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Abstract: Life in the modern century is heavily reliant on an enormous amount of electricity
consumption as technology has become the most integral part of daily life. In this context, smart grid
systems play a pivotal role to maintain the uninterrupted power supply which needs to be monitored
in a timely fashion to keep track of the electric consumers’ usage pattern. The smart meter is the one
of smart applications of the smart grid that collects huge amounts of consumer load data on a daily
basis which has become a focus for various researchers and analyzers to study load characterization.
In this paper, an approach has been proposed to recognize the energy consumption patterns among
diverse types of consumers ranging from residential to industrial levels. This approach is worth
considering not only for load pattern recognition but also for involving customers in different events
such as demand response or peak shaving. In such a way, this analytical mechanism certainly assists
in reducing power wastage and saving costs. The proposed methodology is based on a two-fold
clustering algorithm with the use of state-of-the-art technology, machine learning. The primary goal is
to classify electric customers’ data collected from smart meters. Then, analyzing the classified results
with an aim to predict power consumption patterns for the customers in the future and making the
right energy policy that will benefit both the grid operator and consumers as well.

Keywords: smart grid (SG); smart meter (SM); clustering; load pattern; self-organizing map (SOM);
advanced metering infrastructure (AMI)

1. Introduction

Power distribution has become more efficient and reliable with the advent of smart grid. Although
the distribution and supply services have been unbundled in recent years at most restructured
electricity markets in smart grid systems. Having unbundled, load balancing, load forecasting and
demand response management using smart meters continue to pose significant challenges to industry
and research. Since the rate of power or electricity supply to customers has become competitive that
needs to be tailored to the customer’s behavior based on accurate information from electricity suppliers.
To do so, a deep knowledge of the customers’ behavior is required for the electricity provider not
only for ensuring the uninterrupted quality of electricity but also for customer satisfaction. Again, for
the sake of tariff planning, the customers’ contributions to the entire daily load pattern are gaining
increased attention. Yet identifying and classifying customers effectively is very challenging. This
paper elicits a general schema for analyzing electrical load supposedly used to produce effective results
[1].

The basic model of a smart grid system is depicted in Figure 1, the interconnection of dependent
domains used for power generation, transmission, distribution, market, operation, and customers as
well [2].
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Figure 1. Smart Grid’s conceptual model [3].

The relevant consumption pattern for categorizing customers is likely to establish a suitable
customer decision model on the basis of load pattern behavior.

An efficient clustering technique has been proposed in this study that employs the raw meter
data collected daily from smart meter with an aim to load profiling, using clustering as well as the
K-means algorithm. In doing so, the machine learning algorithm is used to time series data generated
from the smart meter. This data source provides utilities with information that can be used to develop
customized electricity load profiles (PCs) as well as to aid in areas such as improved load forecasting;
Demand Side Management (DSM) strategies, Time of Use (ToU) tariff design and electricity settlement.
Knowing the form of the power consumption might be helpful for deciding how to manage local
energy generation and consumption for planning and operating energy systems. There is growing
concerned about the type of electricity utilized as a result of the accessibility of cutting-edge load
control technology and the expanding variety of flexible demand management options that provide
incentives and rewards to the participating customers. Conceptually, electricity customers could be
categorized based on their consumption. However, the following challenges are associated with the
analysis of load profiling:

* Vague interpretation: The load patterns of customers who engage in the same activity or who
use the same commercial code may differ significantly.

e Efficiency: Therefore, utilizing classification based on the type of activity and commercial codes
to represent the precise characteristics of power demand is ineffective.

* Macro categorization: The ability to differentiate between a small number of macro categories
(such as residential, commercial, industrial, or other niche categories like electric lighting and
traction) is restricted.
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This paper focuses on the characteristics and habits of consumers and cites pertinent works in its
discussion of these topics. The topic of evaluating the efficacy of clustering algorithms for classifying
load patterns was then discussed in detail. The contracted power, supply voltage level, annual active
and reactive energy (maximum, minimum, average value, and standard deviation), utilization level
(defined as the energy consumption to rated power ratio), and power factor are a few examples of
these external features. The usage of macro-categories, when applied to all electrical users, minimizes
the number of load patterns that must be handled concurrently by the categorization methods inside
each macro-category, leading to more cost-effective computation procedures.

