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Abstract: This paper aims the automatic ball balancers (ABBs) used in passive balancing devices for 

suppressing vibration of the eccentric rotor. The system model describes which equipped with a 

skew-mounted ABB with angular deviation. The dynamic equilibrium equations of the system are 

deduced from the perspective of three-dimensional (3D) dynamics. The results obtained are 

consistent with those derived from the Euler-Lagrange equations. It is exciting that the spatial 

dynamics method reveals the spatial geometric characteristic of dynamic balance positioning of the 

balls when the system is balanced with vibration suppression. The spatial property emerges the 

perpendicular line from each ball to the rotating spindle of the system must pass through the central 

axis of the orbit perpendicular to the ABB plane. This characteristic is a general rule that can be used 

to explain the phenomenon of the stable equilibrium positions of the balls in all previously studied 

cases. 

Keywords: automatic ball balancer; eccentric rotor; vibration suppression; three-dimensional 

dynamics; assembly deviation; skew-mounted; angular deviation; spatial geometric characteristic 

 

1. Introduction 

The most widely applied and researched passive balancing devices for vibration suppression of 

eccentric rotors are the Automatic Ball Balancers (ABBs) at present. The main components are 

composed of a circular orbit mechanism mounted perpendicular to the spindle of the rotor and 

revolving with the rotor, and several balls that can freely move inside the track. In 1975, Sharp [1] 

established an ideally mounted two-ball balancer of a plane rotor system from the 2D viewpoint and 

derived the equations of motion to analyze stability. Lee [2] in 1996, Green [3] in 2006 and Lu [4] in 

2009, etc., have explored the problems and phenomena of ABBs suppressing vibration in the model 

without assembly deviations. 

However, when ABBs are mounted with an eccentric rotor system, assembly deviations can 

include the deviations of the vertical and horizontal position of the ABB's centroid and the centroid 

of eccentric rotor as well as the deflection of the mounted angle. Regarding the discussions of vertical 

position deviation, Kim [5] in 2005 and Chao [6] in 2007 investigated the dynamic behavior of the 

system when the ABB is mounted at a small distance below the centroid of plane eccentric rotor by 

theoretically and experimentally respectively. Numerical analysis and experimental results show that 

the system can still be balanced in an approximate ideal mounted (ABB is coplanar with the plane 

rotor), and the balls are positioned at appropriate angular positions to effectively reduce the radial 

residual vibration in steady-state and the tilting angle during rotor balancing [5], where the radial 

amplitude can be almost completely suppressed, yet the tilting angle during balancing exists a finite 

amount [6]. Furthermore, regarding the discussions of horizontal position deviation, Bykov in 2014 

[7] and 2018 [8] proposed the axis of symmetry of ABB does not coincide with the symmetry axis of 
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the rotor which the ABB and the plane rotor are coplanar, the system has two types of unbalanced 

steady-state modes when the working speed is greater than the critical speed of the system. As for 

the deflection of the mounted angle, Huang [9] in 2022 among the vibration suppression system 

established an angular deviation model between the plane of ABB's track and the plane of the 

eccentric rotor. The angular positions of the balls and their restriction conditions are analyzed and 

propose the examination principle of the ABB is skew-mounted, and the conditions for perfect 

balance of the ideal and skew-mounted ABB. 

Generally, the dynamic equilibrium equations of the vibration suppression rotor system are 

derived that the mathematical model of the system is established first. Then the kinetic energy, 

potential energy and energy dissipation functions of the system are listed one by one. Next the Euler-

Lagrange method is used to obtain the governing equations, the dynamic equilibrium equations of 

the system are obtained under the conditions that their differential terms are zero. Reference [1-6, 9] 

as well as recent works by Jung [10] in 2018 and Rezaee [11], Filimonikhin [12] and Bykov [13] in 2019 

are all based on the Lagrange equation to derive the equations of motion of the system.  

In order to make the study of the angular deflection of ABB more complete, this paper deduces 

the dynamic equilibrium equations of the vibration suppression system in the steady-state by 3D 

dynamics method to verify the derivations of [9] with each other. Consistent results are obtained. 

Due to the mounted angular deflection will cause the plane which circular orbit of the ABB cannot 

be completely fitted to the plane of the eccentric rotor. In the model of the steady-state vibration 

system with angular deviation, the spatial dynamics method can find the geometric phenomenon 

and relationships from the derived equations. Regardless of whether assembly deviations of ABBs, 

the dynamic balance position of any ball must be satisfied the necessary spatial geometry 

characteristic. 

2. System Model 

The model is based on angular deviation of skew-mounted. Figure 1 shows the skew-mounted 

model of the angular deviation between the plane of the balls moving in ABB’s track and the rotor 

plane when the spindle speed is zero. The plane formed by the blue frame in Figure 1 is the plane 

where the eccentric rotor is located and 𝐶 is its centroid, while the red frame represents the orbit 

plane of ABB. The ABB plane does not coincide with the rotor plane that is perpendicular to the spin 

axis of the system at rest. The deflection angle as shown is 𝜃. Suppose skew-mounted ABB only the 

angle deflection of track plane without the position deviation of the centroid, then the ABB's centroid 

coincides with the centroid 𝐶 of the planar rotor at static. The intersection line of two planes should 

pass through the centroid 𝐶. As shown, the coordinate system < 𝑿𝒀𝒁 > is a space-fixed reference 

frame of the planar rotor, with the origin defined at the position of its centroid. The intersection line 

of two planes lies on the 𝒀-axis. 

When the system operates stable, due to the deflection of the orbit plane of ABB and the rotor 

plane, although the centrifugal forces acting on their respective planes both pass through the rotation 

axis, the intersection of each with the rotation axis is not necessarily the same. Which may generate 

torques for the whole assembly system. In this paper, the spin axis (𝒁-axis) of the system is defined 

as the roll axis in a tri-axial system, and the pitch and yaw angles of the system should be considered 

for the phenomenon of torque. Therefore, in addition to the tri-axial isotropic linear spring 𝑘 and 

viscous damper 𝑐, the elastic supports of the system should also consider the roles of the torsion 

spring 𝑘்  and torsion damper 𝑐்  in the other two axes except for the spin axis, as shown. The 

dynamic balance of this 3D model will be analyzed using spatial dynamics. 
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Figure 1. The support configurations of the rotor system equipped with skew-mounted ABB. 

