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Article

General Quantum Gravity

Shashwata Vadurie

Language Studies, Educational Guide Centre, 75 Patharghata Main Road, Techno City, 700135 West Bengal,

India; shashwata.vadurie@gmail.com

Abstract: General Quantum Gravity (GQG) is a formalization of quantized gravity that emerges from

General Relativity through Quantum Mechanics. GQG is formalized in three different aspects, such as:

Semi-quantum Minkowski GQG, Quantum Minkowski GQG, and Quantum Non-Minkowski GQG.

Every observable (3 + 1)D spacetime in GQG must have internal hidden unobservable (n + 1)D

spacetime inside it which yields extra hidden dimensions by a closed continuous mapping, so

the overall system must acquire Supersymmetry. Strings are natural and universal but forever

hidden inside every (3 + 1)D observable spacetime. Strings have eleven-dimensions by nature

in GQG. If we replace Minkowski spacetime with an internal hidden spacetime, then M-theory

acquires strings inside of this observable (3 + 1)D spacetime. Obtaining type IIA string theory from

M-theory by dimensional reduction is now non-restricted for the 11 th direction but universally for

any n th direction. Instead of introducing the cosmological constant in Einstein field equation, we

yield Dark Energy as well as Dark Matter from GQG quite naturally. We have developed here

Gravitational Electroweak Dark Energy interactions (GED), where gravity and Dark Energy are

combined with electroweak symmetry. Likewise, in Gravitational Chromodynamic Dark Energy

interactions (GCD), we have combined QCD with gravitational and Dark Energy symmetries. Further

in a Dark Matter gauge symmetry model, we have combined Dark matter along with GED and

GCD. Finally, from GED, GCD and Dark Matter gauge symmetries, we have developed a Universal

Model, SU(3)GED ⊗ SU(4)GCD ⊗ SU(5)DM ⊂ SU(7)UM, where it is clear that Dark energy field is

homogeneous, as well as non-decaying, in all kind of matter fields.

Keywords: quantum gravity; M-theory; dark energy; dark matter

1. Introduction

Only at Planck scales (∼ 10 19 GeV), the quantum effects of gravity is believed to be showed up.

The authors of Ref. [1] proposed that the quantum effects of gravity should be testable at laboratory

scales without regarding Planck scales, and in this context, they also proposed in their paper that the

possibility of looking for the effects of Dark Energy at atomic (i.e., laboratory) scales.

Cosmological observations are inconsistent with Einstein’s equations of General Relativity in the

absence of Dark Energy (or Λ) and Dark Matter. If we extend the idea of Ref. [2] by manipulating

the original text of J. Frieman and O. Lahav in the following way as: “It is also theoretically possible

that the cosmological constant problem could be resolved by replacing General Relativity with an

alternative theory of gravity, with no dark components being imposed separately but comprised within

the explanation of this alternative theory of gravity”, then we can able to develop a formalism of

General Quantum Gravity (GQG), where, the above idea of Ref. [1] is automatically being included.

In GQG, we describe gravity through Quantum Mechanics without considering Planck scales

in general. But, if we consider Planck scales in this quantum gravity formalism, our proposed

scenarios immediately develop a sense of bosonic and fermionic fields for both Dark Energy and

Dark Matter quite naturally without presuming any additional conditions, such as supersymmetry,

superstrings, etc.

During the development of GQG, we have found that every (3 + 1)D observable system must

contain forever hidden string and extra dimensions, whether an external observer considers any strings

in these systems or not. This string has eleven-dimensions by nature in GQG, that is why eleven is the

maxinium spacetime dimension in which one can formulate a consistent supersymmetric theory.
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Unification of gravity with Standard Model was tried previously by numerous authors, but no one

ever thought to unify gravity, Dark Energy, Dark Matter and all fundamental interactions of particles

or fields under the same Lagrangian. We are not only unified them all under a single formalism, but

successfully presented here the solutions of two open problems, viz.

1. Why Dark Matter contents 26.8% of the critical density in the Universe against 4.9% of the critical

density of baryonic matters?, or,
2. Why is the energy density of matter nearly equal to the Dark Energy density today?

We have developed here the Gravitational Electroweak Dark (GED) interaction, where gravity and

Dark Energy are unified with Electroweak interaction. In non-abelian Dark Energy gauge symmetry,

Casimir energy is considered to associate with an abelian gauge group to complete the Dark Energy

scenario properly. Likewise, in the second scheme of unification, gravity and Dark Energy are unified

with Quantum Chromodynamics and we have developed the Gravitational Chromodynamic Dark

(GCD) interaction, where we get another set of Dark particles, which are quite different from the

particles for non-abelian Dark gauge group of GED.

Finally, unifying both GED and GCD in a restricted manner, we have developed a Lagrangian to

explain Dark Matter gauge symmetry.

2. General Quantum Gravity

General Quantum Gravity (GQG) is a formalization of quantized gravity that emerges from

General Relativity through Quantum Mechanics. In the basic formalisms of GQG, we are going to

develop three different aspects of GQG, such as:

1. Semi-quantum Minkowski GQG,
2. Quantum Minkowski GQG, and
3. Quantum Non-Minkowski GQG.

In the first one, GQG Einstein field equation is a classical-like Einstein field equation in a semi-quantum

Minkowski spacetime, whereas, the second one gives us a purely Quantum Mechanical Einstein field

equation in a quantum Minkowski spacetime. But in both cases, we always get the classical Schrödinger

equation as a byproduct, though it is now in a (3 + 1)D quantum spacetime. The last one is the most

important one, which yields the Einstein field equation in a quantum Non-Minkowski spacetime and

helps us to explain Superstring/M-theory from a different angle.

No one ever ask whether Klein-Gordon and Dirac equations are the part of any large scenario. In

GQG, we generalizes that the bosonic and fermionic fields argue that the Klein-Gordon equation is a

subset of the second order equations of our quantum gravity, whereas, the Dirac equation is a subset

of the first order equations of GQG. Interestingly, these bosonic and fermionic fields are emerged

either from Einstein field equations or from the line elements of Minkowski spacetime, which is an

impossible thing in conventional physics.

Basics of these three different aspects of GQG are discussed as follows:

2.1. Semi-Quantum Minkowski GQG

Let the line element of Minkowski spacetime,

ds 2 = c 2 dt 2 − ∑ dx i dx j = gµν dx µ dx ν ≡ dt 2

m
gµν P µ

v
ν, (1)

where P µ = m v
µ is the ‘Four-momentum’, hence P µ

v
ν ≡ p 0

v
0 + p i

v
j for i, j = 1, 2, 3, and µ, ν =

0, 1, 2, 3, whereas v
µ is the ‘four-velocity’. Be careful that it is P µ

v
ν 6= p 0

v
0 − p i

v
j, because gµν takes

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 October 2023                   doi:10.20944/preprints202306.1472.v2

https://doi.org/10.20944/preprints202306.1472.v2


3 of 42

the ‘−’ sign. Also note that m 6= m0 in Equation (1) for the rest mass m0. Thus, Equation (1) gives us

an energy-momentum invariant line element as,

m

(
ds

dt

)2

= mc 2 − m ∑
dx i

dt

dx j

dt
= E − ∑ p i

v
j = p 0

v
0 − ∑ p i

v
j

= gµν P µ
v

ν, (2)

when T = 1
2 m

(
ds
dt

)2
is the kinetic energy [3], that is, we have a new line element as,

dS 2
v
= m

(
ds

dt

)2

= p 0
v

0 − ∑ p i
v

j = gµν P µ
v

ν, (3)

then, the rearrangement of Equation (2) gives the following equation by using Equation (1) as,

E = p i
v

j + m

(
ds

dt

)2

= p i
v

j + P µ
v

ν ds

dx µ

ds

dx ν
= p i

v
j + P µ

v
ν gµν . (4)

Let us consider the representation of a wave field ψ(~r, t) by superposition of a free particle (de

Broglie wave) for Equation (4) as follows,

ψ(~r, t) =
1

(2π h̄) 2
exp

[
i

h̄

{(
~p ·~r + gµν ~P · ~R

)
− Et

}]

≡ 1

(2π h̄) 2
exp

[
i

h̄

{(
~p ·~r + m t

(
ds

dt

)2
)
− Et

}]
, (5)

where ~P → ~P µ and ~R → ~r µ, as~r µ = (v µt), in addition, note it that we have taken here E as total

energy for Equation (4). Thus, from Equation (5), we can get the (total) energy operator Ê → i h̄ ∂t (it is

analogous with, but not exactly the same as, the Classical Quantum Mechanics, as it is now the total

energy and related to (3 + 1)D instead of 3D due to the presence of gµν in Equation (5) in either ways),

the three momentum operator p̂ → − i h̄ ~∇i, the ‘Four-momentum’ operator,

P̂
µ → i h̄ ~∇µ =

{
i h̄

∂

∂(ct)
, − i h̄

∂

∂x i

}
=

(
1

c
Ê, p̂

)
,

thus, P̂µ → − i h̄ ~∇µ =

{
− i h̄

∂

∂(i ct)
, − i h̄

∂

∂x i

}
=

(
i

c
Ê, p̂

)
, (6)

and the mass operator,

m̂ → − i h̄

(
dt

ds

)2 ∂

∂t
≡ − i h̄

(
dt

ds

)
∂

∂s
= − i h̄

1
(

gµν v µ v ν
)1/2

∂

∂s
, (7)

where,
(

dt
ds

)
is evidently relativistic, but ∂

∂s is no doubt Quantum Mechanical, so as,

s =
∫ u

a

(
gµν dx µ dx ν

)1/2
du , and

∂

∂s
=

{
∂ 2

∂(ct) 2
− ∂ 2

∂xi∂xj

}1/2

=
{

g µν ∂µ∂ν

}1/2
= � 1/2 . (8)

For constant velocity, we can develop an uncertainty principle describing the intrinsic indeterminacy

with which m and s can be determined as,

∆m ∆s ≥ h̄

2
.
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The mass-energy relation, i.e., E = m c 2, of Equation (2) yields for the mass operator m̂ from

Equation (7) as,

i h̄
∂

∂t
ψ(~r, t) = − i h̄

v
0 2

(
gµν v µ v ν

)1/2

∂

∂s
ψ(~r, t) , (9)

for c = v
0. Thus, Equation (9) tells us that the total energy of a system directly relates to its geometry,

more precisely, to ∂/∂s, but not v
0 2 /

((
gµν v

µ
v

ν
)1/2

)
, since its dimensionality vanishes for v

0 and if

we consider then c = v
0 = 1. For the second term of m̂ in Equation (7), we can rewrite Equation (9) by

squaring its both sides after considering c = v
0 = 1 as,

(
ds

dt

) 2

·
(

i h̄
∂

∂t

) 2

ψ(~r, t) = − h̄ 2 ∂ 2

∂s 2
ψ(~r, t) , (10)

which clarifies more precisely that
(

ds
dt

) 2
is evidently relativistic, but ∂ 2

∂s 2 is definitely Quantum

Mechanical. Additionally, Equation (10) yields the following if the total energy (so as the time) is fixed,

ds ∝ − i h̄
∂

∂s
. (11)

Thus, Equation (10) is a very peculiar equation where the LHS spacetime is classical relativistic but the

RHS spacetime is Quantum Mechanical, and the total energy is directly related to the RHS spacetime. If

the LHS spacetime of Equation (10) changes (not more than (3 + 1)D and not less than (1 + 1)D, unless

it is a vacuum state) and the total energy remains fixed (so as time), then the spacetime of RHS should

not remain as same as before, but changes inversely against the LHS spacetime. Though, the increment

of RHS spacetime should not be observable, i.e., all extra dimensions would have to remain hidden

inside the overall system, in other words, inside the LHS observable spacetime of Equation (10). We

will discuss it below in more details very soon.

For Equation (8), we can rewrite the mass-energy relation Equation (10) as follows,

h̄ 2 �ψ(~r, t) +

(
ds

dt

) 2

·
(

i h̄
∂

∂t

) 2

ψ(~r, t) = 0 ,

∴ h̄ 2 �ψ(~r, t) + (v µ) 2 ·
(

i h̄
∂

∂t

) 2

ψ(~r, t) = 0 ,

where we have used Equation (1) in the last line. Thus, it is somehow a kind of Klein-Gordon like, but

not an exactly similar, equation of the relativistic waves due to the above quantum scenario derived

from Equation (5). (We will see at the very end of this Subsection that Klein-Gordon equation is a

subset of the Second Order Equation of Semi-quantum Minkowski GQG). This equation may yield,

[
i h̄ γ µ ~∇µ − v

µ

(
i h̄

∂

∂t

)]
ψ(~r, t) = 0 ,

where, γ µ are Dirac’s gamma matrices.

Remark 1. Definitely, the above quantum scenario derived from Equation (5) is analogous to, but not exactly

similar to, the Classical Quantum Mechanics since E is taken as total energy (and m is not rest mass) in

Equation (4). So, an expectation of the exactness between Classical Quantum Mechanics and the present

quantum scenario must lead a confusion and may yield wrong or faulty conclusions in a large scale. Readers are

requested to be careful about it.
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The wave field ψ(~r, t) in Equation (5) must satisfy the eigenfunctions for a discrete Lorentz

transformation as,

Ψ =
1√
2

ψ0 −
1√
2

3

∑
i=1

ψi =
1√
2

ψ0 +
1√
2

3

∑
i=1

ψ†
i = − Ψ† ,

Ψ† =
1√
2

ψ0 +
1√
2

3

∑
i=1

ψi =
1√
2

ψ0 −
1√
2

3

∑
i=1

ψ†
i = − Ψ , (12)

when ψ† is the complex conjugate of ψ. Then, using summation convention and Equation (8), we can

write the joint state of both spacetimes as,

∂2

∂s2
Ψ

∣∣∣∣∣
s0

=

{
∂ 2

∂t 2
− ∂ 2

∂xi∂xj

}{
1√
2

ψ0 −
1√
2

ψi

} ∣∣∣∣∣
x

µ
0

=
1√
2

{
∂ 2

∂t 2
[ψ0 − ψi]−

∂ 2

∂xi∂xj
[ψ0 − ψi]

} ∣∣∣∣∣
x

µ
0

=

(
∂2

∂t2
Ψ − ∂2

∂xi ∂xj
Ψ

) ∣∣∣∣∣
x

µ
0

= g µν(s) ∂µ∂νΨ

∣∣∣
x

µ
0

. (13)

But, Equation (13) also intends to,

∂2

∂s2
Ψ

∣∣∣∣∣
s0

=
1√
2

{
∂ 2

∂t 2
[ψ0 − ψi]−

∂ 2

∂xi∂xj
[ψ0 − ψi]

} ∣∣∣∣∣
x

µ
0

=
1√
2

{
∂2

∂t2
[ψ0]−

∂2

∂xi ∂xj
[−ψi]

} ∣∣∣∣∣
x

µ
0

+
1√
2

{
∂2

∂t2
[−ψi]−

∂2

∂xi ∂xj
[ψ0]

} ∣∣∣∣∣
x

µ
0

=
1√
2

{
g µν(ρ) ∂µ∂ν [ψ0 − ψi]

} ∣∣∣
x

µ
0

+
1√
2

{
ĝ µν(Γ) ∂̂µ∂̂ ν [ψ0 − ψi]

} ∣∣∣
x

µ
0

= g µν(ρ) ∂µ∂ν Ψ

∣∣∣
x

µ
0

+ ĝ µν(Γ) ∂̂µ∂̂ν Ψ

∣∣∣
x

µ
0

= ρ Ψ

∣∣∣
x

µ
0

+ Γ Ψ

∣∣∣
x

µ
0

, (14)

for ∂ 2
µ = ∂̂ 2

µ =
[

∂2

∂t2 , ∂2

∂xi ∂xj

]
and gµν = ĝµν = diag[1,−1,−1,−1], where ∂̂ implies ∂t’s dependency on

ψi and ∂x’s dependency on ψ0, respectively. Here, ρ and Γ have been chosen arbitrarily. Hence, the

complex conjugate of Equation (14) is,

∂2

∂s2
Ψ†

∣∣∣∣∣
s0

=

{
∂ 2

∂t 2
− ∂ 2

∂xi∂xj

}{
1√
2

ψ0 +
1√
2

ψi

} ∣∣∣∣∣
x

µ
0

= g µν(ρ) ∂µ∂ν Ψ†
∣∣∣
x

µ
0

+ ĝ µν(Γ) ∂̂µ∂̂ν Ψ†
∣∣∣
x

µ
0

= ρ Ψ†
∣∣∣
x

µ
0

+ Γ Ψ†
∣∣∣
x

µ
0

. (15)

But, if we take, ds−2 ϕ = (dt2 − ∑ dxi dxj)−1 ϕ, where ϕ is an operator, we can say that,

(dt2 − ∑ dxi dxj)−1 6= dt−2 − ∑(dxi dxj)−1, so, we may assume without any objection that, (dt2 −
∑ dxi dxj)−1 ≡ ∂2

∂t2 − ∑
∂2

∂xi ∂xj − Π, for some value of Π. Thus,

ds−2 ϕ = (dt2 − dxi dxj)−1 ϕ =

{
∂2 ϕ

∂t2
−
(

∂2 ϕ

∂x2
+

∂2 ϕ

∂y2
+

∂2 ϕ

∂z2

)}
− Πϕ

=
∂2

∂s2
ϕ − Πϕ = g µν ∂µ∂ν ϕ − Πϕ . (16)
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Mathematically, Equation (16) contradicts Equation (8), unless otherwise Π is an unobservable property.

