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Abstract: Cropland area is closely related to food production. More previous focuses were paid on
impacts of extreme events on food production, but less on cropland dynamics. This study took the
Farming-Pastoral Ecotone of Northern China (FPEN) as a case area, to investigate its cropland area
dynamics and driving factors in view of perspectives of extreme events, environmental conditions,
socioeconomic development, urban expansion, and ecological construction. We used ridge
regression approach to quantify contributions of these drivers to cropland area dynamics. Results
showed that cropland area increased significantly at a rate of 333.5km?/a during 1992-2020 and were
spatially clustered in east of the FPEN. Impact extent and size each driving factor on cropland trend
presented large spatiotemporal differences, but ecological construction (EC) had overall the greatest
impact on cropland area changes, followed by urban expansion (UE). In comparison, TL10p has the
smallest. UE-dominated areas increased 41.9% since 2010s, but still less than EC. Furthermore, we
found that extreme events effects on cropland area trend evidently increased. Particularly, TH90p
displayed the most increase (~99.4%). Cropland area changes dominated by extreme temperature
events in 2010-2020 increased nearly six times than that in 1992-2010. These findings suggest that
increasing impacts of extreme weather events on cropland area changes should be cautioned.

Keywords: cropland area trend; contribution rate; ridge regression model; extreme events;
ecological construction; urban expansion

1. Introduction

In the context of the climatic warming and growing global population, global agriculture
development sustainability and food security are facing large challenges [1]. As an irreplaceable food
production physical carrier, cropland area is closely related to food security, plays an important role
in maintaining food security and stabilizing domestic food supply [2,3]. However, studies related to
predicting impacts of various factors on grain yield have received more focuses over the past decades,
but less attentions on the cropland area trend and its driving factors [4-7]. Therefore, clarifying the
drivers of cropland change can enrich the connotation and theoretical basis of driver research of
cropland dynamics. Additionally, it could provide valuable references for cropland utilization,
management, and conservation.

The driving mechanism of cropland area trend is a complex issue that is forcing by multiple
drivers of nature and human activities, such as climate, environmental conditions, socioeconomic
development, urban expansion and ecological construction [8-10]. Urban expansion is generally
regarded as the dominant driver of cropland area decrease [11-13]. In the past decades, half of
decreased cropland was used for urban expansion [14]. Ecological construction represents expand of
ecological land, such as forests and grasslands in a region, is another key factor affecting the cropland
area [15]. It has been proven the major reasons for cropland decrease in fragile ecological areas [14,15].
Some studies have explored the relationships between cropland area trend and the environmental
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conditions and socioeconomic development in recent years [16,17]. For example, by analyzing
relationships between the cropland area and the environmental conditions, Zhong, et al. [18] found
that cropland area decreased along with elevation gradient increase during 1999-2006. Wang, et al.
[19] selected fifteen drivers, collecting from the perspectives of cropland status, environmental
conditions and socioeconomic development, to assess impacts of cropland expansion, and they found
that all of these drivers had large impacts on cropland area trend at different spatial and temporal
scales.

In addition, climatic change and increasingly frequency of extreme events are also one of the
drivers on the cropland area trend [20-22]. It is projected that climatic change may reduce China's
cropland area by 2.09~25.51% by the end of this century [23]. A study from Shi, et al. [24] reported
that climatic warming trends facilitated the cropland area increase in arid and semi-arid regions, yet
drying trends did not limit cropland area increase. Similarly, Zaveri, Russ and Damania [10] reported
that dry anomalies lead to an increase in cropland area, and estimated that dry-induced cropland
expansion rate accounted for ~9% of the cropland expansion rate. In addition, recent studies showed
that the extreme events usually had more impacts on agriculture than their average [25,26]. And
extreme heat events have a long-lasting impact on reducing cropland area [23]. However, previous
studies related to predicting impacts of nature and human activities on cropland area trend have
received the highly focuses at the past decades, but less attentions have been focused on how climatic
change and extreme weather events altered the spatial extent and trends of croplands [20,27].

The Farming-pastoral ecotone of northern China (FPEN) where extreme events occur frequently
is particularly fragile to human activities and climate change [28,29]. In recent years, the quantity and
spatial distribution of cropland have changed dramatically under the influence of climatic change
and human activities [30]. Due to its coverage of typical geographical features such as the Northeast
plain, the Inner Mongolia Plateau and the Loess Plateau, as well as substantial regional variations in
policies and climate, this region provides a natural experimental setting for studying the
spatiotemporal characteristics of cropland area changes and the driving factors. Therefore, the aims
of this study, using FPEN as an example, are: (1) to quantify the relative contributions of extreme
events, environment conditions, socioeconomic development, urban expansion and ecological
construction on change in cropland area, (2) to clarify the differences in contribution of driving factors
before and after the turning point (TP), and (3) to determine the dominant driver of cropland area
trend and the divergent driver contributions between 1992-2010 and 2010-2020 at the county-scale.

2. Data and methods
2.1. Study area

FPEN is a typical coupling zone of farming and livestock-grazing [31,32]. The cropland and
grassland area accounted for ~73.9% of FPEN, of which the cropland area was ~20.2x10* km? (Figure
1a). Its terrain is complex and diverse, which is low in the northeast and high in the southwest. The
region has a temperate continental monsoon climate, with rainfall considerably affected by the
summer monsoon, predominantly in summer, and the average annual precipitation of 250~600mm
(Figure 1d). The average annual temperature is 6.8°C (Figure 1c).