3. 3D Dynamic Deduction 

3.1. Coordinate System 

In order to understand and analyze the spatial position, attitude, and motion mechanism of the 

rotor system equipped with skew-mounted ABB, the coordinate systems of the ABB mechanism, 

eccentric rotor, and support device are constructed as shown in Figure 2. The rectangular coordinate < 𝑿𝒀𝒁 >ை is a space-fixed reference frame of the planar rotor, the origin 𝑂 is defined at the centroid 

position of the eccentric rotor when the spindle speed is zero and the system is stationary and the 

support springs are not deformed. The 𝒀-axis is the deflection axis where mounting deviation occurs 

(refer to Figure 1). Moreover, the rotating reference frame < 𝒙𝒚𝒛 >ை  is defined with the origin 

located at point 𝑂  and 𝒛 = 𝒁  axis of the < 𝑿𝒀𝒁 >ை  frame. The < 𝒙𝒚𝒛 >ை  coordinate system 

rotates around the spindle 𝒁-axis of the system with a constant angular velocity 𝜔. The reference 

frame can be transformed to the rotating frame by a rotation matrix 𝐓ఠ.  

When the deformations of the support springs, the position of the offset centroid 𝐶  set the < 𝒙𝒚𝒛 >஼ coordinate system, which is always parallel and same direction to each axis of < 𝒙𝒚𝒛 >ை 

except for the different origin position. Then rotating the pitch angle  𝛾ଵ around the 𝒙-axis which is 

in < 𝒙𝒚𝒛 >஼  coordinate system, and the rotating coordinate system < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >஼ where 𝒙ᇱ = 𝒙 be 

obtained. Next rotating the yaw angle 𝛾ଶ around the 𝒚ᇱ-axis of < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >஼ coordinate system to 

obtain the rotating coordinate system < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >஼ where 𝒚ᇳ = 𝒚ᇱ and the 𝒛ᇳ-axis passes through 

the rotor centroid and is perpendicular to the plane of the rotor (𝒙ᇳ𝒚ᇳ plane). Converting < 𝒙𝒚𝒛 >஼ 

to < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >஼ and < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >஼ by rotation matrix 𝐓ଵ and 𝐓ଶ in sequence. The mass center 𝐺 of 

eccentric rotor with mass 𝑚 is located on the plane of rotor and the eccentricity between 𝐺 and its 

centroid 𝐶 is 𝜀. The angle between 𝐶𝐺 and the 𝒙ᇳ-axis is 𝜓. 

The body-fixed coordinate system < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >஼ follows the rotor system in 3D space such that 

the 𝒚ᇳ-axis is also the deflection axis of skew-mounted ABB. Rotating the deflection angle 𝜃 around 

the 𝒚ᇳ-axis of the < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >஼  to obtain the coordinate system < 𝒙ᇵ𝒚ᇵ𝒛ᇵ >஼  of the orbit plane, 

where 𝒚ᇵ = 𝒚ᇳ = 𝒚ᇱ. It can convert < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >஼ to < 𝒙ᇵ𝒚ᇵ𝒛ᇵ >஼ by rotation matrix 𝐓ଷ. The radius 

of the circular orbit of the ABB is 𝑅, there are 𝑛 balls moving in the orbit and the mass of each ball is 𝑚௕ . The angular position of the 𝑖-th ball from the 𝒙ᇵ-axis is denoted 𝛽௜(𝑖 = 1~𝑛). The rotation 

matrixes between the coordinates as 

𝐓ఠ = ൥ cos 𝜔𝑡 sin 𝜔𝑡 0− sin 𝜔𝑡 cos 𝜔𝑡 00 0 1൩ , 𝐓ଵ = ൥1 0 00 cos 𝛾ଵ sin 𝛾ଵ0 − sin 𝛾ଵ cos 𝛾ଵ൩ , (1)
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𝐓ଶ = ൥cos 𝛾ଶ 0 − sin 𝛾ଶ0 1 0sin 𝛾ଶ 0 cos 𝛾ଶ ൩ , 𝐓ଷ = ൥cos 𝜃 0 − sin 𝜃0 1 0sin 𝜃 0 cos 𝜃 ൩ 

 

Figure 2. Configuration of the coordinate systems. 

3.2. Spatial forces of dynamic balance 

When the system is in dynamic balance, each particle of the system always maintains a fixed 

relative position to the observer of the rotating coordinate system attached to the spindle with the 

same angular velocity. The centripetal force required to maintain the constant angular velocity is 

provided by the constraint force generated by the deformation of the suspension or support device 

of the system. The plane of ABB's track of the rotor system with a skew-mounted ABB does not 

coincide with the plane of the rotor, as shown in Figure 3, Plane Ⅰand Plane Ⅱ. When the dynamic 

system is steadily balanced, the balls and the rotor centroid revolve around the spin axis, but each of 

them is on a different plane perpendicular to the spin axis. 𝐵ଵ and 𝐵ଶ in Figure 3 are any two balls 

in the same circular orbit, but belong to two parallel planes Ⅲ and Ⅴ perpendicular to the spin axis; 

the other parallel plane Ⅳ is the plane of mass center 𝐺 of eccentric rotor. From this corollary, n balls 

and the mass center of eccentric rotor, the dynamic equilibrium analysis of (n+1) planes perpendicular 

to the spin axis and parallel to each other needs to be explored to obtain the dynamic equilibrium 

equations. 

