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Abstract: This paper aims the automatic ball balancers (ABBs) used in passive balancing devices for
suppressing vibration of the eccentric rotor. The system model describes which equipped with a
skew-mounted ABB with angular deviation. The dynamic equilibrium equations of the system are
deduced from the perspective of three-dimensional (3D) dynamics. The results obtained are
consistent with those derived from the Euler-Lagrange equations. It is exciting that the spatial
dynamics method reveals the spatial geometric characteristic of dynamic balance positioning of the
balls when the system is balanced with vibration suppression. The spatial property emerges the
perpendicular line from each ball to the rotating spindle of the system must pass through the central
axis of the orbit perpendicular to the ABB plane. This characteristic is a general rule that can be used
to explain the phenomenon of the stable equilibrium positions of the balls in all previously studied
cases.

Keywords: automatic ball balancer; eccentric rotor; vibration suppression; three-dimensional
dynamics; assembly deviation; skew-mounted; angular deviation; spatial geometric characteristic

1. Introduction

The most widely applied and researched passive balancing devices for vibration suppression of
eccentric rotors are the Automatic Ball Balancers (ABBs) at present. The main components are
composed of a circular orbit mechanism mounted perpendicular to the spindle of the rotor and
revolving with the rotor, and several balls that can freely move inside the track. In 1975, Sharp [1]
established an ideally mounted two-ball balancer of a plane rotor system from the 2D viewpoint and
derived the equations of motion to analyze stability. Lee [2] in 1996, Green [3] in 2006 and Lu [4] in
2009, etc., have explored the problems and phenomena of ABBs suppressing vibration in the model
without assembly deviations.

However, when ABBs are mounted with an eccentric rotor system, assembly deviations can
include the deviations of the vertical and horizontal position of the ABB's centroid and the centroid
of eccentric rotor as well as the deflection of the mounted angle. Regarding the discussions of vertical
position deviation, Kim [5] in 2005 and Chao [6] in 2007 investigated the dynamic behavior of the
system when the ABB is mounted at a small distance below the centroid of plane eccentric rotor by
theoretically and experimentally respectively. Numerical analysis and experimental results show that
the system can still be balanced in an approximate ideal mounted (ABB is coplanar with the plane
rotor), and the balls are positioned at appropriate angular positions to effectively reduce the radial
residual vibration in steady-state and the tilting angle during rotor balancing [5], where the radial
amplitude can be almost completely suppressed, yet the tilting angle during balancing exists a finite
amount [6]. Furthermore, regarding the discussions of horizontal position deviation, Bykov in 2014
[7] and 2018 [8] proposed the axis of symmetry of ABB does not coincide with the symmetry axis of
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the rotor which the ABB and the plane rotor are coplanar, the system has two types of unbalanced
steady-state modes when the working speed is greater than the critical speed of the system. As for
the deflection of the mounted angle, Huang [9] in 2022 among the vibration suppression system
established an angular deviation model between the plane of ABB's track and the plane of the
eccentric rotor. The angular positions of the balls and their restriction conditions are analyzed and
propose the examination principle of the ABB is skew-mounted, and the conditions for perfect
balance of the ideal and skew-mounted ABB.

Generally, the dynamic equilibrium equations of the vibration suppression rotor system are
derived that the mathematical model of the system is established first. Then the kinetic energy,
potential energy and energy dissipation functions of the system are listed one by one. Next the Euler-
Lagrange method is used to obtain the governing equations, the dynamic equilibrium equations of
the system are obtained under the conditions that their differential terms are zero. Reference [1-6, 9]
as well as recent works by Jung [10] in 2018 and Rezaee [11], Filimonikhin [12] and Bykov [13] in 2019
are all based on the Lagrange equation to derive the equations of motion of the system.

