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Abstract: Cropland area is closely related to food production. More previous focuses were paid on 

impacts of extreme events on food production, but less on cropland dynamics. This study took the 

Farming-Pastoral Ecotone of Northern China (FPEN) as a case area, to investigate its cropland area 

dynamics and driving factors in view of perspectives of extreme events, environmental conditions, 

socioeconomic development, urban expansion, and ecological construction. We used ridge 

regression approach to quantify contributions of these drivers to cropland area dynamics. Results 

showed that cropland area increased significantly at a rate of 333.5km2/a during 1992−2020 and were 

spatially clustered in east of the FPEN. Impact extent and size each driving factor on cropland trend 

presented large spatiotemporal differences, but ecological construction (EC) had overall the greatest 

impact on cropland area changes, followed by urban expansion (UE). In comparison, TL10p has the 

smallest. UE-dominated areas increased 41.9% since 2010s, but still less than EC. Furthermore, we 

found that extreme events effects on cropland area trend evidently increased. Particularly, TH90p 

displayed the most increase (~99.4%). Cropland area changes dominated by extreme temperature 

events in 2010−2020 increased nearly six times than that in 1992−2010. These findings suggest that 

increasing impacts of extreme weather events on cropland area changes should be cautioned. 

Keywords: cropland area trend; contribution rate; ridge regression model; extreme events; 

ecological construction; urban expansion 

 

1. Introduction 

In the context of the climatic warming and growing global population, global agriculture 

development sustainability and food security are facing large challenges [1]. As an irreplaceable food 

production physical carrier, cropland area is closely related to food security, plays an important role 

in maintaining food security and stabilizing domestic food supply [2,3]. However, studies related to 

predicting impacts of various factors on grain yield have received more focuses over the past decades, 

but less attentions on the cropland area trend and its driving factors [4–7]. Therefore, clarifying the 

drivers of cropland change can enrich the connotation and theoretical basis of driver research of 

cropland dynamics. Additionally, it could provide valuable references for cropland utilization, 

management, and conservation. 

The driving mechanism of cropland area trend is a complex issue that is forcing by multiple 

drivers of nature and human activities, such as climate, environmental conditions, socioeconomic 

development, urban expansion and ecological construction [8–10]. Urban expansion is generally 

regarded as the dominant driver of cropland area decrease [11–13]. In the past decades, half of 

decreased cropland was used for urban expansion [14]. Ecological construction represents expand of 

ecological land, such as forests and grasslands in a region, is another key factor affecting the cropland 

area [15]. It has been proven the major reasons for cropland decrease in fragile ecological areas [14,15]. 

Some studies have explored the relationships between cropland area trend and the environmental 
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conditions and socioeconomic development in recent years [16,17]. For example, by analyzing 

relationships between the cropland area and the environmental conditions, Zhong, et al. [18] found 

that cropland area decreased along with elevation gradient increase during 1999−2006. Wang, et al. 

[19] selected fifteen drivers, collecting from the perspectives of cropland status, environmental 

conditions and socioeconomic development, to assess impacts of cropland expansion, and they found 

that all of these drivers had large impacts on cropland area trend at different spatial and temporal 

scales. 

In addition, climatic change and increasingly frequency of extreme events are also one of the 

drivers on the cropland area trend [20–22]. It is projected that climatic change may reduce China's 

cropland area by 2.09~25.51% by the end of this century [23]. A study from Shi, et al. [24] reported 

that climatic warming trends facilitated the cropland area increase in arid and semi-arid regions, yet 

drying trends did not limit cropland area increase. Similarly, Zaveri, Russ and Damania [10] reported 

that dry anomalies lead to an increase in cropland area, and estimated that dry-induced cropland 

expansion rate accounted for ~9% of the cropland expansion rate. In addition, recent studies showed 

that the extreme events usually had more impacts on agriculture than their average [25,26]. And 

extreme heat events have a long-lasting impact on reducing cropland area [23]. However, previous 

studies related to predicting impacts of nature and human activities on cropland area trend have 

received the highly focuses at the past decades, but less attentions have been focused on how climatic 

change and extreme weather events altered the spatial extent and trends of croplands [20,27]. 

The Farming-pastoral ecotone of northern China (FPEN) where extreme events occur frequently 

is particularly fragile to human activities and climate change [28,29]. In recent years, the quantity and 

spatial distribution of cropland have changed dramatically under the influence of climatic change 

and human activities [30]. Due to its coverage of typical geographical features such as the Northeast 

plain, the Inner Mongolia Plateau and the Loess Plateau, as well as substantial regional variations in 

policies and climate, this region provides a natural experimental setting for studying the 

spatiotemporal characteristics of cropland area changes and the driving factors. Therefore, the aims 

of this study, using FPEN as an example, are: (1) to quantify the relative contributions of extreme 

events, environment conditions, socioeconomic development, urban expansion and ecological 

construction on change in cropland area, (2) to clarify the differences in contribution of driving factors 

before and after the turning point (TP), and (3) to determine the dominant driver of cropland area 

trend and the divergent driver contributions between 1992−2010 and 2010−2020 at the county-scale. 

2. Data and methods 

2.1. Study area 

FPEN is a typical coupling zone of farming and livestock-grazing [31,32]. The cropland and 

grassland area accounted for ~73.9% of FPEN, of which the cropland area was ~20.2×104 km2 (Figure 

1a). Its terrain is complex and diverse, which is low in the northeast and high in the southwest. The 

region has a temperate continental monsoon climate, with rainfall considerably affected by the 

summer monsoon, predominantly in summer, and the average annual precipitation of 250~600mm 

(Figure 1d). The average annual temperature is 6.8℃ (Figure 1c). 