 

Figure 3. Each ball and the mass center of the rotor rotate around the spin axis in different parallel 

planes respectively at steady operation. 
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3.3. Dynamic Equilibrium Equations 

3.3.1. Tri-axial Force Balance of < 𝒙𝒚𝒛 >ை Frame 

The spindle constant-speed of a rotor system equipped with a skew-mounted ABB is ω. In the 

rotating reference frame < 𝒙𝒚𝒛 >ை , the angular velocity of the system is denoted as 𝜴ை =ሾ0 0 𝜔ሿ், and the position of the offset centroid 𝐶 after the deformations of the support springs 

can be expressed as the vector 𝒓ை஼ = ሾ𝑥௖ 𝑦௖ 𝑧௖ሿ் .  The system is a dynamic balance, the 

equilibrium position of the rotor centroid 𝐶 is expressed as the vector 

𝒓ොை஼ = ቎𝑥ො௖𝑦ො௖𝑧̂௖቏ (2)

As well, 𝛾ොଵ, 𝛾ොଶ, and 𝛽መ௜(𝑖 = 1~𝑛) are the equilibrium pitch angle, equilibrium yaw angle, and 𝑛 

balls' equilibrium angular positions, respectively. From the definition of coordinate systems (Figure 

2), the position vector of mass center 𝐺 of the rotor in < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >C as 

𝒓ො௠ᇳ = ൥𝜀 cos 𝜓𝜀 sin 𝜓0 ൩ (3)

The equilibrium position vector of mass center of the 𝑖-th ball in < 𝒙ᇵ𝒚ᇵ𝒛ᇵ >஼  is 𝒓ො஻௜ᇵ , the 

reverse transformation is in < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >C as 𝒓ො஻௜ᇳ , where 

𝒓ො஻௜ᇵ = ቎𝑅 cos 𝛽መ௜𝑅 sin 𝛽መ௜0 ቏ , 𝑖 = 1 ~ 𝑛 (4)

𝒓ො஻௜ᇳ = 𝐓ଷି ଵ𝒓ො஻௜ᇵ = ቎ 𝑅 cos 𝛽መ௜ cos 𝜃𝑅 sin 𝛽መ௜−𝑅 cos 𝛽መ௜ sin 𝜃቏ , 𝑖 = 1 ~ 𝑛 (5)

Therefore, the equilibrium position vectors (Equations (3) and (5)) are inverted to the rotating 

reference frame < 𝒙𝒚𝒛 >ை, which is 

𝒓ොை௠ = 𝒓ොை஼ + 𝐓ଵି ଵ𝐓ଶି ଵ𝒓ො௠ᇳ = ቎ 𝜀 cos 𝜓 cos 𝛾ොଶ + 𝑥ො௖𝜀 sin 𝜓 cos 𝛾ොଵ + 𝜀 cos 𝜓 sin 𝛾ොଵ sin 𝛾ොଶ + 𝑦ො௖𝜀 sin 𝜓 sin 𝛾ොଵ − 𝜀 cos 𝜓 cos 𝛾ොଵ sin 𝛾ොଶ + 𝑧̂௖቏ (6)

𝒓ොை஻௜ = 𝒓ොை஼ + 𝐓ଵି ଵ𝐓ଶି ଵ𝒓ො஻௜ᇳ = ቎ 𝑅 cos 𝛽መ௜ cos(𝛾ොଶ + 𝜃) + 𝑥ො௖𝑅 sin 𝛽መ௜ cos 𝛾ොଵ + 𝑅 cos 𝛽መ௜ sin 𝛾ොଵ sin(𝛾ොଶ + 𝜃) + 𝑦ො௖𝑅 sin 𝛽መ௜ sin 𝛾ොଵ − 𝑅 cos 𝛽መ௜ cos 𝛾ොଵ sin(𝛾ොଶ + 𝜃) + 𝑧̂௖቏ (7)

The action forces of the steadily balanced system should include the centripetal force 𝑭ை௠ and 𝑭ை஻௜(𝑖 = 1~𝑛) acting on the system when the rotor mass center and 𝑛 balls revolve around the spin 

axis, as well as the supporting spring force 𝑭௞ and the supporting damping force 𝑭ௗ.  𝑭ை௠ and 𝑭ை஻௜(𝑖 = 1~𝑛) are all on parallel planes perpendicular to the spin axis (ref. Figure 3). By 3D dynamics 

[14], the above forces in < 𝒙𝒚𝒛 >ை frame can be obtained from the following equations respectively. 

𝑭ை௠ = 𝑚𝜴ை × (𝜴ை × 𝒓ොை௠) = −𝑚𝜔ଶ ൥ 𝜀 cos 𝜓 cos 𝛾ොଶ + 𝑥ො௖𝜀 sin 𝜓 cos 𝛾ොଵ + 𝜀 cos 𝜓 sin 𝛾ොଵ sin 𝛾ොଶ + 𝑦ො௖0 ൩ (8)

𝑭ை஻௜ = 𝑚௕𝜴ை × (𝜴ை × 𝒓ොை஻௜) = −𝑚௕𝜔ଶ ቎ 𝑅 cos 𝛽መ௜ cos(𝛾ොଶ + 𝜃) + 𝑥ො௖𝑅 sin 𝛽መ௜ cos 𝛾ොଵ + 𝑅 cos 𝛽መ௜ sin 𝛾ොଵ sin(𝛾ොଶ + 𝜃) + 𝑦ො௖0 ቏ ,𝑖 = 1 ~ 𝑛a 

(9)
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𝑭௞ = −𝑘𝒓ොை஼ = ቎−𝑘𝑥ො௖−𝑘𝑦ො௖−𝑘𝑧̂௖ ቏ (10)

𝑭ௗ = −𝑐𝜴ை × 𝒓ොை஼ = ൥ 𝑐𝜔𝑦ො௖−𝑐𝜔𝑥ො௖0 ൩ (11)

Through tri-axial force balance of the rotating reference frame < 𝒙𝒚𝒛 >ை , 𝑭ை௠ + ∑ 𝑭ை஻௜௡௜ୀଵ =𝑭௞ + 𝑭ௗ, can list three dynamic equilibrium equations. 