In order to make the study of the angular deflection of ABB more complete, this paper deduces
the dynamic equilibrium equations of the vibration suppression system in the steady-state by 3D
dynamics method to verify the derivations of [9] with each other. Consistent results are obtained.
Due to the mounted angular deflection will cause the plane which circular orbit of the ABB cannot
be completely fitted to the plane of the eccentric rotor. In the model of the steady-state vibration
system with angular deviation, the spatial dynamics method can find the geometric phenomenon
and relationships from the derived equations. Regardless of whether assembly deviations of ABBs,
the dynamic balance position of any ball must be satisfied the necessary spatial geometry
characteristic.

2. System Model

The model is based on angular deviation of skew-mounted. Figure 1 shows the skew-mounted
model of the angular deviation between the plane of the balls moving in ABB’s track and the rotor
plane when the spindle speed is zero. The plane formed by the blue frame in Figure 1 is the plane
where the eccentric rotor is located and C is its centroid, while the red frame represents the orbit
plane of ABB. The ABB plane does not coincide with the rotor plane that is perpendicular to the spin
axis of the system at rest. The deflection angle as shown is 6. Suppose skew-mounted ABB only the
angle deflection of track plane without the position deviation of the centroid, then the ABB's centroid
coincides with the centroid C of the planar rotor at static. The intersection line of two planes should
pass through the centroid C. As shown, the coordinate system < XYZ > is a space-fixed reference
frame of the planar rotor, with the origin defined at the position of its centroid. The intersection line
of two planes lies on the Y-axis.

When the system operates stable, due to the deflection of the orbit plane of ABB and the rotor
plane, although the centrifugal forces acting on their respective planes both pass through the rotation
axis, the intersection of each with the rotation axis is not necessarily the same. Which may generate
torques for the whole assembly system. In this paper, the spin axis (Z-axis) of the system is defined
as the roll axis in a tri-axial system, and the pitch and yaw angles of the system should be considered
for the phenomenon of torque. Therefore, in addition to the tri-axial isotropic linear spring k and
viscous damper c, the elastic supports of the system should also consider the roles of the torsion
spring kr and torsion damper cr in the other two axes except for the spin axis, as shown. The
dynamic balance of this 3D model will be analyzed using spatial dynamics.
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Figure 1. The support configurations of the rotor system equipped with skew-mounted ABB.

3. 3D Dynamic Deduction
3.1. Coordinate System

In order to understand and analyze the spatial position, attitude, and motion mechanism of the
rotor system equipped with skew-mounted ABB, the coordinate systems of the ABB mechanism,
eccentric rotor, and support device are constructed as shown in Figure 2. The rectangular coordinate
< XYZ >, is a space-fixed reference frame of the planar rotor, the origin O is defined at the centroid
position of the eccentric rotor when the spindle speed is zero and the system is stationary and the
support springs are not deformed. The Y-axis is the deflection axis where mounting deviation occurs
(refer to Figure 1). Moreover, the rotating reference frame < xyz >, is defined with the origin
located at point 0 and z=Z axis of the <XYZ >, frame. The < xyz >, coordinate system
rotates around the spindle Z-axis of the system with a constant angular velocity w. The reference
frame can be transformed to the rotating frame by a rotation matrix T,,.

When the deformations of the support springs, the position of the offset centroid C set the
< xyz >, coordinate system, which is always parallel and same direction to each axis of < xyz >,
except for the different origin position. Then rotating the pitch angle y; around the x-axis which is
in < xyz >; coordinate system, and the rotating coordinate system < x'y'z’ >, where x' = x be
obtained. Next rotating the yaw angle y, around the y'-axis of < x'y’'z’ >, coordinate system to
obtain the rotating coordinate system < x"y"z" >, where y” =y’ and the z"-axis passes through
the rotor centroid and is perpendicular to the plane of the rotor (x"y" plane). Converting < xyz >,
to <x'y'z’ > and < x"y"z" >, by rotation matrix T; and T, in sequence. The mass center G of
eccentric rotor with mass m is located on the plane of rotor and the eccentricity between G and its
centroid C is &. The angle between CG and the x"-axis is 1.