Considering the large differences in climate, environment and policies in the study area, we
subdivided FPEN into three regions. (1) Eastern region: locating in the east of the study area, it
belongs to the Northeast China Plain. The average annual precipitation of ~468.2mm, and the average
annual temperature is 5.8°C. Eastern of FPEN has abundant black soil resources, and flat terrain,
which provides good conditions for agricultural activities and mechanized production. Also, China's
main commercial grain production base and a key implementation region for cropland protection
policies [28,29]. (2) Central region: locating in the center of the study area, connecting Inner Mongolia
Plateau and Loess Plateau. The average annual precipitation of 551.0mm, and the average annual
temperature is 7.5°C. The terrain in central region is complex and diverse, and areas of cropland and
grassland are the largest (Figure 1a). Due to the prominent problems of land and environmental
degradation, it has become a key ecological reserve in China [33]. (3) Western region: locating in the
west of the study area, it belongs to the Loess Plateau. The annual precipitation and temperature are
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higher than eastern, is 600.8 mm and 7.4°C, respectively. Western region has low vegetation coverage,
severe soil erosion and a particularly fragile ecological environment. Like central region, western is
also a key implementation area for ecological projects such as the “Grain for Green” Project.

108° E 116° E 124°E 108° E 116° E 124° E
z |® ) z
o {0
© )
<+ ¥ 5 <
] er Eag
=
Y
o b ¢ g S > ~ 1k 5
R E £~ ] erev 2
wes% > e E partition
g r ] o~ AT .\

[ croplands [ water body
I forests [ built-upland o 250 500 km
[ grasslands [_] bare land A

46° N
46° N

38°N
38°N

Figure 1. Location maps of the FPEN. a) land use/land cover map in 2020, b) Elevation of the FPEN,
c) and d) averaged annual mean temperature and total precipitation during 1992-2020.

2.2. Data and processing

The data used in this study included land use/land cover data, meteorological data, drought
index data, volumetric soil water data, net primary productivity data, population data, and nighttime
light index data.

The land use/land cover data were obtained from the European Space Agency (ESA). We
grouped land use/land cover data into six categories: croplands, forests, grasslands, water body,
built-up land, and bare land, according to the International Geosphere-Biosphere Programme (IGBP)
and Chinese Academy of Science classification system. To analyze spatial changes of land use area,
we counted the sum area of croplands, and sum area of forests and grasslands, and urban area within
each 9km x 9km grid cell. Specially, for the mosaic croplands (>50%) in the IGBP classification system,
we only counted half the area for croplands. In addition, the sum of forests and grasslands areas is
considered in our research as ecological land area, and the area of built-up land as construction land
area.

Meteorological data and volumetric soil water data were all derived from the European Centre
for Medium Range Weather Forecasts (ECMWF) Reanalysis ERA5 dataset. Here, daily maximum and
minimum temperature and annual average temperature were calculated using the hourly maximum
and minimum 2m temperature data, the monthly average temperature data, respectively. Daily
precipitation and annual precipitation were computed using the hourly precipitation data.
Subsequently, the daily maximum and minimum temperature, precipitation were used to estimate
extreme climate indices. Yearly volumetric soil water and potential evaporation were calculated
using the hourly volumetric soil water data of soil layer 1(0~7cm) and potential evaporation data.
Drought index data, daily evapotranspiration deficit index (DEDI), obtained from the study of Zhang,
et al. [34]. The DEDI calculated based on daily ERA5 product, and defined as the standardized deficit
of difference between actual and potential evapotranspiration. DEDI not only considered the
aggravating effect of warming on the severity of drought, but also reflects the degree of impact of
drought on vegetation and soil moisture in time. More important it was extremely sensitive to
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agricultural drought [35]. Thus, compared with other commonly used drought indices, such as
Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index
(SPEI), DEDI is more suitable for analyzing the impact of drought on the cropland area trend under
climate warming [36]. The yearly net primary productivity data is derived from United States
Geological Survey (USGS) MOD17A3HGF dataset.

The population data are collected from the Land Scan, which is the available and fine resolution
global population data. We retrieved the annual nighttime light index data from the study of Li, et
al. [37]. This annual data is generated by inter-correcting nighttime light index data from different
satellites using a sigmoid function and derived relationship. It was verified that the corrected
nighttime light index data showed a good consistency and was superior to other nighttime light index
data in terms of the temporal consistency. In addition, the data also showed good agreements with
the temporal trends of socioeconomic activities.

In order to maintain spatial consistency, all the data in this research, except the population, were
resampled to a spatial resolution of 9km using a bilinear resampling algorithm. For the population
data, we counted population of 9km x 9km. Details of the data used in this study can be found in
Table Al. In addition, for some vacant time series we replace them with the most recent year, for
example, the population data in 1999 was replaced by that in 2000.

2.3. Methods
2.3.1. Main research framework

In this study, we quantified impacts of driving factors on cropland area trend at the county scale,
and compared the differences in the contribution of driving factors before and after the TP. The main
research framework is illustrated in Figure 2, which incorporated four steps:

(1) Spatial-temporal change analysis. We estimated the spatiotemporal dynamics of cropland
area from 1992 to 2020 by using the trend analysis approach and detected its time series TP by the
piecewise regression approach.

(2) Driver factors determination. We quantified the correlation between cropland area and
drivers using the Pearson correlation analysis at the county-scale, and judged whether put initial
driving factors into the ridge regression model by considering the correlation coefficient R values and
the ratio of significant area to total area.

(3) Relative contribution of drivers. We put the filtered factors and cropland area into the ridge
regression model, tested accuracy of model based on the RMSE, R? and RMSE/mean (Appendix A
Eq.2~4, Figure 5), and finally get the relative contribution.