𝑚𝜔ଶ(𝜀 cos 𝜓 cos 𝛾ොଶ + 𝑥ො௖) + 𝑚௕𝜔ଶ ෍ൣ𝑅 cos 𝛽መ௜ cos(𝛾ොଶ + 𝜃) + 𝑥ො௖൧௡
௜ୀଵ − 𝑘𝑥ො௖ + 𝑐𝜔𝑦ො௖ = 0 (12.1)

𝑚𝜔ଶ(𝜀 sin 𝜓 cos 𝛾ොଵ + 𝜀 cos 𝜓 sin 𝛾ොଵ sin 𝛾ොଶ + 𝑦ො௖)+ 𝑚௕𝜔ଶ ෍ൣ𝑅 sin 𝛽መ௜ cos 𝛾ොଵ + 𝑅 cos 𝛽መ௜ sin 𝛾ොଵ sin(𝛾ොଶ + 𝜃) + 𝑦ො௖൧௡
௜ୀଵ − 𝑘𝑦ො௖− 𝑐𝜔𝑥ො௖ = 0 

(12.2)

−𝑘𝑧̂௖ = 0 (12.3)

3.3.2. Moment Balance Around the 𝒙-Axis of the < 𝒙𝒚𝒛 >஼ Coordinate System 

The < 𝒙𝒚𝒛 >ை and the < 𝒙𝒚𝒛 >C are two parallel coordinate systems. In the coordinate system < 𝒙𝒚𝒛 >C, the angular velocity 𝜴஼ around the 𝒛-axis, the centripetal forces 𝑭௠ and 𝑭஻௜(𝑖 = 1~𝑛) of 

the rotor mass center and the balls are the same as those in < 𝒙𝒚𝒛 >ை  respectively. 𝜴஼ = 𝜴ை =ሾ0 0 𝜔ሿ் , 𝑭௠ = 𝑭ை௠  (Equation (8)), and 𝑭஻௜ = 𝑭ை஻௜  (Equation (9)). The equilibrium position 

vector of the mass center of the rotor and the 𝑖-th ball in < 𝒙𝒚𝒛 >C is 𝒓ො௠  and 𝒓ො஻௜(𝑖 = 1~𝑛). To 

inverse transformation of 𝒓ො௠ᇳ  and 𝒓ො஻௜ᇳ  (Equations (3) and (5)) or to translation of 𝒓ොை௠  and 𝒓ොை஻௜ 
(Equations (6) and (7)) can be obtained as 

𝒓ො௠ = 𝐓ଵି ଵ𝐓ଶି ଵ𝒓ො௠ᇳ = 𝒓ොை௠ − 𝒓ොை஼ = ൥ 𝜀 cos 𝜓 cos 𝛾ොଶ𝜀 sin 𝜓 cos 𝛾ොଵ + 𝜀 cos 𝜓 sin 𝛾ොଵ sin 𝛾ොଶ𝜀 sin 𝜓 sin 𝛾ොଵ − 𝜀 cos 𝜓 cos 𝛾ොଵ sin 𝛾ොଶ൩ (13)

𝒓ො஻௜ = 𝐓ଵି ଵ𝐓ଶି ଵ𝒓ො஻௜ᇳ = 𝒓ොை஻௜ − 𝒓ොை஼ = ቎ 𝑅 cos 𝛽መ௜ cos(𝛾ොଶ + 𝜃)𝑅 sin 𝛽መ௜ cos 𝛾ොଵ + 𝑅 cos 𝛽መ௜ sin 𝛾ොଵ sin(𝛾ොଶ + 𝜃)𝑅 sin 𝛽መ௜ sin 𝛾ොଵ − 𝑅 cos 𝛽መ௜ cos 𝛾ොଵ sin(𝛾ොଶ + 𝜃)቏ ,𝑖 = 1~𝑛 

(14)

The absolute angular velocity 𝜴෡  of the principal axis of inertia of the eccentric rotor in < 𝒙ᇳ𝒚ᇳ𝒛ᇳ >C can transform by 𝜴஼, and rotor angular momentum 𝑯෡  can be obtained from 𝜴෡  and 

the principal moment of inertia tensor J. The torque due to the angular momentum of the eccentric 

rotor is expressed in the cross-product term 𝜴෡ × 𝑯෡ , where 

𝜴෡ = 𝐓ଶ𝐓ଵ𝜴஼ = 𝐓ଶ𝐓ଵ ൥00𝜔൩ = ൥−𝜔 cos 𝛾ොଵ sin 𝛾ොଶ𝜔 sin 𝛾ොଵ𝜔 cos 𝛾ොଵ cos 𝛾ොଶ ൩ (15)

𝑯෡ = J𝜴෡ = ቎J் 0 00 J் 00 0 J௉቏ 𝜴෡  (16)

The support reaction moment of the torsion spring to the 𝒙-axis in dynamic balance is 𝑘்𝛾ොଵ. 

Therefore, 3D spatial moment balance on the 𝒙-axis in the coordinate system < 𝒙𝒚𝒛 >C is expressed 

as 
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൥𝒓ො௠ × 𝑭௠ + ෍ 𝒓ො஻௜ × 𝑭஻௜ + 𝐓ଵି ଵ𝐓ଶି ଵ൫𝜴෡ × 𝑯෡ ൯௡
௜ୀଵ ൩ ∙ ሾ1 0 0ሿ் + 𝑘்𝛾ොଵ = 0 (17)

The moment equilibrium equation of the system for the 𝒙-axis in < 𝒙𝒚𝒛 >C can be listed 𝑚𝜀ଶ𝜔ଶ2 ሼ− sin(2𝜓) cos(2𝛾ොଵ) sin 𝛾ොଶ + sin(2𝛾ොଵ) ሾsinଶ 𝜓 − cosଶ 𝜓 sinଶ 𝛾ොଶሿሽ+ 𝑚𝜀𝜔ଶ(sin 𝜓 sin 𝛾ොଵ − cos 𝜓 cos 𝛾ොଵ sin 𝛾ොଶ)𝑦ො௖+ 𝜔ଶ cosଶ 𝛾ොଶ sin 𝛾ොଵ cos 𝛾ොଵ ൫J௉ − J்൯+ 𝑚௕𝑅ଶ𝜔ଶ2 ෍൛− sin൫2𝛽መ௜൯ cos(2𝛾ොଵ) sin(𝛾ොଶ + 𝜃)୬
୧ୀଵ+ sin(2𝛾ොଵ) ൣsinଶ 𝛽መ௜ − cosଶ 𝛽መ௜ sinଶ(𝛾ොଶ + 𝜃)൧ൟ+ 𝑚௕𝑅𝜔ଶ ෍ൣsin 𝛽መ௜ sin 𝛾ොଵ − cos 𝛽መ௜ cos 𝛾ොଵ sin(𝛾ොଶ + 𝜃)൧௡