The body-fixed coordinate system < x"y"z" >. follows the rotor system in 3D space such that
the y"-axis is also the deflection axis of skew-mounted ABB. Rotating the deflection angle 6 around

Y/ Y/

the y”-axis of the < x"y"z" >, to obtain the coordinate system < x"y"z" > of the orbit plane,
where y” = y" = y'. It can convert < x"y"z" >, to < x"y"z" > by rotation matrix T;. The radius
of the circular orbit of the ABB is R, there are n balls moving in the orbit and the mass of each ball is
my. The angular position of the i-th ball from the x"-axis is denoted B;(i = 1~n). The rotation

matrixes between the coordinates as

T, =|—sinwt coswt 0

1 0 0
0 cosy; sin yll , 1)
0 0 1

0 —siny; cosy;

coswt sinwt 0
rTl =
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Figure 2. Configuration of the coordinate systems.

3.2. Spatial forces of dynamic balance

When the system is in dynamic balance, each particle of the system always maintains a fixed
relative position to the observer of the rotating coordinate system attached to the spindle with the
same angular velocity. The centripetal force required to maintain the constant angular velocity is
provided by the constraint force generated by the deformation of the suspension or support device
of the system. The plane of ABB's track of the rotor system with a skew-mounted ABB does not
coincide with the plane of the rotor, as shown in Figure 3, Plane Iand Plane II. When the dynamic
system is steadily balanced, the balls and the rotor centroid revolve around the spin axis, but each of
them is on a different plane perpendicular to the spin axis. B; and B, in Figure 3 are any two balls
in the same circular orbit, but belong to two parallel planes IIl and V perpendicular to the spin axis;
the other parallel plane IV is the plane of mass center G of eccentric rotor. From this corollary, n balls
and the mass center of eccentric rotor, the dynamic equilibrium analysis of (n+1) planes perpendicular
to the spin axis and parallel to each other needs to be explored to obtain the dynamic equilibrium
equations.

circular orbit

Figure 3. Each ball and the mass center of the rotor rotate around the spin axis in different parallel
planes respectively at steady operation.


https://doi.org/10.20944/preprints202306.2129.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2023 doi:10.20944/preprints202306.2129.v1

3.3. Dynamic Equilibrium Equations
3.3.1. Tri-axial Force Balance of < xyz >, Frame

The spindle constant-speed of a rotor system equipped with a skew-mounted ABB is w. In the
rotating reference frame < xyz >,, the angular velocity of the system is denoted as £, =
[0 0 w]T, and the position of the offset centroid C after the deformations of the support springs
can be expressed as the vector roc = [Xc Yc Zc]7. The system is a dynamic balance, the
equilibrium position of the rotor centroid C is expressed as the vector

X
Toc = 3?0 )
ZC

Aswell, 7, 7,,and B;(i = 1~n) are the equilibrium pitch angle, equilibrium yaw angle, and n

balls' equilibrium angular positions, respectively. From the definition of coordinate systems (Figure

/N

2), the position vector of mass center G of the rotor in < x"y"z" > as
gcosy
m = |esiny 3)

N/~ ~m

The equilibrium position vector of mass center of the i-th ball in < x"y"z" >. is #y;, the

/N )

reverse transformation is in < x"y"z" > as #3;, where

R cos ,@i
P = Rsinf;| i=1~n 4)
0
R cos f3; cos 0
P =T3P = Rsin g , i=1~n (5)
—R cos f3; sin @

Therefore, the equilibrium position vectors (Equations (3) and (5)) are inverted to the rotating
reference frame < xyz >,, which is

egcosypcosy, + X,
Fom = Toc + TT 1T 17, = |esiny cosP; + ecosypsing, sinf, + J. (6)
esiny siny; — ecosy cosy, siny, + Z,

R cos B; cos(P, + 0) + %,
Popi = Poc + TT Ty 175 = |R sin f; cos 7, + R cos f; sin 7, sin(f, + 6) + 9 (7)
Rsin B; sin; — R cos B; cos P, sin(#, + 0) + 2,