Let us check it.

Proposition 1. Equation (16) implies Equation (8), if Γ (so as Π) is an unobservable property.

Proof. No more combinations are possible from Equation (14) apart from ρ, Γ and Equation (13)

itself. The arrangement of ρ and Γ implies that gµν(s) = 1
2

(
gµν(ρ) + ĝµν(Γ)

)
. Thus, Equation (14)

should be rewritten by using Equation (13), Equation (14) and additionally replacing gµν(s) with

gµν(s) =
1
2

(
gµν(ρ) + ĝµν(Γ)

)
as follows,

1

2

(
g µν(ρ) + ĝ µν(Γ)

)
∂µ∂ν Ψ

∣∣∣
x

µ
0

= g µν(ρ) ∂µ∂νΨ

∣∣∣
x

µ
0

+ ĝ µν(Γ) ∂̂µ∂̂νΨ

∣∣∣
x

µ
0

. (17)

Note that, Π exclusively has to depend upon spacetime. Comparing Equation (16) with Equation (14),

let us say that,

∂2

∂s2
Ψ

∣∣∣∣∣
s0

= ρΨ

∣∣∣
x

µ
0

− ΠΨ

∣∣∣
x

µ
0

, (18)

where Γ → − Π, suppose. Since gµν(s) 6= 1
2

(
gµν(ρ) − ĝµν(Π)

)
≡ 0 as long as gµν = ĝµν =

diag[1,−1,−1,−1], then,

1

2

(
g µν(ρ) + ĝ µν(Π)

)
∂µ∂ν Ψ

∣∣∣
x

µ
0

= g µν(ρ) ∂µ∂νΨ

∣∣∣
x

µ
0

+ ĝ µν(Π) ∂̂µ∂̂ν [−Ψ]
∣∣∣
x

µ
0

. (19)

It is impossible to decompose both the LHS of Equation (17) and Equation (19) as they are only

depended upon ∂, thus,

1. The spacetimes of ρ and Γ (so as Π) are not easily dissociative even upto a very high energy scale.
2. The spacetime of Γ (so as Π) must be an internal hidden property of the overall system (in other

words, inside the observable spacetime of ρ) since gµν(s) is independent of ∂̂. The observable

spacetime is always ∂-dependent.

Thus, Equation (16) implies Equation (8), since Γ (so as Π) is an unobservable property.

But, the RHS of Equation (19) gives us,

{|Ψ〉 ∈ V ⊗ V : F|Ψ〉 = |Ψ〉} = Sym 2 V ,

{|Ψ〉 ∈ V ⊗ V : F|Ψ〉 = −|Ψ〉} = Anti 2 V ,

where, the swap operator F|Ψ〉 = exp [i θ] for some phase exp [i θ], whereas V is a vector space. Then

the corresponding eigenspaces are called the symmetric and antisymmetric subspaces and are denoted

by the state spaces Sym 2 V and Anti 2 V, respectively. Note that, we are not intended here ρ and Π

are the two indistinguishable particles for the state spaces Sym 2 V and Anti 2 V; the above equations

are just the generalization forms of their kinds, because ρ and Π do not have distinguished (opposite)

spins until otherwise they are dissociated as free particles; so, the observable spin is always the spin of

ρ, since Π is an internal hidden property of the overall system. Thus, Equation (19) tells us that, if we

allow Π to be dissociated as a free particle at very high energy, the internal hidden spacetime of Π

must be transformed into a fermionic particle, whereas, the overall system remains bosonic, since, the

observable spacetime is always ∂-dependent.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 October 2023                   doi:10.20944/preprints202306.1472.v2

https://doi.org/10.20944/preprints202306.1472.v2


7 of 42

Similarly, Equation (15) yields,

∂2

∂s2
Ψ†

∣∣∣∣∣
s0

= ρ Ψ†
∣∣∣
x

µ
0

− Π Ψ†
∣∣∣
x

µ
0

, (20)

∴
1

2

(
g µν(ρ) + ĝ µν(Π)

)
∂µ∂ν [−Ψ]

∣∣∣
x

µ
0

= g µν(ρ) ∂µ∂ν [−Ψ]
∣∣∣
x

µ
0

+ ĝ µν(Π) ∂̂µ∂̂νΨ

∣∣∣
x

µ
0

,

this tells us that the internal hidden spacetime of Π must be now bosonic, whereas, the overall system

is fermionic, since, the observable spacetime is always ∂-dependent. So, whatever Equation (19) and

Equation (20) want to tell us is that the overall system has Supersymmetry and since the spacetimes

of ρ and its supersymmetric partner Π are not easily dissociative even upto a very high energy scale;

thus, Π must require extremely high energy to dissociate itself from the overall system as a free

particle. Instead of being a free supersymmetric partner, Π actually works quite differently inside

of the observable spacetime ρ, though, at the same time, Π is still satisfying all the properties of

Supersymmetry, and we will show you Π’s actual purpose very soon in the below. But Supersymmetry

needs extra dimensions and we will discuss it below.

By the way, we can also develop a ∂̂-dependent scenario as follows,

∂̂2

∂̂s2
Ψ

∣∣∣∣∣
s0

= ΠΨ

∣∣∣
x

µ
0

− ρΨ

∣∣∣
x

µ
0

, (21)

∴
1

2

(
ĝ µν(Π) + g µν(ρ)

)
∂̂µ∂̂ν Ψ

∣∣∣
x

µ
0

= ĝ µν(Π) ∂̂µ∂̂νΨ

∣∣∣
x

µ
0

+ g µν(ρ) ∂µ∂ν [−Ψ]
∣∣∣
x

µ
0

,

and the complex conjugate of Ψ is,

∂̂2

∂̂s2
Ψ†

∣∣∣∣∣
s0

= Π Ψ†
∣∣∣
x

µ
0

− ρ Ψ†
∣∣∣
x

µ
0

, (22)

∴
1

2

(
ĝ µν(Π) + g µν(ρ)

)
∂̂µ∂̂ν [−Ψ]

∣∣∣
x

µ
0

= ĝ µν(Π) ∂̂µ∂̂ν [−Ψ]
∣∣∣
x

µ
0

+ g µν(ρ) ∂µ∂νΨ

∣∣∣
x

µ
0

.

It is not important which state spaces satisfy such bosonic or fermionic representations of Equation (21)

and Equation (22), here, the most important thing is that the overall system as a free observable particle

at very high energy is must not be baryonic because now only the internal hidden spacetime of ρ

has ‘proper’ spacetime arrangement for its ∂-dependency, whereas, the overall (observable) system’s

spacetime arrangement is quite ‘improper’ as it is ∂̂-dependent. Despite of ρ’s ∂-dependency, here,

being a supersymmetric partner, if it is allowed to be free at very high energy, it must not be baryonic

either. We should not be confused with it. We will discuss about its property in Section 4 below.

The internal hidden spacetime of Π in Equations (19) and (20) also provides us some

additional geometry for its ĝ µν(Π) ∂̂µ∂̂ν [±Ψ] structures. Suppose, for ĝ µν(Γ) ∂̂µ∂̂ν [Ψ], we have,
1√
2

{
∂2

∂t2 [−ψi]− ∂2

∂xi ∂xj [ψ0]
}

, where, neither spacetime arrangements are matched with one another in

either combinations within the curvey brackets. These ‘wrong’ arrangements must have a noticeable

effect on the acceptable spacetime, i.e., its temporal part must influence over the spatially depended ψi,

or its spatial part must influence over the temporally depended ψ0, or vice versa. In other words, the

acceptable spacetime should not have to be four-dimensional in this case. Let us check it. Suppose,

for 1√
2

{
∂2

∂t2 [−ψi]− ∂2

∂xi ∂xj [ψ0]
}

, we can consider a dimension function (see Ref. [4]; we also strongly

follow Nagata’s work throughout this paragraph and omit all the proofs hereabout as they are well

explained in his book),

dim
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
∀ i ∈ {1, 2, 3} , (23)
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and the space
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
satisfies a normal T1-space. Let U be a collection in a (3 + 1)D

topological spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
, i.e., dim

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
= (3 + 1) (which is actually hidden

inside the (3 + 1)D observable spacetime
(

∂ 2
[0,i] ⊗ Ψ[0,i]

)
, i.e., dim

(
∂ 2
[0,i] ⊗ Ψ[0,i]

)
= (3 + 1), too)

and p a point of
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
, then the order of U at p should be denoted by, ordU =

sup
{

ordp U | p ∈
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)}
, where, ordp U is the number of members of U which contain

p. If for any finite open covering U of the topological spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
there exists an

open covering B such that B < U , ordB ≤ n + 1, then
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
has covering dimension

≤ n, i.e., dim
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ n. If U can be decomposed as U =

⋃∞
i=1 Ui for locally finite

(star-finite, discrete, etc.) collections Ui, then U is called a σ-locally finite (σ-star-finite, σ-discrete,

etc.) collection. The topological spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
has strong inductive dimension − 1,

i.e., Ind
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
= −1, if

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
= ∅. If for any disjoint closed sets F and G of the

topological spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
there exists an open set U such that F ⊂ U ⊂

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
− G,

and Ind B(U) ≤ n − 1, where B(U) denotes the boundary of U, then
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
has strong

inductive dimension ≤ n, i.e., Ind
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ n. Let V is an open set and V̄ is a closed set

of
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
. If Ind

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ n, then there exists a σ-locally finite open basis B of

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
such that, Ind B(V) ≤ n − 1 for every V ∈ B. If a spacetime

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
has a

σ-locally finite open basis B such that, B(V) = ∅ for every V ∈ B, then Ind
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ 0.

Again, Ind
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ n if and only if there exists a σ-locally finite open basis B such that

Ind B(V) ≤ n − 1 for every V ∈ B. For every subset A =
⋃ {B(V) | V ∈ B}, for any integer

n ≥ 0, of a spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
, we have, Ind A ≤ Ind

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
. Hence, if and only

if
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
=
⋃n+1

i=1 Ai for some n + 1 subsets Ai with Ind Ai ≤ 0, i = 1, . . . , n + l. For the

spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
, we have then dim

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
= Ind

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
. Let A be a subset

of a spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
and I the unit segment. If U is an open set of the topological product

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
× I such that U ⊃ A × I, then there exists an open set V of

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
such that

A ⊂ V, and V × I ⊂ U. Let F be a closed set of
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
with dim F ≤ n. Let Fα and Uα,

α < τ, be closed and open sets, respectively such that Fα ⊂ Uα, and {Uα | α < τ} is locally finite.

Then there exist open sets Vα satisfying Fα ⊂ Vα ⊂ V̄α ⊂ Uα, and dim Bk ≤ n − k, k = 1, . . . , n + 1,

where, Bk = {p | p ∈ F, ordp B(B) ≥ k}, and B = {Vα | α < τ}. Let F, Fα and Uα satisfy the same

condition as above, then there exist open sets Vα, Wα, α < τ satisfying, Fα ⊂ Vα ⊂ V̄α ⊂ Wα ⊂ Uα, and

ordp {Wα − V̄α | α < τ} ≤ n for every p ∈ F. Let Gk, k = 0, . . . , n, be closed sets with dim Gk ≤ n − k

of the spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
. Let {Fα | α < τ} be a closed collection and {Uα | α < τ} a locally

finite open collection such that Fα ⊂ Uα. Then there exists an open collection, B = {Vα | α < τ}, such

that, Fα ⊂ Vα ⊂ V̄α ⊂ Uα, and ordp B(B) ≤ n − k for every p ∈ Gk. A mapping f of the spacetime(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
into a spacetime S is a closed (open) mapping if the image of every closed (open) set of

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
is closed (open) in S. Then the continuous mappings which lower dimensions of the

spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
should be defined as follows (see Theorem III.6 in Ref. [4]),
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Theorem 1. Let f be a closed continuous mapping of the (3+ 1)D spacetime
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
onto the spacetime

S such that dim f−1(q) ≤ k for every q ∈ S. Then,

dim
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ dim S + dim K , (24)

where dim K ≤ k for the space K, when 0 < dim S ≤ 2, since i should not be zero in Equation (23).

Since, the temporal axis is unaltered in Lorentz transformation, as we have already seen it

in Equation (12), we can express the maximal continuous mapping of the (3 + 1)D spacetime(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
onto the spacetime S of Equation (24) as,

Xµ(τ, σ) ≤
{(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
7→ S

∣∣∣ S ≤
(

∂̂ 2
[0,1] ⊗ Ψ[1,0]

)}
,

thus, Xµ ≤ S ∪ K inside the (3 + 1)D observable spacetime
(

∂ 2
[0,i] ⊗ Ψ[0,i]

)
,

since i should not be zero in Equation (23), if the considered state is not vacuum; then the spacetime

S definitely intends the basic structure of a 2-dimensional worldsheet Xµ(τ, σ) with the joint states,
1√
2

{
∂2

∂τ2 [−ψσ]− ∂2

∂σ2 [ψτ ]
}

for the spacetime Xµ, where S is a (1 + 1)D spacetime, but for the space K,

we will like to discuss it below in more details in the Theorem 2. Obviously, a string can sweep out the

2-dimensional worldsheet Xµ(τ, σ) for the spacetime Xµ.

If the internal hidden spacetime of Π is considered as the LHS spacetime of Equation (10) and

let it to be changed from (3 + 1)D to (1 + 1)D when its total energy remains fixed (so as its time),

then the spacetime Xµ of RHS of Equation (10) changes inversely against the spacetime of Π. Since

the spacetime of Π is hidden inside the overall system of Equation (19), i.e., in other words, inside the

observable spacetime of ρ, then the increment of RHS spacetime Xµ of Equation (10) should not be

observable by any means, i.e., the extra dimensions of Xµ remain hidden forever inside the observable

spacetime of ρ. As these internal hidden extra dimensions inside the observable spacetime of ρ are

considered as the representation of the spacetime S and the space K, thus, we can conclude,

1. Strings (for the hidden spacetime Xµ) are natural and universal but forever hidden inside every

(3 + 1)D observable system (i.e., the spacetime
(

∂ 2
[0,i] ⊗ Ψ[0,i]

)
) in Quantum Mechanics.

2. Every (3 + 1)D observable system in Quantum Mechanics must contain forever hidden extra

dimensions (i.e., the space K) whether an external observer considers any strings in these systems

or not (for more details, see Equation (25) below and its following text therein).

But the space K should raise more extra hidden dimensions by a closed continuous mapping beyond

dim K ≤ k by adopting the following theorem (see Theorem III.7 in Ref. [4]),

Theorem 2. Let f be a closed continuous mapping of a space R onto a space K such that for each point q

of K, B( f−1(q)) contains at most m + 1 points (m ≥ 0); then dim K ≤ dim R + dim M, when dim R ≤[
dim

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
− dim S

]
and dim M ≤ m, where dim

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ (3 + 1).

Then, we can say for the overall spacetime X
µ
OVERALL that,

X
µ
OVERALL ≤

{(
∂ 2
[0,i] ⊗ Ψ[0,i]

)
∪ S ∪ K

∣∣∣ S ≤
(

∂̂ 2
[0,1] ⊗ Ψ[1,0]

)
and

K ≤
[(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
− S

]
∪ M ∀ dim M ≤ m ∃ m ≥ 0

}
, (25)
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for which,

Xµ ≤ S ∪ K ≤
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
∪ M ∀ dim M ≤ m ∃ m ≥ 0 inside the (3 + 1)D

observable spacetime
(

∂ 2
[0,i] ⊗ Ψ[0,i]

)
. (26)

Note here that stringy spacetime S vanishes in the overall spacetime X
µ
OVERALL of Equation (25) for

the space K leaving behind the forever hidden extra dimensions m in X
µ
OVERALL. Thus, in other words,

strings are experimentally unobservable forever, whereas, their actions are mandatory in the purpose

of particle interactions. Also notice that Supersymmetry (now having extra dimensions m for Xµ due to

Equation (26)) remains unaffected in X
µ
OVERALL of Equation (25). Thus, with these extra dimensions, the

above scenario is now perfect for Supersymmetry and String Theory without any further objections.