The analysis involves two-fold steps as follows:

1. The categorization process’ main step is to group load patterns using the appropriate clustering
approaches. Each clustering technique can be executed by configuring the necessary parameters.
In certain clustering techniques, the results depend on the initialization of the centroid.

2. Based on the clustering techniques load distribution among varied customers will be narrowed
down to a number of specific customers. Five categories of electric consumers are the targeted
class from the sample dataset that will be followed by the relevant machine learning technique
either supervised or unsupervised.

2. Related Works

A sheer number of authors have already examined the load profile of providing services beyond
billing using fine-grained data on electricity consumption. A lot of research has been done on
non-intrusive load monitoring (NILM), which tries to figure out how much energy each appliance in a
home uses. This NILM method uses measurements of power use taken at high frequencies, usually
between 1 Hz and multiple times per second, and does not require the installation of extra sensors
[1,4]. In order to deliver unique services, such as feedback to encourage more energy-efficient behavior
among users, it is necessary to have the ability able to assign each appliance its true proportion of
electricity consumption [2]. The accuracy of NILM techniques suffers in real-time contexts due to the
lack of high-frequency measurements and the need for time- and data-intensive training operations [5].
In contrast to NILM methods, our focus is not on calculating the consumption of specific appliances
but rather on identifying broad categories of end users. Also, we don’t need data sampled very
frequently, as we may make do with data taken once an hour or even less frequently. Electricity
consumption data was normally recorded at 15-, 30-, or 60-minute intervals, although a number of
related methods relied on this data. Such data have even been used by a number of authors to examine
how consumption patterns have changed over time [2,6,7]. Again in [8] Geoffrey et al. proposed a
predictive model comparing the analysis of energy consumption among regression, decision tree, and
neural networks. These frameworks aim to forecast future electricity consumption on the customer
side and, by connecting these patterns across time, to support supply management on the electrical
provider side [9]. According to [10], where 471 consumers were tracked down and inspected by the
power company to do automatic clustering, this is a noteworthy example of the clustering techniques
for grouping electrical load patterns. The authors find instances of wasteful billing methods throughout
their analysis of the cluster results and current non-residential customer rates (for instance, when
there is a weak association between discriminatory variables and real load patterns). Nishant et al.
in [11] addressed an ANN model for accurate load forecasting to resolve the challenges imposed by
conventional methods like mean and mode.The suggested methods concentrate on finding patterns
in the available consumption statistics rather than tying them to particular traits of the family or
commercial structure that caused the patterns to develop. Additionally, the conclusions from that
approach are based on modest data sets that include traces from about 3000 households. In our
research, we take into account consumption traces from more than 8760 hours of data) for a group of
24 representative facilities with a range of end-use levels. By utilizing self-organizing maps, Kushan
et al. are able to discover new(commercial) consumers as well as consumption patterns that differ
from "typical" behavior. There are a variety of other comparable techniques that use self-organizing
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maps (SOMs) to evaluate data sets that contain traces about numerous different customers[12]. A
neural network-based unsupervised learning technique that can be used to automatically identify
clusters from an otherwise unstructured (and unlabeled) set of data is the core of SOM. An hourly load
data for a Set of 24 Facilities from residential, commercial, industrial, and various end-users has been
calculated in [13]. To detect the anomalies in the power consumption in the smart grid, recognizing
the load pattern is highly important [14]. However, various risks are associated while considering the
smart meter data [15]. The wide ranges of cyber attacks [16] are liable to make any disruption to the
meter data that might cause radical changes in load usage. Several machine learning algorithms such
as classification, clustering, neural networks, and data mining are state-of-the-art techniques that can
be applied to implement the precise load classification[17,18].

3. Data acquisition and preparation

Load profiling in the big data era requires processing large amounts of data. With the proliferation
of Advanced Metering Infrastructure (AMI) devices, through load profiling more information can
be collected from the power consumption data of individual customers via the smart meter. Load
profiling enhances our knowledge of electrical consumption patterns. This analysis performed load
profiling among several ranges of electric users based on data from smart meters in order to understand
the variance in load profiles at different time intervals.