The action forces of the steadily balanced system should include the centripetal force F,,, and
Fypi(i = 1~n) acting on the system when the rotor mass center and n balls revolve around the spin
axis, as well as the supporting spring force F, and the supporting damping force F;. Fg,, and
Fpi(i = 1~n) are all on parallel planes perpendicular to the spin axis (ref. Figure 3). By 3D dynamics
[14], the above forces in < xyz >, frame can be obtained from the following equations respectively.

gcosycosy, + X,
Fom =mfy X (2o X o) = —mw? |esinyp cos P, + £ cos sinP; sinp, + 9, 8)
0

R cos f; cos(P, + 0) + .
Fopi = mpQo X (9 X Fop) = —mpw? R sin B; cos P, + R cos f; sin 7, sin(y, + 0) + .| - )
0
i=1~na
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6
—kX,
Fy = —kfoc = | kI (10)
—kz,
cwy,
Fd = —CQO X ?'OC = —wac (11)
0

Through tri-axial force balance of the rotating reference frame < xyz >,, Fom + X7 Fop =
Fy + F4, can list three dynamic equilibrium equations.

n
mw?(e cosy cos ¥, + £.) + myw? Z[R cos By cos(P, + 0) + 2| — k% + cwP. =0  (12.1)
i=1

mw?(esiny cos P, + € cosP sinP; sinp, + 9,)
n

+ myw? Z[R sin f; cos 7, + R cos f; sin 9, sin(P, + 6) + 376] —-ky. (12.2)
i=1
—cwx, =0

—kz,=0 (12.3)

3.3.2. Moment Balance Around the x-Axis of the < xyz >, Coordinate System

The < xyz >, and the < xyz > are two parallel coordinate systems. In the coordinate system
< xyz >, the angular velocity £, around the z-axis, the centripetal forces F,, and Fp;(i = 1~n) of
the rotor mass center and the balls are the same as those in < xyz >, respectively. 2, = 2, =
[0 0 w]", F, = Fop, (Equation (8)), and Fy; = Fyp; (Equation (9)). The equilibrium position
vector of the mass center of the rotor and the i-th ball in < xyz > is 7, and #5;(i = 1~n). To

inverse transformation of 7y, and #3; (Equations (3) and (5)) or to translation of #,,, and #,p;
(Equations (6) and (7)) can be obtained as

£cos cos P,
P =TT YT 170, = Pom — Toc = |€siny cos P, + e cosy sin; sin, (13)
esiny siny; — e cosy cos ¥ sinP,

R cos f; cos(P, + 6)
P = T 'T; "5 = Fopi — Foc = |R sin f; cos P; + R cos f; sinpy sin(p, + 0)| , (14)
R sin f; sin; — R cos f; cos P, sin(P, + 6)
i=1~n

The absolute angular velocity £ of the principal axis of inertia of the eccentric rotor in
< x"y"z" >¢ can transform by 2., and rotor angular momentum H can be obtained from 2 and
the principal moment of inertia tensor J. The torque due to the angular momentum of the eccentric

rotor is expressed in the cross-product term 2 x H, where

[0 —w cos ¥ sinP,
2=T,T.2. =T,T, ol = [ w siny; l (15)
) W COS P; oS ¥,
J, 0 0
H=J2=|0 J. 0|0 (16)
0 0 J,

The support reaction moment of the torsion spring to the x-axis in dynamic balance is k7;.
Therefore, 3D spatial moment balance on the x-axis in the coordinate system < xyz > is expressed
as


https://doi.org/10.20944/preprints202306.2129.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2023 doi:10.20944/preprints202306.2129.v1

[f"m X F,, + Z Py X Fg + TLIT; 12 % FI)I ‘1 0 0" +ksp,=0 (17)

i=1
The moment equilibrium equation of the system for the x-axisin < xyz > can be listed

me?