Considering the large differences in climate, environment and policies in the study area, we 

subdivided FPEN into three regions. (1) Eastern region: locating in the east of the study area, it 

belongs to the Northeast China Plain. The average annual precipitation of ~468.2mm, and the average 

annual temperature is 5.8℃. Eastern of FPEN has abundant black soil resources, and flat terrain, 

which provides good conditions for agricultural activities and mechanized production. Also, China's 

main commercial grain production base and a key implementation region for cropland protection 

policies [28,29]. (2) Central region: locating in the center of the study area, connecting Inner Mongolia 

Plateau and Loess Plateau. The average annual precipitation of 551.0mm, and the average annual 

temperature is 7.5℃. The terrain in central region is complex and diverse, and areas of cropland and 

grassland are the largest (Figure 1a). Due to the prominent problems of land and environmental 

degradation, it has become a key ecological reserve in China [33]. (3) Western region: locating in the 

west of the study area, it belongs to the Loess Plateau. The annual precipitation and temperature are 
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higher than eastern, is 600.8 mm and 7.4℃, respectively. Western region has low vegetation coverage, 

severe soil erosion and a particularly fragile ecological environment. Like central region, western is 

also a key implementation area for ecological projects such as the “Grain for Green” Project. 

 

Figure 1. Location maps of the FPEN. a) land use/land cover map in 2020, b) Elevation of the FPEN, 

c) and d) averaged annual mean temperature and total precipitation during 1992−2020. 

2.2. Data and processing 

The data used in this study included land use/land cover data, meteorological data, drought 

index data, volumetric soil water data, net primary productivity data, population data, and nighttime 

light index data. 

The land use/land cover data were obtained from the European Space Agency (ESA). We 

grouped land use/land cover data into six categories: croplands, forests, grasslands, water body, 

built-up land, and bare land, according to the International Geosphere-Biosphere Programme (IGBP) 

and Chinese Academy of Science classification system. To analyze spatial changes of land use area, 

we counted the sum area of croplands, and sum area of forests and grasslands, and urban area within 

each 9km × 9km grid cell. Specially, for the mosaic croplands (>50%) in the IGBP classification system, 

we only counted half the area for croplands. In addition, the sum of forests and grasslands areas is 

considered in our research as ecological land area, and the area of built-up land as construction land 

area. 

Meteorological data and volumetric soil water data were all derived from the European Centre 

for Medium Range Weather Forecasts (ECMWF) Reanalysis ERA5 dataset. Here, daily maximum and 

minimum temperature and annual average temperature were calculated using the hourly maximum 

and minimum 2m temperature data, the monthly average temperature data, respectively. Daily 

precipitation and annual precipitation were computed using the hourly precipitation data. 

Subsequently, the daily maximum and minimum temperature, precipitation were used to estimate 

extreme climate indices. Yearly volumetric soil water and potential evaporation were calculated 

using the hourly volumetric soil water data of soil layer 1(0~7cm) and potential evaporation data. 

Drought index data, daily evapotranspiration deficit index (DEDI), obtained from the study of Zhang, 

et al. [34]. The DEDI calculated based on daily ERA5 product, and defined as the standardized deficit 

of difference between actual and potential evapotranspiration. DEDI not only considered the 

aggravating effect of warming on the severity of drought, but also reflects the degree of impact of 

drought on vegetation and soil moisture in time. More important it was extremely sensitive to 
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agricultural drought [35]. Thus, compared with other commonly used drought indices, such as 

Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index 

(SPEI), DEDI is more suitable for analyzing the impact of drought on the cropland area trend under 

climate warming [36]. The yearly net primary productivity data is derived from United States 

Geological Survey (USGS) MOD17A3HGF dataset. 

The population data are collected from the Land Scan, which is the available and fine resolution 

global population data. We retrieved the annual nighttime light index data from the study of Li, et 

al. [37]. This annual data is generated by inter-correcting nighttime light index data from different 

satellites using a sigmoid function and derived relationship. It was verified that the corrected 

nighttime light index data showed a good consistency and was superior to other nighttime light index 

data in terms of the temporal consistency. In addition, the data also showed good agreements with 

the temporal trends of socioeconomic activities. 

In order to maintain spatial consistency, all the data in this research, except the population, were 

resampled to a spatial resolution of 9km using a bilinear resampling algorithm. For the population 

data, we counted population of 9km × 9km. Details of the data used in this study can be found in 

Table A1. In addition, for some vacant time series we replace them with the most recent year, for 

example, the population data in 1999 was replaced by that in 2000. 

2.3. Methods 

2.3.1. Main research framework 

In this study, we quantified impacts of driving factors on cropland area trend at the county scale, 

and compared the differences in the contribution of driving factors before and after the TP. The main 

research framework is illustrated in Figure 2, which incorporated four steps:  

(1) Spatial-temporal change analysis. We estimated the spatiotemporal dynamics of cropland 

area from 1992 to 2020 by using the trend analysis approach and detected its time series TP by the 

piecewise regression approach. 

(2) Driver factors determination. We quantified the correlation between cropland area and 

drivers using the Pearson correlation analysis at the county-scale, and judged whether put initial 

driving factors into the ridge regression model by considering the correlation coefficient R values and 

the ratio of significant area to total area. 

(3) Relative contribution of drivers. We put the filtered factors and cropland area into the ridge 

regression model, tested accuracy of model based on the RMSE, R2 and RMSE/mean (Appendix A 

Eq.2~4, Figure 5), and finally get the relative contribution. 

And (4) differences in contribution of driving factors before and after the TP. We took the TP 

obtained in step (1) as a node, the relative contribution value of the driving factors before and after 

the TP, and their relative changes were calculated, respectively. Finally, we visualized the spatial 

distribution of the dominant and biggest changes driver at the county-scale. 
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Figure 2. The main research framework of this study. Note: the statistical significance level is 0.05 

(p<0.05) in this study. 

2.3.2. Initial driver factors selection and driver factors determination 

Previous studies have shown that the potential driving factors that could affect the cropland 

area change were grouped into five categories: extreme events, environmental conditions, 

socioeconomic development, urban expansion and ecological construction (Table A2) [16,17,19,22]. 

Environmental conditions are represented from the perspective of meteorology, soil, and grain 

production situation using Annual average temperature, annual precipitation, potential 

evapotranspiration (PET), volumetric soil water, and net primary productivity (NPP), respectively 

[29,38,39]. These factors are closely related to grain growth and development, which in turn affects 

the change of cropland area [19,22]. In addition, extreme events could be largely responsible for 

altering cropland area due to a dramatic increase in the frequency and intensity of extreme events 

under climate change [10,23,25,40,41]. Therefore, the climate extremes index (covering extreme high 

temperature, extreme low temperature, extreme precipitation, and drought) also contained in our 

research. 

