momentum’ operator P — i @;4 into Equation (44), we can get the Second Order Equation
of Semi-quantum Minkowski GQG as,

h2 [Rgﬂ—%g@?R} D7, t) +UP2y(7,t) = 0. (46)

The wavefunction (7,t) in Equation (46) is emphatically defining a bosonic field. Thus, we
can immediately develop a fermionic field (or the Third Variance of the First Order Equation of
Semi-quantum Minkowski GQG) out of Equation (46) as,

1/2

. 1 S S
inyt [RCW 8 R} V(@) U Py t) =0, (47)
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where, v are Dirac’s gamma matrices.

Dividing Equation (47) either by [Rg,] - %g@ R 2 orby U2 givesus (i y" ﬁy —P) (P t) =
0, from which the classical Dirac’s equation should be derivable, but here, instead of 9/ (9 t), we have
considered 9/ (3x°) by absorbing v? and similarly, P is not intended here to have a factor of rest mass,
since m # my in Equation (1). Thus, we can say that Dirac’s equation is a subset of the Third Variance
of the First Order Equation of Semi-quantum Minkowski GQG, i.e., Equation (47). Similarly, we can
also say that the Klein-Gordon equation is a subset of the Second Order Equation of Semi-quantum
Minkowski GQG, i.e., Equation (46), and it should be derivable from (Fl2 O+ 732) (7, t) = 0. An
analogous formalism is equally applicable for the following Subsection 2.2.

2.2. Quantum Minkowski GQG

Let the line element of Minkowski spacetime,

2
ds? = gwdxydx"z<j:> gu PPV,

ds) 2 dx? dx/ P P
mZ <dt> — mZCZ_mzzaﬁ:mE_Zplp]:pOPO_szp]
= gw,PVP ,
2 2
and, m? (ji) = m? (1—‘;) c2=mc?, (48)
for the rest mass mg, when,
2 2 (ds 2 0,0 i #pv
dSp=m? (o) =p°p =1 p'p =guP'P, (49)
then, rearrangement of Equation (48) gives,
i ] 2 ds 2 i ] "pv ds ds i ] °pv
mE=p'p/+m i :pp+PPdeV:pp+PPgw. (50)

Then, considering the representation of a wave field (7, t) by superposition of a free particle (de
Broglie wave) for Equation (50) as follows,

P(r,t) = (27'(1?1)2 exp {hlm {m (ﬁ?—i—g;‘vﬁ-ﬁ) —mEt}]

) 2
(27'(1?1)2 exp lhzm {m (ﬁ-?—i—mt (jli) ) —mEtH , (51)

we can generate the following wave equation using Equation (50) combining with Equation (48) as,

— 12V Vo (7, t) + 12V Vip(F t) + 12 g Vi V(7 1) = 0, (52)

which may give,

—

—n? (1 —goo) Vo Vo (7 t) + 1 (1 +gij) ViViy(Ft) =0,
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or, simply discarding (1 — goo) = (1 + gij) = 0, we can get the First Variance of the Second Order
Equation of Quantum Minkowski GQG as,

— h2V0 %0 l/)(?,t) +Fl2§i ﬁj l/)(?,t) =0,
—n2VoVOy((# ) +h2V;VipEt) =0. (53)

Here, (7, t) is definitely a bosonic field. But the uppermost equation of Equation (53) may give us the
gravitational form of the Classical Schrodinger equation by using the Proposition 2 (the exercise is left
for the readers) as follows,

ih—1p(?,t)+gvﬁjlp(?,t) =0. (54)
Putting differently,

00 /R
ihar (7 t) + - g ViVIg(i, 1) = 0.

Hence, we get the gravitational form of the Classical Schrodinger equation for the total energy E, and
now itisina (3 4+ 1)D quantum spacetime.

Applying the representation of wave field (7, t) either of Equation (51), or Equation (5), into
Equation (50), we can get,

. 1/ S Ea U\
Eyp(t) = %(P g P Py,
2
. .0 he (e = = = -
1.e., Zhgl/)(r,t) = —E(vlv]+gyvv;¢vv> l/}(r/t)/ (55)

where ¢, is actually satisfying the last two terms of Equation (58), see below. Note that, Equation (55)
should be used as an alternate of the gravitational form of the Classical Schrodinger equation,
i.e., Equation (54).

After using the first term of mass operator 71 from Equation (7), the Equation (55) yields,

122 (7 t) = h? (@i Vit g Vi ?V) w71,
92 a2\ .
n’ (asz+at2) (7, ) = 0. (56)

Compare the first equation of Equation (56) with Equation (10). We will use the second value of 7z E in
Equation (56) to construct Quantum Non-Minkowski GQG in Section 2.3 below.

Now, the Second Variance of the Second Order Equation of Quantum Minkowski GQG from
Equation (52) should be,

— 12 A By p(Ft) + 02 g Vi Vy (7 t) =0,
whereihﬁy — [Py ffa]T% [ih@o,ihﬁi]T.

Multiplying both sides of Equation (52) by (dt/m)? and comparing it with Equation (48), we
have the quantum line element for the ‘Four-momentum’ operator P P invV u as follows,

2
ds? (7, t) = —h? (ij) S Vi Vyyp(7t). (57)


https://doi.org/10.20944/preprints202306.1472.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 October 2023 do0i:10.20944/preprints202306.1472.v2

21 of 42

Let us now prescribe g, as follows by using Proposition 2 as,

2 2
B ox® oxP B m ot ox® oxP B p« ph
8w = b\ o5 oxv | T8\ o) \m | \ox# axv | T 8\ pr pv
Pt pF inV, ihVg
— 7 =T — — ——— | . 58
Sup (P” P“) 8up (ihvy inv, ©8)

To avoid any confusion between the pure Lorentzian metric tensor g, and the quantum Lorentzian
tensor of Equation (58), let us assume that,

inV, ihVg
= — — = . 59
pv = Sap (ihvy inv, | S ©9)

This approach is quantizing gravity. The ‘quantum metric tensor’ g, is symmetric, i.e., guv = gy,
and det (g,v) # 0. Components of its inverse matrix g ~1 are themselves the components of matrix g,
ie, guegh"=gMmgu = 5.}, where, 5, is the Kronecker delta.

Then, Equation (57) becomes as,

2
ds?y(7,t) = —h? (‘:j) g Vi Vo7 t). (60)

Let us vary the length of a curve [6-9] as,
dr 1/2
/ { h2<m> gwﬁpﬁu} dt (7, t)
dt = =
2/{ () aegyvvyvv—
d o [ dt = = S
2dT< h (m) ngv>}5ved’rlp(1’,t).