And (4) differences in contribution of driving factors before and after the TP. We took the TP
obtained in step (1) as a node, the relative contribution value of the driving factors before and after
the TP, and their relative changes were calculated, respectively. Finally, we visualized the spatial
distribution of the dominant and biggest changes driver at the county-scale.
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Figure 2. The main research framework of this study. Note: the statistical significance level is 0.05
(p<0.05) in this study.

2.3.2. Initial driver factors selection and driver factors determination

Previous studies have shown that the potential driving factors that could affect the cropland
area change were grouped into five categories: extreme events, environmental conditions,
socioeconomic development, urban expansion and ecological construction (Table A2) [16,17,19,22].

Environmental conditions are represented from the perspective of meteorology, soil, and grain
production situation using Annual average temperature, annual precipitation, potential
evapotranspiration (PET), volumetric soil water, and net primary productivity (NPP), respectively
[29,38,39]. These factors are closely related to grain growth and development, which in turn affects
the change of cropland area [19,22]. In addition, extreme events could be largely responsible for
altering cropland area due to a dramatic increase in the frequency and intensity of extreme events
under climate change [10,23,25,40,41]. Therefore, the climate extremes index (covering extreme high
temperature, extreme low temperature, extreme precipitation, and drought) also contained in our
research.

Due to unavailability of continuous socioeconomic data at the grid scale, we predominantly
considered two types of socioeconomic factors, namely population and satellite-based nighttime light
index (NTL) data [8]. The areas of construction land and ecological land represent urban expansion
and ecological construction in this study, respectively [15].

To further confirm whether the driving factors in Table A2 can reasonably explain the cropland
area trend, before estimating the relative contribution of driving factors on cropland area, we
screened out the driving factors that had stronger relative (R > 0.4) at first. Meanwhile, we also erased
the driving factors that the ratio of significant area to total area was less than 20%, due to the spatial
heterogeneity. Their significant was judged with the help of F-statistic test. The Pearson correlation
analysis formula is as follows:

_ cov(ep, X))

Repx, = ,0 < X; < 245 )

OcpOyx,
where i is the county of FPEN; cp is the cropland area of i county; X is the driving factors of i county;
cov(cp, X;) is the covariance of cropland area and driving factors at the county-scale; o, and oy, is
the standard deviations of cropland area and driving factors, respectively; R, x, is the correlation
coefficient of cropland area and driving factors at the county-scale. R, x; is always between -1 and
1. If Repx; = 1, means there are the perfect positive linear correlation between cropland area and
driving factors. If Rgp,x, = —1, indicates perfect negative linear correlation between cropland area
and driving factors. While R, y, = 0 implies no linear correlation. Additionally, an a-level of 0.05 is
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used as the threshold of statistical significance in our research. While |F| > Fi-«, means R, is
2

significant.

2.3.3. Extreme climate index calculation

We selected four indices, including extreme high temperature, extreme low temperature,
extreme drought and extreme precipitation, to describe the extreme climate as they were closely
related to cropland area change/agricultural production in FPEN. These indices were calculated by
referring to the definition of climate extremes by the Expert Team on Climate Change Detection and
Indices (ETCCDI) [42,43]. In addition, to keep the unit of drought indices consistent with others, we
compute the annual frequency of drought (D20p) based on DEDI using the same method as ETCCDI.
Detailed calculation method is shown in Table A3.

2.3.4. Trend analysis

Linear regression was used to estimate the spatial-temporal trends of annual driving factors and
cropland area [44]. Their significant was judged by F-statistic test in this study. Trend formula is as
follows:

nYtoitx; — QG Q1 X
slopei — Zt—l nl. Z(Zt—l n)(Ztgl L)’O <t<?29 (2)
nyioat? = (= t)
where 7 is study coverage time; x; represents the value of driving factors/cropland area in year f;
slope; is the slope value of this factor. Additionally, if slope; is positive, it means that x; increases
over time. The larger Islope; | is, the more obvious the increasing trend is. Otherwise, it will decrease
over time.

2.3.5. Turing point (TP) detection

A piecewise linear regression model was used to identify the TP of the cropland area from 1992
to 2020 [45], and its significant was judged by F-statistic test. The piecewise linear regression model
is as follows:

_(Bo+ Bt +e, t<t
y_{ﬂz+[>’11t+[)’2(t—a)+s,t>tz ®)

where y is the cropland area; ¢ is the year; t, is the identified TP; B, isintercept; f; and f§; + B, are
the value of trends before and after the TP, respectively; and ¢ is the residual errors. Least squares
method is used to compute coefficients, such as f,, f;, f.. In this study, we determined TP by
multiple iterations [46,47]. Specifically, firstly, we limited points to between 1996 and 2016, to ensure
that the time series before and after the point is greater than or equal to 5 years. Then, we used
multiple fitted linear iterations to obtain the point where had minimized residual value square sum
of the both sides. Finally, we used F- statistic test to judge whether the trend of time series on both
sides of the point is significant. If it passes the significance test (p<0.05), this point is regarded as the
TP of cropland area changes.

2.3.6. Ridge regression model

The ridge regression model was designed to solve the problem of multi-collinearity between
independent variables [48-50]. Compared to the traditional multiple linear regression, ridge
regression is more tolerant of ill-conditioned data. This study involved nine variables, and the results
of factor inflation factor (VIF) test showed that there was multi-collinearity (VIF>10) between driving
factors (Figure Al). The ridge regression model is expressed as follows:

.é(k) = (XTX + kl)_lXTACropland (4)

where Acyopiana is cropland area of spatial-temporal standardized, B (k) is regression coefficient, X
is a 2-dimensional matrix of spatial-temporal standardized driving factors. Detailed calculation
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method of spatial-temporal standardized is shown in Methods Section of the Appendix A [Eq. 1]. k
is the ridge parameter. The principle of selecting the value of k: if k = k, the (k) of driving factors
tends to be stable, ko will be ridge parameter. In our research, kis 1.