{ sin(2y) cos(29,) sin ¥, + sin(27,) [sin? ¢ — cos? y sin? $,]}

+ mew?(siny sinP; — cos cos yl siny,)¥,
+ w? cos? )72 sinpy cos Py (J, —

+— mbR o’ Z{— sm(Z,BL) cos(27,) sin(y, + 6) (18)
+ sm(2y1) [sm B; — cos? f; sin?(7, + 0)]}

+ m,Rw? Z[sm Bi sin; — cos f; cos 7y sin(P, + 0)] 9. + krPy = 0

i=1

3.3.3. Moment Balance Around the y’-Axis of the < x'y’z’ > Coordinate System

.

F,, and Fp;(i = 1~n) in < xyz > are transformed to < x'y’'z’ > by the rotation matrix T;,
describe as follows respectively

gcosyPpcosy, + X,
F,, = T,F,, = —mw?| cosy, (esiny cosy; + ecosysinP, siny, + 9.) (19)
—siny; (esiny cos P, + €cosy siny; siny, + )

R cos B; cos(P, + 0) + &,
Fy; = T, Fg = —myw? | cosy; (R sin ,[;’i cosy; + R cos [?i siny, sin(y, + 0) + ﬁc) , (20)
—siny, (R sin f; cos 7, + R cos f; sin P, sin(P, + 6) + 376)
i=1~n
The equilibrium position vector of the mass center of the rotor and the i-th ball in < x'y’'z' >

is 1, and 75;(i = 1~n). To inverse transformation of 7y, and #5; (Equations (3) and (5)) or to
transform of #,, and #; (Equations (13) and (14)) can be obtained.

gcos cos?,
7, = Ty, = Tyfy, = I esiny l (21)
—&ecosysiny,

R cos f; cos(P, + 6)
Ph = Ty Pg = Tyfp = Rsinf; ,  i=1~n (22)
—R cos f; sin(y, + 6)
Similarly, the support reaction moment of the torsion spring on the y'-axis is k;7,, and 3D spatial
moment balance on the y’-axis in the coordinate system < x'y’z’ > is expressed as

[ﬂn X Fi, + Zﬂ” XFp+T; Y (@xH)|-[0 1 0]"+ksP,=0 (23)

The moment equilibrium equation of the system around the y'-axis in < x'y’'z’ > can be
written
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me?w?

[ sin(2y) sin(29,) cos P, + 2 sin(27,) cos? Y cos? #,]
+ mew? cos P (X, sin P, — 9, sin§; cos ¥,)
+ w? cos ]71 siny, cos ¥, (]P ]T)

4 = mbR W’ Z{— sin(2f;) sin(29,) cos(7, + 6) 4
+2 sm[2(y2 + 6)] cos? f; cos Vl}

+ muRw? Z cos B; [&. sin(#, + 0) — . sin P, cos({, + )] + kP, =0
i=1

3.3.4. Moment Balance Around the Central Axis Perpendicular to the Orbit Plane

The equilibrium position and the centripetal force vector of the mass center of the i-th ball in
<x"y"z" >c is 75;(i = 1~n) (Equation (4)) and Fg;(i = 1~n). Fg; can be converted by the Fy;
(Equation (20)), written as

Fg; = T3T,Fy, R

(R cos fB; [cos? #, cos?(§, + 0) + sin? ;] +
R sin f; sin, cos 9, sin(9, + 6) +
cos(y, + 0) X, + siny, sin(y, + 0) ¥,

(25)

= —m,w? (R cos P, [sin f; cos P, + cos f; siny sin(P, + O)] + cos P19, |, i=1~n

R sin B; sin, cos 9, cos(§, + 0) —
R cos f; cos? 7, sin(P, + 6) cos(P, + 6) —
sin(P, + 0) X. + siny, cos(¥, + 0) 9.

When the system is dynamic balanced, the sum of moments in 3D for the central axis (z"

-axis)
perpendicular to the orbit plane is zero. Thus, the dynamic equilibrium equation of the i-th ball

around the z"-axis of the orbit plane can be obtained.