Similar to the Subsection 2.1, after a little exercise, we can develop,

SLlv[y(7,t)

o 1 -
R)u/'y& lP(T’, t) = ) (g/\J,V'y + 8y, A6 — 8ov, Ay — 8 Ay, vé ) 1/1(7’/ t>/
and then, we can obtain the Quantum Minkowski GQG Einstein field equations as,

| Rey — %ggﬂ R| $(F,t) = 87 G Ty (7, 1), (61)

Let us develop another unusual gravitational coupling G in Planck scale using Proposition 2 and
adopting Remark 5 as follows,

Fp Fp . u
G = = (dlp)? = =2 g d) dey = -2 del dep,
mp (dtp)z m3 (dtp)z m3 m3
dtp) oh

for Fp = mp {dzgll,l/(dtp)z}.
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Interested readers can easily check that Equations (42) and (61) are exactly the same thing but
comprised with different components: the earlier one with ‘Four-velocity’ components and the later one
with ‘Four-momentum’ components. Another noticeable difference between them is that Equation (42)
has a mixed expression of classical and quantum geometric expressions for fy(f ), whereas, Equation (61)
has a purely quantum geometric expression for g . In other words, we can say that Equation (42) is in
a quantum Minkowski spacetime, whereas, Equation (61) is in a semi-quantum Minkowski spacetime.

If we transform our spacetime into Planck scale, i.e., x# — /¢ 1’; and t — tp, then we can rewrite
Equation (61) using Equation (62) as,

lh - = 1 1
Zip 4 7 — 7 =
h mlg pr VP l/)(?‘p,tp)—l-gnﬂjgﬂ {RP@] zggnRP} l/J(rp,tp) 0.
Let,
1 1

2 _ _ — = =
then we have,

oL L )

n? mfl}; pr Vl;’l l,b(?’p, i’p) + ¢? lp(?‘p, tp) =0.

Considering d’Alembertian operator (p = V Pu \% b, we can get the Third Variance of the Second
Order Equation of Quantum Minkowski GQG as,

o . S
hzm%DPlP(rp,tp) + €2 p(Fp, tp) = 0. (64)
P

Here, (7p, tp) is definitely a bosonic field. Thus, we can immediately develop a fermionic field (or the
First Order Equation of Quantum Minkowski GQG) out of Equation (64) as,

o\ 12
ih <mp3> YV g(Fp, tp) — € (7p,tp) =0, (65)
P
where, 7" are Dirac’s gamma matrices. Considering (/}) — mp [11], let Equation (65) be for
Equation (63) as,
ihyF Vo, ¢(Fp,tp) —mpC p(Fp,tp) = 0
ihy¥ Vp, (P, tp) —mp G2 y(¥p,tp) = 0
= (8m)Y2ihy " Vp,uy(Fp,tp) —mpy(7p,tp) = O, (66)

since 871G = mp 2, Now, Equation (66) is quite handy to use. But Equation (66) also suggests us
that whatever matter satisfies such a fermionic relation is definitely originated (clustered) as matter
from fundamentally different physics at the Planck scale, maybe at very different cosmological epochs.
Moreover, the first term of the last equation of Equation (66) is almost five-times larger than any
Dirac-like term for baryonic matters, which is quite unusual. At this characteristic Planck scale,
the matter that satisfies Equation (66) must not provide a natural mechanism of the electroweak
symmetry breaking, thus the matter must be non-baryonic. The only possible candidate having such
characteristics is Dark Matter, which accounts for 26.8% of the critical density in the Universe against
4.9% of the critical density of baryonic matters, in other words, the critical density of Dark Matter is
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almost (87)1/2

Equation (66).
Again, returning to Equation (60) and using m? (ds2/dt?2) of Equation (48) so as m? (ds?/dt?) =
m? (1— UZ) = m% for the rest mass m, we can get,

times higher than the critical density of baryonic matters — it exactly matches with

m3p(F,t) = —h2guw Vu Vi (7, t)
W2 g Vu Ve (7, t) +miyp(7,t) =0.

Then, considering @V =g V ¥ and d’Alembertian operator [ = v u \V/ #, we have,
W2 g% Op(F,t) + mGy(7,t) = 0.
Thus, we can immediately develop a fermionic field equation as,
ity gu V(7 t) —moy(7,t) = 0. (67)

Here, the real fermions exist only in temporal dimension. Thus, Equation (67) gives us the Dirac
equations for fermions, but with an extension that antifermions, those are exist in spatial dimensions,
are thrice in number than real fermions in nature. As the motion in temporal dimension is the basic
consideration of relativity, the ‘+’-ve signature of g, in Equation (67) explains us the reason of the
forward expansion of the Universe in temporal dimension.

Now, let us replace m? of Equation (48) with the Planck mass m 1%, when mI% satisfies as [12]:

m3A = % (T), where the cosmological constant A = 87 Gp,, so as we have m3 (ds?/dt?) =
m% (1-— vz) = mI%O for the Planck rest mass mpg and ¢ = 1, thus, for,

1 1

m%A(l—vz):§<T>(1—vz) = mI%OA:§<T0>,

where, (T) (1 —v?) = (Ty), and following the argument cited above,

W2 g Vi Vo p(7, 1) +miop(7t) = 0,

21% Agp, D97, 1) + (To) p(Ft) = 0,

and, h*Agl, O¢Ft)+paop(Ft) = 0, (68)

by replacing % (T) with p, for the cosmological constant A = 8w Gpp = mp 2pa. So, by using
871G = m,? and by switching (1 — v2)1/2 right to left in the term: mp (To) /% = mp (T) /2 (1 —
v2) /2 = mpo (T) /2, we can develop a fermionic field equation as follows,

ih\/ZiA’y”gwﬁylp(?,t)—<T0>1/2¢(7,t) = 0,
it (200) Y g Vuw(F t) —mpo (T) V2 p(7,t) = 0. (69)

The interesting thing in Equation (69) is that Dark Energy has a direct relationship with gravity. In
other words, Dark Energy would be obtainable from the breaking of particle symmetry where gravity
counts (see, Subsection 3.1 below).

The last equation of Equation (68) is definitely applicable simultaneously whether the matter is
baryonic or non-baryonic.
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Adding the last equation of Equation (68) with Equation (46) (since Equations (61) and (42) are
exactly the same), we can get a field equation for Equation (59) as.

1 B} B}
n? {Réﬂ_EngR"‘Agiv}Dlp(nt}"'[Z/{PZ‘FPAO} p(Ft) = 0,
. 1 ; ;
ie, h?[Rgy— 580 R+Ag%| DN+ [UP?+pno] w(Ft) = 0. (70)

This field equation, which is actually a Klein-Gordon-type equation, is slightly different form the
Classical Einstein field equation. Note that gravity and cosmological constant A are originated from
different spacetimes in Equation (70). From a particle’s point of view, A is generated from the kernel of
the core of a particle, whereas, gravity is emerged from the outer surface of the same core.

Again, either from the first equation of Equation (68), or by placing 3 (T) = p, in Equation (69),
we can find,

iy gu V(7 t) —mpop(7,t) =0, (71)

which is the Planck scale counterpart of Equation (67), in other words, Equations (67) and (71)
counterbalance each other’s actions of the forward expansion of the Universe in temporal dimension
due to their g .