To account for the long-term trend in the effects of drivers on cropland area, we multiplied the
ridge regression coefficients by the trend of the corresponding drivers in order to characterize the
contribution of drivers for cropland area trends. The contribution of the driving factor to the cropland
area is expressed as follows:

Nij = BXij trena @)
The relative contribution is:
Nij
Ry = ——— 6
AL (©)

where Xjj yrenqg is the spatial-temporal standardized of driving factors trends; Rm;; represents
relative contribution of driving factors to trends of cropland area, the positive and negative of 7;;
indicate the positive and negative effects of 7;;, its value larger is impact greater.

The accuracy of the simulated results evaluated using three metrics [root-mean-square error
(RMSE), coefficient of determination (R?), and RMSE/mean]. Detailed calculation method is shown in
Methods Section of the Appendix A [Eq. 2 ~ 4].

3. Results
3.1. Spatial-temporal dynamics of cropland area

The cropland area significantly increased at a rate of ~ 333.5km?a in FPEN during 1992-2020
(p<0.05). The area increased from 19.5x10*%km? in 1992 to 20.2x10*km? in 2020 (Figure 3c). Regionally,
cropland area of the eastern region continued to increase in the entire period with a growth rate of
~357.3km?/a (p<0.01, Figure 3d). The cropland area in the central region clearly showed two distinct
opposite trends before and after 2005 (Figure 3e). Firstly, the cropland area increased significantly
from 1992 to 2005, and the growth rate was ~74.2km?/a (p<0.01). Then, at the stage of 2005-2020, its
area significantly decreased at a rate of 91.4 km?/a (p<0.01). Its total area finally decreased 765.9km?
during 1992-2020. The cropland area of western region showed a significantly decreasing trend
(p<0.05). The entire cropland loss area is 875.2 km? from 1992 to 2020 (Figure 3f). Spatially, the
increased cropland area of the entire FPEN focused on the eastern region, the significant increased
area was 14.13x10*km? (p<0.05), particularly in the eastern part of Inner Mongolia. The decreased
cropland area primarily in the central and western regions, its significant increased and decreased
trend areas were 16.08x10%km? and 22.38x10*km?, respectively (Figure 3a).

In FPEN, ~38.90% of cropland had a significant TP (p<0.01, Figure 3b). The TP of the cropland
area mainly occurred after 2010, accounting for ~24.85% of FPEN (63.88% of entire TP regions). The
pixels of croplands having TP before 2000 only accounted for ~1.55% of FPEN. Through overlay
analysis of the cropland area trend and TP, we found that there were more prone to TP after 2010, if
the cropland area exhibited a significant decreasing trend in pixel scale. Therefore, we speculated
that there might be large differences in the impact of driving factors on the cropland area trend
around 2010.
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Figure 3. Spatiotemporal dynamics of cropland area from 1992 to 2020, (a) the trend of cropland area,
(b) the turning points of cropland area changes, and (c-f) cropland area changes of the FPEN and three
sub-regions.

3.2. Selecting driving factors based on the ridge regression model

This study used the Pearson analysis to quantify the correlations between driving factors and
cropland area in FPEN (Figure 4a~m). The results showed that the mean absolute of correlation
coefficient between all driving factors with cropland area was greater than 0.4. Among them, the
mean absolute of the correlation coefficients of EC and UE were much higher than other factors (R
values of ~0.9 and 0.8, respectively). At the significance level of 0.05, the area where the cropland area
was significantly correlated with socioeconomic development, urban expansion and ecological
construction all exceeded 50% of FPEN. On the contrary, except for NPP, the area of significant
correlation between environmental conditions and extreme events with cropland area were all less
than 50% of FPEN, of which the annual average temperature, annual precipitation, volumetric soil
water and annual frequency of extreme precipitation were significantly correlated with cropland area
in less than 20% of FPEN (Figure 4c, e, f and h). Due to spatial heterogeneity, the small range
significant correlation cannot clearly explain the reason for the cropland area trend in the entire
FPEN. Thus, the annual average temperature, annual precipitation, Annual frequency of extreme
precipitation and volumetric soil water were excluded from the follow-up study.
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Figure 4. The Pearson correlation coefficients between cropland area and corresponding driving
factors (a) ~ (m), and boxplots for correlation coefficient absolute of each driving factors (n).

3.3. Factor attributions of cropland area trends at the county scale
3.3.1. Relative contributions of driving factors to cropland area trends

This study compared the simulated cropland and satellite-drived cropland area in entire FPEN
and its each county. We found that the simulated cropland area agreed well with the satellite-drived
cropland area. Generally, R? is 0.99 and RMSE is 204.3. Of which, regions with R? 0.9 accounted for
~90% of FPEN (Figure A5), indicating the model was robust and suitable for further investigating
cropland area trend and the driving factor’s contributions. Table 1 summarizes the relative
contributions absolute of the driving factors across the FPEN and three subresions. Generally, EC
was the greatest contributor to the cropland area trend from 1992 to 2020 in FPEN, and followed by
UE. Their relative contributions absolute values were 40.3% and 39.3%, respectively. In contrast,
TL10p was the minimal contributor to the cropland area trend. Its relative contribution absolute was
1.3%. Regionally, the impact of TH90p, D20p, NPP and NTL on cropland area trend in the eastern
region was slightly larger than that in the central and western regions. Their relative contribution
absolute values were 1.8%, 2.3%, 10.4% and 4.1%, respectively. The influences of population and UE
on cropland area trend in the central region was slightly higher than in the eastern and western
regions. Their relative contribution absolute values were 7.3% and 40.0%. Furthermore, we also
discovered that PET and EC had relatively greater impacts on the cropland area trend in the western
region. These findings illustrate that cropland area trends in different regions performed spatial
heterogeneity of driving factors.


https://doi.org/10.20944/preprints202306.2173.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2023 doi:10.20944/preprints202306.2173.v1

10

Table 1. The relative contribution absolute values of the driving factors across the FPEN and three
sub-regions during 1992-2020.