Due to unavailability of continuous socioeconomic data at the grid scale, we predominantly 

considered two types of socioeconomic factors, namely population and satellite-based nighttime light 

index (NTL) data [8]. The areas of construction land and ecological land represent urban expansion 

and ecological construction in this study, respectively [15]. 

To further confirm whether the driving factors in Table A2 can reasonably explain the cropland 

area trend, before estimating the relative contribution of driving factors on cropland area, we 

screened out the driving factors that had stronger relative (R > 0.4) at first. Meanwhile, we also erased 

the driving factors that the ratio of significant area to total area was less than 20%, due to the spatial 

heterogeneity. Their significant was judged with the help of F-statistic test. The Pearson correlation 

analysis formula is as follows: R௖௣,௑೔ = 𝑐𝑜𝑣ሺ𝑐𝑝, 𝑋௜ሻ𝜎௖௣𝜎௑೔ , 0 < 𝑋௜ < 245 (1)

where i is the county of FPEN; cp is the cropland area of i county; X is the driving factors of i county; 𝑐𝑜𝑣ሺ𝑐𝑝, 𝑋௜ሻ is the covariance of cropland area and driving factors at the county-scale; 𝜎௖௣ and 𝜎௑೔ is 

the standard deviations of cropland area and driving factors, respectively; R௖௣,௑೔ is the correlation 

coefficient of cropland area and driving factors at the county-scale. R௖௣,௑೔ is always between -1 and 

1. If R௖௣,௑೔ = 1, means there are the perfect positive linear correlation between cropland area and 

driving factors. If R௖௣,௑೔ = −1, indicates perfect negative linear correlation between cropland area 

and driving factors. While R௖௣,௑೔ = 0 implies no linear correlation. Additionally, an α-level of 0.05 is 
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used as the threshold of statistical significance in our research. While |𝐹| > 𝐹భషഀమ , means R௖௣,௑೔  is 

significant. 

2.3.3. Extreme climate index calculation 

We selected four indices, including extreme high temperature, extreme low temperature, 

extreme drought and extreme precipitation, to describe the extreme climate as they were closely 

related to cropland area change/agricultural production in FPEN. These indices were calculated by 

referring to the definition of climate extremes by the Expert Team on Climate Change Detection and 

Indices (ETCCDI) [42,43]. In addition, to keep the unit of drought indices consistent with others, we 

compute the annual frequency of drought (D20p) based on DEDI using the same method as ETCCDI. 

Detailed calculation method is shown in Table A3. 

2.3.4. Trend analysis 

Linear regression was used to estimate the spatial-temporal trends of annual driving factors and 

cropland area [44]. Their significant was judged by F-statistic test in this study. Trend formula is as 

follows: slope௜ = 𝑛 ∑ 𝑡𝑥௜ − ሺ∑ 𝑡௡௧ୀଵ ሻሺ∑ 𝑥௜௡௧ୀଵ ሻ௡௧ୀଵ𝑛 ∑ 𝑡ଶ௡௧ୀଵ − ሺ∑ 𝑡௡௧ୀଵ ሻଶ , 0 < t ≤ 29 (2)

where n is study coverage time; 𝑥௜ represents the value of driving factors/cropland area in year t; slope௜ is the slope value of this factor. Additionally, if slope௜ is positive, it means that 𝑥௜ increases 

over time. The larger |slope௜| is, the more obvious the increasing trend is. Otherwise, it will decrease 

over time. 

2.3.5. Turing point (TP) detection 

A piecewise linear regression model was used to identify the TP of the cropland area from 1992 

to 2020 [45], and its significant was judged by F-statistic test. The piecewise linear regression model 

is as follows: y = ൜𝛽଴ + 𝛽ଵ𝑡 + 𝜀,                        𝑡 ≤ 𝑡଴𝛽଴ + 𝛽ଵ𝑡 + 𝛽ଶሺ𝑡 − 𝛼ሻ + 𝜀, 𝑡 > 𝑡଴ (3)

where y is the cropland area; t is the year; 𝑡଴ is the identified TP; 𝛽଴ is intercept; 𝛽ଵ and 𝛽ଵ + 𝛽ଶ are 

the value of trends before and after the TP, respectively; and ε is the residual errors. Least squares 

method is used to compute coefficients, such as 𝛽଴ , 𝛽ଵ , 𝛽ଶ . In this study, we determined TP by 

multiple iterations [46,47]. Specifically, firstly, we limited points to between 1996 and 2016, to ensure 

that the time series before and after the point is greater than or equal to 5 years. Then, we used 

multiple fitted linear iterations to obtain the point where had minimized residual value square sum 

of the both sides. Finally, we used F- statistic test to judge whether the trend of time series on both 

sides of the point is significant. If it passes the significance test (p<0.05), this point is regarded as the 

TP of cropland area changes. 

2.3.6. Ridge regression model 

The ridge regression model was designed to solve the problem of multi-collinearity between 

independent variables [48–50]. Compared to the traditional multiple linear regression, ridge 

regression is more tolerant of ill-conditioned data. This study involved nine variables, and the results 

of factor inflation factor (VIF) test showed that there was multi-collinearity (VIF≥10) between driving 

factors (Figure A1). The ridge regression model is expressed as follows: 𝛽መሺ𝑘ሻ = ሺ𝑋்𝑋 + 𝑘𝐼ሻିଵ𝑋்𝐴஼௥௢௣௟௔௡ௗ (4)

where 𝐴஼௥௢௣௟௔௡ௗ is cropland area of spatial-temporal standardized, 𝛽መሺ𝑘ሻ is regression coefficient, X 

is a 2-dimensional matrix of spatial-temporal standardized driving factors. Detailed calculation 
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method of spatial-temporal standardized is shown in Methods Section of the Appendix A [Eq. 1]. k 

is the ridge parameter. The principle of selecting the value of k: if k = k0, the 𝛽መሺ𝑘ሻ of driving factors 

tends to be stable, k0 will be ridge parameter. In our research, k is 1. 