௜ୀଵ 𝑦ො௖ + 𝑘்𝛾ොଵ = 0 

(18)

3.3.3. Moment Balance Around the 𝒚ᇱ-Axis of the < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >C Coordinate System 𝑭௠ and 𝑭஻௜(𝑖 = 1~𝑛) in < 𝒙𝒚𝒛 >C are transformed to < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >C by the rotation matrix 𝐓ଵ, 

describe as follows respectively 

𝑭௠ᇱ = 𝐓ଵ𝑭௠ = −𝑚𝜔ଶ ቎ 𝜀 cos 𝜓 cos 𝛾ොଶ + 𝑥ො௖cos 𝛾ොଵ (𝜀 sin 𝜓 cos 𝛾ොଵ + 𝜀 cos 𝜓 sin 𝛾ොଵ sin 𝛾ොଶ + 𝑦ො௖)− sin 𝛾ොଵ (𝜀 sin 𝜓 cos 𝛾ොଵ + 𝜀 cos 𝜓 sin 𝛾ොଵ sin 𝛾ොଶ + 𝑦ො௖)቏ (19)

𝑭஻௜ᇱ = 𝐓ଵ𝑭஻௜ = −𝑚௕𝜔ଶ ൦ 𝑅 cos 𝛽መ௜ cos(𝛾ොଶ + 𝜃) + 𝑥ො௖cos 𝛾ොଵ ൫𝑅 sin 𝛽መ௜ cos 𝛾ොଵ + 𝑅 cos 𝛽መ௜ sin 𝛾ොଵ sin(𝛾ොଶ + 𝜃) + 𝑦ො௖൯− sin 𝛾ොଵ ൫𝑅 sin 𝛽መ௜ cos 𝛾ොଵ + 𝑅 cos 𝛽መ௜ sin 𝛾ොଵ sin(𝛾ොଶ + 𝜃) + 𝑦ො௖൯൪ ,
𝑖 = 1~𝑛 

(20)

The equilibrium position vector of the mass center of the rotor and the 𝑖-th ball in < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >C 

is 𝒓ො௠ᇱ  and 𝒓ො஻௜ᇱ (𝑖 = 1~𝑛). To inverse transformation of 𝒓ො௠ᇳ  and 𝒓ො஻௜ᇳ  (Equations (3) and (5)) or to 

transform of 𝒓ො௠ and 𝒓ො஻௜ (Equations (13) and (14)) can be obtained. 

𝒓ො௠ᇱ = 𝐓ଶି ଵ𝒓ො௠ᇳ = 𝐓ଵ𝒓ො௠ = ൥ 𝜀 cos 𝜓 cos 𝛾ොଶ𝜀 sin 𝜓−𝜀 cos 𝜓 sin 𝛾ොଶ൩ (21)

𝒓ො஻௜ᇱ = 𝐓ଶି ଵ𝒓ො஻௜ᇳ = 𝐓ଵ𝒓ො஻௜ = ቎ 𝑅 cos 𝛽መ௜ cos(𝛾ොଶ + 𝜃)𝑅 sin 𝛽መ௜−𝑅 cos 𝛽መ௜ sin(𝛾ොଶ + 𝜃)቏ , 𝑖 = 1~𝑛 (22)

Similarly, the support reaction moment of the torsion spring on the 𝒚ᇱ-axis is 𝑘்𝛾ොଶ, and 3D spatial 

moment balance on the 𝒚ᇱ-axis in the coordinate system < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >C is expressed as 

൥𝒓ො௠ᇱ × 𝑭௠ᇱ + ෍ 𝒓ො஻௜ᇱ × 𝑭஻௜ᇱ + 𝐓ଶି ଵ൫𝜴෡ × 𝑯෡ ൯௡
௜ୀଵ ൩ ∙ ሾ0 1 0ሿ் + 𝑘்𝛾ොଶ = 0 (23)

The moment equilibrium equation of the system around the 𝒚ᇱ -axis in < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >C  can be 

written 
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𝑚𝜀ଶ𝜔ଶ4 ሾ− sin(2𝜓) sin(2𝛾ොଵ) cos 𝛾ොଶ + 2 sin(2𝛾ොଶ) cosଶ 𝜓 cosଶ 𝛾ොଵሿ+ 𝑚𝜀𝜔ଶ cos 𝜓 (𝑥ො௖ sin 𝛾ොଶ − 𝑦ො௖ sin 𝛾ොଵ cos 𝛾ොଶ)+ 𝜔ଶ cosଶ 𝛾ොଵ sin 𝛾ොଶ cos 𝛾ොଶ ൫J௉ − J்൯+ 𝑚௕𝑅ଶ𝜔ଶ4 ෍൛− sin൫2𝛽መ௜൯ sin(2𝛾ොଵ) cos(𝛾ොଶ + 𝜃)୬
୧ୀଵ+ 2 sinሾ2(𝛾ොଶ + 𝜃)ሿ cosଶ 𝛽መ௜ cosଶ 𝛾ොଵൟ+ 𝑚௕𝑅𝜔ଶ ෍ cos 𝛽መ௜ ሾ𝑥ො௖ sin(𝛾ොଶ + 𝜃) − 𝑦ො௖ sin 𝛾ොଵ cos(𝛾ොଶ + 𝜃)ሿ௡

௜ୀଵ + 𝑘்𝛾ොଶ = 0 

(24)