3.1. Data Acquisition

The daily collection of consumer data from smart meters is necessary for the research and design
of a reliable clustering model. In this paper, we collect the smart meter data from the Mendeley
dataset [13]. The dataset is based on Hourly Load Profile Data collected from smart meters from
diverse types of consumers ranging from households to industries under the hub of the smart grid.
This dataset comprises of load data for 24 hours of power usage at an hourly interval from various
end-users, including industrial, commercial, and residential consumers, over an entire year (8760
hours of data). The dataset includes 18 simulated buildings that were climate-adapted to New Jersey
using the physics-based building simulator, an Energy Plus-based tool that captures the functions of
the buildings, as well as load data from six reference buildings from publicly available Energy Plus
reference buildings. In single- and multi-node energy systems, such as nano grids, microgrids, or
integrated systems in distribution networks, where each building’s load profile corresponds to its
electricity usage, a dataset can be used to represent the systems. This dataset supports a wide range
of engineering, economic, and environmental assessments by assisting researchers and practitioners
globally in modeling their defined /modified test systems. As a starting point in the typical load
patterns for a given loading state, the categorization information for each client is provided in a way
that creates load patterns with comparable forms. Following are the two attributes of this dataset to be
used throughout our analysis:

¢ the power measurement in [kW], referred as the peak value of the typical daily load pattern;
¢ the normalized representation of load pattern in (RLP), computed by dividing the typical daily
load pattern by its power rate.

3.2. Data Pre-processing

Customer behavior is measured through continuous metering or by setting up dedicated
measurements based on daily load patterns. While considering M number of customers to monitor,
e.g., through the application of statistics such as stratified sampling [11], the data acquisition and
preparation process can be summed up in three phases.

Phase 1-Pre-clustering is characterized by the following steps:


https://doi.org/10.20944/preprints202307.0011.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 doi:10.20944/preprints202307.0011.v2

50f 15

¢ Data sampling preparation: The preparation of data sampling entails the choice of the time
interval for the analysis (for conducting measurements), the rate of sampling (e.g., quarter-hour,
half-an-hour, hour) and the careful checking of the technical specifications of the interval
meters, in order to achieve acceptable precision for the measurement. The data collection
amount is dependent on the amount of data storage available in the metering system, so there a
compromise may be needed between a fast sampling rate and the duration of the observation
period. Depending on the clustering method being used, the sample rate may change.

* Bad data detection: Identifying days with faulty data in the load patterns, such as those
caused by weather, power outages, and other irregularities. The performance of the Kohonen
self-organizing maps (SOM) has been used for anomalous days identification. Bad data can
be detected using several methods based on measurement results. Directly manipulating data
on load power is possible, or the data from other sources can be used to generate additional
information. A voltage magnitude monitor, for instance, can be very useful when detecting bad
data, especially when there are short interruptions and voltage sags present.

¢ Identification of the loading conditions: A statistical analysis of daily load patterns can be used
to determine the load patterns (such as winter and summer seasons, with a possible inner divide
into weekends, working days, Saturdays, and Sundays) for each time.

4. The clustering phase

Phase 2 includes the following steps:

¢ Feature Selection For determining the representative load patterns for customer clustering
purposes an appropriate set of features is selected; an easy selection could be based on the
time-domain data on which the representative load pattern is developed. Then the feature
extraction is performed on the selected features that lead to the clustering.

¢ Feature Extraction The selected features are extracted as per the time series methods to obtain
the desired attributes of the features associated with the dataset. This approach is done with the
aim to make easing the following steps of machine learning.

¢ Customer Clustering Using an appropriate machine learning technique, we could then divide
our customers into K distinct classes.

¢ Pattern recognition The pattern recognition is calculated for each of the K customer classes
based on aggregated load patterns for the same customer class.

4.1. Feature Selection

The load data undergoes feature extraction once it has been pre-processed (bad data removed,
samples taken, loading condition chosen). In this case, identical consumption patterns on the same
day of the week were observed throughout the course of a month (e.g., all Mondays have a similar
load profile, etc.).

The consumption profile of a day can be broken down into four distinct segments, each
characterized by a distinct consumption pattern. These eras (each with 16 samples) were found
to have relevant clustering features.

¢ Time period 1: 6:00 am to 10:00 am.
¢ Time period 2: 10:00 am to 2:00 pm.
e Time period 3: 2:00 pm to 6:00 pm.

* Time period 4: 6:00 pm to 10:00 pm.