Along with Theorem 1, what Equation (26) actually wants to say us is,

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
≤ Xµ ≤

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
∪ M ,

when Xµ ≤ S ∪ K, which yields,

[(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
− S

]
≤ K ≤

[(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
− S

]
∪ M . (27)

Since S ≤
(

∂̂ 2
[0,1] ⊗ Ψ[1,0]

)
in Equation (25), let the LHS of Equation (27) gives,

[(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
−
(

∂̂ 2
[0,1] ⊗ Ψ[1,0]

)]
≤
{ (

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
∪
(

∂̂ 2
[0,3] ⊗ Ψ[3,0]

) }
. (28)

The most disturbing thing here is that the temporal axis is a part of S spacetime but not the part of K

space, but both
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
and

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
spaces are influenced by the (mutual) temporal

axis, despite neither of them have contained any temporal axis within themselves. On the other hand,

it is evidence that only an influence should not sufficient to emerge a temporal axis within M (or K)

space. Moreover, Theorem 2 yields no temporal axis for M (or K) space either. But the influenced of

the temporal axis should not ease to be avoided in Equation (28).

From Theorem 2, if we think that the dimension of M space depends only on
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
=

{(
∂̂ 2
[0,1] ⊗ Ψ[1,0]

)
,
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
,
(

∂̂ 2
[0,3] ⊗ Ψ[3,0]

)}
, then we should be mistaken, M is not

independent from either elements of the set
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
. Thinking otherwise, let

(
∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
are

related to new quantities Qi and Ti, differently, which are the curvilinear coordinates of
(

∂̂ 2
[0,i] ⊗ Ψ[i,0]

)
.

Let the corresponding members {T1, T2, T3} ⊂ T are determining γ, then if each pair of members from

the either sides of these curvilinear coordinates joining the pairs of points Qi and Ti (i = 1, 2, 3) meet in

points mi ∈ M separately, then the three points of intersection Ui of the pairs of coordinates qi and ti

(i = 1, 2, 3) lie on a line. Let each of the pairs of coordinates Qi, Ti (i = 1, 2, 3) consists of two distinct

coordinates and in which qi 6= ti ∀ i. Let the coordinate vectors of mi be denoted by zi, that of Qi by ri

(i = 1, 2, 3) and that of Ti by yi (i = 1, 2, 3). Then zi can be represented by a linear combination of the ri

and yi for each i = 1, 2, 3, say,

zi = r1 + y1 = r2 + y2 = r3 + y3 .

Hence,

r1 − r2 = y2 − y1 ,

r2 − r3 = y3 − y2 ,

r3 − r1 = y1 − y3 .
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Let us choose two set of coordinates,

ai = (a1, a2, a3) =
1√
2

{
∂2

∂t2
[−ϕi]−

∂2

∂xi ∂xj
[ϕ0]

}
=
(

∂̂ 2
[0,i] ⊗ϕ[i,0]

)
∈ Λ ,

bi = (b1, b2, b3) =
1√
2

{
∂2

∂t2
[−̺i]−

∂2

∂xi ∂xj
[̺0]

}
=
(

∂̂ 2
[0,i] ⊗ ̺[i,0]

)
∈ Λ , (29)

for i, j = 1, 2, 3, such that {ai} ∈ ri, {bi} ∈ yi and {a, b} is a basis of Λ, whereas Λ ∩ Qi = {O}, where

Qi is the interior of Q and O is the origin, i.e., Λ is admissible for Q. Let the quadratic form,

Q
((

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
,
(

∂̂ 2
[0,3] ⊗ Ψ[3,0]

))

= ∑
1≤i,j≤3

1

2

[(
ai − aj

) (
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
+
(
bi − bj

) (
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)]

=
1

2

[
A
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)2
+ 2B

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

) (
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
+ C

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)2
]

,

say, is reduced. The last fact means that 2 |B| ≤ A ≤ C, so that 3A 2 ≤ 4
(

A 2 − B 2
)
≤ 4

(
AC − B 2

)
.

Since Λ is admissible for Q, the coordinates a + mc (m an integer) do not belong to int Q. Thus,

{|(m + a1) (m + a2) (m + a3)| ≥ 1 ∀ integers m} ,

this implies that,

A = (a1 − a2)
2 + (a2 − a3)

2 + (a3 − a1)
2

= 2
(

a 2
1 + a 2

2 + a 2
3

)
− 2 (a1 a2 + a2 a3 + a3 a1) .

Note it here that ai aj 6= 0 if i = j and ai aj = 0 if i 6= j do not hold due to Equation (29). So as,

C = (b1 − b2)
2 + (b2 − b3)

2 + (b3 − b1)
2

= 2
(

b 2
1 + b 2

2 + b 2
3

)
− 2 (b1 b2 + b2 b3 + b3 b1) .

and we can easily find that B = 0. Here,

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)2
=

[
1√
2

{
∂2

∂t2
[−ψ2]−

∂2

∂x2 ∂x2
[ψ0]

}] 2

=
1√
2

{
∂2

∂t2
[−ψ2]−

∂2

∂x2 ∂x2
[ψ0]

}
× 1√

2

{
∂2

∂t2
[−ψ2]−

∂2

∂x2 ∂x2
[ψ0]

}

=
1

2

{
∂2

∂t2
[−ψ2]×

∂2

∂t2
[−ψ2]−

∂2

∂x2 ∂x2
[ψ0]×

∂2

∂t2
[−ψ2]−

− ∂2

∂t2
[−ψ2]×

∂2

∂x2 ∂x2
[ψ0] +

∂2

∂x2 ∂x2
[ψ0]×

∂2

∂x2 ∂x2
[ψ0]

}

=
1

2

{(
∂2

∂t2
[−ψ2]

)2

+

(
∂2

∂x2 ∂x2
[ψ0]

)2
}
− ∂2

∂t2
[ψ0]

∂2

∂x2 ∂x2
[−ψ2]

=
1

2

(
∂̂ 4

0 Ψ 2
2 + ∂̂ 4

2 Ψ 2
0

)
− ∂ 2

0 Ψ0 ∂ 2
2 Ψ2 . (30)
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Similarly,

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)2
=

[
1√
2

{
∂2

∂t2
[−ψ3]−

∂2

∂x3 ∂x3
[ψ0]

}] 2

=
1√
2

{
∂2

∂t2
[−ψ3]−

∂2

∂x3 ∂x3
[ψ0]

}
× 1√

2

{
∂2

∂t2
[−ψ3]−

∂2

∂x3 ∂x3
[ψ0]

}

=
1

2

(
∂̂ 4

0 Ψ 2
3 + ∂̂ 4

3 Ψ 2
0

)
− ∂ 2

0 Ψ0 ∂ 2
3 Ψ3 . (31)

In the same way,

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

) (
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)

=
1√
2

{
∂2

∂t2
[−ψ2]−

∂2

∂x2 ∂x2
[ψ0]

}
× 1√

2

{
∂2

∂t2
[−ψ3]−

∂2

∂x3 ∂x3
[ψ0]

}

=
1

2

{
∂2

∂t2
[−ψ2]×

∂2

∂t2
[−ψ3]−

∂2

∂x2 ∂x2
[ψ0]×

∂2

∂t2
[−ψ3]−

− ∂2

∂t2
[−ψ2]×

∂2

∂x3 ∂x3
[ψ0] +

∂2

∂x2 ∂x2
[ψ0]×

∂2

∂x3 ∂x3
[ψ0]

}

=
1

2

{
∂2

∂t2
[−ψ2]×

∂2

∂t2
[−ψ3] +

∂2

∂x2 ∂x2
[ψ0]×

∂2

∂x3 ∂x3
[ψ0]

}
−

− 1

2

∂2

∂t2
[ψ0]

{
∂2

∂x2 ∂x2
[−ψ3] +

∂2

∂x3 ∂x3
[−ψ2]

}

=
1

2

(
∂̂ 4

0 Ψ 2
{2,3} + ∂̂ 4

{2,3} Ψ 2
0

)
− 1

2
∂ 2

0 Ψ0

(
∂ 2
{2,3} ⊗ Ψ{3,2}

)
. (32)

In the last line we have used subscripts { }, which are quite different from the subscripts [ ] we

have used earlier and their purposes are quite obvious here. Since, the temporal axis is a part of S

spacetime but not the part of K space, so both
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
and

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
spaces, as well as

ai and bi spaces of Equation (29), are influenced by the (mutual) temporal axis and neither of them

have contained any temporal axis within themselves, then we can say that all axes of ai

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)

and bi

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
(for i, j = 1, 2, 3) in K space are interrelated with the (mutual) temporal axis of

string spacetime S, since the temporal axis is a part of S =
(

∂̂ 2
[0,1] ⊗ Ψ[1,0]

)
but not the part of K space,

thus, ai

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
and bi

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
(for i, j = 1, 2, 3) in K space have individual existences

as independent axes x (1+i) and x (1+(i+ℓ)) (for ℓ = max i) influenced by the (mutual) temporal axis x 0.

Let us assume that ai

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
and bi

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
(for i, j = 1, 2, 3) in K space have maximal

weight as 1 of each dimension as an independent axis for x (1+i) and x (1+(i+ℓ)), which yields,

dim
[
(a1 + a2 + a3)

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)]
≤ 3 ,

dim
[
(b1 + b2 + b3)

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)]
≤ 3 . (33)

Hence, they have the “proper” dimensions. Comparing the last line of Equation (32) with

Equation (30) and Equation (31), we can determine that if Equation (30) and Equation (31) give

us some “proper” dimensions, then Equation (32) definitely gives us an “improper” dimension, as

both
(

∂̂ 4
0 Ψ 2

{2,3} + ∂̂ 4
{2,3} Ψ 2

0

)
and

(
∂ 2
{2,3} ⊗ Ψ{3,2}

)
are depended on x 2 and x 3 axes, simultaneously.

Since a and b are satisfying Equation (29), then aiaj and bibj (for i, j = 1, 2, 3, i 6= j) must give us

“improper” dimensions, too. If we consider these “improper” dimensions
(
ai aj

)1/2
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
and
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(
bi bj

)1/2
(

∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
(for i, j = 1, 2, 3, i 6= j) in K space have individual existences as independent

axes x
(1+(i+ℓ)+ 1

2 j)
a and x

(1+(i+ℓ)+ 1
2 j)

b (since they are depended on x 2 and x 3 axes, simultaneously)

influenced by the (mutual) temporal axis x 0, then, on the contrary of Equation (33), let us assume that

they have maximal weight as 0.5 of each dimension for x
(1+(i+ℓ)+ 1

2 j)
a and x

(1+(i+ℓ)+ 1
2 j)

b , so as they can

give x (1+(i+ℓ)+j) = x
(1+(i+ℓ)+ 1

2 j)
a + x

(1+(i+ℓ)+ 1
2 j)

b , thus, we can say that,

dim
[{

(a1 a2)
1/2 + (a2 a3)

1/2 + (a3 a1)
1/2
} (

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)]
≤ 1.5 ,

dim
[{

(b1 b2)
1/2 + (b2 b3)

1/2 + (b3 b1)
1/2
} (

∂̂ 2
[0,3] ⊗ Ψ[3,0]

)]
≤ 1.5 .

Hence, altogether they have,

dim

[ {
(a1 a2)

1/2 + (a2 a3)
1/2 + (a3 a1)

1/2
} (

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)

⋃
(a1 + a2 + a3)

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

) ]
≤ 4.5 ,

dim

[ {
(b1 b2)

1/2 + (b2 b3)
1/2 + (b3 b1)

1/2
} (

∂̂ 2
[0,3] ⊗ Ψ[3,0]

)

⋃
(b1 + b2 + b3)

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

) ]
≤ 4.5 .

Since B = 0, the K space yields,

K =

[
(a1 + a2 + a3)

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)

⋃{
(a1 a2)

1/2 + (a2 a3)
1/2 + (a3 a1)

1/2
} (

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)

⋃
(b1 + b2 + b3)

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)

⋃{
(b1 b2)

1/2 + (b2 b3)
1/2 + (b3 b1)

1/2
} (

∂̂ 2
[0,3] ⊗ Ψ[3,0]

) ]
,

i.e.,

dim K ≤ (4.5 + 4.5) = 9 .

Thus, Xµ ≤ S ∪ K has the spacetime axes as (using summation convention),

[ (
∂̂ 2
[0,1] ⊗ Ψ[1,0]

)
, ai

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
, bi

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
,

{(
aiaj

)1/2
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
+
(
bibj

)1/2
(

∂̂ 2
[0,3] ⊗ Ψ[3,0]

)} ]

7→
(

x 0, x 1, x (1+i), x (1+(i+ℓ)), x (1+(i+ℓ)+j)
)
∈ Xµ , (34)

for i, j = 1, 2, 3, i 6= j and ℓ = max i. So, Equation (34) achieves,

dimXµ ≤ dim (S ∪ K) ≤ (2 + 9) = 11 ,

i.e., string has eleven-dimensions by nature, that is why eleven is the maxinium spacetime dimension

in which one can formulate a consistent supersymmetric theory.
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Now, returning to our main purpose and using the first two terms of Equation (5), we can generate

the following wave equation for Equation (4) as,

i h̄ v
0 ~∇0 ψ(~r, t) + i h̄ v

j ~∇i ψ(~r, t)− i h̄ gµν v
ν ~∇µ ψ(~r, t) = 0, (35)

where ~∇0 =
(
∂/∂ (v 0 t)

)
for x 0 = (v 0 t), while the ‘Four-momentum’ operator is P̂

µ → i h̄ ~∇µ, and

the three momentum operator is p̂ → − i h̄ ~∇i.

Remark 2. The signature of the metric gµν, i.e., (+,−,−,−), has been absorbed and retained unaltered by

the last term of Equation (35), as long as it satisfies Equations (3) and (4). Thus, readers are requested to be

careful not to presume space and time separately in Equation (35), what we usually assume in the conventional

Quantum Mechanics.

Again rearranging Equation (35) by using Equation (6), we may get,

i h̄ v
0
(

1 − g00

)
~∇0 ψ(~r, t) + i h̄ v

j
(

1 + gij

)
~∇i ψ(~r, t) = 0,

or, simply discarding
(
1 − g00

)
=
(
1 + gij

)
= 0, we can have the First Variance of the First Order

Equation of Semi-quantum Minkowski GQG as,

i h̄ v
0 ~∇0 ψ(~r, t) + i h̄ v

j ~∇i ψ(~r, t) = 0,

∴ i h̄
∂

∂t
ψ(~r, t) + i h̄ v

j ~∇i ψ(~r, t) = 0 . (36)

Evidently, Equation (36) may take the form Ê ψ(~r, t) = − i h̄ v
j ~∇i ψ(~r, t) for the energy operator

Ê → i h̄ ∂t. Setting the Hamiltonian operator as Ĥ ψ(~r, t) = − i h̄ v
j ~∇i ψ(~r, t) ≡ p̂ v

j ψ(~r, t), where

the three momentum operator p̂ → − i h̄ ~∇i, we can therefore have, Ê ψ(~r, t) = Ĥ ψ(~r, t) . Interested

readers can easily check it that Equation (36) is nothing but the gravitational form of the Classical

Schrödinger equation, where E is total energy, and now the equation has been rewritten with v
j along

with the signature of the metric (+,−,−,−).

It is also possible to develop a Second Variance of the First Order Equation of Semi-quantum

Minkowski GQG from Equation (35) as follows,

i h̄ v
ν ~∆ µ ψ(~r, t)− i h̄ gµν v

ν ~∇µ ψ(~r, t) = 0,

where i h̄~∆ µ →
[
p̂ 0, − p̂

]T →
[
i h̄ ~∇0, i h̄ ~∇i

]T
.

Now, let us multiply both sides of Equation (35) by (dt 2/m), so as,

i h̄
dt 2

m
v

0 ~∇0 ψ(~r, t) + i h̄
dt 2

m
v

j ~∇i ψ(~r, t) = i h̄
dt 2

m
gµν v

ν ~∇µ ψ(~r, t)

=
dt 2

m
gµν v

ν P̂
µ

ψ(~r, t) (37)

which has the form of a general inhomogeneous Lorentz transformation (or Poincaré transformation).
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Note it that Equation (37) is exactly equivalent to ds 2 ≡ (dt 2/m) gµν P µ
v

ν of Equation (1),

i.e., ds 2 ≡ (dt 2/m) gµν P µ
v

ν 7→ ds 2 ψ(~r, t) ≡ (dt 2/m) gµν v
ν P̂

µ
ψ(~r, t), for the ‘Four-momentum’

operator P̂
µ → i h̄ ~∇µ . In other words, we can say that the quantum line element is,

ds 2 ψ(~r, t) ≡ i h̄
dt 2

m
gµν v

ν ~∇µ ψ(~r, t)

=
v

µ

v µ

(
i h̄

dt 2

m
gµν v

ν ~∇µ

)
ψ(~r, t)

=
1

v µ

(
i h̄

dx µ

m
gµν dx ν ~∇µ

)
ψ(~r, t)

=
1(

v µ m
)
(

i h̄ gµν dx µ dx ν ~∇µ

)
ψ(~r, t),

hence, by considering E =
(
v

µ m
)−1

, we have,

ds 2 ψ(~r, t) = i h̄ E gµν dx µ dx ν ~∇µ ψ(~r, t) . (38)

Proposition 2. In Equation (11), relativistic spacetime is showing a relation with the quantum spacetime, if

the energy of the system remains fixed (so as its time). The wave field ψ(~r, t) itself in Equation (5) is relativistic

due to gµν in its either terms. Equally, Equation (35) also assures us that Quantum Mechanics and Relativity

are must be correlated for the presence of gµν in the last term of wave equation Equation (35). Lastly, the exact

equivalency of Equations (37) and (1), i.e.,

ds 2 ≡ (dt 2/m) gµν v
ν P µ 7−→ ds 2 ψ(~r, t) ≡ (dt 2/m) gµν v

ν P̂
µ

ψ(~r, t),

for the ‘Four-momentum’ operator P̂
µ → i h̄ ~∇µ, can say us that Quantum Mechanics and Relativity are

correlated in the wave field ψ(~r, t). So, we have a sufficient reason to accept the transformation of relativistic to

quantum relations, and vice versa, as,

P µ ⇐⇒ P̂
µ

i.e., m v
µ ⇐⇒ i h̄ ~∇µ .