PpxFp-[0 0 1]"=0, i=1~n (26)

m,R2w?{— cos(2;) sinpy cos , sin(¥, + 6)
+ sin B; cos B; [sin? 9, — cos? P, sin® (P, + 0)]}
+ myRw*{%, sin f; cos(¥, + 6)
-9, [cos B; cos 7, — sin B; sinp, sin(y, + 9)]} =0,i=1~n

27)

Comprehensive the above dynamic equilibrium equations (Equations (12), (18), (24) and (27))
from the 3D dynamics are compared with the equations derived from the Euler-Lagrange method [9]
(are listed in Appendix), which be verified each other to obtain exactly the same results. But the 3D
dynamics inference, the analysis of the spatial configurations can better describe and understand the
spatial positioning of the balls equilibrium during vibration suppression.

3.4. Positioning Characteristic of Balls Equilibrium

The 3D dynamics show that if the centripetal force of the ball can decompose the component
force in the tangential direction of the circular orbit, the ball will move continually along the orbit.
Equation (26) implies that when the balls are balance positioning, the torque exerted by the centripetal
force of each ball against the z"-axis perpendicular to the orbital plane is zero. It means that Fg;(i =

1~n) has no component force in the tangential direction of the orbit and must pass through the z"-
axis, as shown in Figure 4. As well the system is in dynamic balance, the balls revolve around the
spin axis (Z-axis) of the system with their respective stable and balanced radius at constant angular
velocity w. At this time, Fy; is also on the perpendicular line of the Z-axis from the mass center of
the ball to the spin axis. In other words, when the system is dynamic balance, the centripetal force
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acting on each ball must be perpendicular to the spin axis and pass through the central axis of the
circular orbit of the balls.

Fg; circular orbit

w,D

SB/%Q“‘P. o

Figure 4. Centripetal force and attitude of ball positioning.

The aforementioned inferences reveal that the balls should have the spatial positioning
characteristic for dynamic balance. Furthermore, Equation (12.3) express that the dynamic
equilibrium displacement Z. of the rotor centroid is zero. It shows that all forces acting on the system
are on parallel planes perpendicular to the Z (= z) axis during dynamic balance, so unforce in the
rotation axis. This means that while the balls in the skew-mounted orbit may temporarily cause
vibrations at the z-axis during the transient period of the system, but once the steady-state balance
and the balls are completely positioned, the vibration of the z-axis will eventually be attenuated to
zero regardless of whether the system achieves a complete balance of vibration suppression.

4. Verification of Spatial Geometric Characteristic

In Section 3.4, the positioning characteristic of balls in the dynamic balance is stated. For the sake
of rigor, the geometric relationships of the space vectors assist to examine and verify. As shown in
Figure 5(a), any two vectors L, and L, in space, where P; and P, are arbitrary points on the L,
and L, vectors, respectively, and the displacement of the point P; relative to point P, is vector A.
When the shortest distance d between L; and L, is zero, which means that vector L; and vector
L, intersect in 3D space, where

_A-(Ly xLy)

d= 28
Ly % Lyl 28)

Analytic geometry in space applied to the vibration suppression system of eccentric rotor
equipped with skew-mounted ABB, the < xyz >, system synchronized with the spin axis is selected
as the reference coordinate system, as shown in Figure 5(b). The perpendicular line from the i-th ball
to the spin Z-axis (Z = z) is described as the space vector L,;, and the unit vector of the central z"-
axis of the circular orbit is represented by the space vector L,. Since the position of the i-th ball and
the orbit center C are the points on the L;; and L, vectors, respectively, the relative displacement
of the two points is expressed as vector 4;. In the < xyz >, system, L,; can be obtained from #gg;
(Equation (7)) and the unit vector k of the z-axis; L, and 4; are obtained by the reverse
transformation of the unit vectors k” and #5; (Equation (4)) of the z” axis, respectively. Ly;, L,
and A; are expressed as

Ly=fopxk)xk, i=1~n (29)
0

0
1

L, = T{'T3;'T5 k" = T{T; T3 (30)
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10
R cos ﬁi
A; =TTy T3 g =T T T5  Rsin g, |, (=11 (31)
0

(a) (b)

Figure 5. (a) Schematic diagram of spatial vectors and shortest distance; (b) Express the spatial vectors
of the vibration suppression system.