To account for the long-term trend in the effects of drivers on cropland area, we multiplied the 

ridge regression coefficients by the trend of the corresponding drivers in order to characterize the 

contribution of drivers for cropland area trends. The contribution of the driving factor to the cropland 

area is expressed as follows: 𝜂௜௝ = 𝛽መ𝑋௜௝_௧௥௘௡ௗ (5)

The relative contribution is: 𝑅𝜂௜௝ = 𝜂௜௝∑ ห𝜂௜௝หଵ଴௝ୀଵ  (6)

where 𝑋௜௝_௧௥௘௡ௗ  is the spatial-temporal standardized of driving factors trends; 𝑅𝜂௜௝  represents 

relative contribution of driving factors to trends of cropland area, the positive and negative of 𝜂௜௝ 

indicate the positive and negative effects of 𝜂௜௝, its value larger is impact greater. 

The accuracy of the simulated results evaluated using three metrics [root-mean-square error 

(RMSE), coefficient of determination (R2), and RMSE/mean]. Detailed calculation method is shown in 

Methods Section of the Appendix A [Eq. 2 ~ 4]. 

3. Results 

3.1. Spatial-temporal dynamics of cropland area 

The cropland area significantly increased at a rate of ~ 333.5km2/a in FPEN during 1992−2020 

(p<0.05). The area increased from 19.5×104km2 in 1992 to 20.2×104km2 in 2020 (Figure 3c). Regionally, 

cropland area of the eastern region continued to increase in the entire period with a growth rate of 

~357.3km2/a (p<0.01, Figure 3d). The cropland area in the central region clearly showed two distinct 

opposite trends before and after 2005 (Figure 3e). Firstly, the cropland area increased significantly 

from 1992 to 2005, and the growth rate was ~74.2km2/a (p<0.01). Then, at the stage of 2005−2020, its 

area significantly decreased at a rate of 91.4 km2/a (p<0.01). Its total area finally decreased 765.9km2 

during 1992−2020. The cropland area of western region showed a significantly decreasing trend 

(p<0.05). The entire cropland loss area is 875.2 km2 from 1992 to 2020 (Figure 3f). Spatially, the 

increased cropland area of the entire FPEN focused on the eastern region, the significant increased 

area was 14.13×104km2 (p<0.05), particularly in the eastern part of Inner Mongolia. The decreased 

cropland area primarily in the central and western regions, its significant increased and decreased 

trend areas were 16.08×104km2 and 22.38×104km2, respectively (Figure 3a). 

In FPEN, ~38.90% of cropland had a significant TP (p<0.01, Figure 3b). The TP of the cropland 

area mainly occurred after 2010, accounting for ~24.85% of FPEN (63.88% of entire TP regions). The 

pixels of croplands having TP before 2000 only accounted for ~1.55% of FPEN. Through overlay 

analysis of the cropland area trend and TP, we found that there were more prone to TP after 2010, if 

the cropland area exhibited a significant decreasing trend in pixel scale. Therefore, we speculated 

that there might be large differences in the impact of driving factors on the cropland area trend 

around 2010. 
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Figure 3. Spatiotemporal dynamics of cropland area from 1992 to 2020, (a) the trend of cropland area, 

(b) the turning points of cropland area changes, and (c-f) cropland area changes of the FPEN and three 

sub-regions. 

3.2. Selecting driving factors based on the ridge regression model 

This study used the Pearson analysis to quantify the correlations between driving factors and 

cropland area in FPEN (Figure 4a~m). The results showed that the mean absolute of correlation 

coefficient between all driving factors with cropland area was greater than 0.4. Among them, the 

mean absolute of the correlation coefficients of EC and UE were much higher than other factors (R 

values of ~0.9 and 0.8, respectively). At the significance level of 0.05, the area where the cropland area 

was significantly correlated with socioeconomic development, urban expansion and ecological 

construction all exceeded 50% of FPEN. On the contrary, except for NPP, the area of significant 

correlation between environmental conditions and extreme events with cropland area were all less 

than 50% of FPEN, of which the annual average temperature, annual precipitation, volumetric soil 

water and annual frequency of extreme precipitation were significantly correlated with cropland area 

in less than 20% of FPEN (Figure 4c, e, f and h). Due to spatial heterogeneity, the small range 

significant correlation cannot clearly explain the reason for the cropland area trend in the entire 

FPEN. Thus, the annual average temperature, annual precipitation, Annual frequency of extreme 

precipitation and volumetric soil water were excluded from the follow-up study. 
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Figure 4. The Pearson correlation coefficients between cropland area and corresponding driving 

factors (a) ~ (m), and boxplots for correlation coefficient absolute of each driving factors (n). 

3.3. Factor attributions of cropland area trends at the county scale 

3.3.1. Relative contributions of driving factors to cropland area trends 

This study compared the simulated cropland and satellite-drived cropland area in entire FPEN 

and its each county. We found that the simulated cropland area agreed well with the satellite-drived 

cropland area. Generally, R2 is 0.99 and RMSE is 204.3. Of which, regions with R2 ≥0.9 accounted for 

~90% of FPEN (Figure A5), indicating the model was robust and suitable for further investigating 

cropland area trend and the driving factor’s contributions. Table 1 summarizes the relative 

contributions absolute of the driving factors across the FPEN and three subresions. Generally, EC 

was the greatest contributor to the cropland area trend from 1992 to 2020 in FPEN, and followed by 

UE. Their relative contributions absolute values were 40.3% and 39.3%, respectively. In contrast, 

TL10p was the minimal contributor to the cropland area trend. Its relative contribution absolute was 

1.3%. Regionally, the impact of TH90p, D20p, NPP and NTL on cropland area trend in the eastern 

region was slightly larger than that in the central and western regions. Their relative contribution 

absolute values were 1.8%, 2.3%, 10.4% and 4.1%, respectively. The influences of population and UE 

on cropland area trend in the central region was slightly higher than in the eastern and western 

regions. Their relative contribution absolute values were 7.3% and 40.0%. Furthermore, we also 

discovered that PET and EC had relatively greater impacts on the cropland area trend in the western 

region. These findings illustrate that cropland area trends in different regions performed spatial 

heterogeneity of driving factors. 
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Table 1. The relative contribution absolute values of the driving factors across the FPEN and three 

sub-regions during 1992−2020. 