We will use Proposition 2 throughout our work. This Proposition is quite straightforward than

some commonly used textbook procedures, for example, Ref. [5].

Remark 3. Technically, E and i h̄ ~∇µ should cancel each other in Equation (38) for the Proposition 2, leaving

behind a classical-like line element. More explicitly we can say that the quantum line element, ds 2 ψ(~r, t) =

i h̄ E gµν dx µ dx ν ~∇µ ψ(~r, t), can transform into the classical line element, ds 2 ψ(~r, t) = gµν dx µ dx ν ψ(~r, t),

in a quantum spacetime, as E and i h̄ ~∇µ are canceling each other.

Let us consider ~∇ ′
µ =

(
δ/δx µ

)
, etc., and let us also consider that gµν would transform as,

gµν = gαβ

(
∂x α

∂x µ

∂x β

∂x ν

)
7−→ gαβ

(
∂x α

∂x µ

∂x β

∂x ν

)(
i h̄ ~∇ ′

α

i h̄ ~∇ ′
µ

)
= g

(µ)
µν 7−→ f

(µ)
µν , (39)

where f
(µ)

µν is a ‘semi-quantum Lorentzian tensor’ in a semi-quantum Minkowski spacetime, i.e.,

f
(µ)

µν = f
(α)

αβ

(
∂x α

∂x µ

∂x β

∂x ν

i h̄ ~∇ ′
α

i h̄ ~∇ ′
µ

)
,
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so as the ‘semi-quantum Lorentzian tensor’ f
(µ)

µν and the pure Lorentzian metric tensor gµν should

establish a relation as follows,

i h̄ ~∇µ ⊗ f
(µ)

µν = i h̄ ~∇µ ⊗ f
(α)

αβ

(
∂x α

∂x µ

∂x β

∂x ν

i h̄ ~∇ ′
α

i h̄ ~∇ ′
µ

)

= i h̄ ~∇µ ⊗ gαβ

(
∂x α

∂x µ

∂x β

∂x ν

)(
i h̄ ~∇ ′

α

i h̄ ~∇ ′
µ

)

= i h̄ gαβ

(
∂x α

∂x µ

∂x β

∂x ν

)
~∇α = i h̄ gµν ~∇α, (40)

thus, for Equation (39),

f
(µ)

µν

(
i h̄ ~∇ ′

µ

i h̄ ~∇ ′
α

)
= gµν . (41)

Without any loss of generality, we may assume that the ‘quantum metric tensor’ is symmetric:

f
(µ)

µν = f
(µ)

νµ , and det
(

f
(µ)

µν

)
6= 0 . It has an inverse matrix f −1 whose components are themselves the

components of matrix f , as their product gives: f −1 f = identity matrix, i.e., in terms of components,

f
(µ)

µν f
µγ

(µ)
= f

γµ

(µ)
f
(µ)

µν = δ
γ
ν , where, δ

γ
ν is the Kronecker delta.

Hence, Equation (38) should be rewritten as,

ds 2 ψ(~r, t) = E f
(α)

αβ

(
∂x α

∂x µ dx µ

)(
∂x β

∂x ν
dx ν

)(
i h̄ ~∇ ′

α

i h̄ ~∇ ′
µ

i h̄ ~∇µ

)(
i h̄ ~∇ ′

µ

i h̄ ~∇ ′
α

)
ψ(~r, t)

= i h̄ E f
(α)

αβ

(
∂x α

∂x µ

∂x β

∂x ν

i h̄ ~∇ ′
α

i h̄ ~∇ ′
µ

)(
i h̄ ~∇ ′

µ

i h̄ ~∇ ′
α

)
dx µ dx ν ~∇µ ψ(~r, t)

= i h̄ E f
(µ)

µν

(
i h̄ ~∇ ′

µ

i h̄ ~∇ ′
α

)
dx µ dx ν ~∇µ ψ(~r, t)

≡ i h̄ E gµν dx µ dx ν ~∇µ ψ(~r, t) .

Let us vary the length of a curve [6–9] as,

δ L|γ|ψ(~r, t) ≡
∫

δ

{
i h̄ E f

(µ)
µν

(
i h̄ ~∇ ′

µ

i h̄ ~∇ ′
α

)
ẋ µ ẋ ν ~∇µ

} 1/2

dτ ψ(~r, t)

=
1

2

∫ {
i h̄ E ∂ǫ f

(µ)
µν

(
i h̄ ~∇ ′

µ

i h̄ ~∇ ′
α

)
ẋ µ ẋ ν ~∇µ −

− 2
d

dτ

(
i h̄ E f

(µ)
ǫν

(
i h̄ ~∇ ′

µ

i h̄ ~∇ ′
α

)
ẋ ν ~∇µ

)}
δx ǫ dτ ψ(~r, t) .

This gives,

{
i h̄ E ∂ǫ f

(µ)
µν ẋ µ ẋ ν ~∇µ − i h̄ E ∂µ f

(µ)
ǫν ẋ µ ẋ ν ~∇µ − i h̄ E ∂ν f

(µ)
ǫµ ẋ µ ẋ ν ~∇µ

}
ψ(~r, t)

= 2 i h̄ E f
(µ)

ǫδ ẍ δ ~∇µ ψ(~r, t),
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then the Christoffel symbol Γ δ
µν should be defined by,

Γ δ
µν ψ(~r, t) =

1

2
f δǫ
(µ)

(
∂µ f

(µ)
ǫν + ∂ν f

(µ)
ǫµ − ∂ǫ f

(µ)
µν

)
ψ(~r, t),

such that the Christoffel symbols are symmetric in the lower indices: Γ δ
µν = Γ δ

νµ.

After a little exercise, we can yield the curvature tensor,

R σ
νγδ ψ(~r, t) =

(
∂Γ σ

νδ

∂x γ
−

∂Γ σ
νγ

∂x δ
+ Γ σ

γǫ Γ ǫ
νδ − Γ σ

δǫ Γ ǫ
νγ

)
ψ(~r, t),

thus we find,

Rλνγδ ψ(~r, t) =
1

2

(
f
(λ)

λδ, νγ + f
(λ)

νγ, λδ − f
(λ)

δν, λγ − f
(λ)

λγ, νδ

)
ψ(~r, t),

which satisfies the properties like symmetry, antisymmetry and cyclicity as usual. Without much ado,

we can easily obtain the Semi-quantum Minkowski GQG Einstein field equations as,

[
Rζη −

1

2
f
(ζ)

ζη R
]

ψ(~r, t) = 8π G Tζη ψ(~r, t), (42)

where Tζη is the quantum energy momentum tensor, it is what the graviton field couples to, and G

is the gravitational coupling. Let us develop an unusual gravitational coupling G in Planck scale

using Equation (41) as follows by using Ref. [10],

G =

(
dℓP

)2

mP

d2
ℓP(

dtP

)2
=

mP

m 2
P

d2
ℓP(

dtP

)2

(
dℓP

)2
=

FP

m 2
P

(
dℓP

)2
=

FP

m 2
P

gζη dℓ
ζ
P dℓ

η
P

=
FP

m 2
P

f
(ζ)

ζη

(
i h̄ ~∇ ′

ζ

i h̄ ~∇ ′
α

)
dℓ

ζ
P dℓ

η
P , (43)

where FP = mP

{
d2

ℓ
ζ
P

/(
dtP

)2
}

.

Since Rζη = f λν
(λ)

Rλζην, R = f
ζη

(ζ)
Rζη and f

(λ)
λν f λν

(λ)
= gλν g λν, the LHS of Equation (42) may give

us the purely Einsteinian form, i.e.,
[
R ζη − 1

2 gζη R
]
, if we use Equation (40) as follows,

(
i h̄ ~∇ζ

)
⊗
(

i h̄ ~∇ ζ
)
⊗
[
Rζη −

1

2
f
(ζ)

ζη R
]

⇐⇒ − h̄ 2
[
R ζη −

1

2
gζη R

]
~∇µ ~∇ µ .

Similarly, we can get the Einsteinian energy momentum tensor Tζη from the quantum energy

momentum tensor Tζη of Equation (42), if we assume Tζη depends on (quantum) metric tensor

(for example, Tµν = −κ −2
(
∂ λ∂λ gµν − ∂ λ∂ν gµλ − ∂ λ∂µ gνλ + ∂µ∂ν g σ

σ − ηµν ∂λ∂ λ g σ
σ + ηµν ∂ λ∂ σ gλσ

)
,

or the electrodynamic Tζη = − Fζµ F
µ

η + 1
4 gζη F µν Fµν = − gζη Fζµ F ζµ + 1

4 gζη F µν Fµν, etc.). By using

Equation (43) in Equation (42), we can get the modified GQG field equation as,

(
i h̄ ~∇ζ

)
⊗
(

i h̄ ~∇ ζ
)
⊗
[
Rζη −

1

2
f
(ζ)

ζη R
]

ψ(~r, t)

=
(

i h̄ ~∇ζ

)
⊗
(

i h̄ ~∇ ζ
)
⊗
(

8π G Tζη

)
ψ(~r, t),

∴ − h̄ 2
[
R ζη −

1

2
gζη R

]
~∇µ ~∇ µ ψ(~r, t) = − h̄ 2 8π G Tζη

~∇µ ~∇ µ ψ(~r, t) . (44)

Note it that Equations (42) and (44) are exactly the same thing despite their different appearances.
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Remark 4. It is necessary to remember that,

1. We should not introduce the cosmological constant Λ in Equation (44), because we can get Dark Energy

from Einstein field equation quite naturally (see the last equation of Equation (68) in Section 2.2 below for

more details). Introduction of the cosmological constant Λ in Equation (44) should intend to double entry

of Dark Energy in the same gravitational field of GQG, which should obviously be wrong. Though, in

Equation (70) below, we will develop a field equation containing Λ, which is slightly different from the

Classical Einstein field equation.
2. Equation (44) tells us that gravitation is an interaction in orthogonal curvilinear coordinates x ζ (i.e.,

outer surface) of point P(x µ) rather than at that very spacetime x µ (i.e., core). Since i h̄ ~∇µ 9 0 for

a particle field, then the Einstein tensor must be unity, i.e.,
[
R ζη − 1

2 gζη R
]
→ 1, in Equation (44)

at the core x µ, and there, spacetime x µ behaves strongly Quantum Mechanical so as the other particle

interactions (i.e., Quantum Chromodynamics and Electroweak) are prioritized there locally. On the other

hand, gravitational effects only start effective beyond the core x µ, i.e., in orthogonal curvilinear coordinates

x ζ outside the core x µ, in other words, the outer surface of x µ.
3. If we consider a cutoff energy E⋆, then we can say that gravitons only appear in an energy zone EIR ≤ E⋆

as E⋆ ≪ E PLANCK, and beyond that state, i.e., EUV > E⋆, other particle interactions (i.e., Quantum

Chromodynamics and Electroweak) are prioritized, where EIR is the infra red energy zone, whereas

EUV . E PLANCK is the ultra violet energy zone. Thus, for gravity in Equation (44), ultra violet zone

is automatically ignored, i.e., the sum over EIR intends the Feynman graphs to be finite. In the energy

zone EIR ≤ E⋆, all gravitons behave as real particles. Let us assume additionally that E PLANCK is not an

external energy state, but the kernel of all energy states of a particle, then we can assume the energy states

of a particle from the kernel energy of the core x µ to its outer surface energy for x ζ as:

(
E PLANCK

)
KERNEL OF THE CORE x µ →

(
EUV

)
CORE x µ →

(
E⋆

)
OUTER SURFACE x ζ

↓(
EIR

)
BEYOND THE PARTICLE

(45)

Between core and outer surface energies, i.e., at EUV > E⋆, Electroweak and Quantum Chromodynamic

interactions take place, whereas, outside these states (i.e., at EIR ≤ E⋆) gravity starts being prioritized.
4. For the RHS factor h̄ 2 G of Equation (44), the gravitational coupling G, which has the dimension of a

negative power of mass, now has lost its mass dimension due to h̄ 2. Consequently, if divergences are to be

present, they could now be disposed of by the technique of renormalization (though, this will not play a

role in our present discussion, but we can develop a renormalizable scenario by using a purely quantum

form of gravity, which will be discussed in Section 2.3 below).

Remark 5. Equation (43) is true for the outer surface x ζ , but it is seemingly true for the core x µ, too, due to

the universality of gravitational coupling G. So, we can choose the indexes either ways.

Now, considering d’Alembertian operator � = ~∇µ ~∇ µ, as well as U =
(
8 π G Tζη

)
, and inputting

the ‘Four-momentum’ operator P̂ → i h̄ ~∇µ into Equation (44), we can get the Second Order Equation

of Semi-quantum Minkowski GQG as,

h̄ 2
[
R ζη −

1

2
gζη R

]
�ψ(~r, t) + U P 2 ψ(~r, t) = 0 . (46)

The wavefunction ψ(~r, t) in Equation (46) is emphatically defining a bosonic field. Thus, we

can immediately develop a fermionic field (or the Third Variance of the First Order Equation of

Semi-quantum Minkowski GQG) out of Equation (46) as,

i h̄ γ µ
[
R ζη −

1

2
gζη R

] 1/2
~∇µ ψ(~r, t)− U 1/2 P ψ(~r, t) = 0, (47)
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where, γ µ are Dirac’s gamma matrices.

Dividing Equation (47) either by
[
R ζη − 1

2 gζη R
] 1/2

or by U 1/2 gives us
(
i h̄ γ µ ~∇µ −P

)
ψ(~r, t) =

0, from which the classical Dirac’s equation should be derivable, but here, instead of ∂/(∂ t), we have

considered ∂/(∂x 0) by absorbing v
0 and similarly, P is not intended here to have a factor of rest mass,

since m 6= m0 in Equation (1). Thus, we can say that Dirac’s equation is a subset of the Third Variance

of the First Order Equation of Semi-quantum Minkowski GQG, i.e., Equation (47). Similarly, we can

also say that the Klein-Gordon equation is a subset of the Second Order Equation of Semi-quantum

Minkowski GQG, i.e., Equation (46), and it should be derivable from
(
h̄ 2 �+ P 2

)
ψ(~r, t) = 0. An

analogous formalism is equally applicable for the following Subsection 2.2.