3.3.4. Moment Balance Around the Central Axis Perpendicular to the Orbit Plane 

The equilibrium position and the centripetal force vector of the mass center of the 𝑖-th ball in < 𝒙ᇵ𝒚ᇵ𝒛ᇵ >C  is 𝒓ො஻௜ᇵ (𝑖 = 1~𝑛) (Equation (4)) and 𝑭஻௜ᇵ (𝑖 = 1~𝑛). 𝑭஻௜ᇵ  can be converted by the 𝑭஻௜ᇱ  

(Equation (20)), written as 𝑭஻௜ᇵ = 𝑻ଷ𝑻ଶ𝑭஻௜ᇱ

= −𝑚௕𝜔ଶ

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡𝑅 𝑐𝑜𝑠 𝛽መ௜ ሾ𝑐𝑜𝑠ଶ 𝛾ොଵ 𝑐𝑜𝑠ଶ(𝛾ොଶ + 𝜃) + 𝑠𝑖𝑛ଶ 𝛾ොଵሿ +                                         𝑅 𝑠𝑖𝑛 𝛽መ௜ 𝑠𝑖𝑛 𝛾ොଵ 𝑐𝑜𝑠 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃) +                                         𝑐𝑜𝑠(𝛾ොଶ + 𝜃) 𝑥ො௖ + 𝑠𝑖𝑛 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃) 𝑦ො௖𝑅 𝑐𝑜𝑠 𝛾ොଵ ൣ𝑠𝑖𝑛 𝛽መ௜ 𝑐𝑜𝑠 𝛾ොଵ + 𝑐𝑜𝑠 𝛽መ௜ 𝑠𝑖𝑛 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃)൧ + 𝑐𝑜𝑠 𝛾ොଵ 𝑦ො௖𝑅 𝑠𝑖𝑛 𝛽መ௜ 𝑠𝑖𝑛 𝛾ොଵ 𝑐𝑜𝑠 𝛾ොଵ 𝑐𝑜𝑠(𝛾ොଶ + 𝜃) −                                         𝑅 𝑐𝑜𝑠 𝛽መ௜ 𝑐𝑜𝑠ଶ 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃) 𝑐𝑜𝑠(𝛾ොଶ + 𝜃) −                                         𝑠𝑖𝑛(𝛾ොଶ + 𝜃) 𝑥ො௖ + 𝑠𝑖𝑛 𝛾ොଵ 𝑐𝑜𝑠(𝛾ොଶ + 𝜃) 𝑦ො௖ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

, 𝑖 = 1~𝑛 
(25)

When the system is dynamic balanced, the sum of moments in 3D for the central axis (𝒛ᇵ-axis) 

perpendicular to the orbit plane is zero. Thus, the dynamic equilibrium equation of the 𝑖-th ball 

around the 𝒛ᇵ-axis of the orbit plane can be obtained. 𝒓ො஻௜ᇵ × 𝑭஻௜ᇵ ∙ ሾ0 0 1ሿ் = 0 , 𝑖 = 1~𝑛 (26)𝑚௕𝑅ଶ𝜔ଶ൛− 𝑐𝑜𝑠൫2𝛽መ௜൯ 𝑠𝑖𝑛 𝛾ොଵ 𝑐𝑜𝑠 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃)+ 𝑠𝑖𝑛 𝛽መ௜ 𝑐𝑜𝑠 𝛽መ௜ ሾ𝑠𝑖𝑛ଶ 𝛾ොଵ − 𝑐𝑜𝑠ଶ 𝛾ොଵ 𝑠𝑖𝑛ଶ(𝛾ොଶ + 𝜃)ሿൟ+ 𝑚௕𝑅𝜔ଶ൛𝑥ො௖ 𝑠𝑖𝑛 𝛽መ௜ 𝑐𝑜𝑠(𝛾ොଶ + 𝜃)− 𝑦ො௖ൣ𝑐𝑜𝑠 𝛽መ௜ 𝑐𝑜𝑠 𝛾ොଵ − 𝑠𝑖𝑛 𝛽መ௜ 𝑠𝑖𝑛 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃)൧ൟ = 0, 𝑖 = 1~𝑛 

(27)

Comprehensive the above dynamic equilibrium equations (Equations (12), (18), (24) and (27)) 

from the 3D dynamics are compared with the equations derived from the Euler-Lagrange method [9] 

(are listed in Appendix), which be verified each other to obtain exactly the same results. But the 3D 

dynamics inference, the analysis of the spatial configurations can better describe and understand the 

spatial positioning of the balls equilibrium during vibration suppression. 

3.4. Positioning Characteristic of Balls Equilibrium 

The 3D dynamics show that if the centripetal force of the ball can decompose the component 

force in the tangential direction of the circular orbit, the ball will move continually along the orbit. 

Equation (26) implies that when the balls are balance positioning, the torque exerted by the centripetal 

force of each ball against the 𝒛ᇵ-axis perpendicular to the orbital plane is zero. It means that 𝑭஻௜ᇵ (𝑖 =1~𝑛) has no component force in the tangential direction of the orbit and must pass through the 𝒛ᇵ-

axis, as shown in Figure 4. As well the system is in dynamic balance, the balls revolve around the 

spin axis (𝒁-axis) of the system with their respective stable and balanced radius at constant angular 

velocity 𝜔. At this time, 𝑭஻௜ᇵ  is also on the perpendicular line of the 𝒁-axis from the mass center of 

the ball to the spin axis. In other words, when the system is dynamic balance, the centripetal force 
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acting on each ball must be perpendicular to the spin axis and pass through the central axis of the 

circular orbit of the balls.  

 

Figure 4. Centripetal force and attitude of ball positioning. 

The aforementioned inferences reveal that the balls should have the spatial positioning 

characteristic for dynamic balance. Furthermore, Equation (12.3) express that the dynamic 

equilibrium displacement 𝑧̂௖ of the rotor centroid is zero. It shows that all forces acting on the system 

are on parallel planes perpendicular to the 𝒁 (= 𝒛) axis during dynamic balance, so unforce in the 

rotation axis. This means that while the balls in the skew-mounted orbit may temporarily cause 

vibrations at the 𝒛-axis during the transient period of the system, but once the steady-state balance 

and the balls are completely positioned, the vibration of the 𝒛-axis will eventually be attenuated to 

zero regardless of whether the system achieves a complete balance of vibration suppression. 