Relative contributions absolute 

(%) 
TH90p TL10p D20p PET NPP Pop 

NT

L 
UE EC 

FPEN 1.5 1.3 2.1 2.0 9.1 6.8 3.8 39.3 40.3 

Eastern 1.8 1.4 2.3 2.6 10.4 6.1 4.1 37.6 38.0 

Central 1.5 1.2 2.1 1.5 8.2 7.3 3.6 40.0 40.6 

western 1.2 1.4 1.8 3.7 9.4 6.3 3.9 39.2 41.7 

Spatially, the impacts of TH90p, PET, NTL and EC on the cropland area trend were mainly 

positive, accounted for 39.5%, 58.8%, 42.3%, and 49.8% of FPEN, respectively (Figure 5a, d, g, and i, 

p<0.05). On the contrary, the impacts of TL10p, D20p, NPP, population and UE on the cropland area 

trends were mainly negative, accounted for 51.5%, 41.4%, 39.0%, 47.8% and 73.9% of FPEN, 

respectively (Figure 5b, c, e, f, and h, p<0.05). 

 

Figure 5. Relative contributions of driving factors to trend in cropland area during 1992−2020. Note: 

The black dots in the graph indicating the trend of drivers significantly at the confidence level of 0.05. 

3.3.2. The relative contribution changes of driving factors 

According to 3.1.1., we found that the TP years of cropland area in FPEN were mainly 

concentrated on after 2010. To spatial calculate and compare the relative contribution absolute of 

drivers factors, we thus took the year of 2010 as the node. The entire period was divided into two 

parts, i.e., the period of 1992−2010 and 2010−2020 (Figure 6, Figure A7, Figure A8). The relative 

contribution absolute values of TH90p, TL10p, D20p, PET, population, NTL and UE from 2010−2020 

were higher than those from 1992−2010. Among them, the contribution value of TH90p had the most 

increase (~99.4%), mainly from the positive contribution increased (Figure A6). Contrastly, the 

relative contribution absolute of NPP and EC were decreased ~33.8% and ~10.3%, respectively, 

mainly due to the positive contribution decreased (Figure A6). 

Spatially, the relative contribution absolute values of TH90p, TL10p, andUE increased evidently 

in more than half of the study area (Figure 6a, b and h). Among them, the increased contribution of 

TH90p could be found in the eastern region, while TL10p and UE mainly in the eastern and central 

regions. On the contrary, the relative contribution absolute of D20p, PET, NPP, population, NTL and 

EC decreased significantly in most regions from 1992–2010 to 2010–2020 (Figure 6c ~ g and i). Among 
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them,  NPP performed the largest decreased area, accounting for ~70.2%, and followed by EC 

(62.0%). 

 

Figure 6. The relative changes of relative contribution absolute values of driving factors before and 

after 2010. Note: The black dots in the graph indicating the trend of both sides of the driver in 2010 is 

significant or either side is significant at the 0.05 confidence level. I: the significantly increased trends, 

and D: the significantly decreased trends. 

3.3.3. Dominance drivers and corresponding changes at the county scale 

The relative contribution absolute values were used to determine the dominant factor at the 

county scale. We found that the dominance areas of PET, TH90p, TL10p, population and UE were 

increasing over time, but other factors were decreasing (Figure 7a~c). In the whole study period 

(1992−2020), the dominance of environment conditions, socioeconomic development, urban 

expansion and ecological construction covered 5.4%, 2.3%, 39.5% and 52.7% of FPEN, respectively 

(Figure 7a). In 1992−2010, the dominated area of ecological construction was the largest, accounted 

for 63.0% of FPEN (Figure 7b). Followed by urban expansion, accounted for 30.0% of FPEN (Figure 

7b). Environmental and socioeconomic factors only accounted for 4.9% and 1.9% of FPEN, 

respectively (Figure 7b). The smallest was extreme events factors, only covered 0.2% of FPEN (Figure 

7b). In 2010−2020, the dominated areas of ecological construction and environmental factors (mainly 

due to the decreased areas dominated by NPP) decreased ~16.1% and ~88.2%, respectively (Figure 

7c). On the contrary, the dominated areas of socioeconomic factors and urban expansion increased 

~35.2% and 41.9%, respectively (Figure 7c). Furthermore, we found that the area dominated by 

extreme events factors in 2010−2020 was about six times the area dominated in 1992−2010, mainly 

owing to the increased areas dominated by TH90p and TL10p (Figure 7c). 

To further examine changes in driver contribution, we used the relative changes of driver 

contribution in the two periods to identify the factors with the largest change at the county scale 

(Figure 7d). The results showed that counties firstly led by extreme events, socioeconomic, urban 

expansion, environmental conditions, and ecological construction covered 43.0%, 16.9%, 15.6%, 

13.3% and 10.7% of FPEN, respectively. Individually, the area of TL10p with the biggest change was 

higher than other factors, accounting for 22.2% of FPEN, mainly located in the eastern and central 

regions. 
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Figure 7. The dominant drivers of cropland area trend in the three intervals (a ~ c) and the drivers 

with the largest relative contribution change between 1992−2010 and 2010−2020 (d) at the county scale. 

4. Discussion 

4.1. Understanding impacts of driving factors on cropland trends 

This study quantified the impacts of extreme events, environment conditions, socioeconomic 

development, urban expansion and ecological construction on cropland area trend. Overall, our 

research clarifies that the cropland area trend was dominated by ecological construction and urban 

expansion. It is consistent with previous studies [11,13,14,51,52]. However, interestingly, we found 

that while the impact of EC on cropland area trend had decreased (principally due to positive 

contribution decreased), although EC remained the dominant factor on cropland area trend in most 

of the study area (dominant area exceeded 50% of FPEN). There are two possible reasons. First, 

largely successful of the ecological restoration programs implemented in FPEN, making the most 

croplands converted to ecological land (forests and grasslands) during the past two decades 

[14,52,53]. Second, less economic development makes the amount of croplands converted to 

construction land lower than that ecological land in FPEN [14,54,55]. Other factors, such as the 

vulnerable ecosystem and water scarcity, may have hindered further expansion of cropland into 

forests and grasslands, leading to a decrease in the contribution of EC [56,57]. Additionally, rapid 

urbanization and industrialization resulting in more agricultural labor force far away from croplands, 

may also be an important factor contributing to the decline in the influence of EC [12]. Furthermore, 

our results also showed that the dominant area of UE increased while EC decreased. 