2.2. Quantum Minkowski GQG

Let the line element of Minkowski spacetime,

ds 2 = gµν dx µ dx ν ≡
(

dt

m

) 2

gµν P µ P ν ,

∴ m 2

(
ds

dt

) 2

= m 2c 2 − m 2 ∑
dx i

dt

dx j

dt
= m E − ∑ p i p j = p 0 p 0 − ∑ p i p j

= gµν P µ P ν ,

and, m 2

(
ds

dt

) 2

= m 2

(
1 − v

2

c 2

)
c 2 = m 2

0 c 2 , (48)

for the rest mass m0, when,

dS 2
P = m 2

(
ds

dt

) 2

= p 0 p 0 − ∑ p i p j = gµν P µ P ν , (49)

then, rearrangement of Equation (48) gives,

m E = p i p j + m 2

(
ds

dt

) 2

= p i p j + P µ P ν ds

dx µ

ds

dx ν
= p i p j + P µ P ν gµν . (50)

Then, considering the representation of a wave field ψ(~r, t) by superposition of a free particle (de

Broglie wave) for Equation (50) as follows,

ψ(~r, t) =
1

(2π h̄) 2
exp

[
i

h̄ m

{
m
(
~p ·~r + gµν ~P · ~R

)
− mEt

}]

≡ 1

(2π h̄) 2
exp

[
i

h̄ m

{
m

(
~p ·~r + m t

(
ds

dt

)2
)
− mEt

}]
, (51)

we can generate the following wave equation using Equation (50) combining with Equation (48) as,

− h̄ 2 ~∇0
~∇0 ψ(~r, t) + h̄ 2 ~∇i

~∇j ψ(~r, t) + h̄ 2 gµν ~∇µ ~∇ν ψ(~r, t) = 0, (52)

which may give,

− h̄ 2
(

1 − g00

)
~∇0

~∇0 ψ(~r, t) + h̄ 2
(

1 + gij

)
~∇i

~∇j ψ(~r, t) = 0,
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or, simply discarding
(
1 − g00

)
=
(
1 + gij

)
= 0, we can get the First Variance of the Second Order

Equation of Quantum Minkowski GQG as,

− h̄ 2 ~∇0
~∇0 ψ(~r, t) + h̄ 2 ~∇i

~∇j ψ(~r, t) = 0,

∴ − h̄ 2 ~∇0
~∇ 0 ψ(~r, t) + h̄ 2 ~∇i

~∇ i ψ(~r, t) = 0 . (53)

Here, ψ(~r, t) is definitely a bosonic field. But the uppermost equation of Equation (53) may give us the

gravitational form of the Classical Schrödinger equation by using the Proposition 2 (the exercise is left

for the readers) as follows,

i h̄
∂

∂t
ψ(~r, t) +

h̄ 2

m
~∇i

~∇j ψ(~r, t) = 0 . (54)

Putting differently,

i h̄
∂

∂t
ψ(~r, t) +

h̄ 2

m
gij

~∇i
~∇ i ψ(~r, t) = 0 .

Hence, we get the gravitational form of the Classical Schrödinger equation for the total energy E, and

now it is in a (3 + 1)D quantum spacetime.

Applying the representation of wave field ψ(~r, t) either of Equation (51), or Equation (5), into

Equation (50), we can get,

Ê ψ(~r, t) =
1

m

(
p̂ i p̂ j + gµν P̂

µ
P̂

ν
)

ψ(~r, t) ,

i.e., i h̄
∂

∂t
ψ(~r, t) = − h̄ 2

m

(
~∇i

~∇j + gµν ~∇µ ~∇ν

)
ψ(~r, t) , (55)

where gµν is actually satisfying the last two terms of Equation (58), see below. Note that, Equation (55)

should be used as an alternate of the gravitational form of the Classical Schrödinger equation,

i.e., Equation (54).

After using the first term of mass operator m̂ from Equation (7), the Equation (55) yields,

− h̄ 2 ∂ 2

∂s 2
ψ(~r, t) = h̄ 2

(
~∇i

~∇j + gµν ~∇µ ~∇ν

)
ψ(~r, t) ,

∴ h̄ 2

(
∂ 2

∂s 2
+

∂ 2

∂t 2

)
ψ(~r, t) = 0 . (56)

Compare the first equation of Equation (56) with Equation (10). We will use the second value of m̂ Ê in

Equation (56) to construct Quantum Non-Minkowski GQG in Section 2.3 below.

Now, the Second Variance of the Second Order Equation of Quantum Minkowski GQG from

Equation (52) should be,

− h̄ 2~∆ µ ~∆ ν ψ(~r, t) + h̄ 2 gµν ~∇µ ~∇ν ψ(~r, t) = 0 ,

where i h̄~∆ µ →
[
p̂ 0, − p̂

]T →
[
i h̄ ~∇0, i h̄ ~∇i

]T
.

Multiplying both sides of Equation (52) by (dt/m) 2 and comparing it with Equation (48), we

have the quantum line element for the ‘Four-momentum’ operator P̂
µ → i h̄ ~∇µ as follows,

ds 2 ψ(~r, t) = − h̄ 2

(
dt

m

) 2

gµν ~∇µ ~∇ν ψ(~r, t) . (57)
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Let us now prescribe gµν as follows by using Proposition 2 as,

gµν = gαβ

(
∂x α

∂x µ

∂x β

∂x ν

)
= gαβ

(
m

∂t

) 2(
∂t

m

) 2(
∂x α

∂x µ

∂x β

∂x ν

)
= gαβ

(
P α

P µ

P β

P ν

)

→ gαβ

(
P̂

α

P̂
µ
P̂

β

P̂
ν

)
→ gαβ

(
i h̄ ~∇α

i h̄ ~∇µ

i h̄ ~∇β

i h̄ ~∇ν

)
. (58)

To avoid any confusion between the pure Lorentzian metric tensor gµν and the quantum Lorentzian

tensor of Equation (58), let us assume that,

g µν = gαβ

(
i h̄ ~∇α

i h̄ ~∇µ

i h̄ ~∇β

i h̄ ~∇ν

)
= gµν . (59)

This approach is quantizing gravity. The ‘quantum metric tensor’ g µν is symmetric, i.e., g µν = g νµ,

and det
(
g µν

)
6= 0 . Components of its inverse matrix g−1 are themselves the components of matrix g,

i.e., g µν g
µγ = g γµ g µν = δ

γ
ν , where, δ

γ
ν is the Kronecker delta.

Then, Equation (57) becomes as,

ds 2 ψ(~r, t) = − h̄ 2

(
dt

m

) 2

g µν ~∇µ ~∇ν ψ(~r, t) . (60)

Let us vary the length of a curve [6–9] as,

δ L|γ|ψ(~r, t) ≡
∫

δ

{
− h̄ 2

(
dt

m

) 2

g µν ~∇µ ~∇ν

} 1/2

dτ ψ(~r, t)

=
1

2

∫ {
− h̄ 2

(
dt

m

) 2

∂ǫ g µν ~∇µ ~∇ν −

− 2
d

dτ

(
− h̄ 2

(
dt

m

) 2

g µν ~∇ν

)}
δ ~∇ǫ dτ ψ(~r, t) .

Similar to the Subsection 2.1, after a little exercise, we can develop,

Rλνγδ ψ(~r, t) =
1

2

(
gλδ, νγ + g νγ, λδ − g δν, λγ − gλγ, νδ

)
ψ(~r, t),

and then, we can obtain the Quantum Minkowski GQG Einstein field equations as,

[
Rζη −

1

2
g ζη R

]
ψ(~r, t) = 8π G Tζη ψ(~r, t) . (61)

Let us develop another unusual gravitational coupling G in Planck scale using Proposition 2 and

adopting Remark 5 as follows,

G =

(
dℓP

)2

mP

d2
ℓP(

dtP

)2
=

mP

m 2
P

d2
ℓP(

dtP

)2

(
dℓP

)2
=

FP

m 2
P

gµν dℓ
µ
P dℓ ν

P =
FP

m 2
P

dℓ
µ
P dℓP µ

→ − h̄ 2 FP

(
dtP

m 2
P

) 2

~∇P µ
~∇ µ

P = − h̄ 2 ℓ
µ
P

m 3
P

~∇P µ
~∇ µ

P , (62)

for FP = mP

{
d2

ℓ
µ
P

/(
dtP

)2
}

.
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Interested readers can easily check that Equations (42) and (61) are exactly the same thing but

comprised with different components: the earlier one with ‘Four-velocity’ components and the later one

with ‘Four-momentum’ components. Another noticeable difference between them is that Equation (42)

has a mixed expression of classical and quantum geometric expressions for f
(µ)

µν , whereas, Equation (61)

has a purely quantum geometric expression for g µν. In other words, we can say that Equation (42) is in

a quantum Minkowski spacetime, whereas, Equation (61) is in a semi-quantum Minkowski spacetime.

If we transform our spacetime into Planck scale, i.e., x µ → ℓ
µ
P and t → tP, then we can rewrite

Equation (61) using Equation (62) as,

h̄ 2 ℓ
µ
P

m 3
P

~∇P µ
~∇ µ

P ψ(~rP, tP) +
1

8π TP ζη

[
RP ζη −

1

2
g ζη RP

]
ψ(~rP, tP) = 0 .

Let,

C
2 =

1

8π TP ζη

[
RP ζη −

1

2
g ζη RP

]
= G, (63)

then we have,

h̄ 2 ℓ
µ
P

m 3
P

~∇P µ
~∇ µ

P ψ(~rP, tP) + C
2 ψ(~rP, tP) = 0 .

Considering d’Alembertian operator �P = ~∇P µ
~∇ µ

P , we can get the Third Variance of the Second

Order Equation of Quantum Minkowski GQG as,

h̄ 2 ℓ
µ
P

m 3
P

�P ψ(~rP, tP) + C
2 ψ(~rP, tP) = 0 . (64)

Here, ψ(~rP, tP) is definitely a bosonic field. Thus, we can immediately develop a fermionic field (or the

First Order Equation of Quantum Minkowski GQG) out of Equation (64) as,

i h̄

(
ℓ

µ
P

m 3
P

) 1/2

γ µ ~∇P µ ψ(~rP, tP)− C ψ(~rP, tP) = 0, (65)

where, γ µ are Dirac’s gamma matrices. Considering
(
ℓ

µ
P

)−1
= mP [11], let Equation (65) be for

Equation (63) as,

i h̄ γ µ ~∇P µ ψ(~rP, tP)− m 2
P C ψ(~rP, tP) = 0

∴ i h̄ γ µ ~∇P µ ψ(~rP, tP)− m 2
P G 1/2 ψ(~rP, tP) = 0

⇒ (8π) 1/2 i h̄ γ µ ~∇P µ ψ(~rP, tP)− mP ψ(~rP, tP) = 0, (66)

since 8π G = m−2
P . Now, Equation (66) is quite handy to use. But Equation (66) also suggests us

that whatever matter satisfies such a fermionic relation is definitely originated (clustered) as matter

from fundamentally different physics at the Planck scale, maybe at very different cosmological epochs.

Moreover, the first term of the last equation of Equation (66) is almost five-times larger than any

Dirac-like term for baryonic matters, which is quite unusual. At this characteristic Planck scale,

the matter that satisfies Equation (66) must not provide a natural mechanism of the electroweak

symmetry breaking, thus the matter must be non-baryonic. The only possible candidate having such

characteristics is Dark Matter, which accounts for 26.8% of the critical density in the Universe against

4.9% of the critical density of baryonic matters, in other words, the critical density of Dark Matter is
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almost (8π) 1/2 times higher than the critical density of baryonic matters – it exactly matches with

Equation (66).

Again, returning to Equation (60) and using m 2
(
ds 2/dt 2

)
of Equation (48) so as m 2

(
ds 2/dt 2

)
=

m 2 (1 − v 2) ≡ m 2
0 for the rest mass m 0, we can get,

m 2
0 ψ(~r, t) = − h̄ 2 g µν ~∇µ ~∇ν ψ(~r, t)

∴ h̄ 2 g µν ~∇µ ~∇ν ψ(~r, t) + m 2
0 ψ(~r, t) = 0 .

Then, considering ~∇ν = g µν ~∇ µ and d’Alembertian operator � = ~∇µ ~∇ µ, we have,

h̄ 2 g 2
µν �ψ(~r, t) + m 2

0 ψ(~r, t) = 0 .

Thus, we can immediately develop a fermionic field equation as,

i h̄ γ µ g µν ~∇µ ψ(~r, t)− m 0 ψ(~r, t) = 0 . (67)

Here, the real fermions exist only in temporal dimension. Thus, Equation (67) gives us the Dirac

equations for fermions, but with an extension that antifermions, those are exist in spatial dimensions,

are thrice in number than real fermions in nature. As the motion in temporal dimension is the basic

consideration of relativity, the ‘+’-ve signature of g µν in Equation (67) explains us the reason of the

forward expansion of the Universe in temporal dimension.

Now, let us replace m 2 of Equation (48) with the Planck mass m 2
P, when m 2

P satisfies as [12]:

m 2
P Λ = 1

2 〈T〉, where the cosmological constant Λ = 8π G ρΛ, so as we have m 2
P

(
ds 2/dt 2

)
=

m 2
P (1 − v 2) ≡ m 2

P 0 for the Planck rest mass mP 0 and c = 1, thus, for,

m 2
P Λ (1 − v 2) =

1

2
〈T〉 (1 − v 2) ⇐⇒ m 2

P 0 Λ =
1

2
〈T0〉 ,

where, 〈T〉 (1 − v 2) ≡ 〈T0〉, and following the argument cited above,

h̄ 2 gµν ~∇µ ~∇ν ψ(~r, t) + m 2
P 0 ψ(~r, t) = 0 ,

∴ 2 h̄ 2 Λ g 2
µν �ψ(~r, t) + 〈T0〉ψ(~r, t) = 0 ,

and, h̄ 2 Λ g 2
µν �ψ(~r, t) + ρΛ 0 ψ(~r, t) = 0 , (68)

by replacing 1
2 〈T〉 with ρΛ for the cosmological constant Λ = 8π G ρΛ = m−2

P ρΛ. So, by using

8π G = m−2
P and by switching (1 − v 2) 1/2 right to left in the term: mP 〈T0〉 1/2 = mP 〈T〉 1/2 (1 −

v 2) 1/2 ≡ mP 0 〈T〉 1/2, we can develop a fermionic field equation as follows,

i h̄
√

2Λ γ µ g µν ~∇µ ψ(~r, t)− 〈T0〉 1/2 ψ(~r, t) = 0 ,

∴ i h̄
(
2 ρΛ

) 1/2
γ µ g µν ~∇µ ψ(~r, t)− mP 0 〈T〉 1/2 ψ(~r, t) = 0 . (69)

The interesting thing in Equation (69) is that Dark Energy has a direct relationship with gravity. In

other words, Dark Energy would be obtainable from the breaking of particle symmetry where gravity

counts (see, Subsection 3.1 below).

The last equation of Equation (68) is definitely applicable simultaneously whether the matter is

baryonic or non-baryonic.
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Adding the last equation of Equation (68) with Equation (46) (since Equations (61) and (42) are

exactly the same), we can get a field equation for Equation (59) as.

h̄ 2
[
R ζη −

1

2
gζη R + Λ g 2

µν

]
�ψ(~r, t) +

[
U P 2 + ρΛ 0

]
ψ(~r, t) = 0 ,

i.e., h̄ 2
[
R ζη −

1

2
gζη R + Λ g 2

µν

]
�ψ(~r, t) +

[
U P 2 + ρΛ 0

]
ψ(~r, t) = 0 . (70)

This field equation, which is actually a Klein-Gordon-type equation, is slightly different form the

Classical Einstein field equation. Note that gravity and cosmological constant Λ are originated from

different spacetimes in Equation (70). From a particle’s point of view, Λ is generated from the kernel of

the core of a particle, whereas, gravity is emerged from the outer surface of the same core.

Again, either from the first equation of Equation (68), or by placing 1
2 〈T〉 = ρΛ in Equation (69),

we can find,

i h̄ γ µ g µν ~∇µ ψ(~r, t)− mP 0 ψ(~r, t) = 0, (71)

which is the Planck scale counterpart of Equation (67), in other words, Equations (67) and (71)

counterbalance each other’s actions of the forward expansion of the Universe in temporal dimension

due to their g µν.

Since, the cosmological constant Λ = 8π G ρΛ = m−2
P ρΛ, then again replacing m 2 of Equation (48)

with m 2
P = (ρΛ/Λ) gives us, (ρΛ/Λ)

(
ds 2/dt 2

)
= (ρΛ/Λ) (1 − v 2) ≡ (ρΛ 0/Λ), for c = 1. But, we

can say, E 2
Λ = (ρΛ 0/Λ) c 4, i.e., EΛ = (ρΛ 0/Λ) 1/2 c 2, as the rightful and lawful ‘Dark Energy’ for

relativistic ρΛ.

The grate difference between Equations (66) and (71) is that the nature of the former one is

non-baryonic, whereas, the later one is independent of matter’s constructive property, i.e., its effects

can be observable simultaneously both in the cases of baryonic and non-baryonic matters. Another

difference is that Equation (66) is effective at mP scale, whereas, Equation (71) is effective at mP 0 scale,

i.e., Dark Energy had originated at much earlier cosmological epochs than Dark Matter. Similarly, Dark

Matter had originated at much earlier cosmological epochs than baryonic matters of Equation (67)

at m0 scale. Thus, we have a quite fair chronology of the formation of cosmological matters in the

Universe. Note it here that gravity was not observable at the cosmological epochs at mP 0 scale where

Dark Energy had originated. At this scale, gravitons just behaved as energy states rather than real

particles due to Remark 4. Gravity was also not observable at the next cosmological epochs started out

at mP scale where Dark Matter had originated. Gravity became observable first time only in the energy

zone EIR ≤ E⋆ as we had claimed in Remark 4.

The bosonic and fermionic fields for baryonic matters, Dark Energy and Dark Matter, which are

obtainable from GQG, are listed in the Table 1.
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Table 1. In General Quantum Gravity, we have twelve staple bosonic and fermionic field equations in

two different orders.