Relative contrtgl;tlons absolute TH90p TL10p D20p PET NPP Pop I\ITHT UE EC
(o]

FPEN 1.5 1.3 21 20 9.1 6.8 3.8 39.340.3

Eastern 1.8 14 23 26 104 6.1 4.1 37.638.0

Central 1.5 1.2 21 15 82 73 3.6 40.040.6

western 1.2 1.4 1.8 37 94 63 39 39.241.7

Spatially, the impacts of TH90p, PET, NTL and EC on the cropland area trend were mainly
positive, accounted for 39.5%, 58.8%, 42.3%, and 49.8% of FPEN, respectively (Figure 5a, d, g, and i,
p<0.05). On the contrary, the impacts of TL10p, D20p, NPP, population and UE on the cropland area
trends were mainly negative, accounted for 51.5%, 41.4%, 39.0%, 47.8% and 73.9% of FPEN,
respectively (Figure 5b, ¢, e, f, and h, p<0.05).
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Figure 5. Relative contributions of driving factors to trend in cropland area during 1992-2020. Note:
The black dots in the graph indicating the trend of drivers significantly at the confidence level of 0.05.

3.3.2. The relative contribution changes of driving factors

According to 3.1.1., we found that the TP years of cropland area in FPEN were mainly
concentrated on after 2010. To spatial calculate and compare the relative contribution absolute of
drivers factors, we thus took the year of 2010 as the node. The entire period was divided into two
parts, i.e., the period of 1992-2010 and 2010-2020 (Figure 6, Figure A7, Figure AS8). The relative
contribution absolute values of TH90p, TL10p, D20p, PET, population, NTL and UE from 2010-2020
were higher than those from 1992-2010. Among them, the contribution value of TH90p had the most
increase (~99.4%), mainly from the positive contribution increased (Figure A6). Contrastly, the
relative contribution absolute of NPP and EC were decreased ~33.8% and ~10.3%, respectively,
mainly due to the positive contribution decreased (Figure A6).

Spatially, the relative contribution absolute values of TH90p, TL10p, andUE increased evidently
in more than half of the study area (Figure 6a, b and h). Among them, the increased contribution of
TH90p could be found in the eastern region, while TL10p and UE mainly in the eastern and central
regions. On the contrary, the relative contribution absolute of D20p, PET, NPP, population, NTL and
EC decreased significantly in most regions from 1992-2010 to 2010-2020 (Figure 6c ~ g and i). Among
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them, NPP performed the largest decreased area, accounting for ~70.2%, and followed by EC
(62.0%).
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Figure 6. The relative changes of relative contribution absolute values of driving factors before and
after 2010. Note: The black dots in the graph indicating the trend of both sides of the driver in 2010 is
significant or either side is significant at the 0.05 confidence level. I: the significantly increased trends,
and D: the significantly decreased trends.

3.3.3. Dominance drivers and corresponding changes at the county scale

The relative contribution absolute values were used to determine the dominant factor at the
county scale. We found that the dominance areas of PET, TH90p, TL10p, population and UE were
increasing over time, but other factors were decreasing (Figure 7a~c). In the whole study period
(1992-2020), the dominance of environment conditions, socioeconomic development, urban
expansion and ecological construction covered 5.4%, 2.3%, 39.5% and 52.7% of FPEN, respectively
(Figure 7a). In 1992-2010, the dominated area of ecological construction was the largest, accounted
for 63.0% of FPEN (Figure 7b). Followed by urban expansion, accounted for 30.0% of FPEN (Figure
7b). Environmental and socioeconomic factors only accounted for 4.9% and 1.9% of FPEN,
respectively (Figure 7b). The smallest was extreme events factors, only covered 0.2% of FPEN (Figure
7b). In 2010-2020, the dominated areas of ecological construction and environmental factors (mainly
due to the decreased areas dominated by NPP) decreased ~16.1% and ~88.2%, respectively (Figure
7¢). On the contrary, the dominated areas of socioeconomic factors and urban expansion increased
~35.2% and 41.9%, respectively (Figure 7c). Furthermore, we found that the area dominated by
extreme events factors in 2010-2020 was about six times the area dominated in 1992-2010, mainly
owing to the increased areas dominated by TH90p and TL10p (Figure 7c).

To further examine changes in driver contribution, we used the relative changes of driver
contribution in the two periods to identify the factors with the largest change at the county scale
(Figure 7d). The results showed that counties firstly led by extreme events, socioeconomic, urban
expansion, environmental conditions, and ecological construction covered 43.0%, 16.9%, 15.6%,
13.3% and 10.7% of FPEN, respectively. Individually, the area of TL10p with the biggest change was
higher than other factors, accounting for 22.2% of FPEN, mainly located in the eastern and central
regions.
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Figure 7. The dominant drivers of cropland area trend in the three intervals (a ~ ¢) and the drivers
with the largest relative contribution change between 1992-2010 and 2010-2020 (d) at the county scale.