Although climate change and extreme events have been regarded as important drivers for the 

cropland area changes under global warming, they are still rarely mentioned in previous studies, 

particularly in exploring the driving mechanism of cropland area change [20,27]. Therefore, we 

estimated the contribution of indices related to climatic change and extreme events on cropland area. 

We found that the cropland area is highly correlated to all the climate factors involved in this paper 

(R>0.4, p<0.05). However, areas of significantly correlated with basic climate variables required by 

vegetation growth and development, such as temperature and precipitation, were very small (Figure 

4e and f). In contrast, the area of extreme events was much larger (Figure 4 a, b and d). This indicates 

that the extreme events largely broader threaten agricultural activities in FPEN. Moreover, we found 

that regardless of the positive or negative contributions of TH90p and TL10p on cropland area trend, 

their values increased in most regions of FPEN (Figure 7a~b). Indicates that extreme temperature 

events are more closely related to cropland area trend in the context of climatic warming [23]. Unlike 

Zaveri, Russ and Damania [10], we found that drought remains one of a vital factors to limiting the 

cropland expansion in FPEN. This situation illustrated that although coverage and intensity of 

irrigation facilities increased in the past few years, yet they had a little effect on offsetting the negative 
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effects of drought on croplands [23]. This may be caused by an increased trend of D20p (trend of 

D20p from 0.02 days/a in 1992−2010 to 0.03 days/a in 2010−2020, Figure A2c). Extreme precipitation 

event is an exception, the area of significant correlation between annual extreme precipitation and 

cropland area in FPEN is small (Figure 4c, p<0.05), possibly due to few areas of significant trend of 

annual extreme precipitation in spatial extent (significant trend of annual extreme precipitation 

accounted for 6.3% of FPEN, Figure 4Ac, p<0.05). Overall, these results directly demonstrate that 

impacts of extreme events, especially extreme temperature, on cropland area trend than average 

climate change in FPEN. 

4.2. Policy recommendations 

Although the existing cropland protection policies have a positive impact on the stability or 

increase of cropland area, there are great uncertainties in the future [3,58]. However, the increasing 

gradually negative contributions of extreme events, environmental conditions, economic 

development, and policies factors could be not neglected. According to the results, this study 

provides the following four aspect suggestions: (1) strengthen intensive land utilization. Reduce the 

cropland loss caused by the construction land expansion. Improve requirement of cropland 

protection policies,  and strictly limit the conversion of high-quality cropland to other uses [58]. (2) 

Vigorously promote sustainable agricultural intensification, reduce pesticide and fertilizer use, and 

adopt intercropping/fallow forms of farming [59]. It could help increase food production while 

avoiding the ecological environment degradation of FPEN due to intensive intensification. (3) 

Increase financial investment related to agriculture, implement targeted agricultural payment 

policies, and attract large, medium and small agricultural enterprises to participate in local 

agricultural development [21]. At the same time, the land managers are suggested to raise 

appropriately prices of agricultural products to ensure farmers' income, promote motivate farmers 

to engage in agricultural activities and maintain or increase appropriately cropland areas in FPEN in 

the future [19]. (4) Accelerate development of agricultural science and technology, such as, promoting 

climate-smart agriculture, better coping with the impact of climate change and extreme events on 

food production, and reducing the risk of cropland loss caused by unfavorable climatic conditions 

[60]. 

Furthermore, considering the different climatic and environmental conditions in FPEN, The 

above recommendations should be precisely implemented according to location conditions [19]. For 

example, eastern region has abundant black soil resources and flat terrain. Intensive agriculture 

should be vigorously developed, increased financial investment, and appropriately increased area of 

cropland. On the contrary, in the central and western with a relatively vulnerable ecological 

environment, we should promote drought-resistant, heat-resistant and cold-resistant crops under the 

premise of ensuring the existing croplands, while avoiding large-scale expansion of cropland. 

4.3. Limitations of this study 

In this study, we only considered the effect of frequency of extreme events on cropland area 

trend. However, cropland area trend is also affected by other features of extreme events, such as 

duration, intensity and areal extent. Additionally, lag effects between driving factors and cropland 

area trend were not considered in this study. More importantly, although we tried to explore the 

impacts of drivers on cropland area trend from as many perspectives as possible in this study, we 

still cannot take into account all relevant factors. Besides, the interactions among drivers were not 

considered in this study. Therefore, we will focus on addressing the above issues in future work. 

5. Conclusions 

This study analyzed the spatiotemporal dynamics of cropland area and its driving factors during 

1992−2020, and quantified the impacts of these drivers on cropland area trend in three periods 

(1992−2020, 1992−2010, and 2010−2020). We found that cropland changes showed spatial 

heterogeneity. Increased cropland areas mainly were located in the eastern region, while decreased 
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focused on the central and western regions. Yet the total cropland area showed a significant 

increasing trend with 333.5km2/a (p<0.05) in FPEN during 1992−2020. The results of ridge regression 

analyses presented that ecological construction and urban expansion dominated cropland area 

change in FPEN. Ecological construction was always the largest contributor, even though relative 

contributions of EU increased 33.7% during 2010−2020. At the same time, extreme events effects on 

cropland area trend evidently increased, and TH90p was the largest ~99.4%, largely due to increased 

frequency of extreme weather events under climatic warming. Importantly, the dominant area of 

extreme events in 2010−2020 increased about six times compared to that in 1992−2010. TH90p and 

TL10p are the first two dominant extreme climatic factors. Also, we found that impacts of 

socioeconomic factors on cropland area trend increased. Thus, it is necessary to consider extreme 

weather events in future related studies. It could help us better understand cropland area trend and 

maintain food security under climatic warming. 
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Abbreviation 

Abbreviation Full name 

TH90p Annual frequency of extreme high temperature

TL10p Annual frequency of extreme low temperature 

D20p Annual frequency of drought 

PET Potential evaporation 

NPP Net primary productivity 

NTL Nighttime light index 

UE Urban expansion 

EC Ecological construction 

Appendix A 

1. Method 

The spatial-temporal standardized of variables means that variables are standardized at the 

same time in both temporal and spatial dimensions. The spatial-temporal can make the relative 

contribution of the driving factors comparable in spatial, meanwhile, to reflect the trend of cropland 

area caused by per unit change of driving factors. This method enables us to analyze the relative 

contribution of driving factors to the trend of cropland area at the county-scale. Eq. 1 is used to 

compute variables of spatial-temporal standardized, respectively. 