Semi-quantum Minkowski GQG: First Order Equations

i h̄ ∂
∂t ψ(~r, t) + i h̄ v

j ~∇i ψ(~r, t) = 0

i h̄ v
ν ~∆ µ ψ(~r, t) + i h̄ gµν v

ν ~∇µ ψ(~r, t) = 0

i h̄ γ µ
[
R ζη − 1

2 gζη R
] 1/2

~∇µ ψ(~r, t)− U 1/2 P ψ(~r, t) = 0

Second Order Equation

h̄ 2
[
R ζη − 1

2 gζη R
]
�ψ(~r, t) + U P 2 ψ(~r, t) = 0

Quantum Minkowski GQG: First Order Equation

i h̄

(
ℓ

µ
P

m 3
P

) 1/2

γ µ ~∇P µ ψ(~rP, tP)− C ψ(~rP, tP) = 0

i h̄ γ µ g µν ~∇µ ψ(~r, t)− m 0 ψ(~r, t) = 0

i h̄
√

2Λ γ µ g µν ~∇µ ψ(~r, t)− 〈T0〉 1/2 ψ(~r, t) = 0

Second Order Equations

− h̄ 2 ~∇0
~∇ 0 ψ(~r, t) + h̄ 2 ~∇i

~∇ i ψ(~r, t) = 0

− h̄ 2~∆ µ ~∆ ν ψ(~r, t) + h̄ 2 gµν ~∇µ ~∇ν ψ(~r, t) = 0

h̄ 2 ℓ
µ
P

m 3
P

�P ψ(~rP, tP) + C 2 ψ(~rP, tP) = 0

h̄ 2 g 2
µν �ψ(~r, t) + m 2

0 ψ(~r, t) = 0

2 h̄ 2 Λ g 2
µν �ψ(~r, t) + 〈T0〉ψ(~r, t) = 0

2.3. Quantum Non-Minkowski GQG

Now, let us try to develop an Einstein field equation, which is “completely” Quantum Mechanical

(i.e., it has neither a Minkowski spacetime and not its metric is Lorentzian) in comparison to

Equations (42) and (61).

Equation (55) immediately tells us that Equation (49) is possible to be written as follows,

dS 2
P ψ(~r, t) = gµν P̂

µ
P̂

ν
ψ(~r, t) =

(
m̂ Ê − p̂ i p̂ j

)
ψ(~r, t) . (72)

After using the mass operator m̂ from Equation (7) and then inputting the value of m̂ Ê from

Equation (56) into Equation (72) and then using Equation (8), we have,

dS 2
P ψ(~r, t) = gµν P̂

µ
P̂

ν
ψ(~r, t) = − h̄ 2

(
∂ 2

∂t 2
− ∂ 2

∂x i ∂x j

)
ψ(~r, t) = − h̄ 2 ∂ 2

∂s 2
ψ(~r, t)

= − h̄ 2 g µν∂µ∂ν ψ(~r, t) . (73)

This line element has neither a Minkowski spacetime and not its metric is Lorentzian, since gµν is

satisfying the last two terms of Equation (58). Note here that, the LHS of Equation (73), i.e., dS 2
P , is

relativistic, whereas, the RHS of Equation (73), i.e., − h̄ 2 ∂ 2

∂s 2 , is Quantum Mechanical. We can compare

this line element with Equation (10), but this time, the relativity-quantum relation in Equation (73) is

explained more uniquely and explicitly than our previous findings which have defined in the above

two subsections.

Now [13], let H be a Hilbert space. Let (M n, g) be a manifold, where M n is an n-dimensional

differentiable manifold and g is a metric satisfying the last two terms of Equation (58), which is either

as a positive-definite section of the bundle of symmetric (covariant) 2-tensors T ∗M ⊗S T ∗M or as

positive-definite bilinear maps, g
(
(ih̄)−1x

)
: T((ih̄)−1x)M × T((ih̄)−1x)M → H for all (ih̄)−1x ∈ M.
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Here, T ∗M ⊗S T ∗M is the subspace of T ∗M ⊗ T ∗M generated by elements of the form X ⊗Y +Y ⊗ X.

Let
{
(ih̄)−1x i

} n

i=1
be local coordinates in a neighborhood U of some point of M. In U the vector fields{(

ih̄ ~∇i

)−1
}n

i=1

form a local basis for TM and the 1-forms
{

ih̄ ~∇i

}n

i=1
form a dual basis for T ∗M,

that is, ih̄ ~∇j

(
ih̄ ~∇i

)−1
= δ i

j . Let ∇g denote the Levi-Civita connection of the metric g. The Christoffel

symbols are the components of the Levi-Civita connection and are defined in U by ∇(ih̄ ~∇i)

(
ih̄ ~∇j

)
+

Γ k
ij

(
ih̄ ~∇k

)
, and for

[(
ih̄ ~∇i

)
,
(

ih̄ ~∇j

)]
= 0, we see that they are given by,

Γ k
ij ψ(~r, t) =

1

2
g kℓ
[(

ih̄ ~∇i

)
gjℓ +

(
ih̄ ~∇j

)
giℓ −

(
ih̄ ~∇ℓ

)
gij

]
ψ(~r, t) . (74)

Let the curvature (3, 1)-tensor Rm is defined by, Rm(X, Y)Z + ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z. Thus,

the curvature tensor, R ℓ
ijk = ∂i Γ ℓ

jk − ∂j Γ ℓ
ik + Γ

p
jk Γ ℓ

ip − Γ
p
ik Γ ℓ

jp, is purely Quantum Mechanical due to

Equation (74). Let the tensor Rc is the trace of Rm curvature tensor: Rc(Y, Z) + trace (X 7→ Rm(X, Y)Z),

defined by Rij + Rc

((
ih̄ ~∇i

)
,
(

ih̄ ~∇j

))
, and the scalar curvature R is the trace of Rc tensor: R +

∑
n
a=1 Rc(ea, ea) where ea ∈ T((ih̄)−1x)M n is a unit vector spanning L ⊂ T((ih̄)−1x)M n. Then, the

Einstein-like purely quantum tensor Rc− 1
2 Rg directly acts on a quantum space. Thus, Einstein-like

purely quantum field equation
[
Rc− 1

2 Rg
]

ψ(~r, t) = U ψ(~r, t), where U = 8π G Tij, is “completely”

Quantum Mechanical for Equation (74) in comparison to Equations (42) and (61).

Instead of considering Xµ of Equation (34), let us develop Xµ with purely quantum spacetime

axes as follows,

[ (
∂̂ 2
[0,1] ⊗ Ψ[1,0]

)
, ai

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
, bi

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
,

{(
aiaj

)1/2
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
+
(
bibj

)1/2
(

∂̂ 2
[0,3] ⊗ Ψ[3,0]

)} ]
(75)

7→
(
(ih̄)−1x 0, (ih̄)−1x 1, (ih̄)−1x (1+i), (ih̄)−1x (1+(i+ℓ)), (ih̄)−1x (1+(i+ℓ)+j)

)
∈ Xµ ,

for i, j = 1, 2, 3, i 6= j and ℓ = max i, where,

(ih̄)−1x (1+(i+ℓ)+j) =

(
(ih̄)−1x

(1+(i+ℓ)+ 1
2 j)

a + (ih̄)−1x
(1+(i+ℓ)+ 1

2 j)
b

)
.

For the selection of the axis from Equation (75), we use fully democratic way, e.g.,

if
{
(a3a1)

1/2
(

∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
+ (b3b1)

1/2
(

∂̂ 2
[0,3] ⊗ Ψ[3,0]

)}
gives the 11th dimension, then

a3

(
∂̂ 2
[0,2] ⊗ Ψ[2,0]

)
and b3

(
∂̂ 2
[0,3] ⊗ Ψ[3,0]

)
should give us the 9th and 10th dimensions, and so

on.

2.3.1. Superstring/M-Theory

For this sub-subsection, we will switch to the Minkowski signature (−,+, . . . ,+) to express a

point particle and a string propagating in a D-dimensional curved spacetime.

The bosonic part of the action of the N = 1 supergravity theory in 11 dimensions should be (we

follow Ref. [14] hereafter),

S =
1

2κ 2

∫
d 11(ih̄)−1x

√
−g

(
Rc− 1

48
F 2

4

)
− 1

12κ 2

∫
F4 ∧ F4 ∧ A3 , (76)

where F4 = d A3. Definitely, this D = 11 supergravity is now in Xµ spacetime of Equation (75)

with purely quantum gravity g, which is satisfying the last two terms of Equation (58) but now with
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the signature (−,+, . . . ,+). And the overall scenario is condensed inside the observable (3 + 1)D

spacetime, i.e.,
(

∂ 2
[0,i] ⊗ Ψ[0,i]

)
for i = 1, 2, 3.

Similarly, the bosonic part of the action of type IIA theory (N = 2, d = 10) should be (in the string

frame),

S IIA =
1

2κ 2

∫
d 10(ih̄)−1x

√
−g

(
exp (−2φ)

[
Rc+ 4(∂φ) 2 − 1

12
H 2

3

]
− 1

4
F 2

2 − 1

48
F 2

4

)
−

− 1

4κ 2

∫
F4 ∧ F4 ∧ B2 , (77)

where F4 = d C3 + H3 ∧ C1, F2 = d C1, H3 = d B2 and φ is the dilaton. And the bosonic part of the

action of type IIB theory (N = 2, d = 10) should be (in the string frame),

S IIB =
1

2κ 2

∫
d 10(ih̄)−1x

√
−g

(
exp (−2φ)

[
Rc+ 4(∂φ) 2 − 1

12
H 2

3

]
− 1

2
(∂φ) 2 −

− 1

12
[F3 + aH3]

2 − 1

480
F 2

5

)
+

1

4κ 2

∫ (
C4 +

1

2
B2 ∧ C2

)
∧ F3 ∧ H3 ,

where F5 = dC4 + H3 ∧ C2, F3 = dC2, H3 = dB2, while a is the RR axion and φ is the dilaton. Whereas,

the bosonic part of the type I action (N = 1, d = 10) should be,

S I =
1

2κ 2

∫
d 10(ih̄)−1x

√
−g

(
exp (−2φ)

[
Rc+ 4(∂φ) 2

]
− 1

12
F̃ 2

3 − 1

4
exp (−φ)TrF 2

)
,

where F̃3 is the modified field strength for the two form, φ is the dilaton and F2 = dA + A ∧ A, where

A is the gauge potential in the adjoint representation of SO(32). As the two heterotic supergravity

theories are obtained as the low energy limit of heterotic string theory with gauge group SO(32) and

E8 × E8, respectively, the bosonic part of the actions should be,

S Heterotic =
1

2κ 2

∫
d 10(ih̄)−1x

√
−g exp (−2φ)

(
Rc+ 4(∂φ) 2 − 1

12
H̃ 2

3 − 1

4
TrF 2

)
,

where H̃3 is the modified field strength for the two form, φ is the dilaton and F2 = dA + A ∧ A, where

A is the gauge potential in the adjoint representation of SO(32) or E8 × E8, respectively. In the similar

way, a solitonic supergravity solution for p-branes in 11 dimensions which interpolates between a

vacuum with SO(1,2)×SO(8) symmetry yields,

ds 2 = H −2/3 ηµν (ih̄)
−2d x µ d x ν + H 1/3 δmn (ih̄)

−2d xm d x n ,

A3 = H −1 ηµν (ih̄)
−3d x 0 ∧ d x 1 ∧ d x 2 ,

H = 1 +
R 6

r 6
,

where µ, ν = 0, 1, 2, m, n = 3, . . . , 10, and H is a harmonic function on the transverse space, whereas

r is the radius for the eight-dimensional space transverse to the membrane. Hence, the complete

scenario of the Superstring/M-theory is condensed again inside the observable (3 + 1)D spacetime,

i.e.,
(

∂ 2
[0,i] ⊗ Ψ[0,i]

)
for i = 1, 2, 3. But M-theory on R

11 does not contain any strings, however, if we

replace Minkowski spacetime with Xµ spacetime of Equation (75), then we should find that M-theory

on Xµ is now contain strings which is inside the observable (3 + 1)D spacetime, i.e.,
(

∂ 2
[0,i] ⊗ Ψ[0,i]

)
for

i = 1, 2, 3.

Since M-theory is the strong coupling limit of the type IIA string theory, it must be an inherently

non-perturbative theory, with no arbitrary coupling constant, but only a length scale ℓp, then the

relation between this length scale and the IIA length scale and coupling can be obtained by comparing
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the 11 and 10-dimensional gravitational constants κ11 and κ10. But we know G = − h̄ 2 ℓ
µ
P

m 3
P

~∇P µ
~∇ µ

P

from Equation (62). Then, κ 2
11 = 2π R κ 2

10, where, by accepting ℓp 7→ ℓ
µ
P ,

2κ 2
11 = (2π) 8

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)9

,

∴ 2 h̄ 18 κ 2
11 �

9 + (2π) 8 G 9 m 27
P = 0 ,

which yields, i
√

2 h̄ 9 κ11 γ µ ~∇ 9/2
P µ − (2π) 4 G 9/2 m 27/2

P = 0 ,

when � = ~∇P µ
~∇ µ

P and γ µ are Dirac’s gamma matrices, whereas 2κ 2
10 = (2π) 7 g 2 α ′ 4. So, we obtain,

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)2

= g 2/3 α ′ ,

that,

α ′ =
1

R

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3

,

g = R 3/2

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3/2

. (78)

Hence, when the 11-dimensional radius is much smaller than the 11-dimensional length scale we

effectively have a 10-dimensional theory, which is type IIA string theory. But this idea should be

applicable for any dimensional radious Rν and any dimensional length scale since we have taken

ℓp 7→ ℓ
µ
P ; thus, we can rewrite Equation (78) as follows,

α ′ =
Θ 3

µ

Rν

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3

,

g =
(

Θ−1
µ Rν

)3/2
(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3/2

,

if µ = ν, and if µ 6= ν then α ′ = 0, g = 0, where Θµ is a coefficient for the various energy lavels of ℓ
µ
P ,

for example, Θ11 = 1. This suggests that the low energy limit of the strong coupling limit of IIA string

theory (which is M-theory) must be the 11-dimensional supergravity for any dimensional radius Rν

and any dimensional length scale. Let no fields depend on the 10 th space direction (ih̄)−1d x 10, then

splitting the metric and having the three form as,

ds 2
11 = exp (−2φ/3)ds 2

IIA + exp (4φ/3) (ih̄)−1
(

d x 10 + Cµ d x µ
)2

,

Aµν, 10 = Bµν ,

Aµνρ = Cµνρ ,

after that inserting these relations into the 11-dimensional supergravity action Equation (76), a

straightforward calculation gives the type IIA supergravity action Equation (77), in the string frame. If

no fields depend on the n th space direction (ih̄)−1d x n, then we have,

ds 2
11 = exp (−2φ/3)ds 2

IIA + Θn exp (4φ/3) (ih̄)−1
(
d x n + Cµ d x µ

)2
,

Aµν, n = Bµν ,

Aµνρ = Cµνρ .

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 October 2023                   doi:10.20944/preprints202306.1472.v2

https://doi.org/10.20944/preprints202306.1472.v2


29 of 42

Hence, type IIA supergravity can be obtainable from a dimensional reduction of 11-dimensional

supergravity (M-theory), where the reduced dimension should be depended on the n th space direction

(ih̄)−1d x n. So, obtaining type IIA string theory from M-theory by dimensional reduction is now

non-restricted for the 11 th direction but universally for any n th direction. This will be more clear if

we consider the relations between branes in type IIA string theory and M-theory as descrbe in the

following tensions,

M-brane:

MW :
1

Rν
,

M2 :
1

(2π) 2

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]−3

,

M5 :
1

(2π) 5

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]−6

,

KK6 :
(2π Rν)

2

(2π) 8

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]−9

,
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Type IIA-brane:

D0 :
1

Rν
=

[(
Θ−1

µ Rν

)3/2
(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3/2

]−1

×

×
[

Θ 3
µ

Rν

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3
]−1/2

,

F1 :
2π Rν

(2π) 2
Θ−3

µ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3

=

[
(2π)

Θ 3
µ

Rν

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3
]−1

,

D2 :
1

(2π) 2

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]−3

=
1

(2π) 2

[(
Θ−1

µ Rν

)3/2
(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3/2

]−1

×

×
[

Θ 3
µ

Rν

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3
]−3/2

,

D4 :
2π Rν

(2π) 5

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]−6

=
1

2π

[(
Θ−1

µ Rν

)3/2
(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3/2

]−1

×

×
[

Θ 3
µ

Rν

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3
]−5/2

,

NS5 :
1

(2π) 5

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]−6

=
1

(2π) 5

[(
Θ−1

µ Rν

)3/2
(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3/2

]−2

×

×
[

Θ 3
µ

Rν

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3
]−3

,

D6 :
(2π Rν)

2

(2π) 8

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]−9

=
1

(2π) 5

[(
Θ−1

µ Rν

)3/2
(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)−3/2

]−1

×

×
[

Θ 3
µ

Rν

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)3
]−7/2

.