Since, the cosmological constant A = 871 G pp = mp 2 oA, then again replacing m 2 of Equation (48)
with m2 = (pp/A) gives us, (oa/A) (ds2/dt?) = (pa/A) (1 —v2) = (pao/A), for c = 1. But, we
can say, E2 = (ppo/A) c*, i, Ex = (oao/A) Y2 ¢2, as the rightful and lawful ‘Dark Energy’ for
relativistic px.

The grate difference between Equations (66) and (71) is that the nature of the former one is
non-baryonic, whereas, the later one is independent of matter’s constructive property, i.e., its effects
can be observable simultaneously both in the cases of baryonic and non-baryonic matters. Another
difference is that Equation (66) is effective at mp scale, whereas, Equation (71) is effective at mpg scale,
i.e., Dark Energy had originated at much earlier cosmological epochs than Dark Matter. Similarly, Dark
Matter had originated at much earlier cosmological epochs than baryonic matters of Equation (67)
at mg scale. Thus, we have a quite fair chronology of the formation of cosmological matters in the
Universe. Note it here that gravity was not observable at the cosmological epochs at mp scale where
Dark Energy had originated. At this scale, gravitons just behaved as energy states rather than real
particles due to Remark 4. Gravity was also not observable at the next cosmological epochs started out
at mp scale where Dark Matter had originated. Gravity became observable first time only in the energy
zone Ex < E4 as we had claimed in Remark 4.

The bosonic and fermionic fields for baryonic matters, Dark Energy and Dark Matter, which are
obtainable from GQG, are listed in the Table 1.
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Table 1. In General Quantum Gravity, we have twelve staple bosonic and fermionic field equations in
two different orders.

Semi-quantum Minkowski GQG: First Order Equations
ing (7, B +ihvi Vg7, t)=0
ZFZVVAPI/J(T t)+zthv Vi t) =
iyt [Réﬂ_igén }1/ vy (7 t) — ul/zplp( t) =
Second Order Equation
12 [Rey — gy R| Op(F 1) +UP2 (7 t) = 0

Quantum Minkowski GQG: First Order Equation

1/2
. ok = N -
ih (m%) yH Vpﬂ l[)(l’p,tp) —%lp(?’p,tp) =0
ihy" g Vi (7, 1) —mop(7,t) = 0
i VAN Y gy Yy p(F,1) — (To) V2 (7, 0) = 0
Second Order Equations
—h %ﬁolp(?twh v; le(?,t):o
T’lZ P Dpl[)(?’p,fp)—F(gzlp(Tp,tp) 0
hngVDl[J(I’ t)+m0¢<r t) =0
21* Ag2,09(7,t) + (To) p(7,t) = 0

2.3. Quantum Non-Minkowski GQG

Now, let us try to develop an Einstein field equation, which is “completely” Quantum Mechanical
(i.e., it has neither a Minkowski spacetime and not its metric is Lorentzian) in comparison to
Equations (42) and (61).

Equation (55) immediately tells us that Equation (49) is possible to be written as follows,

A

dSEY(F ) = gu P P Y t) = (ME—p'pT) 9(71). (72)

After using the mass operator 7z from Equation (7) and then inputting the value of 7 E from
Equation (56) into Equation (72) and then using Equation (8), we have,

AS2PE0) = e P P e = — 02 (20— Nuin = —n2 2y
PP E) = & A o ot?2  9xioxi Pt = 8sz¢r'
= —h?g"0,0, p(7t). (73)

This line element has neither a Minkowski spacetime and not its metric is Lorentzian, since Suv is
satisfying the last two terms of Equation (58). Note here that, the LHS of Equation (73), i.e., d S3, is
relativistic, whereas, the RHS of Equation (73), i.e., — 2 aas =,
this line element with Equation (10), but this time, the relativity-quantum relation in Equation (73) is
explained more uniquely and explicitly than our previous findings which have defined in the above
two subsections.

Now [13], let H be a Hilbert space. Let (M", g) be a manifold, where M" is an n-dimensional
differentiable manifold and g is a metric satisfying the last two terms of Equation (58), which is either
as a positive-definite section of the bundle of symmetric (covariant) 2-tensors T*M ®g T *M or as
positive-definite bilinear maps, g ((if) x) : Ty 1) M X Ty M — H for all (i) "'x € M.

is Quantum Mechanical. We can compare
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Here, T* M ®s T*M is the subspace of T*M ® T * M generated by elements of the form X ® Y + Y ® X.
Let { (if)~ } be local coordinates in a neighborhood U of some point of M. In U the vector fields

i=1

{ (ih Vi> } form a local basis for TM and the 1-forms {ih @l}n form a dual basis for T*M,
i=1

- S\ -1 .
thatis, i V; (ih Vi) =9 ].’. Let V& denote the Levi-Civita connection of the metric g. The Christoffel
symbols are the components of the Levi-Civita connection and are defined in U by V (%)) (ih \% j) =
1"11; (ih ﬁk)/ and for th @1) , (ih @])} = 0, we see that they are given by,

Thg(Ft) = %gke [(ih ﬁ‘) 8je + (ih 6j) 8it — (ih W) gi]} y(7 1) (74)

Let the curvature (3,1)-tensor Rm is defined by, Rm(X,Y)Z = VxVyZ — VyVxZ — V|5 y|Z. Thus,
the curvature tensor, R/, ik = 9l j‘f( —0; T+ ]’,i Ff; r Zli l”fp is purely Quantum Mechanical due to
Equation (74). Let the tensor Rc is the trace of Rm curvature tensor: Re(Y, Z) = trace (X — Rm(X,Y)Z2),
defined by R;; = Rc ((ih @1) , (ih 6]-)), and the scalar curvature R is the trace of Rc tensor: R =

" Rc(eq, e4) where ¢, € T((ih),1x>M” is a unit vector spanning L C T((ih)*lx)Mn' Then, the
Einstein-like purely quantum tensor Rc — % Rg directly acts on a quantum space. Thus, Einstein-like

is “completely

purely quantum field equation [Rc -1 Rg} (7, t) =Uy(7,t), whereUd =8 G Ty,

Quantum Mechanical for Equation (74) in comparison to Equations (42) and (61).
Instead of considering X# of Equation (34), let us develop X" with purely quantum spacetime
axes as follows,

{ (5[%,1] ® ‘I’[l,o}) /4 (3[%,2} ® ‘I’[z,o]) bi (5[%,3] ® T[&O]) ’

{(aiaj)l/z (5[%,2] ®1}f[2,0]) + (bib; )1/2 (a[o 3 [3,0]) }] (75)

N ((ih)flxol (ih)flxll (ih)flx(lJri)’ (ih)flx(lJr(iJrZ (lh) }, 1+€)+])) cxH,
fori,j =1,2,3,i # jand £ = maxi, where,

(ih)flx(l+(i+5)+j) — <(1h) (1+(H’f) 3)) + (ih)lx;1+(i+£)+%j)> )

For the selection of the axis from Equation (75), we use fully democratic way, e.g.,
if {(a3a1)1/ <[Oz]®‘1’[zo])+(b3b1)l/2 (5[%3](8‘}’[3,0})} gives the 11" dimension, then

az (3[%,2] ®T[2,o]> and b3( 03] ®‘F[3,0]) should give us the 9™ and 10 dimensions, and so
on.