𝑉௜௝ = 𝑉௜௝ − 𝑚𝑖𝑛 ቀ𝑚𝑖𝑛൫𝑉௜௝൯ቁ𝑚𝑎𝑥 ቀ𝑚𝑎𝑥൫𝑉௜௝൯ቁ − 𝑚𝑖𝑛 ቀ𝑚𝑖𝑛൫𝑉௜௝൯ቁ , 0 < i ≤ 245,0 < j ≤ 9 (Eq. 1)
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where 𝑉௜௝  represent the deviation standardization time series of j variable in i county (have 9 

variables and 245 counties in this study); 𝑚𝑎𝑥 ቀ𝑚𝑎𝑥൫𝑉௜௝൯ቁ and 𝑚𝑖𝑛 ቀ𝑚𝑖𝑛൫𝑉௜௝൯ቁ are the maximum 

and minimum value of 𝑉௝, respectively. 

To evaluate the accuracy of the simulated results, we calculated three metrics, including root-

mean-square error, RMSE and coefficient of determination R2 and RMSE/mean, for each partition and 

county (Figure A4). Formulas is as follows: 

𝑅𝑀𝐸𝑆௝ = ඨ∑ ൫𝐻௜௝ − 𝑆௜௝൯ଶ௡௜ୀଵ 𝑛  (Eq. 2)

𝑅𝑀𝑆𝐸௝𝑚𝑒𝑎𝑛௝ = 𝑅𝑀𝑆𝐸௝𝐻ఫതതത  (Eq. 3)

𝑅௝ଶ = 1 − ൫𝐻௜௝ − 𝑆௜௝൯ଶ൫𝐻௜௝ − 𝐻ఫതതത൯ଶ  (Eq. 4)

where 𝐻௜௝ and 𝑆௜௝ are the historical and simulated cropland area in the year i (from 1992 to 2020) in 

j country (0<j≤245), respectively. 𝐻ఫതതത is the average of 𝐻௜௝ from 1992 to 2020. 

Appendix B 

1. Figure 

 

Figure A1. The VIF scores of filtered driving factors at county-scale. 

The extreme events, environmental conditions, socioeconomic development, construction land 

area and ecological land area changed considerably in FPEN from 1992 to 2020 (Figure A2a~i, Figure 

A3a~d, Figure A4a~m). For climate, AAT increased significantly at the rate of 0.03℃/a (p<0.05), and 

AP decreased significantly at the rate of -2.8mm/a (p<0.05) in FPEN during 1992–2020, indicating the 

FPEN has experienced extensive warming-drying change ((Figure A3a~b, (Figure A4c and e). At the 

same time, the frequency of extreme events had also changed. TH90p and D20p had significant 

increasing trends (0.65 days/a and 1.22 days/a, p<0.05), mainly distribution in the eastern and central 

regions (Figure A2a and c, Figure A4a and f). On the contrary, the TL10p was significantly decreased 

with 0.76 days/a (p<0.05) (Figure A3b, Figure A4b). Throughout FPEN, R95p changed very little, 

although it decreased with -0.02 days/a, was not significant (Figure A3c, Figure A4d). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 June 2023                   doi:10.20944/preprints202306.2173.v1

https://doi.org/10.20944/preprints202306.2173.v1


 16 

 

PET and NPP increased significantly at the rate of 2.7 mm/a and 6.6 gC/m2/a, respectively 

(p<0.05, (Figure A2d and e). In contrast, SWV did not change significantly, and decreasing only by 

0.03 mm3 from 1992 to 2020. Especially, the change of SWV showed distinct stages with opposite 

trend before and after 2006, and increasing from 1992 to 2006 and decreasing from 2006 to 2020 

((Figure A3d). This situation may be caused by the increase in FPEN irrigated agriculture [61]. 

Spatially, the areas with a significant increase in PET accounted for ~60.9% of FPEN, principally 

distributed in large parts of eastern and central. Except for some parts of eastern, where NPP 

exhibited a significant decreasing, most of remaining areas were dominated with significant increase, 

the areas of significant increase ~95.3% of FPEN (Figure A4g and h). The area of SWV with significant 

reduced accounted for ~44.8% of FPEN, mostly distributed in a high proportion of forestlands (Figure 

1a and Figure A4i). 

POP and NTL increased significantly at a rate of 12.1×104per/a and 0.19DN/a, respectively 

(p<0.05, Figure A2f and g). Spatially, POP increase showed the characteristics of aggregation, mainly 

in central. Except for eastern, NTL showed a significant increase trend in most regions (p<0.05), and 

the significant increase in area accounts for ~74.6% of FPEN (Figure A4j and k). 

UE decreased from 45.2×104km2 in 1992 to 44.1×104km2 in 2020 in FPEN, a significantly trend 

increased with ~434.7km2/a (p<0.05, Figure A2h). UE in the study area expanded at a rate of 

165.8km2/a from 1992 to 2020, and the significantly increased area accounted for ~12.54% of FPEN 

(Figure A2i, Figure A4m). In the eastern, the loss of EC was the largest (the loss area was ~1.1×104km2), 

and the significantly trend decreased area accounts for ~33.34% of FPEN. The EC in most areas of 

central and western was mainly expanded, with a significant expansion area of 106.65km2 and 

278.46km2, respectively (Figure A4l). 
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Figure A2. Time series of filtered driving factors by Pearson correlation analysis during 1992−2020. 
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Figure A3. Time series of driving factors with significantly correlated areas < 20% during 1992−2020. 