Time-domain data: When all or some of the normalized power values are taken into account
from the time domain measurements, it is easy to identify the characteristics of the mth representative
load pattern, for m¥%1, 2, y, M. In this way, you can get at a group of H direct form characteristics
without having to resort to load pattern post-processing. As a result, the following equation describes
the characteristics of the load patterns representation:
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Thus, the following equation describes the set of characteristics that comprise the representation
of load patterns.

whose m th component is represented by the vector
T
clm = [cgm), e, cg’ln)}

In this case, the number of H values can be chosen arbitrarily, up to the limit imposed by the meter
resolution. In order to maximize the efficiency of data processing, a trade-off is made between
accurately representing the pattern’s shape and using as few points as possible. The normalizing
power P(m) is saved for each client segment separately.

4.2. Feature Extraction

This paper builds on and extends the related works [11] by defining a set of attributes that can
be calculated using either daily consumption measurements or weekly/monthly/yearly averages
of consumption. Consumption pattern, ratios, temporal properties, and statistical properties are the
four classes of features identified. The spending habits are consistent with elementary summaries
of what a typical family spends on consumables. Examples of consumption patterns include the
lowest and highest consumption numbers on a given day, as well as the daily and hourly averages
for certain times of day (such as early morning and late night). Whereas ratios denote the fractions of
daily consumption averages at various times. For instance, we look at how much on average people
consume between breakfast and lunch. Furthermore, the temporal attributes specify what time of
day specific occurrences take place. There are several examples that serve as illustrations, though,
including the daily consumption peak and the time of day that a certain consumption threshold is
first reached. In the third stage, the consumption curve’s qualitative characteristics are captured
using statistical properties. The cross-correlation between these profiles is then calculated to find the
correlation between consumption profiles (within the same household) on different days. Table 2 lists
all of the characteristics of the time domain that have been defined in the context of the implementation.
The right column indicates the time intervals from morning to noon, then respectively to evening, and
night as the time periods from 6 a.m. to 10 a.m., 10 a.m. to 2 p.m., 2 p.m. to 6 p.m., and 6 p.m. to 10
p.m., as denoted the various characteristics of the time domain.
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Table 1. Feature selection and extraction.

(1) Consumption figures

P (daily)

" Q3aV
=l

P (daily, weekdays only) ceekday
P (daily, weekend only) c_weekend
Pfor (6p.m.- 10pm.) c.evening
Pfor(6am. -10am) c.morning
Pfor(lam. -5am,) c.night
Pfor(10am. - 2pm.) c.noon
Maximum of P c_Max
Minimum of P cnin

(2) Ratios

Mean P over maximum P rmean/max
Minimum 7 over mean P r.nin/mean

cnight / c_day
cmorning/ c_noon
cevening/ c.noon

r_night/day
r.morning/noon
revening/noon

(3) Temporal properties

First time P > [kW t above_lkw
First time P > 2kW t above_2kw
First time P reaches maximum t_daily max

Period for which P > mean

t_above_mean

do0i:10.20944/preprints202307.0011.v2
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(4) Statistical properties

Variance s.variance
[(l-’,—-’,_||]f0ralll s diff
Cross-correlation of subsequent days  sx-corr
#Pwith (P - Py >0.2kW) s.num.peaks

4.3. Clustering Techniques for Load Profiling

Clustering is a technique to identify patterns in data and is useful for exploratory data analysis,
anomaly detection, customer segmentation, and pattern recognition (here load profiles). It works as
a powerful tool to reveal insights that may not be addressed through other methods of analysis to
understand data and this can help load profiling by comparing the customers’ load usage behavior.
These behaviors are all included in the same cluster despite having the highest intra-cluster and lowest
inter-cluster similarity. It indicates how few clusters are used to aggregate comparable load profiles.

Our next step is unsupervised training, where the networks are taught to form their own rules.
In order to accomplish this, we must assume that input patterns sharing common features are class
members and that the network will be able to identify those characteristics across the range of input
patterns. Due to the nature of competitive learning, only a single neuron in the network’s output is
active at any given moment, making unsupervised systems based on it potentially very intriguing.
Neurons that are activated in this way are referred to as winning neurons or simply winning neurons.
Neurons that are activated in this way are referred to as winning neurons or simply winning neurons.

The self-organization process involves four major components as follows step-by-step:
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¢ Initialization: The connection weights are all initialized with small random values.

¢ Competition: The neurons calculate their respective discriminant functions based on each input
pattern. The neuron with the smallest discriminant function is declared the winner.

¢ Cooperation: Using the winning neuron, the topological placement of neighboring neurons is
determined, providing a basis for cooperative behavior.