2.3.1. Superstring/M-Theory

For this sub-subsection, we will switch to the Minkowski signature (—, +, ..., +) to express a
point particle and a string propagating in a D-dimensional curved spacetime.

The bosonic part of the action of the N = 1 supergravity theory in 11 dimensions should be (we
follow Ref. [14] hereafter),

= 2/d11 (it) e/ = (Rc F4) o 2/F4/\F4/\A3, (76)

where F; = d Az. Definitely, this D = 11 supergravity is now in X" spacetime of Equation (75)
with purely quantum gravity g, which is satisfying the last two terms of Equation (58) but now with
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the signature (—,+,...,+). And the overall scenario is condensed inside the observable (3 +1)D
spacetime, i.e., (8[%1.] ® T[Ql’}) fori=1,2,3.

Similarly, the bosonic part of the action of type IIA theory (N = 2, d = 10) should be (in the string
frame),

1 1 1
_ 10 2 21 =
Sna = o 2/d (ih) e/~ (exp [Rc+4(acp) 5 Hj 4F2 5 F4>
— /F4 NEy A By, (77)

where Fy = dC3 + H3 ACy, F, = dCy, H3 = d By and ¢ is the dilaton. And the bosonic part of the
action of type IIB theory (N = 2, d = 10) should be (in the string frame),

212 /le (ih)~ I\/7<exp [Rc+4(a¢) 112 H3] _ = (34))2

1 1 1 1
_E[F3+QH3] _4801:52> +4K2/<C4+2B2/\C2> ANF; AN Hj,

S1s

where F5 = dCy + H3 A Cp, F3 = dCy, H3 = dB,, while a is the RR axion and ¢ is the dilaton. Whereas,
the bosonic part of the type I action (N = 1, d = 10) should be,

1= ez [ 400 v/ (exp (~20) [Re+4(09)?] - 1 B - ] exp (<) TiF?)

where F; is the modified field strength for the two form, ¢ is the dilaton and F, = dA + A A A, where
A is the gauge potential in the adjoint representation of SO(32). As the two heterotic supergravity
theories are obtained as the low energy limit of heterotic string theory with gauge group SO(32) and
Eg x Eg, respectively, the bosonic part of the actions should be,

1 1
S Heterotic = 2% Pyl /dlo(lh) —8& exp (_24)) (RC+4(8¢)2 12 H3 - ZTI'F )

where Hj is the modified field strength for the two form, ¢ is the dilaton and F, = dA + A A A, where
A is the gauge potential in the adjoint representation of SO(32) or Eg x Eg, respectively. In the similar
way, a solitonic supergravity solution for p-branes in 11 dimensions which interpolates between a
vacuum with 5O(1,2) xSO(8) symmetry yields,

ds?> = H 28y, (i) 2de* dg¥ + HY? 6y (i) 2de™ d",
Az = Hilﬂw(ih)f‘q’dxo/\dxl/\dxz,

6
H = 1+R7,

p

where p,v =0,1,2, m,n =3,...,10, and H is a harmonic function on the transverse space, whereas
r is the radius for the eight-dimensional space transverse to the membrane. Hence, the complete
scenario of the Superstring/M-theory is condensed again inside the observable (3 + 1) D spacetime,
i.e., <8[%,i] ® T[O,i]) fori =1,2,3. But M-theory on R does not contain any strings, however, if we
replace Minkowski spacetime with X# spacetime of Equation (75), then we should find that M-theory
on X# is now contain strings which is inside the observable (3 + 1) D spacetime, i.e., (8[%’1.] ® T[O,i]) for
i=1,23.

Since M-theory is the strong coupling limit of the type IIA string theory, it must be an inherently
non-perturbative theory, with no arbitrary coupling constant, but only a length scale £, then the
relation between this length scale and the IIA length scale and coupling can be obtained by comparing
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. . S = =
the 11 and 10-dimensional gravitational constants x1; and x19. But we know G = — 2B Vp,Vh
m3 uVp

from Equation (62). Then, k3 = 27t Rx}, where, by accepting ¢, — ¢ 1},‘ ,

S L o1-1\?
%y = (2n)8<—h—2cmg[vpﬂv;‘] ) ,
2r¥x2 0%+ 2n)8 G2 m¥ =0,
which yields, ivV21° Kk yH 63{? —2n)*GY2m¥ 2 =0,

when 0 =V Pu \v/ IP; and y* are Dirac’s gamma matrices, whereas 21(120 = (2m) 7 g2 a’#. So, we obtain,

that,
1 PO SRR RS
a2 = R(—h_ Gmp[prV{;] ) p
5 . . 1 —3/2
g = Ra/z(_h— Gm} [vpyv},‘} ) . (78)

Hence, when the 11-dimensional radius is much smaller than the 11-dimensional length scale we
effectively have a 10-dimensional theory, which is type IIA string theory. But this idea should be
applicable for any dimensional radious R, and any dimensional length scale since we have taken
Lyt IP; ; thus, we can rewrite Equation (78) as follows,

03 B L1\
W = R]’j(h 2Gm} [V, V] ) ,
-3/2

3/2<h_26m1§ [vpyﬁlﬂl> ,

s = (0'R)

if y =v,andif u # vthena’ =0, g = 0, where ©,, is a coefficient for the various energy lavels of £ 5,
for example, ®1; = 1. This suggests that the low energy limit of the strong coupling limit of IIA string
theory (which is M-theory) must be the 11-dimensional supergravity for any dimensional radius R,
and any dimensional length scale. Let no fields depend on the 10" space direction (i) ~'d ¢ 1°, then
splitting the metric and having the three form as,

dsh = exp(~29/3)dshy +exp (49/3) () (4 + Cydet)”
A;w,lO = Byv/
Apwp = Cup,
after that inserting these relations into the 11-dimensional supergravity action Equation (76), a

straightforward calculation gives the type IIA supergravity action Equation (77), in the string frame. If
no fields depend on the 7™ space direction (i) "'d ", then we have,

ds?i = exp(—2¢/3)dsis + O, exp (4¢/3) (ih) (d;"—i—Cyd;")z ,
A;u/,n = Byv 7
Apwp = Cup-
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Hence, type IIA supergravity can be obtainable from a dimensional reduction of 11-dimensional
supergravity (M-theory), where the reduced dimension should be depended on the 1™ space direction
(ih)~1dr". So, obtaining type IIA string theory from M-theory by dimensional reduction is now
non-restricted for the 11" direction but universally for any n'" direction. This will be more clear if

we consider the relations between branes in type IIA string theory and M-theory as descrbe in the
following tensions,