Substitute Equations (29)—(31) into Equation (28), the shortest distance between Ly; and L, is

ALy X L)

e B U S PO 32
= Ly X Ll (32)

Because the orbit plane and the eccentric rotor plane are skew-mounted, the orbit center axis is
neither collinear nor parallel to the spin axis of the system, ||L;; X L,|| # 0, calculate 4; - (Ly; X L,)
to get

A4;-(Ly; X Ly) = RZ{— cos(Z,[;’i) sinP, cos 7, sin(y, + 0)
+ sin f; cos f; [sin? 9, — cos? P, sin? (7, + 0)]}
+ R{%. sin B; cos(P, + 0) — 9.|cos B; cos ¥, — sin f; sin P, sin(, + 0)]},
i=1~n

(33)

Compare the above form with the dynamic equilibrium equation ( Equation (27) ). Since the ball
mass m;, and the system angular velocity w are both not zero when the system is dynamic balance,
we can get Equation (33) equal to zero, thatis, 4; - (Ly; X L,) = 0. Further prove that Equation (32) to
zero, that is, d; = 0. It means any ball of the orbit after vibration suppression to balance positioning,
the radius vector L,; of the position to its stable spin axis intersects with the central axis L,
perpendicular to the orbit plane. In other words, this proves that the steady-state equilibrium position
of each ball in the orbit must satisfy the spatial geometric relationship of the perpendicular line from the
ball to the spin axis of the vibration suppression system intersects with the central axis of the orbit plane.

5. Conclusions and Future Work

In this paper, the system model is based on the system of an eccentric rotor equipped with skew-
mounted ABB to be analyzed via 3D dynamics. The independent variables of the system include the
centroid position roc = [Xc Y Zc]T of the rotor, the pitch angle y, and the yaw angle y, of the
rotor, as well the angular positions B;(i = 1~n) of the balls in the orbit, totaling (5+n)
independent variables. Through the conversion of space coordinates, describe the positions and
attitudes of the system in space, and establish (5+n) independent simultaneous dynamic
equilibrium equations.

(i) From the tri-axial force balance of the rotating reference frame < xyz >,, three dynamic
equilibrium equations of the three independent variables of the centroid position of the rotor are

obtained. (Equation (12)).
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(ii) Based on the moment balance around the x-axis of the < xyz > coordinate system to obtain
one dynamic equilibrium equation in the rotational direction of the pitch angle of the system.
(Equation (18)).

(iii) Based on the moment balance around the y’-axis of the < x'y’z’ > coordinate system to obtain
one dynamic equilibrium equation in the rotational direction of the yaw angle of the system.
(Equation (24))

(iv) For the moment balance around the central axis perpendicular to the orbit plane of the balls, n
dynamic equilibrium equations of the angular position of each ball in balance positioning are
listed. (Equation (27))

The results verify one another as being completely consistent with the dynamic equilibrium
equations derived from the Euler-Lagrange equation [9]. Among them, when analyzing the dynamic
balance of the z-axis in (i), Equation (12.3) can be seen that the dynamic equilibrium displacement of
the rotor centroid in the z-direction is zero. All forces acting on the system are on parallel planes
perpendicular to the rotating spindle during dynamic balance, so the balls in the skew-mounted orbit
will temporarily cause vibrations at the z-axis during the transient period of the system, but once the
steady-state balance and the balls are completely positioned, the vibration of the z-axis will
eventually be attenuated to zero regardless of whether the system achieves a complete balance of
vibration suppression. What is particularly important through 3D dynamics, the dynamic
equilibrium equations of ball positioning analyzed in (iv) can deduce the positioning condition of the
ball during balance. Upon verification of the space geometry, it reveals the spatial geometric
characteristic that the balls are in dynamic balance, the perpendicular lines from the balls to the
rotating spindle of the system must pass through the central axis of the orbit perpendicular to the
ABB plane. Since the positioning characteristic of balls is not related to the spindle speed and the
distribution of rotor and any mass, nor to the working speed range and the critical speed limit of the
spin axis. The dynamic balance positioning of balls should conform to this spatial geometry
characteristic, regardless of whether ABBs have assembly deviations. This characteristic is a
necessary but insufficient condition for balance positioning of the balls and can serve as a general
rule. Therefore, relevant previous research cases on the stable equilibrium positions of balls should
all be appropriately explained and confirmed if they are understood by applying this characteristic.
In the follow-up of this study, numerical analysis of various cases of positioning characteristic of balls
in balance will be carried out to discuss the vibration suppression capability and the phenomenon of
ball positioning.