¢ Adaptation: Through appropriate adjustment of the associated connection weights, the excited
neurons decrease their individual values of the discriminant function in relationship to the input
pattern, thereby increasing the response of the winning neuron to a subsequent application of
the same input pattern.

The Training State shows the number of Epoch=15 with Gradient 0.01475 and checks with
validation 6.

Gradient = 0.01475, at epoch 15

100 =
=
2
g0y ;
(o]
1072 ' '
2 Validation Checks = 6, at epoch 15 ¢
¢
_4f L4 .
jas]
- ¢
-
2L ¢ ¢ ¢ .
¢ ¢ ¢
0r—4—¢ 4 L S
0 5 10 15
15 Epochs

Figure 2. Training State Plot.

For the clustering in the neural network, the 98 samples are fed into the network of 14 inputs and
resulted in 5 classes. Here the 14X22 self-organizing map(SOM) hits plot interprets, as it has grouped
14 inputs into 5 different classes.
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Hits

Figure 3. Clustering Hit Plots.

SOM Neighbor Weight Distances

Figure 4. SOM Neighbor Weight Distance.
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5. Evaluation

Having determined the bounds clustering and unsupervised learning steps we then present the
results of our comprehensive analysis of the load data and quantify the error introduced by the model.

Additional Test Confusion Matrix

1 0 0 0 0 0 NaN%

0.0% 0.0% 0.0% 0.0% 0.0% NaN%

.| 0 0 0 0 0 | NaN%

0.0% | 0.0% | 0.0% | 0.0% | 0.0% | NaN%

2 . 0 0 0 0 | NaN%

87| 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | NaN%
5

2., 0 0 0 0 | NaN%

Q™| 00% | 0.0% | 0.0% | 0.0% | 0.0% | NaN%

5 8 0 0 0 14 63.6%

36.4% | 0.0% | 0.0% | 0.0% | 63.6% | 36.4%

0.0% | NaN% | NaN% | NaN% | 100% | 63.6%

100% | NaN% | NaN% | NaN% | 0.0% | 36.4%

N Vv % ™ %
Target Class

Figure 5. Confusion Test Matrix.

Figure 1 shows how clients were categorized by time slot. One property is the maximum single
value and the other four are the maximum electrical load. The raw dataset was reduced from 2,53,760
samples to 35,600 samples, with the most informative load profile clustering information preserved by
the feature matrix. These load profiles were clustered using SOM. The total of each point’s distance to
the centroid for all 5 groups is reduced iteratively by this clustering method. Most machine learning
models for binary classification do not simply generate a value of 1 or 0 while making a prediction.
Instead, they produce a continuous number in the [0,1] range. Values that are at or above a given
threshold (for example, 0.5) are classed as 1, whereas those that are below the threshold are classified as
0. The points on the ROC curve represent the FPR and TPR for various threshold values. Classifications
will change depending on the specified threshold value, which can range from 0 to 1. The "up and to
the left" orientation of the ROC curve indicates superior performance when classifying the efficacy of a
model.
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Figure 6. Cluster weight.
5.1. Results and Discussions

The application of load profiling to demand response differs due to the variety of demand
response algorithms. Various researchers have looked at the subject from various angles. It’s easy
to understand how load-based approaches are typically expressed as optimization problems with
multiple object functions and constraints. The training results show an error rate of 1.12% for training
samples, 1.1667% for validation checking as well as 0.833% for testing another set of sample data with
the trained data in the neural network pattern recognition technique.

Methods and standards for evaluating demand response. Because of the pervasiveness of AMI
technology, load profiling may glean a variety of information from the electricity usage statistics of
individual users. Here from the smart meter reading data of various customers the maximum load
consumption rate per half an hour of a selected date has been taken into consideration to carry on the
machine learning training approach. Then with the aforementioned learning algorithm, the SOM has
resulted from the clusters of 5 customers along with their load pattern usage of the particular date.
This proposed mechanism is able to predict the load pattern behavior for a week or even a month
which can successfully be analyzed for not only demand and supply but also for anomaly detection in
the load calculation. The five classes of customers are categorized from the dataset after applying the
machine learning techniques such as households, educational institutes, industries, commercial, and
hospitals.
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Observations Cross-entropy Error
Training 16 0.8350 1.1250
Validation 3 0.8454 1.1667
Test 3 0.9073 0.8333

Additional Test Results
input - [14x22 double]
target - [5x22 double]

Predictors:
Responses:

input: double array of 22 observations with 14 features.