 

Figure A4. Trends of driving factors in FPEN from 1992 to 2020. Spatial distribution of driving factors 

trend (a) ~ (m), mean trend of driving factors (n). 
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Figure A5. Comparison between simulated by ridge regression and historical cropland area for each 

partition and county during 1992−2020. 

 

Figure A6. Contribution difference of driving factors between 1992−2010 and 2010−2020. (a) Absolute 

contribution difference of driving factors between 1992−2010 and 2010−2020, (b) positive absolute 

contribution difference of driving factors between 1992−2010 and 2010−2020, (c) negative absolute 

contribution difference of driving factors between 1992−2010 and 2010−2020. 

FPEN

Eastern

Central

Western

-100 0 100 200 300 400 500 600
Relative changes (%)

 UE
 EC
 NTL
 POP
 NPP
 PET
 D20p
 TL10p
 TH90p

(a)

Absolute relative change(%) TH90p TL10p D20p PET NPP POP NTL EC UE
FPEN 99.4 73.4 0.1 60.5 -33.8 6.3 73.4 -10.3 50.8

Eastern 167.5 0.8 27.2 18.8 -28.3 14.7 94.3 -13.8 31.3
Central 81.4 97.7 20.9 193 -14.5 14.2 51.7 -16.2 55.9
Western 293.3 -44.8 -6.7 89.3 5.3 60.5

-100 0 100 200 300 400 500 600
Relative changes (%)

(b)

-100 0 100 200 300 400 500 600

Negatvie absolute relative change(%) TH90p TL10p D20p PET NPP POP NTL EC UE
FPEN 59.2 218.8 11.2 139.6 -30.8 15.2 62.6 8.5 32.1

Eastern 100.5 47.8 77.5 -21.5 9.3 130.8 18.6 11.5
Central 74.5 239.8 54.3 372.2 -0.9 21.5 32.1 -3.6 37.9
Western 643.9 -54.7 5.6 80.7 27.4 39.1

Relative changes (%)

(c)

Postive absolute relative change(%) TH90p TL10p D20p PET NPP POP NTL EC UE
FPEN 184 62.2 -22.8 8.2 -42.2 -4.2 59.3 -35 44.5

Eastern 312.3 23.4 -0.6 -7.3 -34.8 26.2 69.2 -19.8 71.3
Central 47.9 42 -44 -11.3 -49.5 0.8 -14.4 -49.5 46.2
Western 255.6 -23.7 -15.2 -2 -34.7 0.9
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Figure A7. Relative contributions of driving factors to trend in cropland area during 1992−2010. 

 

Figure A8. Relative contributions of driving factors to trend in cropland area during 2010−2020. 

2. Table 

Table A1. The relative contribution absolute values of the driving factors across the FPEN and three 

sub-regions during 1992−2020. 

Data types Period 
Spatial 

resolution 

Temporal 

resolution 
Data source 

Land use/land cover 1992−2020 300m yearly ESA/CCI viewer (ucl.ac.be) 
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Maximum and 

minimum 2m 

temperature 

1992−2020 0.25° hourly 

ERA5 hourly data on single 

levels from 1979 to present 

(copernicus.eu) 

2m-temperature 1992−2020 0.25° monthly 

ERA5 monthly averaged data 

on single levels from 1979 to 

present (copernicus.eu) 

Precipitation 1992−2020 0.25° hourly 

ERA5 hourly data on single 

levels from 1979 to present 

(copernicus.eu) 

Potential 

evaporation 
1992−2020 0.1° hourly 

ERA5-Land monthly averaged 

data from 1950 to present 

(copernicus.eu) 

Volumetric soil 

water layer 1 
1992−2020 0.25° hourly 

ERA5 hourly data on single 

levels from 1979 to present 

(copernicus.eu) 

Nighttime light 1992−2020 30″ yearly 

Harmonization of DMSP and 

VIIRS nighttime light data from 

1992−2020 at the global scale 

(figshare.com) 

Population 2000−2020 30″ yearly 
LandScan Datasets | 

LandScan™ (ornl.gov) 

Net primary 

productivity 
2000−2020 500m yearly 

LP DAAC - MOD17A3HGF 

(usgs.gov) 

Daily 

Evapotranspiration 

Deficit Index 

1992−2020 0.25° daily 
http://www.dx.doi.org/10.1192

2/sciencedb.00906 

Table A2. The categories of driving factors for cropland area trend. 

Categories driving factors 

Environmental conditions Annual average temperature 

 Annual precipitation 

 Potential evapotranspiration 

 Volumetric soil water 

 Net primary productivity 

Extreme events 
Annual frequency of extreme high 

temperature 

 
Annual frequency of extreme low 

temperature 

 Annual frequency of drought 

 Annual frequency of extreme precipitation 

Socioeconomic development Sum of population 

 Annual average nighttime light 

Urban expansion Construction land area 

Ecological construction Ecological land area 

Table A3. Definition of extreme climate and drought indices based on daily data in this study. 

Indices Attributes Definition Units 

TH90p 
Extreme high 

temperature 

Count of days per each year where THij>Tmax90p. THij is the 

daily maximum temperature on day i in year j. Tmax90p is the 

90th percentile centered on i in a five days window of daily 

maximum temperature during 1992−2020. 

Days 
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TL10p 
Extreme low 

temperature 

Count of days per each year where TLij>Tmin10p. TLij is the 

daily minimum temperature on day i in year j. Tmin10p is the 

10th percentile centered on i in a five days window of daily 

minimum temperature during 1992−2020. 

Days 

R95p 
Extreme 

precipitation 

Count of days per each year where Rij >R95p. Rij is the daily 

precipitation (Rij≥1mm) on day i in year j. R95p is the 95th 

percentile during 1992−2020. 

Days 

D20p 
Drought 

(DEDI) 

Count of days per each year where Dij>D20p. Dij is the daily 

DEDI on day i in year j. D20p is the 20th percentile centered 

on i in a five days window of daily DEDI during 1992−2020. 

Days 
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