Funding: This research received no external funding

Nomenclature
R radius of the circular orbit of ABB
¢, Cr linear damping coefficient and torsional damping coefficient
k, kg linear stiffness and torsional stiffness
m, m,  mass of the rotor and mass of each ball
€ eccentricity of the mass center of the rotor
0 deflection angle of ABB
Y angular position of the mass center of the rotor
w spindle speed

Jr » J»  principal moments of inertia

X¢, Yer Zc Spatial parameters of centroid position of the eccentric rotor

%¢, Yoo 2. spatial parameters of the equilibrium position of rotor centroid
B, B angular position and equilibrium angular position of the i-th ball
Y1, Y1 pitch angle and equilibrium pitch angle

Y2, V2 yaw angle and equilibrium yaw angle

H angular momentum
J principal moment of inertia tensor
4, A; relative displacement vector
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2, 2,, 2. angular velocity vector
0 absolute angular velocity of the principal axis of inertia

Appendix

These are the dynamic equilibrium equations derived from the Euler-Lagrange equation from
Ref. [9], PP. 3254. Where %., $., 2, 71, 7, and B (i=1~n) are the dynamic-equilibrium positions
and M =m+n (my).

(k—Ma)z)ch —WC P —mE W coSYCos P, —

n R 13a
my R’ cos(6+ f@Zcosﬂi =0, (132)
i=1
(k—Ma)z)j/C +wcko—me @ (sinycos i +
cosysin  sin }72)—m,,Ra)22[sin,[;’i cosy + (13b)
i=1
cos A sin ; sin(@+ 7”/2):| =0,
kz.=0, (13¢)

me*a’

[—sin(z w)cos(27;)sin 7, +sin(2 f/l)(sin2 v—

cos’wsin’ 7, )J +k i —me @’ (cosycos sin J, —

sinysin ;) 9 + @ cos” P, sin f cos i (Jp —J7) —

il If i[sin(Z[z)cos(Zﬁ)sin(9+ 7)) —sin(2 ) (13d)

i=1

(sin2 B —cos® B sin*(0+ }72))} —mbRa)ZZn:
i=1

[cosﬁ,. cos ;sin(6+ ) —sin f3 sin}ﬂj/c =0,

me*a’

[—sm(z w)sin(2 ;) cos 7, +
2sin(2 %, ) cos” w cos® }71} +me @’ cosy(Xqsin, —
Pesin;cos §,) + @’ cos” §;sin 7 cos 7 (Jp — Jp ) +

my R (13¢)

1 Z{—sin(Z,B,-)sin(Z 7)cos(8+7,) +

i=1

2sin[2(6 + 75)]cos? 3 cos? §; }+ m,,Rachos,&-

i=1

[Xsin(@+ 75) — Pesin 7 cos(8+ 7))+ kr 75 =0,
m, R* e’ {—cos(Z,B,»)sin 7 cospsin(@+7,) +

sin 3, cos B [sin2 7 —cos” §;sin” (6 + ?Z)J } +
mbRa)Z{ch sin B cos(6+ 7,) — P [cosﬂi Cos — (130

sin /3 sin sin(0+772)]}=0; i=l~n,
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