4. Verification of Spatial Geometric Characteristic 

In Section 3.4, the positioning characteristic of balls in the dynamic balance is stated. For the sake 

of rigor, the geometric relationships of the space vectors assist to examine and verify. As shown in 

Figure 5(a), any two vectors 𝑳ଵ and 𝑳ଶ in space, where 𝑃ଵ and 𝑃ଶ are arbitrary points on the 𝑳ଵ 

and 𝑳ଶ vectors, respectively, and the displacement of the point 𝑃ଵ relative to point 𝑃ଶ is vector 𝜟. 

When the shortest distance 𝑑 between 𝑳ଵ and 𝑳ଶ is zero, which means that vector 𝑳ଵ and vector 𝑳ଶ intersect in 3D space, where 𝑑 = 𝜟 ∙ (𝑳ଵ × 𝑳ଶ)‖𝑳ଵ × 𝑳ଶ‖  (28)

Analytic geometry in space applied to the vibration suppression system of eccentric rotor 

equipped with skew-mounted ABB, the < 𝒙𝒚𝒛 >ை system synchronized with the spin axis is selected 

as the reference coordinate system, as shown in Figure 5(b). The perpendicular line from the 𝑖-th ball 

to the spin 𝒁-axis (𝒁 = 𝒛) is described as the space vector 𝑳ଵ௜, and the unit vector of the central 𝒛ᇵ-

axis of the circular orbit is represented by the space vector 𝑳ଶ. Since the position of the 𝑖-th ball and 

the orbit center 𝐶 are the points on the 𝑳ଵ௜ and 𝑳ଶ vectors, respectively, the relative displacement 

of the two points is expressed as vector 𝜟௜. In the < 𝒙𝒚𝒛 >ை system, 𝑳ଵ௜ can be obtained from 𝒓ොை஻௜ 
(Equation (7)) and the unit vector 𝒌෡  of the 𝒛 -axis; 𝑳ଶ  and 𝜟௜  are obtained by the reverse 

transformation of the unit vectors 𝒌෡ᇵ and 𝒓ො஻௜ᇵ  (Equation (4)) of the 𝒛ᇵ axis, respectively. 𝑳ଵ௜ , 𝑳ଶ 

and 𝜟௜ are expressed as 𝑳ଵ௜ = ൫𝒓ොை஻௜ × 𝒌෡൯ × 𝒌෡ , 𝑖 = 1~𝑛 (29)

𝑳ଶ = 𝑻ଵି ଵ𝑻ଶି ଵ𝑻ଷି ଵ𝒌෡ᇵ = 𝑻ଵି ଵ𝑻ଶି ଵ𝑻ଷି ଵ ൥001൩ (30)
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𝜟௜ = 𝑻ଵି ଵ𝑻ଶି ଵ𝑻ଷି ଵ𝒓ො஻௜ᇵ = 𝑻ଵି ଵ𝑻ଶି ଵ𝑻ଷି ଵ ቎𝑅 𝑐𝑜𝑠 𝛽መ௜𝑅 𝑠𝑖𝑛 𝛽መ௜0 ቏ , 𝑖 = 1~𝑛 (31)

 

 

 

(a) (b) 

Figure 5. (a) Schematic diagram of spatial vectors and shortest distance; (b) Express the spatial vectors 

of the vibration suppression system. 

Substitute Equations (29)–(31) into Equation (28), the shortest distance between 𝑳ଵ௜ and 𝑳ଶ is 𝑑௜ = 𝜟௜ ∙ (𝑳ଵ௜ × 𝑳ଶ)‖𝑳ଵ௜ × 𝑳ଶ‖  , 𝑖 = 1~𝑛 (32)

Because the orbit plane and the eccentric rotor plane are skew-mounted, the orbit center axis is 

neither collinear nor parallel to the spin axis of the system, ‖𝑳ଵ௜ × 𝑳ଶ‖ ് 0, calculate 𝜟௜ ∙ (𝑳ଵ௜ × 𝑳ଶ) 

to get 𝜟௜ ∙ (𝑳ଵ௜ × 𝑳ଶ) = 𝑅ଶ൛− 𝑐𝑜𝑠൫2𝛽መ௜൯ 𝑠𝑖𝑛 𝛾ොଵ 𝑐𝑜𝑠 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃)+ 𝑠𝑖𝑛 𝛽መ௜ 𝑐𝑜𝑠 𝛽መ௜ ሾ𝑠𝑖𝑛ଶ 𝛾ොଵ − 𝑐𝑜𝑠ଶ 𝛾ොଵ 𝑠𝑖𝑛ଶ(𝛾ොଶ + 𝜃)ሿൟ+ 𝑅൛𝑥ො௖ 𝑠𝑖𝑛 𝛽መ௜ 𝑐𝑜𝑠(𝛾ොଶ + 𝜃) − 𝑦ො௖ൣ𝑐𝑜𝑠 𝛽መ௜ 𝑐𝑜𝑠 𝛾ොଵ − 𝑠𝑖𝑛 𝛽መ௜ 𝑠𝑖𝑛 𝛾ොଵ 𝑠𝑖𝑛(𝛾ොଶ + 𝜃)൧ൟ ,𝑖 = 1~𝑛 

(33)

Compare the above form with the dynamic equilibrium equation ( Equation (27) ). Since the ball 

mass 𝑚௕ and the system angular velocity 𝜔 are both not zero when the system is dynamic balance, 

we can get Equation (33) equal to zero, that is, 𝜟௜ ∙ (𝑳ଵ௜ × 𝑳ଶ) = 0. Further prove that Equation (32) to 

zero, that is, 𝑑௜ = 0. It means any ball of the orbit after vibration suppression to balance positioning, 

the radius vector 𝑳ଵ௜  of the position to its stable spin axis intersects with the central axis 𝑳ଶ 

perpendicular to the orbit plane. In other words, this proves that the steady-state equilibrium position 

of each ball in the orbit must satisfy the spatial geometric relationship of the perpendicular line from the 

ball to the spin axis of the vibration suppression system intersects with the central axis of the orbit plane. 