4. Discussion
4.1. Understanding impacts of driving factors on cropland trends

This study quantified the impacts of extreme events, environment conditions, socioeconomic
development, urban expansion and ecological construction on cropland area trend. Overall, our
research clarifies that the cropland area trend was dominated by ecological construction and urban
expansion. It is consistent with previous studies [11,13,14,51,52]. However, interestingly, we found
that while the impact of EC on cropland area trend had decreased (principally due to positive
contribution decreased), although EC remained the dominant factor on cropland area trend in most
of the study area (dominant area exceeded 50% of FPEN). There are two possible reasons. First,
largely successful of the ecological restoration programs implemented in FPEN, making the most
croplands converted to ecological land (forests and grasslands) during the past two decades
[14,52,53]. Second, less economic development makes the amount of croplands converted to
construction land lower than that ecological land in FPEN [14,54,55]. Other factors, such as the
vulnerable ecosystem and water scarcity, may have hindered further expansion of cropland into
forests and grasslands, leading to a decrease in the contribution of EC [56,57]. Additionally, rapid
urbanization and industrialization resulting in more agricultural labor force far away from croplands,
may also be an important factor contributing to the decline in the influence of EC [12]. Furthermore,
our results also showed that the dominant area of UE increased while EC decreased.

Although climate change and extreme events have been regarded as important drivers for the
cropland area changes under global warming, they are still rarely mentioned in previous studies,
particularly in exploring the driving mechanism of cropland area change [20,27]. Therefore, we
estimated the contribution of indices related to climatic change and extreme events on cropland area.
We found that the cropland area is highly correlated to all the climate factors involved in this paper
(R>0.4, p<0.05). However, areas of significantly correlated with basic climate variables required by
vegetation growth and development, such as temperature and precipitation, were very small (Figure
4e and f). In contrast, the area of extreme events was much larger (Figure 4 a, b and d). This indicates
that the extreme events largely broader threaten agricultural activities in FPEN. Moreover, we found
that regardless of the positive or negative contributions of TH90p and TL10p on cropland area trend,
their values increased in most regions of FPEN (Figure 7a~b). Indicates that extreme temperature
events are more closely related to cropland area trend in the context of climatic warming [23]. Unlike
Zaveri, Russ and Damania [10], we found that drought remains one of a vital factors to limiting the
cropland expansion in FPEN. This situation illustrated that although coverage and intensity of
irrigation facilities increased in the past few years, yet they had a little effect on offsetting the negative
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effects of drought on croplands [23]. This may be caused by an increased trend of D20p (trend of
D20p from 0.02 days/a in 1992-2010 to 0.03 days/a in 2010-2020, Figure A2c). Extreme precipitation
event is an exception, the area of significant correlation between annual extreme precipitation and
cropland area in FPEN is small (Figure 4c, p<0.05), possibly due to few areas of significant trend of
annual extreme precipitation in spatial extent (significant trend of annual extreme precipitation
accounted for 6.3% of FPEN, Figure 4Ac, p<0.05). Overall, these results directly demonstrate that
impacts of extreme events, especially extreme temperature, on cropland area trend than average
climate change in FPEN.

4.2. Policy recommendations

Although the existing cropland protection policies have a positive impact on the stability or
increase of cropland area, there are great uncertainties in the future [3,58]. However, the increasing
gradually negative contributions of extreme events, environmental conditions, economic
development, and policies factors could be not neglected. According to the results, this study
provides the following four aspect suggestions: (1) strengthen intensive land utilization. Reduce the
cropland loss caused by the construction land expansion. Improve requirement of cropland
protection policies, and strictly limit the conversion of high-quality cropland to other uses [58]. (2)
Vigorously promote sustainable agricultural intensification, reduce pesticide and fertilizer use, and
adopt intercropping/fallow forms of farming [59]. It could help increase food production while
avoiding the ecological environment degradation of FPEN due to intensive intensification. (3)
Increase financial investment related to agriculture, implement targeted agricultural payment
policies, and attract large, medium and small agricultural enterprises to participate in local
agricultural development [21]. At the same time, the land managers are suggested to raise
appropriately prices of agricultural products to ensure farmers' income, promote motivate farmers
to engage in agricultural activities and maintain or increase appropriately cropland areas in FPEN in
the future [19]. (4) Accelerate development of agricultural science and technology, such as, promoting
climate-smart agriculture, better coping with the impact of climate change and extreme events on
food production, and reducing the risk of cropland loss caused by unfavorable climatic conditions
[60].

Furthermore, considering the different climatic and environmental conditions in FPEN, The
above recommendations should be precisely implemented according to location conditions [19]. For
example, eastern region has abundant black soil resources and flat terrain. Intensive agriculture
should be vigorously developed, increased financial investment, and appropriately increased area of
cropland. On the contrary, in the central and western with a relatively vulnerable ecological
environment, we should promote drought-resistant, heat-resistant and cold-resistant crops under the
premise of ensuring the existing croplands, while avoiding large-scale expansion of cropland.

4.3. Limitations of this study

In this study, we only considered the effect of frequency of extreme events on cropland area
trend. However, cropland area trend is also affected by other features of extreme events, such as
duration, intensity and areal extent. Additionally, lag effects between driving factors and cropland
area trend were not considered in this study. More importantly, although we tried to explore the
impacts of drivers on cropland area trend from as many perspectives as possible in this study, we
still cannot take into account all relevant factors. Besides, the interactions among drivers were not
considered in this study. Therefore, we will focus on addressing the above issues in future work.