M-brane:
1
MW : R,
. 1 2 e er] ]
M2 : (Zn)z{@,(—h Gm [V, VL] )} ,
. 1 2 e er] ]
M5 s O ( Gmd [V} ,
2
kK. TR
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Type IIA-brane:

DO 1:[(®1R)3/2<—hzcm3[ﬁ WT)WZ]_lx
" R B p|VPuVp

R e AU
Fl: 2”R”@3<—hzcm;[vpyv{:] )

1 ~ L1\
D2: (zn)z{@,(—h 2Gm} Ve, V] )}

1 y B L 1\ -3
= & (0,'R) (—h 2Gm} Ve, V)] ) ] X
®3 . . 1 3 —3/2
X Ri‘(—h—ZGmg prvg )1 ,
27 R _ = =1 1\
Di: 5% {®y<—h 2Gm3 [Vp, V| )}
-1
1 B 3/2 B . . 1 —-3/2
—271[(@)#11{1,) (h 2Gm3 [V, V] ) ] x
®3 . . 1\ 3 —5/2
N e R ] )] ,
v
o1 e sl on] ]
NS5 s O Gm [V, VL]

27 R,)? o1\
D6 : w{@(—h—%mg[vpﬂv}:] }
G

o3 -1\3
U ) = =

Since, type IIA and IIB string theory are T-dual when compactified on a small and large circle,
respectively, then it must be possible to relate M-theory and type IIB string theory by the same

X
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consideration as above. Thus, we obtain the following relations between M-theory and type IIB string
theory parameters as,

8B = Ry
B R n)’

_ 1 2 afe e ]
e = R(y—1) Ry {®”< G [VP”VP} ﬂ '

We have skipped a very interesting thing in our above discussion that would be occurred if we
construct flux compactifications of M-theory to three-dimensional X spacetime preserving N’ = 2
supersymmetry. Here, a scalar function depending on the coordinates of the internal dimensions A(y)
(called the warp factor) is included as the explicit form for the metric ansatz as,

ds? = Ay) Mpudxtdxl + A(y) g (y)dy"dy ",
where,
xt = (i) 710 )Nt i) ) forif =1,
are the coordinates of the three-dimensional spacetime M3 and,

m G 1 (14") a1 (LG40) (i) — Lo (1440 1) {i” =23,
y™ = (i)~ W, (im) e , (i) T Ny, for{
i=1,23,
are the coordinates of the internal eight-manifold M.
Relating M-theory on a line interval and Eg x Eg heterotic string theory is quite obvious now and
has been omitted here.

3. Dark Energy Scenarios

If we try to develop a Lagrangian for gravity, we can either choose Equation (47) or Equation (67).
Though, gravity is feeblest in Electroweak or Quantum Chromodynamic interactions, but gravity
is always related to their interacting particles, thus, we should like to go with Equation (47) for
Electroweak or Quantum Chromodynamic interactions as [R e % 8oy R} — 1 for Remark 4, whereas,
we should choose Equation (67) for gravity. Since the last equation of Equation (68) is applicable
simultaneously whether the matter is baryonic or non-baryonic, then we should like to choose
Equation (71) to include Dark Energy in the Lagrangian along with gravitational and Electroweak or
Quantum Chromodynamic sectors.

Here, we only touch upon the bare minima of Electroweak or Quantum Chromodynamic
interactions in presence of gravity and Dark Energy. We have left a number of features for the
interested readers to check them out with their own interests.

Following fundamental interactions are considered to take place between the kernel energy of the
core, i.e., Eppanck, and the outer surface energy of the core, i.e., E,, of the particles. Note it that, at this
energy state Ep anck > E, gravitons are not true particles but mere energy states.

3.1. Gravitational Electroweak Dark Energy Interactions

Let i = ¢ = 1. For baryonic matter, let us include gravity and Dark Energy in the Yang-Mills
Lagrangian of the electroweak symmetry SU(2); ® U(1)y. We will consider U(1)g as the symmetry
associated with gravity group and it is unbroken, since it does not directly interact with the Higgs.

Let us consider Casimir energy is associated with the right-handed fermions, so by choosing
the isospin quantum numbers of different Standard Model fermions and by considering the U(1)4
is the symmetry associated with the Casimir hypercharge, Y, = —1, we can consider the Casimir
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hypercharge field x. So, for the overall invariance SU(2); ® U(1)y ® U(1)g ® U(1)¢, we can assume
the unbroken Gravitational Electroweak Dark Energy (GED) gauge group should be at least SU(3)gep-
Thus, mathematically, Casimir energy must be unified with the Dark Energy interactions minimally as a
Yang-Mills field with an SU(2)p ® U(1)4 gauge group, where SU(2)p is gauged Dark Energy isospin
and the U(1)y is the symmetry associated with the Casimir hypercharge, Y. So, the Gravitational
Electroweak Dark Energy interactions (GED) can trigger the symmetry breaking,

SUB)gep — SUR)L@U(1)y®U(1)g®SUR)p @ U(1)y
- u(l)em & u(l)G ® SU(Z)D & U(l)‘@”,

which describes the formal operations that can be applied to the Electroweak, gravitational and
Dark Energy gauge fields without changing the dynamics of the system. Let SU(2)p ® U(1)¢ fields
are the Dark Energy isospin fields Y1, Y5, and Y3, and the Dark Energy hypercharge field x. We
need to remember here that fermionic isospin states in reactions/decays governed by the Dark
Energy interaction are conserved, i.e., the transition from |00) to |10) is not allowed in Dark Energy
interaction, which is quite familiar with Electromagnetic sector of Electroweak interaction, whereas, no
conservation of isospin is occurred in GED. Note here, the structures of these fermionic isospin states
of the model are considered to satisfy Equation (45) of Remark 4, i.e., Dark Energy interaction must
take place at the kernel of the fermionic isospin states of the model. We should remember that bosons
do not give Dark Energy by nature. On the other hand, all bosons gravitate (e.g., opposite moving
photons gravitate).