5. Conclusions and Future Work 

In this paper, the system model is based on the system of an eccentric rotor equipped with skew-

mounted ABB to be analyzed via 3D dynamics. The independent variables of the system include the 

centroid position 𝒓ை஼ = ሾ𝑥௖ 𝑦௖ 𝑧௖ሿ் of the rotor, the pitch angle 𝛾ଵ and the yaw angle 𝛾ଶ of the 

rotor, as well the angular positions 𝛽௜(𝑖 = 1~𝑛)  of the balls in the orbit, totaling (5 + 𝑛) 

independent variables. Through the conversion of space coordinates, describe the positions and 

attitudes of the system in space, and establish (5 + 𝑛)  independent simultaneous dynamic 

equilibrium equations. 

(i) From the tri-axial force balance of the rotating reference frame < 𝒙𝒚𝒛 >ை , three dynamic 

equilibrium equations of the three independent variables of the centroid position of the rotor are 

obtained. (Equation (12)). 
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(ii) Based on the moment balance around the 𝒙-axis of the < 𝒙𝒚𝒛 >C coordinate system to obtain 

one dynamic equilibrium equation in the rotational direction of the pitch angle of the system. 

(Equation (18)). 

(iii) Based on the moment balance around the 𝒚ᇱ-axis of the < 𝒙ᇱ𝒚ᇱ𝒛ᇱ >C coordinate system to obtain 

one dynamic equilibrium equation in the rotational direction of the yaw angle of the system. 

(Equation (24)) 

(iv) For the moment balance around the central axis perpendicular to the orbit plane of the balls,  𝑛 

dynamic equilibrium equations of the angular position of each ball in balance positioning are 

listed. (Equation (27)) 

The results verify one another as being completely consistent with the dynamic equilibrium 

equations derived from the Euler-Lagrange equation [9]. Among them, when analyzing the dynamic 

balance of the 𝒛-axis in (i), Equation (12.3) can be seen that the dynamic equilibrium displacement of 

the rotor centroid in the 𝒛-direction is zero. All forces acting on the system are on parallel planes 

perpendicular to the rotating spindle during dynamic balance, so the balls in the skew-mounted orbit 

will temporarily cause vibrations at the 𝒛-axis during the transient period of the system, but once the 

steady-state balance and the balls are completely positioned, the vibration of the 𝒛 -axis will 

eventually be attenuated to zero regardless of whether the system achieves a complete balance of 

vibration suppression. What is particularly important through 3D dynamics, the dynamic 

equilibrium equations of ball positioning analyzed in (ⅳ) can deduce the positioning condition of the 

ball during balance. Upon verification of the space geometry, it reveals the spatial geometric 

characteristic that the balls are in dynamic balance, the perpendicular lines from the balls to the 

rotating spindle of the system must pass through the central axis of the orbit perpendicular to the 

ABB plane. Since the positioning characteristic of balls is not related to the spindle speed and the 

distribution of rotor and any mass, nor to the working speed range and the critical speed limit of the 

spin axis. The dynamic balance positioning of balls should conform to this spatial geometry 

characteristic, regardless of whether ABBs have assembly deviations. This characteristic is a 

necessary but insufficient condition for balance positioning of the balls and can serve as a general 

rule. Therefore, relevant previous research cases on the stable equilibrium positions of balls should 

all be appropriately explained and confirmed if they are understood by applying this characteristic. 

In the follow-up of this study, numerical analysis of various cases of positioning characteristic of balls 

in balance will be carried out to discuss the vibration suppression capability and the phenomenon of 

ball positioning. 

Funding: This research received no external funding 

Nomenclature 𝑅 radius of the circular orbit of ABB 𝑐, 𝑐் linear damping coefficient and torsional damping coefficient 𝑘, 𝑘் linear stiffness and torsional stiffness 𝑚, 𝑚௕ mass of the rotor and mass of each ball 𝜀 eccentricity of the mass center of the rotor 𝜃 deflection angle of ABB 𝜓 angular position of the mass center of the rotor 𝜔 spindle speed 

J் , J௉ principal moments of inertia 𝑥௖, 𝑦௖, 𝑧௖ spatial parameters of centroid position of the eccentric rotor 𝑥ො௖, 𝑦ො௖, 𝑧̂௖ spatial parameters of the equilibrium position of rotor centroid 𝛽௜, 𝛽መ௜ angular position and equilibrium angular position of the 𝑖-th ball 𝛾ଵ, 𝛾ොଵ pitch angle and equilibrium pitch angle 𝛾ଶ, 𝛾ොଶ yaw angle and equilibrium yaw angle 𝑯෡  angular momentum 

J principal moment of inertia tensor 𝜟, 𝜟௜ relative displacement vector 
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𝜴, 𝜴௢, 𝜴௖ angular velocity vector 𝜴෡  absolute angular velocity of the principal axis of inertia 

Appendix 

These are the dynamic equilibrium equations derived from the Euler-Lagrange equation from 

Ref. [9], PP. 3254. Where ˆCx , ˆCy , ˆCz , 1γ̂ , 2γ̂  and îβ  ( 1~i n= ) are the dynamic-equilibrium positions 

and ( )bM m n m= + . 

( )2 2
2

2
2

1

ˆˆ ˆ cos cos

ˆˆcos( ) cos 0,

C C

n

b i

i

k M x c y m

m R

ω ω ε ω ψ γ

ω θ γ β
=

− − − −

+ =
 (13a)

( )2 2
1

2
1 2 1

1

1 2

ˆˆ ˆ (sin cos

ˆˆ ˆ ˆcos sin sin ) sin cos

ˆ ˆ ˆcos sin sin( ) 0,

C C

n

b i

i

i

k M y c x m

m R
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ψ γ γ ω β γ

β γ θ γ
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− +

+ =

  (13b)

ˆ 0,Ck z =  (13c)
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) (
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2
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