5. Conclusions

This study analyzed the spatiotemporal dynamics of cropland area and its driving factors during
1992-2020, and quantified the impacts of these drivers on cropland area trend in three periods
(1992-2020, 1992-2010, and 2010-2020). We found that cropland changes showed spatial
heterogeneity. Increased cropland areas mainly were located in the eastern region, while decreased
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focused on the central and western regions. Yet the total cropland area showed a significant
increasing trend with 333.5km?/a (p<0.05) in FPEN during 1992-2020. The results of ridge regression
analyses presented that ecological construction and urban expansion dominated cropland area
change in FPEN. Ecological construction was always the largest contributor, even though relative
contributions of EU increased 33.7% during 2010-2020. At the same time, extreme events effects on
cropland area trend evidently increased, and TH90p was the largest ~99.4%, largely due to increased
frequency of extreme weather events under climatic warming. Importantly, the dominant area of
extreme events in 2010-2020 increased about six times compared to that in 1992-2010. TH90p and
TL10p are the first two dominant extreme climatic factors. Also, we found that impacts of
socioeconomic factors on cropland area trend increased. Thus, it is necessary to consider extreme
weather events in future related studies. It could help us better understand cropland area trend and
maintain food security under climatic warming.
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Abbreviation
Abbreviation Full name
TH90p Annual frequency of extreme high temperature
TL10p Annual frequency of extreme low temperature
D20p Annual frequency of drought
PET Potential evaporation
NPP Net primary productivity
NTL Nighttime light index
UE Urban expansion
EC Ecological construction
Appendix A
1. Method

The spatial-temporal standardized of variables means that variables are standardized at the
same time in both temporal and spatial dimensions. The spatial-temporal can make the relative
contribution of the driving factors comparable in spatial, meanwhile, to reflect the trend of cropland
area caused by per unit change of driving factors. This method enables us to analyze the relative
contribution of driving factors to the trend of cropland area at the county-scale. Eq. 1 is used to
compute variables of spatial-temporal standardized, respectively.

Vii —min (min(Vl-]-))
Vij = ,0<i<2450<j<9 (Eq. 1)
max (max(Vij)) —min (min(l/ij))
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where V;; represent the deviation standardization time series of j variable in i county (have 9
variables and 245 counties in this study); max (max(Vij)) and min (min(Vi 1)) are the maximum

and minimum value of V;, respectively.

To evaluate the accuracy of the simulated results, we calculated three metrics, including root-
mean-square error, RMSE and coefficient of determination R? and RMSE/mean, for each partition and
county (Figure A4). Formulas is as follows:

i (Hi — 5ij)2

RMES; = (Eq. 2)
n
RMSE; _ RMSE
mean; B ﬁ] (Eq.3)
2

(1~ 5,)
R?=1-—1—T (Eq. 4)

(Hij —H)

where H;; and S;; are the historical and simulated cropland area in the year i (from 1992 to 2020) in
j country (0<j<245), respectively. H, is the average of H;; from 1992 to 2020.

Appendix B

1. Figure
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Figure A1. The VIF scores of filtered driving factors at county-scale.

The extreme events, environmental conditions, socioeconomic development, construction land
area and ecological land area changed considerably in FPEN from 1992 to 2020 (Figure A2a~i, Figure
A3a~d, Figure A4a~m). For climate, AAT increased significantly at the rate of 0.03°C/a (p<0.05), and
AP decreased significantly at the rate of -2.8mm/a (p<0.05) in FPEN during 1992-2020, indicating the
FPEN has experienced extensive warming-drying change ((Figure A3a~b, (Figure A4c and e). At the
same time, the frequency of extreme events had also changed. TH90p and D20p had significant
increasing trends (0.65 days/a and 1.22 days/a, p<0.05), mainly distribution in the eastern and central
regions (Figure A2a and ¢, Figure A4a and f). On the contrary, the TL10p was significantly decreased
with 0.76 days/a (p<0.05) (Figure A3b, Figure A4b). Throughout FPEN, R95p changed very little,
although it decreased with -0.02 days/a, was not significant (Figure A3c, Figure A4d).
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PET and NPP increased significantly at the rate of 2.7 mm/a and 6.6 gC/m?/a, respectively
(p<0.05, (Figure A2d and e). In contrast, SWV did not change significantly, and decreasing only by
0.03 mm3 from 1992 to 2020. Especially, the change of SWV showed distinct stages with opposite
trend before and after 2006, and increasing from 1992 to 2006 and decreasing from 2006 to 2020
((Figure A3d). This situation may be caused by the increase in FPEN irrigated agriculture [61].
Spatially, the areas with a significant increase in PET accounted for ~60.9% of FPEN, principally
distributed in large parts of eastern and central. Except for some parts of eastern, where NPP
exhibited a significant decreasing, most of remaining areas were dominated with significant increase,
the areas of significant increase ~95.3% of FPEN (Figure A4g and h). The area of SWV with significant
reduced accounted for ~44.8% of FPEN, mostly distributed in a high proportion of forestlands (Figure
la and Figure A4i).

POP and NTL increased significantly at a rate of 12.1x104per/a and 0.19DN/a, respectively
(p<0.05, Figure A2f and g). Spatially, POP increase showed the characteristics of aggregation, mainly
in central. Except for eastern, NTL showed a significant increase trend in most regions (p<0.05), and
the significant increase in area accounts for ~74.6% of FPEN (Figure A4j and k).