Let the Yang-Mills Lagrangian of the Gravitational Electroweak Dark Energy (GED) interaction is,

ZLcEp = @i’y”Dy€+éRi'y"D},eR+gW [fi’)/y’DH(G)f—F
5. L . R
+€17H@y(D)£+eR17V‘@y(D)6R]7 (79)

1
= 7 Wi WH o By B 4 Gy G+ Yo Y o 0 X,

where, f indicates all kind of fermions. By using Equation (47) for Electroweak interaction,
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Equation (67) for gravity and Equation (71) for Dark Energy interaction, here, covariant derivatives
and field tensors are given by,

i 1 172 & . T . YB
Dyt = {_RCW_ZgCﬂR_ Vitigy Wy 5 +igy <2>Bu}£

I 1 11725 . T . 1
Rey—58mR| Vutigy Wy 5 +igy| —5 | Bupl

r 1 1172 . 1
.Rgﬂ_igC”R_ Vy—l—lgB —3 By ¢ er,

Vi+ige <Y2G> Gy}f— {ﬁu“‘igc <+§> Gu}f’

- . 1
QPR(D) e = Vutig, (—2> )(y}eR,
. 1 172, oL L
Wi = [Rgy=580R| " (VWi = VW) +g, ™ wiwp,
1 1/2 , =

By = [Réﬂ 5 8ty R] (Vu B, =V, Bﬂ)'

g]u/ = (_’y Gy _@VG]J)/

Yo = (TuYi-9uYh) g, Y)Y,

Xw = (6;1 Xv — 61/ Xpt)/ (80)
here, the components Y, and g, are belonged to Casimir fields, where Yg = —1 and Y = —1 are the

diagonal matrices with the hypercharges for electromagnetic and Casimir fields, respectively, while
Yc = 2is an operator for gravity field, in their diagonal entries, and i = 1,2,3. In Equation (79),
fermions and vector fields all are massless.

It is necessary to be mentioned that [Rg, — % gy R] — 1 for Remark 4 in the Gravitational
Electroweak Dark Energy interactions (and it is also true for the Gravitational Chromodynamic Dark
Energy interactions, see Subsection 3.2 below). Remember that gravitons are only observable as real
particles in the energy zone Ejx < E, and in Eyy > E, level, all gravitons appear as non-particle energy
states. Only in the energy zone Ejx < E,, gravitons behave as real particles.

Now, to introduce spontaneous symmetry-breaking and to generate masses for the gauge bosons
by the choice of Higgs vacuum, let us consider a complex scalar field with a quartic interaction,
where the Lagrangian has the form, . = ﬁﬂ ptVEP — 929t — A (¢79) ?_ from which we find
the equation of motion as, {0+ 8%} ¢ +2A¢ (¢¢') = 0. So, we have the non-vanishing one,

z= {(~0%)/(@N)}2 = {0?/2)2
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Let us introduce the matrices in such a way,

M| [a b ]| [o a K c av + bw + cx

N| = |d e f| |w|=0v|d|+w |e|+x |f|=|do+ew+ fx],

O] 1§ h i] |x g K i gv + hw + ix

7 i . y 7 . .
p c f i f i cy+ fz+ix
= = 1

0 ¢ h i] i] Yl T2 n| T il ey + hz+ix ®1)

Let the Lagrangian with gauge-boson masses is,

2,2 2,2
0 (%
L = 2wiws vyt
3
WP‘
Bll
3 3

(WP B G YR xr ) M| G |,
Y3
H
XV

where we have written the masses for the charged WMi and Yﬁ’b fields defined as WHjE =
(W},1 Ti Wj) /V2and Yi' = (Y;} = iYﬁ) / V2, respectively, and where,

2 gvz\/ — 8w8s E&w8b
M==21 —8u8 &  —%H8e | (82)
Sw8€»  — &8s 482

having det (M) = 0, hence allowing a massless photon and a massless graviton. Now, omitting Wyi
as they are quite obvious, we choose only Yﬁ’b, whose masses can be seen from .%}, are given as,

(%
Myas = 5 (3w85)""? -

The neutral gauge bosons mix after symmetry-breaking and the mass eigenstates are the neutral weak
boson ZH/ photon AV' Dark Energy boson © s the Casimir energy ‘Ky and graviton QH — first four of
which are given in terms of W;’, By, Yﬁ and yx as,

Zy W,
Ay cosf, —sinf,  sind, By
Gy | = | sinf, cosf, —siné, Gy |,
Dy sinf, sinf, 4cosb, |, Yﬁ
Cu x*

i.e., alike Equation (81),

Zy = cos GWW;’ —sin6,, B, +sin6,G,,
Ay = sin GWW;’ +cost,, B, —sin6,Gy,
g, = sinf, WV3 +sinf, By +4 cos 6, Gy,
D, = sinGDYﬁ —sinf, x" +4 cos6,G,,

%, = sinf,Y; +sinf,x" +4 cos6,G,, (83)
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with the Electroweak mixing angle 6, and the Dark Energy mixing angle 0,,. Let us check their values.
The condition that the fields A, and ¢, should be the eigenvector of Equation (82) with zero eigenvalue
is written as,

Sw —8wSs 8w sin 6 g sinf — g, ¢y cosf+ g8,
0= —8w8s 832 — 858« cosf | = —8w&s Sin9+g32C059—338<g ,
8w8p — 888« 4862 1 8w8p Sin9—g3g<g C059+4g§

and the vanishing of its RHS requires,

2
tang = S8 _ _“8c (84)
8w 8wcosb
where, tanf, = 5—3, then, 6, = tan—1 (%) Let us consider tan® of Equation (84) as,
w w

_ _ -1 (88 286
tanf = tan6,, then 6, = tan (%—gwcosgw

Mz = (v/2) (gvzv + gBZ) 1/2, while M, = 0, similarly, the Dark Energy masses are found to be
1/2
Mo = (0/2) (g2 +g2+4g2) ", while My = 0. This gives

) and the Electroweak masses are found to be

1/2
My _ (8w80)” o
Mo D

(SVZV rg2+ 483) 1/2

Now, if we write down the charged-current and neutral-current interactions in GED theory, we can
see the condition for which the field A, couples to the electron via the electromagnetic current is
gy sinf,, = g, cosB,, = e in Electroweak symmetry breaking, whereas, the condition for which the
field €, couples to the fermion via the Casimir current is (g,, ¢, )1/ 2 sin 0, = g, cos0, = x in Dark
Energy symmetry breaking.

By the way, the last two terms of Equation (83) make it clear that Dark energy field is non-decaying.