Figure 7. Training Results.

The consumer load profiles are often projected in peak analysis. However, a probabilistic analysis
of irregular peaks was not taken into consideration. The peak analysis of load usage among the
customers may be represented as a trade-off in time and power measure in kW. Here the variable «
regulates the allowable tolerance for irregular peak analysis.

Time Household-C1
Date: 3/21/2021 16335457 to 18762999

Commercial-C4
82458402 to 83761545

Industries-C3
56068032 to 56464971

Educational Institute-C2
230156289

Hospital-C5
95282692 to 98923663
00
12:00 20 60 300 350 250

12:30 EN 40 350 360 260 30
1:00 20 40 300 350 250 50
1:30 20 50 320 380 240

2:00 100 40 375 350 260 250
2:30 0] 40 320 340 240 P
3:00 90 40 350 360 240
3:30 100 60 320 350 230
4:00 90 40 330 320 250 100
4:30 90 40 330 360 240
5:00 20 50 350 350 230
5:30 0 40 320 370 220 o

6:00 20 40 300 350 200 8283383888888 288

mmmmmmmmmmmmmm
6:30 90 40 300 350 240 =

150

Figure 8. Load Pattern Behavior.

For instance, the assignment of « as 1.5 represents 50% tolerance for irregular peak detection.
Figure 9. The regular peak analysis for a consumer over 1 day; where LP and IP stand for load profile
and irregular peak with 50% tolerance (1.5 < a < 2) and irregular peak with 100% tolerance (x > 2)
are shown to depict the peak analysis. The knowledge of peak analysis can be very helpful for utilities
to reduce uncertainty in load forecasting and aggregated load management. Peak analysis is very
effective in showing the probability of occurring irregular peaks of each consumer[15]. In the proposed
method, each consumer’s load profiles have been categorized using clustering, which can be defined
as the ratio of time of a day’s regular peak for each customer.
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0.7778
0.8599
0.9421

Errors = Targets - Outputs

Figure 9. Error Histogram.

In terms of clustering algorithm formulation, the majority of The clustering approaches discussed
are Euclidean in nature. metric. The results of these clustering approaches leave a lot to be desired.
There’s still time to look into the pros and cons of using non-Euclidean metrics. Future research will
focus on the possibility of non-Euclidean metrics. The current and future structures of energy systems
include the data inherent in electrical load patterns has a huge impact. The term "categorization" refers
to the process of developing and testing procedures. It is ideal for managing massive volumes of data
gathered from a variety of the expanded smart metering technology as sources that is based on a large
number of customers.

The details on clustering variants result in K=5 clusters. There is no uniform pattern of behavior
among the numerous connection criteria for any of the clustering validity indicators investigated.
The study performed here does not provide a definitive answer for the exponent of the Minkowski
distance. Non-Euclidean metrics, on the other hand, produced superior results in some circumstances
than Euclidean metrics.

6. Experimental Setup

Algorithm In this paper, we intend to implement machine learning algorithms on the Mendeley
dataset of smart grid which is described in Section IIL. In the phase of Unsupervised training
self-organizing map (SOM) is used. The comparison among classified results will be calculated
by the error matrix afterward.

Tools In terms of tools, We have implemented our propounded model in MATLAB R2022a. The
execution platform of both tools is on a Windows 10 PC with a configuration of an Intel Core i7 CPU
(3.50GHz) and 64GB memory.
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7. Conclusion and future work

In smart grid technology, load profiling techniques largely improve the understanding of
electricity usage trends. This research presents an analytical evaluation of data mining strategies
for load profiling with respect to clustering methods and criteria for evaluating clustering results. The
information contained in load profiling has a lot of potential use both in academia and industries not
for only research but also making proper energy plan for future. In this investigation, smart meters has
been employed and machine learning to do in-depth analysis for load forecasting, demand response
management, and event detection. The purpose of this research is to provide a framework for using
and experimentally analyzing detailed information on power use collected by smart meters. In order
to reduce computational cost, dimensional, and redundancy in data during clustering, 14 features were
discovered in smart meter data. In the future, the application of load profiling in demand response
event can be taken into consideration, where the feature can be divided into the incentive-based and
price-based programs. In the framework of massive energy data analysis, we aim to extend our work
to some significant load profiling obstacles and hurdles.
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