UE decreased from 45.2x10*%km? in 1992 to 44.1x10*%km? in 2020 in FPEN, a significantly trend
increased with ~434.7km?/a (p<0.05, Figure A2h). UE in the study area expanded at a rate of
165.8km?/a from 1992 to 2020, and the significantly increased area accounted for ~12.54% of FPEN
(Figure A2i, Figure A4m). In the eastern, the loss of EC was the largest (the loss area was ~1.1x10*km?),
and the significantly trend decreased area accounts for ~33.34% of FPEN. The EC in most areas of
central and western was mainly expanded, with a significant expansion area of 106.65km? and
278.46km?, respectively (Figure A4l).

doi:10.20944/preprints202306.2173.v1
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Figure A2. Time series of filtered driving factors by Pearson correlation analysis during 1992-2020.
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Figure A3. Time series of driving factors with significantly correlated areas <20% during 1992-2020.
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Figure A5. Comparison between simulated by ridge regression and historical cropland area for each
partition and county during 1992-2020.

Absolute relative change(%) TH90p TL10p D20p PET NPP POP NTL EC UE
FPEN 99.4 73.4 0.1 60.5 -33.8 6.3 73.4 -10.3 50.8
Eastern 167.5 0.8 27.2 18.8 -28.3 14.7 94.3 -13.8 313
Central 81.4 97.7 209 193 -14.5 14.2 51.7 -16.2 55.9
Western 2933 -44.8 -6.7 89.3 53 60.5
Postive absolute relative change(%) TH90p TL10p  D20p PET NPP POP NTL EC UE
FPEN 184 62.2 -22.8 8.2 -42.2 -4.2 59.3 -35 44.5
Eastern 3123 23.4 -0.6 -1.3 -34.8 26.2 69.2 -19.8 71.3
Central 47.9 42 -44 -11.3 -49.5 0.8 -14.4 -49.5 46.2
Western 255.6 -23.7 -15.2 -2 -34.7 0.9
Negatvie absolute relative change(%) TH90p TL10p D20p PET NPP POP NTL EC UE
FPEN 59.2 218.8 11.2 139.6  -30.8 15.2 62.6 8.5 32.1
Eastern 100.5 47.8 71.5 -21.5 9.3 130.8 18.6 11.5
Central 74.5 239.8 543 372.2 -0.9 21.5 32.1 -3.6 37.9
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Figure A6. Contribution difference of driving factors between 1992-2010 and 2010-2020. (a) Absolute
contribution difference of driving factors between 1992-2010 and 2010-2020, (b) positive absolute
contribution difference of driving factors between 1992-2010 and 2010-2020, (c) negative absolute
contribution difference of driving factors between 1992-2010 and 2010-2020.
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Figure A7. Relative contributions of driving factors to trend in cropland area during 1992-2010.
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Figure A8. Relative contributions of driving factors to trend in cropland area during 2010-2020.
2. Table

Table A1. The relative contribution absolute values of the driving factors across the FPEN and three
sub-regions during 1992-2020.

Spatial Temporal
resolution resolution
Land use/land cover 1992-2020  300m yearly ESA/CCI viewer (ucl.ac.be)

Data types Period Data source



https://doi.org/10.20944/preprints202306.2173.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 June 2023 doi:10.20944/preprints202306.2173.v1

21
Maximum and ERAS5 hourly data on single
minimum 2m 1992-2020 0.25° hourly levels from 1979 to present
temperature (copernicus.eu)

ERA5 monthly averaged data
2m-temperature  1992-2020 0.25° monthly  on single levels from 1979 to

present (copernicus.eu)
ERADS hourly data on single
Precipitation 1992-2020 0.25° hourly levels from 1979 to present
(copernicus.eu)
ERA5-Land monthly averaged
1992-2020 0.1° hourly data from 1950 to present
(copernicus.eu)
ERAD5 hourly data on single
1992-2020 0.25° hourly levels from 1979 to present
(copernicus.eu)
Harmonization of DMSP and
VIIRS nighttime light data from

Potential
evaporation

Volumetric soil
water layer 1

Nighttime light ~ 1992-2020 30 yearly 1992-2020 at the global scale
(figshare.com)
Population ~ 2000-2020 30" yearly LandScan Datasets |

LandScan™ (ornl.gov)

Net primary 2000-2020 500m yearly LP DAAC - MOD17A3HGF

productivity (usgs.gov)
Daily
http: .dx.doi.org/10.1192
Evapotranspiration 1992-2020 0.25° daily P //WWV,V x.doi.org/
. 2/sciencedb.00906
Deficit Index
Table A2. The categories of driving factors for cropland area trend.
Categories driving factors
Environmental conditions Annual average temperature

Annual precipitation
Potential evapotranspiration
Volumetric soil water
Net primary productivity
Annual frequency of extreme high
temperature
Annual frequency of extreme low
temperature
Annual frequency of drought
Annual frequency of extreme precipitation

Extreme events

Socioeconomic development Sum of population
Annual average nighttime light
Urban expansion Construction land area
Ecological construction Ecological land area

Table A3. Definition of extreme climate and drought indices based on daily data in this study.

Indices Attributes Definition Units
Count of days per each year where THi>Tmaxo0p. THijj is the
Extreme high daily maximum temperature on day i in year j. Tmaxop is the
temperature 90t percentile centered on i in a five days window of daily
maximum temperature during 1992-2020.

TH90p Days
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Count of days per each year where TLi>Tmin0p. TLj is the
Extreme low daily minimum temperature on day i in year j. Tminiop is the

TL10p temperature 10% percentile centered on i in a five days window of daily Days
minimum temperature during 1992-2020.
Count of days per each year where Rjj >Rosp. Rjj is the daily
R95 Ex'tr'em‘e precipitation (Ri=1mm) on day i in year j. Rosp is the 95t Days
precipitation percentile during 1992-2020.
Drought Count of days per each year where Di>Da2op. Dj is the daily

D20p (DEDI) DEDI on day i in year j. D2op is the 20% percentile centered Days

on i in a five days window of daily DEDI during 1992-2020.
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