3.2. Gravitational Chromodynamic Dark Energy Interactions

In the gauge theory of Gravitational Chromodynamic Dark Energy interactions (GCD), let the
gauge symmetry is, SU(4)ccp — SU(3)c @ U(1)g @ SU(2)pr @ SU(2)pr @ U(1)¢, i.e., the SU(3)c
symmetry of the colour degree of freedom is now with gravitational and Dark Energy symmetry parts,
much like what we have already discussed in GED. But apart from Casimir gauge group U(1)y, the
non-abelian gauge groups of Dark Energy symmetry, i.e., SU(2)p: ® SU(2)pn, are quite different than
the previously discussed non-abelian Dark Energy gauge group SU(2)p of GED (we will discuss
below for details).
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Using Equations (47), (67) and (71), let the Gravitational Chromodynamic Dark Energy (GCD)
Lagrangian, which describes quarks and gluons in interactions in the presence of gravity and the Dark
Energy fields for baryonic matter, is as follows,

Lecp = quj(q) {i’y" (Dl‘)jk_ U2 p) (@) 5jk}¢k(q)+
q
+Z¢’j( iy gw( )]kiﬁ(q)
q
+Zl/}](@ {if)/;‘ guv (@ﬂ(D))]k — ml(ﬁo) 5]1(} l/Jk(q) +
q

qr

1 w1

16 ()" -

1 w1

—4;%(\{'7) — 7 X X", (85)

where, g = u,d,s, ... is the flavor label, j = 1,2, 3 is the quark color index, a = 1,2, ..., 8 is the gluon
color index, where, g indicates right-handed quarks and

D, = {R@? 28@7

R ] 2
Dy(G) = Vy+ng< )Gy V+1gc<+2>Gw
Xp
2

Dupy = Vatig,Yu-

= . K . 1
= Vu+18DY14'2D+18<g<2>Xw

Vi = (VaYd = VoY) 48,87V,
Xy = (vy)(v vv)(y>/

where x, # x, Aj is the field of gluon and, g, is the coupling constant, A the Gell-Mann matrices in the
space of colour whereas f * is the SU(3) structure constant, here, Yﬁ is the Dark Energy fields and
g=1,2,...,6 for six quark flavours. These Dark Energy fields are completely different from GED Dark
Energy fields unlike x, field, and they give two different kind of symmetry groups for two different
families of quarks, namely, for light quarks u, d and s, we have Dark Energy gauge group SU(2)p-

whereas, for heavy quarks ¢, t and b, we have Dark Energy gauge group SU(2)p». With abelian gauge
group U(1)¢, they give the overall Dark Energy symmetry as SU(2)p/ ® SU(2)p» @ U(1)¢. Remark 4
confirms here that [R o % 8oy R] — 1. Note that mpg scale for Dark Energy is intending here the
kernel energy state of the core (i.e., the spacetime x#) what we have already cited above in Remark 4.
In Equation (85), Dark Energy fields are massless and they require Higgs mechanism to gain masses.
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4. Dark Matter Scenario

If a matter satisfies Equations (21) and (22) so as it yields the internal hidden spacetime of p which
has ‘proper’ spacetime arrangement for its d-dependency, whereas, the overall (observable) system’s
spacetime arrangement is quite ‘improper’ as it is §-dependent, then this kind of matter must be Dark
Matter.

Let us consider a renormalizable Lagrangian, £ = L Gep+Gcp) + Lo; + £ mix, where £ (Gep+Gep)
is for baryonic GED and GCD interactions, £,, is the Lagrangian for Dark Matter particles ¢;, and £ m;x
contains possible non-gravitational interactions coupling between baryonic matters and o; particles.
Let these g; particles are stable and behave as almost collisionless matter of Dark light quarks and/or
antiquarks because of Equations (21) and (22). This additional set of g; particles must be associated
with a Dark Matter gauge group, SU(3)(, denoted with a prime ( " ). Candidates for SU(3)(. gauge
group are almost non-luminous and non-absorbing matter, otherwise if they interact/decay with any
of the baryonic particles, these non-baryonic particles would ensue the Universe very unstable with
unbelievably high acceleration rate. Thus,

1. The non-baryonic Dark Matter sector, which corresponds to the gauge group SU(3)(,, is not an
exact copy of the Standard Model baryonic sector SU(3)c. Though, in both cases, the symmetry
interchanges the common type of gauge boson(s) and can be a full invariance of the two (almost)
phenomenologically equivalent theories, although they are originated from fundamentally
different physics maybe at very different cosmological epochs.

2. The particles for SU(3) /. gauge group would have only felt the gravitational attraction of other
baryonic/non-baryonic objects.

So, the Dark sector particles are solely graviton, neutral Dark weak boson, darkgluons and darkquarks
only, viz. (G, zZ'0¢" ul,d’,.. .), but not leptonic (e’,’, W'%,...), even no Casimir ¢’ particle, and
neither any charged Higgs fields. Colored and/or electrically charged particles are prevented from
mixing with their Dark analogues by color and electric charge conservation laws, though, the physical
gluons may couple to antidarkquarks with extremely weak gluonic strength (to be discussed shortly,
vide Equation (87) and its following discussion).

Let the above Lagrangian £ respects an exact parity symmetry, which we also refer to as mirror
symmetry [15]:

(¥, 1) = (=%, 1), g < gy Oy > Dy,
qrr < Y095 s Ugr <> YoUy,  dxr < v0di

where g, are the SU(3)c gluons, @ is the Standard Model neutral Higgs doublet with its Dark
partner @/, the fermion fields are quarks qi; = (uy, di) 1, uxgr, and dig whereas darkquarks
qrr = (U, di)r, Uy, and di; represent the (anti-) darkquark families, while k = 1,2,3 is the
generation index, and 7y is a Dirac gamma matrix.

Suppose, ‘CQi is the combination of Dark Matter GED and GCD interactions, and suppose, these
fundamental interactions are considered to take place between kernel of the core energy and outer
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surface energy of a Dark particle, i.e., at Epranck > Ex, where gravitons are not particles but mere
energy states. Thus, applying Equation (66) into Equations (79) and (85), we get,

le_’j(qi)i’r" (D;)J, g +Z¢]qR 17%( ,) Pl 4

+2¢ {17" )]k+m(q)5 }l/)(q)+

+Z"’ i7" g (Do) b’ +

+Zl’b(‘h i7" ew (%0 ))jk‘Pk(qDJrZ,%’_’j(qé)i’Y”gw (g;lf(D))]'klpk(q{z)-l-
af

+Eil_’j(q){i7”gw (Zu(0)) je mpo k}’vbk
q/

1 w1
4W;:V (W )VV 4 Gla (G/a) _Zgyvgyv_

1 ’i ri q/ N\ BV
Ew ) h () ®
! q
where Dark Matter weak and Dark Matter chromodynamic covariant derivatives are,

w = . T’
()" = 0 Trutigl WG

I

D, = (8n)1/2pr+zg’A'

when other covariant derivatives are as analogous as before, but they do not contain either photon
or Casimir energy field. In Equation (86), both Dark Matter weak fields and Dark Energy fields are
massless and they require (neutral) Higgs mechanism to gain masses. Here we also presume that
Dark Energy gauge groups SU(2)p and SU(2)ps ® SU(2)p~ are analogous to the GED and GCD Dark
Energy gauge groups.

So, due to Equation (86), the Dark Matter gauge symmetry is,

SU(5)py — SU(3)er @ SU(2*) L ® U(1) @ SU(2)p ® SU(2)pr @ SU(2) pr,

here SU(2*) gives only Z’? boson but no other (charged) weak vector bosons. As a policy of
desperation, we can consider that one of the Dark Matter particles is definitely axion.