Since, type IIA and IIB string theory are T-dual when compactified on a small and large circle,

respectively, then it must be possible to relate M-theory and type IIB string theory by the same
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consideration as above. Thus, we obtain the following relations between M-theory and type IIB string

theory parameters as,

gB =
Rν

R(ν−1)
,

RB =
1

R(ν−1) Rν

[
Θµ

(
− h̄−2 G m 3

P

[
~∇P µ

~∇ µ
P

]−1
)]3

.

We have skipped a very interesting thing in our above discussion that would be occurred if we

construct flux compactifications of M-theory to three-dimensional X spacetime preserving N = 2

supersymmetry. Here, a scalar function depending on the coordinates of the internal dimensions ∆(y)

(called the warp factor) is included as the explicit form for the metric ansatz as,

ds 2 = ∆(y)−1ηµνdx µdx µ + ∆(y) 1/2gmn(y)dy mdy u ,

where,

x µ =
(
(ih̄)−1x 0, (ih̄)−1x 1, (ih̄)−1x (1+i ′)

)
, for i ′ = 1 ,

are the coordinates of the three-dimensional spacetime M3 and,

y m =
(
(ih̄)−1x (1+i ′′), (ih̄)−1x (1+(i+ℓ)), (ih̄)−1x (1+(i+ℓ)+j)

)
, for

{
i ′′ = 2, 3 ,

i = 1, 2, 3 ,

are the coordinates of the internal eight-manifold M.

Relating M-theory on a line interval and E8 × E8 heterotic string theory is quite obvious now and

has been omitted here.

3. Dark Energy Scenarios

If we try to develop a Lagrangian for gravity, we can either choose Equation (47) or Equation (67).

Though, gravity is feeblest in Electroweak or Quantum Chromodynamic interactions, but gravity

is always related to their interacting particles, thus, we should like to go with Equation (47) for

Electroweak or Quantum Chromodynamic interactions as
[
R ζη − 1

2 gζη R
]
→ 1 for Remark 4, whereas,

we should choose Equation (67) for gravity. Since the last equation of Equation (68) is applicable

simultaneously whether the matter is baryonic or non-baryonic, then we should like to choose

Equation (71) to include Dark Energy in the Lagrangian along with gravitational and Electroweak or

Quantum Chromodynamic sectors.

Here, we only touch upon the bare minima of Electroweak or Quantum Chromodynamic

interactions in presence of gravity and Dark Energy. We have left a number of features for the

interested readers to check them out with their own interests.

Following fundamental interactions are considered to take place between the kernel energy of the

core, i.e., EPLANCK, and the outer surface energy of the core, i.e., E⋆, of the particles. Note it that, at this

energy state EPLANCK > E⋆, gravitons are not true particles but mere energy states.

3.1. Gravitational Electroweak Dark Energy Interactions

Let h̄ = c = 1. For baryonic matter, let us include gravity and Dark Energy in the Yang-Mills

Lagrangian of the electroweak symmetry SU(2)L ⊗ U(1)Y. We will consider U(1)G as the symmetry

associated with gravity group and it is unbroken, since it does not directly interact with the Higgs.

Let us consider Casimir energy is associated with the right-handed fermions, so by choosing

the isospin quantum numbers of different Standard Model fermions and by considering the U(1)C
is the symmetry associated with the Casimir hypercharge, YC = −1, we can consider the Casimir
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hypercharge field χ. So, for the overall invariance SU(2)L ⊗ U(1)Y ⊗ U(1)G ⊗ U(1)C , we can assume

the unbroken Gravitational Electroweak Dark Energy (GED) gauge group should be at least SU(3)GED.

Thus, mathematically, Casimir energy must be unified with the Dark Energy interactions minimally as a

Yang-Mills field with an SU(2)D ⊗ U(1)C gauge group, where SU(2)D is gauged Dark Energy isospin

and the U(1)C is the symmetry associated with the Casimir hypercharge, YC . So, the Gravitational

Electroweak Dark Energy interactions (GED) can trigger the symmetry breaking,

SU(3)GED → SU(2)L ⊗ U(1)Y ⊗ U(1)G ⊗ SU(2)D ⊗ U(1)C

→ U(1)em ⊗ U(1)G ⊗ SU(2)D ⊗ U(1)C ,

which describes the formal operations that can be applied to the Electroweak, gravitational and

Dark Energy gauge fields without changing the dynamics of the system. Let SU(2)D ⊗ U(1)C fields

are the Dark Energy isospin fields Υ1, Υ2, and Υ3, and the Dark Energy hypercharge field χ. We

need to remember here that fermionic isospin states in reactions/decays governed by the Dark

Energy interaction are conserved, i.e., the transition from |00〉 to |10〉 is not allowed in Dark Energy

interaction, which is quite familiar with Electromagnetic sector of Electroweak interaction, whereas, no

conservation of isospin is occurred in GED. Note here, the structures of these fermionic isospin states

of the model are considered to satisfy Equation (45) of Remark 4, i.e., Dark Energy interaction must

take place at the kernel of the fermionic isospin states of the model. We should remember that bosons

do not give Dark Energy by nature. On the other hand, all bosons gravitate (e.g., opposite moving

photons gravitate).

Let the Yang-Mills Lagrangian of the Gravitational Electroweak Dark Energy (GED) interaction is,

LGED = ℓ̄ i γ µ Dµ ℓ+ ēR i γ µ Dµ eR + g µν

[
f̄ i γ µ Dµ (G) f +

+ ℓ̄ i γ µ
D

L
µ (D) ℓ+ ēR i γ µ

D
R

µ (D) eR

]
− (79)

− 1

4

[
Wµν W µν + Bµν B µν + Gµν G µν + Υµν Υ

µν + χµν χ µν
]
,

where, f indicates all kind of fermions. By using Equation (47) for Electroweak interaction,
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Equation (67) for gravity and Equation (71) for Dark Energy interaction, here, covariant derivatives

and field tensors are given by,

Dµ ℓ =

{[
R ζη −

1

2
gζη R

] 1/2
~∇µ + i g

W
Wµ · τ

2
+ i g

B

(
YB

2

)
Bµ

}
ℓ

=

{[
R ζη −

1

2
gζη R

] 1/2
~∇µ + i g

W
Wµ · τ

2
+ i g

B

(
− 1

2

)
Bµ

}
ℓ

Dµ eR =

{[
R ζη −

1

2
gζη R

] 1/2
~∇µ + i g

B

(
− 1

2

)
Bµ

}
eR,

Dµ (G) f =

{
~∇µ + i g

G

(
YG

2

)
Gµ

}
f =

{
~∇µ + i g

G

(
+

2

2

)
Gµ

}
f ,

D
L

µ (D) ℓ =

{
~∇µ + i g

D
Υµ · κ

2
+ i g

C

(
YC

2

)
χµ

}
ℓ

=

{
~∇µ + i g

D
Υµ · κ

2
+ i g

C

(
− 1

2

)
χµ

}
ℓ,

D
R

µ (D) eR =

{
~∇µ + i g

C

(
− 1

2

)
χµ

}
eR,

W i
µν =

[
R ζη −

1

2
gζη R

] 1/2 (
~∇µ W i

ν − ~∇ν W i
µ

)
+ g

W
ǫ jik W

j
µ W k

ν ,

Bµν =
[
R ζη −

1

2
gζη R

] 1/2 (
~∇µ Bν − ~∇ν Bµ

)
,

Gµν =
(
~∇µ Gν − ~∇ν Gµ

)
,

Υ i
µν =

(
~∇µ Υ i

ν − ~∇ν Υ i
µ

)
+ g

D
ξ jik Υ

j
µ Υ k

ν ,

χµν =
(
~∇µ χν − ~∇ν χµ

)
, (80)

here, the components YC and g
C

are belonged to Casimir fields, where YB = −1 and YC = −1 are the

diagonal matrices with the hypercharges for electromagnetic and Casimir fields, respectively, while

YG = 2 is an operator for gravity field, in their diagonal entries, and i = 1, 2, 3. In Equation (79),

fermions and vector fields all are massless.

It is necessary to be mentioned that
[
R ζη − 1

2 gζη R
]
→ 1 for Remark 4 in the Gravitational

Electroweak Dark Energy interactions (and it is also true for the Gravitational Chromodynamic Dark

Energy interactions, see Subsection 3.2 below). Remember that gravitons are only observable as real

particles in the energy zone EIR ≤ E⋆ and in EUV > E⋆ level, all gravitons appear as non-particle energy

states. Only in the energy zone EIR ≤ E⋆, gravitons behave as real particles.

Now, to introduce spontaneous symmetry-breaking and to generate masses for the gauge bosons

by the choice of Higgs vacuum, let us consider a complex scalar field with a quartic interaction,

where the Lagrangian has the form, L = ~∇µ φ† ~∇ µ φ − ϑ 2 φ†φ − λ
(
φ†φ

) 2
, from which we find

the equation of motion as,
{
� + ϑ 2

}
φ + 2 λ φ

(
φ φ†

)
= 0. So, we have the non-vanishing one,

Ξ =
{(

− ϑ 2
)
/
(
2 λ
)}1/2

=
{

v 2/2
}1/2

.
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Let us introduce the matrices in such a way,




M

N

O


 =




a b c

d e f

g h i







v

w

x


 = v




a

d

g


+ w




b

e

h


+ x




c

f

i


 =




av + bw + cx

dv + ew + f x

gv + hw + ix


 ,

[
P

Q

]
=

[
c f i

g h i

] 


y

z

x


 = y

[
c

g

]
+ z

[
f

h

]
+ x

[
i

i

]
=

[
cy + f z + ix

gy + hz + ix

]
. (81)

Let the Lagrangian with gauge-boson masses is,

Lm =
v 2 g 2

W

4
W +

µ W −
ν +

v 2 g 2
D

4
Υ a

µ Υ b
ν +

+
(

W 3
µ Bµ Gµ Υ 3

µ χ µ
)
M




W 3
µ

Bµ

Gµ

Υ 3
µ

χ µ




,

where we have written the masses for the charged W ±
µ and Υ

a,b
µ fields defined as W ±

µ =(
W 1

µ ∓ i W 2
µ

)
/
√

2 and Υ
a,b
µ =

(
Υ 1

µ ∓ i Υ 2
µ

)
/
√

2, respectively, and where,

M =
v 2

8




g 2
W

− g
W

g
B

g
W

g
D

− g
W

g
B

g 2
B

− g
B

g
C

g
W

g
D

− g
B

g
C

4 g 2
G


 , (82)

having det (M) = 0, hence allowing a massless photon and a massless graviton. Now, omitting W ±
µ

as they are quite obvious, we choose only Υ
a,b
µ , whose masses can be seen from Lm are given as,

MΥ a,b =
v

2
(g

W
g

D )
1/2 .

The neutral gauge bosons mix after symmetry-breaking and the mass eigenstates are the neutral weak

boson Zµ, photon Aµ, Dark Energy boson Dµ, the Casimir energy Cµ and graviton Gµ – first four of

which are given in terms of W 3
µ , Bµ, Υ 3

µ and χµ as,




Zµ

Aµ

Gµ

Dµ

Cµ




=




cos θ
W

− sin θ
W

sin θ
D

sin θ
W

cos θ
W

− sin θ
D

sin θ
D

sin θ
D

4 cos θ
W,D







W 3
µ

Bµ

Gµ

Υ 3
µ

χ µ




,

i.e., alike Equation (81),

Zµ = cos θ
W

W 3
µ − sin θ

W
Bµ + sin θ

D
Gµ,

Aµ = sin θ
W

W 3
µ + cos θ

W
Bµ − sin θ

D
Gµ,

Gµ = sin θ
D

W 3
µ + sin θ

D
Bµ + 4 cos θ

W
Gµ,

Dµ = sin θ
D

Υ 3
µ − sin θ

D
χ µ + 4 cos θ

D
Gµ,

Cµ = sin θ
D

Υ 3
µ + sin θ

D
χ µ + 4 cos θ

D
Gµ, (83)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 October 2023                   doi:10.20944/preprints202306.1472.v2

https://doi.org/10.20944/preprints202306.1472.v2


35 of 42

with the Electroweak mixing angle θ
W

and the Dark Energy mixing angle θ
D

. Let us check their values.

The condition that the fields Aµ and Cµ should be the eigenvector of Equation (82) with zero eigenvalue

is written as,

0 =




g 2
W

− g
W

g
B

g
W

g
D

− g
W

g
B

g 2
B

− g
B

g
C

g
W

g
D

− g
B

g
C

4 g 2
G







sin θ

cos θ

1


 =




g 2
W

sin θ − g
W

g
B

cos θ + g
W

g
D

− g
W

g
B

sin θ + g 2
B

cos θ − g
B

g
C

g
W

g
D

sin θ − g
B

g
C

cos θ + 4 g 2
G


 ,

and the vanishing of its RHS requires,

tan θ =
g

B

g
W

− 2 g
G

g
W

cos θ
, (84)

where, tan θ
W

=
g

B
g

W
, then, θ

W
= tan−1

(
g

B
g

W

)
. Let us consider tan θ of Equation (84) as,

tan θ ≡ tan θ
D

, then θ
D

= tan−1
(

g
B

g
W
− 2 g

G
g

W
cos θ

W

)
and the Electroweak masses are found to be

MZ = (v/2)
(

g 2
W
+ g 2

B

) 1/2
, while Mγ = 0, similarly, the Dark Energy masses are found to be

MD = (v/2)
(

g 2
W
+ g 2

B
+ 4 g 2

G

) 1/2
, while MC = 0. This gives

MΥ

MD

=
(g

W
g

D )
1/2

(
g 2

W
+ g 2

B
+ 4 g 2

G

) 1/2
= cos θ

D
.

Now, if we write down the charged-current and neutral-current interactions in GED theory, we can

see the condition for which the field Aµ couples to the electron via the electromagnetic current is

g
W

sin θ
W
= g

B
cos θ

W
= e in Electroweak symmetry breaking, whereas, the condition for which the

field Cµ couples to the fermion via the Casimir current is (g
W

g
D )

1/2 sin θ
D
= g

C
cos θ

D
= χ in Dark

Energy symmetry breaking.

By the way, the last two terms of Equation (83) make it clear that Dark energy field is non-decaying.

3.2. Gravitational Chromodynamic Dark Energy Interactions

In the gauge theory of Gravitational Chromodynamic Dark Energy interactions (GCD), let the

gauge symmetry is, SU(4)GCD → SU(3)C ⊗ U(1)G ⊗ SU(2)D ′ ⊗ SU(2)D ′′ ⊗ U(1)C , i.e., the SU(3)C

symmetry of the colour degree of freedom is now with gravitational and Dark Energy symmetry parts,

much like what we have already discussed in GED. But apart from Casimir gauge group U(1)C , the

non-abelian gauge groups of Dark Energy symmetry, i.e., SU(2)D ′ ⊗ SU(2)D ′′ , are quite different than

the previously discussed non-abelian Dark Energy gauge group SU(2)D of GED (we will discuss

below for details).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 October 2023                   doi:10.20944/preprints202306.1472.v2

https://doi.org/10.20944/preprints202306.1472.v2


36 of 42

Using Equations (47), (67) and (71), let the Gravitational Chromodynamic Dark Energy (GCD)

Lagrangian, which describes quarks and gluons in interactions in the presence of gravity and the Dark

Energy fields for baryonic matter, is as follows,

LGCD = ∑
q

ψ̄
(q)
j

{
i γ µ

(
Dµ

)
jk
−
(
U 1/2 P

) (q)
δjk

}
ψ

(q)
k +

+ ∑
q

ψ̄
(q)
j i γ µ g µν

(
Dµ (G)

)
jk

ψ
(q)
k +

+ ∑
q

ψ̄
(q)
j

{
i γ µ g µν

(
Dµ (D)

)
jk
− m

(q)
P 0 δjk

}
ψ

(q)
k +

+ ∑
qR

ψ̄
(qR)
j i γ µ g µν

(
D

R
µ (D)

)
jk

ψ
(qR)
k −

− 1

4 ∑
a

G a
µν

(
G a
) µν

− 1

4
Gµν G µν −

− 1

4 ∑
q

Υ
q
µν

(
Υ q
) µν

− 1

4
χµν χ µν, (85)

where, q = u, d, s, . . . is the flavor label, j = 1, 2, 3 is the quark color index, a = 1, 2, . . . , 8 is the gluon

color index, where, qR indicates right-handed quarks and

Dµ =
[
R ζη −

1

2
gζη R

] 1/2
~∇µ + i g

S
Aµ · λ

2

Dµ (G) = ~∇µ + i g
G

(
YG

2

)
Gµ = ~∇µ + i g

G

(
+

2

2

)
Gµ,

Dµ (D) = ~∇µ + i g
D

Υµ · κ
D

2
+ i g

C

(
YC

2

)
χµ

= ~∇µ + i g
D

Υµ · κ
D

2
+ i g

C

(
− 1

2

)
χµ,

D
R

µ (D) = ~∇µ + i g
C

(
− 1

2

)
χµ,

G a
µν =

[
R ζη −

1

2
gζη R

] 1/2 (
~∇µ A a

ν − ~∇ν A a
µ

)
+ g

S
f abc A b

µ A c
ν ,

Gµν =
(
~∇µ Gν − ~∇ν Gµ

)
,

Υ
q
µν =

(
~∇µ Υ

q
ν − ~∇ν Υ

q
µ

)
+ g

D
ξ qrs Υ r

µ Υ s
ν ,

χµν =
(
~∇µ χν − ~∇ν χµ

)
,

where κ
D
6= κ, A a

µ is the field of gluon and, g
S

is the coupling constant, λ the Gell-Mann matrices in the

space of colour whereas f abc is the SU(3)C structure constant, here, Υ
q
µ is the Dark Energy fields and

q = 1, 2, . . . , 6 for six quark flavours. These Dark Energy fields are completely different from GED Dark

Energy fields unlike χµ field, and they give two different kind of symmetry groups for two different

families of quarks, namely, for light quarks u, d and s, we have Dark Energy gauge group SU(2)D ′ ,

whereas, for heavy quarks c, t and b, we have Dark Energy gauge group SU(2)D ′′ . With abelian gauge

group U(1)C , they give the overall Dark Energy symmetry as SU(2)D ′ ⊗ SU(2)D ′′ ⊗U(1)C . Remark 4

confirms here that
[
R ζη − 1

2 gζη R
]
→ 1. Note that mP 0 scale for Dark Energy is intending here the

kernel energy state of the core (i.e., the spacetime x µ) what we have already cited above in Remark 4.