Considering that both of the ordinary (i.e., baryonic) and Dark particles are too close to
interact in spacetime no matter what their cosmological epochs are, then for the physical effects
of gluon-darkgluon kinetic mixing, let us take account of SU(3) ¢ ® SU(3)/. quantum chromodynamics
for the quark ¢ (7 and gluon field Ay, antidarkquark 1 (@') and antigluon field A}, as follows by
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using Equations (85) and (86), when gravitational and Dark Energy interactions are quite obvious and
unaltered, so as omitted here, then we have the Lagrangian as,

ro_ ;gﬁj(q){iW”(D) (u1/27>) ]k}lPk
N L o R L
»
-3Le(60)" —anrai(67)" e nen ()" -
BT ()" (@) S e () (6) -

(828 " oyt
- §2712(821)1/2 f"MPZ( ) ( a) g

involving a sufficiently small dimensionless parameter €, and there is no symmetry reason for
suppressing this term, with the minimal particle content [16]. Here AC = Ay ¢ and .A’C =1 7 AL c.
Note here, that the SU(3) ¢-SU(3) (. kinetic mixing term is gauge 1nvar1ant The kmetlc mixing can be
removed with a non-orthogonal transformation [17],

Ay = A=Ay e, , A=A, =AV1-e? .

We can transform to a basis where only one of these states couples to gluons. By the orthogonal state
we call the sterile gluon Ab,

Al =Ar/1-e2, A=A+ e AN,
the Lagrangian for an ordinary matter environment shows (to leading order in €) that the physical gluon
couples to antidarkquarks with gluonic strength g.€, which is extremely weak for the sufficiently small

dimensionless parameter €, while g/ doesn’t couple to ordinary matter at all. Similarly, considering
the sterile darkgluon A;" ,

A = AF 4 e AH, A= A1 -2,

the Lagrangian for a dark matter environment becomes (to leading order in €),

;ll_fj(q) {i'yV ) (ul/zp) ]k}lPk

PR i O g

+Z¢] g A% (AT — el g

+ Y1) gl ARC AL T, (87)

g
in terms of the ordinary matter physical states,
A = (Af—eal),

(to leading order in €) and suppressing the G, (G") " and Gy (G'?) " related components in L.
Evidently, an antidarkquark would emit the state .Alzy , thus, the flux of ¢/ detectable in an ordinary
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matter detector is reduced by a factor €2. Since e is sufficiently small, this makes such emission should
not be detected in the present state collider experiments.

Remark 6. So, the above inspection implies that, antiquark-quark — antidarkquark-darkquark or quark-quark
(or quark-antiquark) — darkquark-antidarkquark annihilation channels may occur within the nucleons
and gives us the effects something like Refs. [18-201, but antidarkquark-darkquark — quark-antiquark or
darkquark-antidarkquark — quark-antiquark annihilation channels should never take place on the inside of
a nucleon (baryonic or dark), and neither any decay q' — q5 + (f f) through intermediated spin-1 gauge
bosons, where f and f stand for light Standard Model particles (assuming the conservation of a dark-parity)
unless (f f) are leptons.

Remark 6 is sufficient to explain the effectively more collisionless bow shock phenomena of the
mass component of the merging galaxy clusters like as the 1E 0657-56 cluster [21], commonly known
as the Bullet Cluster, and the similar collisionless behavior that has been observed in other merging
galaxy clusters, for example, two high-redshift clusters, CL 0152-1357 [22] and MS 1054-0321 [23], and
several other merging clusters, viz. A754, A1750, A1914, A2034, A2142 [24], A2744 [25], A2163 [26],
MACS ]0025.4-1222 [27], and A1758 [24,28], etc.

5. Conclusions and Discussion

In this work, we have quantized the classical theory of General Relativity and contributing a very
natural geometric way, we have wrote a fundamental theory of quantum gravity coupled to matter.

Present physics is unable to provide us a more acceptable scenario of Einstein field equation
which is developed in a quantum spacetime. Moreover, it is commonly believed in contemporary
physics that gravity is the bending of spacetime, but in GQG, Einstein field equations Equation (44) and
Equation (61), and then GED and GCD interactions, assure us that, gravity is the bending of spacetime
intermediated by gravitons in its quantum gravity field, whose geometric part bends spacetime,
whereas its quantum part interacts with the spacetime by exchanging gravitons.

Three different aspects of quantum gravity in Subsections 2.1-2.3, respectively, are developed in
different spacetimes, viz. one Einstein field equation Equation (44) is developed in a semi-quantum
Minkowski spacetime, while, another Einstein field equation Equation (61) is developed in a purely
quantum Minkowski spacetime, whereas the last one is developed in a quantum Non-Minkowski
spacetime. This is a remarkable achievement of GQG.

Contrary to Einsteinian’s General Relativity, we can say that LHS of Equation (44) or Equation (61)
is strongly depended upon different matter fields that exchange different types of vector bosons
causing either positive pressure or negative pressure by bending spacetime.

Except this work, there has no evidence of simple bosonic and fermionic fields (i.e., neither
supersymmetric nor stringy) that provides us Dark Energy and Dark Matter. GQG fields give us a
gauge picture of Dark Matter through Equation (66), which assists us in Section 4, where Dark Matter
appears quite naturally in the same GQG fields for Dark Energy.

From GED, GCD and Dark Matter scenarios, we have a Universal Model as SU(3)gep ®
SU(4)cep ® SU(5)pm € SU(7)um, where it is clear that Dark energy field is homogeneous, as
well as non-decaying, in all kind of matter fields. So, it is also clear that whether the matter is
baryonic or Dark, or their mixture, the effective universal relativistic cosmological constant A o at the
surrounding is positive — that is why the Universe is expanding and accelerating, even at the present
epoch. Dark Energy particles, that the fundamental interactions possessed in abundance due to the
Universal Model SU(3)gep ® SU(4)gep @ SU(5)pm € SU(7)um, give an excellent fit to observations
with the present day ~ 68.3% content of the Dark Energy (see the text immediate after Equation (66) for
baryonic and Dark Matter abundance), i.e., it is providing us the solution of the ‘coincidence problem:
Why is the energy density of matter nearly equal to the Dark Energy density today? So, from GQG, we have a
suitable solution that why Dark Energy has become dominant after galaxy formation.
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The overall scenarios of unification of gravity, Dark Energy, Dark Matter with fundamental
interactions of particles or fields in GQG have left behind sufficient amount of calculations in Section 3
and Section 4 that give us a prospective opportunity for their future uses and they ensure us that
graviton, Dark Energy and Dark Matter now become possible to be testable (directly or indirectly) at
laboratory scales (i.e., in a standard particle collider) without regarding Planck scales.

In our present work, we have not chosen Superstring/M-theory, but it has come up quite naturally
in GQG, whereas we have intentionally omitted the formalism of Loop Quantum Gravity since its
construction looks quite artificial in comparison to Superstring/M-theory in GQG, though we can
easily develop an effective formalism of Loop Quantum Gravity with the help of Subsection 2.3.
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