In Equation (85), Dark Energy fields are massless and they require Higgs mechanism to gain masses.
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4. Dark Matter Scenario

If a matter satisfies Equations (21) and (22) so as it yields the internal hidden spacetime of ρ which

has ‘proper’ spacetime arrangement for its ∂-dependency, whereas, the overall (observable) system’s

spacetime arrangement is quite ‘improper’ as it is ∂̂-dependent, then this kind of matter must be Dark

Matter.

Let us consider a renormalizable Lagrangian, L = L (GED+GCD) + L̺i
+ Lmix, where L (GED+GCD)

is for baryonic GED and GCD interactions, L̺i
is the Lagrangian for Dark Matter particles ̺i, and Lmix

contains possible non-gravitational interactions coupling between baryonic matters and ̺i particles.

Let these ̺i particles are stable and behave as almost collisionless matter of Dark light quarks and/or

antiquarks because of Equations (21) and (22). This additional set of ̺i particles must be associated

with a Dark Matter gauge group, SU(3) ′C, denoted with a prime ( ′ ) . Candidates for SU(3) ′C gauge

group are almost non-luminous and non-absorbing matter, otherwise if they interact/decay with any

of the baryonic particles, these non-baryonic particles would ensue the Universe very unstable with

unbelievably high acceleration rate. Thus,

1. The non-baryonic Dark Matter sector, which corresponds to the gauge group SU(3) ′C, is not an

exact copy of the Standard Model baryonic sector SU(3)C. Though, in both cases, the symmetry

interchanges the common type of gauge boson(s) and can be a full invariance of the two (almost)

phenomenologically equivalent theories, although they are originated from fundamentally

different physics maybe at very different cosmological epochs.
2. The particles for SU(3) ′C gauge group would have only felt the gravitational attraction of other

baryonic/non-baryonic objects.

So, the Dark sector particles are solely graviton, neutral Dark weak boson, darkgluons and darkquarks

only, viz.
(
G, Z ′ 0, g ′, u ′, d ′, . . .

)
, but not leptonic (e ′, γ ′, W ′ ±, . . .), even no Casimir C ′ particle, and

neither any charged Higgs fields. Colored and/or electrically charged particles are prevented from

mixing with their Dark analogues by color and electric charge conservation laws, though, the physical

gluons may couple to antidarkquarks with extremely weak gluonic strength (to be discussed shortly,

vide Equation (87) and its following discussion).

Let the above Lagrangian L respects an exact parity symmetry, which we also refer to as mirror

symmetry [15]:

(−→x , t
)
→
(
−−→x , t

)
, g µ ↔ g ′

µ, ΦH ↔ Φ ′
H ,

q k L ↔ γ0 q ′
k R, u k R ↔ γ0 u ′

k L, d k R ↔ γ0 d ′
k L,

where g µ are the SU(3)C gluons, ΦH is the Standard Model neutral Higgs doublet with its Dark

partner Φ ′
H , the fermion fields are quarks q k L ≡ (u k, d k) L, u k R, and d k R whereas darkquarks

q ′
k R ≡ (u ′

k
, d ′

k
) R, u ′

k L, and d ′
k L represent the (anti-) darkquark families, while k = 1, 2, 3 is the

generation index, and γ0 is a Dirac gamma matrix.

Suppose, L̺i
is the combination of Dark Matter GED and GCD interactions, and suppose, these

fundamental interactions are considered to take place between kernel of the core energy and outer
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surface energy of a Dark particle, i.e., at EPLANCK > E⋆, where gravitons are not particles but mere

energy states. Thus, applying Equation (66) into Equations (79) and (85), we get,

L̺i
= ∑

q ′
L

ψ̄
(q ′

L)
j i γ µ

(
D ′

µ

)W

jk
ψ

(q ′
L)

k + ∑
q ′

R

ψ̄
(q ′

R)
j i γ µ

(
D ′

µ

)W

jk
ψ

(q ′
R)

k +

+∑
q ′

ψ̄
(q ′)
j

{
i γ µ

(
D ′

µ

)
jk
+ m

(q ′)
P δjk

}
ψ

(q ′)
k +

+ ∑
q ′

ψ̄
(q ′)
j i γ µ g µν

(
Dµ (G)

)
jk

ψ
(q ′)
k +

+ ∑
q ′

L

ψ̄
(q ′

L)
j i γ µ g µν

(
D

L
µ (D)

)
jk

ψ
(q ′

L)
k + ∑

q ′
R

ψ̄
(q ′

R)
j i γ µ g µν

(
D

R
µ (D)

)
jk

ψ
(q ′

R)
k +

+ ∑
q ′

ψ̄
(q ′)
j

{
i γ µ g µν

(
Dµ (D)

)
jk
− m

(q ′)
P 0 δjk

}
ψ

(q ′)
k −

− 1

4
W ′

µν

(
W ′) µν − 1

4 ∑
a

G ′ a
µν

(
G ′ a

) µν
− 1

4
Gµν G µν −

− 1

4 ∑
i

Υ ′ i
µν

(
Υ ′ i
) µν

− 1

4 ∑
q ′

Υ
q ′
µν

(
Υ q ′) µν

, (86)

where Dark Matter weak and Dark Matter chromodynamic covariant derivatives are,

(
D ′

µ

)W
= (8π) 1/2 ~∇P µ + i g ′

W
W ′

µ · τ ′

2
,

D ′
µ = (8π) 1/2 ~∇P µ + i g ′

S
A

′
µ · λ ′

2
,

when other covariant derivatives are as analogous as before, but they do not contain either photon

or Casimir energy field. In Equation (86), both Dark Matter weak fields and Dark Energy fields are

massless and they require (neutral) Higgs mechanism to gain masses. Here we also presume that

Dark Energy gauge groups SU(2)D and SU(2)D ′ ⊗ SU(2)D ′′ are analogous to the GED and GCD Dark

Energy gauge groups.

So, due to Equation (86), the Dark Matter gauge symmetry is,

SU(5)DM −→ SU(3)C ′ ⊗ SU(2 ⋆)L ⊗ U(1)G ⊗ SU(2)D ⊗ SU(2)D ′ ⊗ SU(2)D ′′ ,

here SU(2 ⋆)L gives only Z ′ 0 boson but no other (charged) weak vector bosons. As a policy of

desperation, we can consider that one of the Dark Matter particles is definitely axion.

Considering that both of the ordinary (i.e., baryonic) and Dark particles are too close to

interact in spacetime no matter what their cosmological epochs are, then for the physical effects

of gluon-darkgluon kinetic mixing, let us take account of SU(3)C ⊗ SU(3) ′C quantum chromodynamics

for the quark ψ (q) and gluon field A µ, antidarkquark ψ (q ′) and antigluon field A ′
µ as follows by
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using Equations (85) and (86), when gravitational and Dark Energy interactions are quite obvious and

unaltered, so as omitted here, then we have the Lagrangian as,

L = ∑
q

ψ̄
(q)
j

{
i γ µ

(
Dµ

)
jk
−
(
U 1/2 P

) (q)
δjk

}
ψ

(q)
k +

+∑
q ′

ψ̄
(q ′)
j

{
i γ µ

(
D ′

µ

)
jk
+ m

(q ′)
P δjk

}
ψ

(q ′)
k −

− 1

4 ∑
a

G a
µν

(
G a
) µν

− 2π ∑
a

G ′ a
µν

(
G ′ a

) µν
− ǫ

2 (8π) 1/2 ∑
a

G a
µν

(
G ′ a

) µν
−

−
g 2

S
Θs

64 π 2
f µνλ ρ ∑

a

(
G a
) µν(

G a
) λ ρ

−
g ′ 2

S
Θs

8 π
f µνλ ρ ∑

a

(
G ′ a

) µν(
G ′ a

) λ ρ
−

−
ǫ
(

g 2
S

g ′ 2
S

) 1/2
Θs

32 π 2(8π) 1/2
f µνλ ρ ∑

a

(
G a
) µν(

G ′ a
) λ ρ

,

involving a sufficiently small dimensionless parameter ǫ, and there is no symmetry reason for

suppressing this term, with the minimal particle content [16]. Here AC
µ ≡ A C

µ and A ′C
µ ≡ 1

2 A ′C
µ .

Note here, that the SU(3)C-SU(3) ′C kinetic mixing term is gauge invariant. The kinetic mixing can be

removed with a non-orthogonal transformation [17],

A µ → Ã µ ≡ A µ + ǫA ′
µ , A ′

µ → Ã ′
µ ≡ A ′

µ

√
1 − ǫ 2 .

We can transform to a basis where only one of these states couples to gluons. By the orthogonal state

we call the sterile gluon A µ
2 ,

A µ
1 = A µ

√
1 − ǫ 2 , A µ

2 = A ′ µ + ǫA µ ,

the Lagrangian for an ordinary matter environment shows (to leading order in ǫ) that the physical gluon

couples to antidarkquarks with gluonic strength g
S
ǫ, which is extremely weak for the sufficiently small

dimensionless parameter ǫ, while g ′
S

doesn’t couple to ordinary matter at all. Similarly, considering

the sterile darkgluon A ′ µ
1 ,

A ′ µ
1 = A µ + ǫA ′ µ , A ′ µ

2 = A ′ µ
√

1 − ǫ 2 ,

the Lagrangian for a dark matter environment becomes (to leading order in ǫ),

L = ∑
q

ψ̄
(q)
j

{
i γ µ

(
Dµ

)
jk
−
(
U 1/2 P

) (q)
δjk

}
ψ

(q)
k +

+∑
q ′

ψ̄
(q ′)
j

{
i γ µ

(
D ′

µ

)
jk
+ m

(q ′)
P δjk

}
ψ

(q ′)
k +

+ ∑
q

ψ̄
(q)
j g

S
γ µ λ C

jk

(
A ′C µ

1 − ǫA ′C µ
2

)
ψ

(q)
k +

+ ∑
q ′

ψ̄
(q ′)
j g ′

S
γ µ λ ′C

jk A ′C µ
2 ψ

(q ′)
k , (87)

in terms of the ordinary matter physical states,

A ′ µ
2 =

(
A µ

2 − ǫA µ
1

)
,

(to leading order in ǫ) and suppressing the G a
µν (G

a) µν and G ′ a
µν (G

′ a) µν
related components in L.

Evidently, an antidarkquark would emit the state A ′ µ
2 , thus, the flux of g ′

S
detectable in an ordinary
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matter detector is reduced by a factor ǫ 2 . Since ǫ is sufficiently small, this makes such emission should

not be detected in the present state collider experiments.

Remark 6. So, the above inspection implies that, antiquark-quark → antidarkquark-darkquark or quark-quark

(or quark-antiquark) → darkquark-antidarkquark annihilation channels may occur within the nucleons

and gives us the effects something like Refs. [18–20], but antidarkquark-darkquark → quark-antiquark or

darkquark-antidarkquark → quark-antiquark annihilation channels should never take place on the inside of

a nucleon (baryonic or dark), and neither any decay q ′
1 → q ′

2 + ( f f̄ ) through intermediated spin-1 gauge

bosons, where f and f̄ stand for light Standard Model particles (assuming the conservation of a dark-parity)

unless ( f f̄ ) are leptons.

Remark 6 is sufficient to explain the effectively more collisionless bow shock phenomena of the

mass component of the merging galaxy clusters like as the 1E 0657-56 cluster [21], commonly known

as the Bullet Cluster, and the similar collisionless behavior that has been observed in other merging

galaxy clusters, for example, two high-redshift clusters, CL 0152-1357 [22] and MS 1054-0321 [23], and

several other merging clusters, viz. A754, A1750, A1914, A2034, A2142 [24], A2744 [25], A2163 [26],

MACS J0025.4-1222 [27], and A1758 [24,28], etc.

5. Conclusions and Discussion

In this work, we have quantized the classical theory of General Relativity and contributing a very

natural geometric way, we have wrote a fundamental theory of quantum gravity coupled to matter.

Present physics is unable to provide us a more acceptable scenario of Einstein field equation

which is developed in a quantum spacetime. Moreover, it is commonly believed in contemporary

physics that gravity is the bending of spacetime, but in GQG, Einstein field equations Equation (44) and

Equation (61), and then GED and GCD interactions, assure us that, gravity is the bending of spacetime

intermediated by gravitons in its quantum gravity field, whose geometric part bends spacetime,

whereas its quantum part interacts with the spacetime by exchanging gravitons.

Three different aspects of quantum gravity in Subsections 2.1–2.3, respectively, are developed in

different spacetimes, viz. one Einstein field equation Equation (44) is developed in a semi-quantum

Minkowski spacetime, while, another Einstein field equation Equation (61) is developed in a purely

quantum Minkowski spacetime, whereas the last one is developed in a quantum Non-Minkowski

spacetime. This is a remarkable achievement of GQG.

Contrary to Einsteinian’s General Relativity, we can say that LHS of Equation (44) or Equation (61)

is strongly depended upon different matter fields that exchange different types of vector bosons

causing either positive pressure or negative pressure by bending spacetime.

Except this work, there has no evidence of simple bosonic and fermionic fields (i.e., neither

supersymmetric nor stringy) that provides us Dark Energy and Dark Matter. GQG fields give us a

gauge picture of Dark Matter through Equation (66), which assists us in Section 4, where Dark Matter

appears quite naturally in the same GQG fields for Dark Energy.

From GED, GCD and Dark Matter scenarios, we have a Universal Model as SU(3)GED ⊗
SU(4)GCD ⊗ SU(5)DM ⊂ SU(7)UM, where it is clear that Dark energy field is homogeneous, as

well as non-decaying, in all kind of matter fields. So, it is also clear that whether the matter is

baryonic or Dark, or their mixture, the effective universal relativistic cosmological constant Λ eff at the

surrounding is positive – that is why the Universe is expanding and accelerating, even at the present

epoch. Dark Energy particles, that the fundamental interactions possessed in abundance due to the

Universal Model SU(3)GED ⊗ SU(4)GCD ⊗ SU(5)DM ⊂ SU(7)UM, give an excellent fit to observations

with the present day ∼ 68.3% content of the Dark Energy (see the text immediate after Equation (66) for

baryonic and Dark Matter abundance), i.e., it is providing us the solution of the ‘coincidence problem’:

Why is the energy density of matter nearly equal to the Dark Energy density today? So, from GQG, we have a

suitable solution that why Dark Energy has become dominant after galaxy formation.
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The overall scenarios of unification of gravity, Dark Energy, Dark Matter with fundamental

interactions of particles or fields in GQG have left behind sufficient amount of calculations in Section 3

and Section 4 that give us a prospective opportunity for their future uses and they ensure us that

graviton, Dark Energy and Dark Matter now become possible to be testable (directly or indirectly) at

laboratory scales (i.e., in a standard particle collider) without regarding Planck scales.

In our present work, we have not chosen Superstring/M-theory, but it has come up quite naturally

in GQG, whereas we have intentionally omitted the formalism of Loop Quantum Gravity since its

construction looks quite artificial in comparison to Superstring/M-theory in GQG, though we can

easily develop an effective formalism of Loop Quantum Gravity with the help of Subsection 2.3.
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