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Article 

Another Approach to the Analysis of Isotropic 
Rectangular Thin Plates Subjected to External 
Bending Moments Using the Fourier Series 

Valentin Fogang 

Civil Engineer, C/o BUNS Sarl, P.O Box 1130, Yaounde, Cameroon; valentin.fogang@bunscameroun.com 

Abstract: The object of this paper is the analysis of isotropic rectangular thin plates supported (simply 
supported or clamped) along two opposite edges whereby the other edges have arbitrary support conditions; 
the plates are subjected to external bending moments, concentrated or distributed, and perpendicular to the 
supported edges. The standard approach to this problem is to replace the bending moment with a couple of 
forces infinitely close and to use the known expressions of efforts and deformations for the plate subjected to 
concentrated forces; the results are then related to the first derivatives of those efforts and deformations with 
respect to the position of application of the load. In this study, the external bending moment was expanded 
into a Fourier series, leading to a distributed external bending moment, and the boundary conditions and 
continuity equations were applied. Various types of rectangular plates were analyzed, as well as plates of 
infinite length whose results were identical to those in the literature. In addition, results for cantilever plates of 
infinite length were presented.  

Keywords: isotropic rectangular thin plate; concentrated/distributed bending moment; plates of 
infinite length; Lévy solution; Fourier sine series 

 

1. Introduction 

The Kirchhoff–Love plate theory (KLPT) was developed in 1888 by Love using assumptions 
proposed by Kirchhoff [1]. The KLPT is governed by the Germain−Lagrange plate equation; this 
equation was first derived by Lagrange in December 1811 in correcting the work of Germain [2] who 
provided the basis of the theory. Lévy [3] proposed in 1899 an approach for rectangular plates simply 
supported along two opposite edges; the applied load and the deflection were expressed in terms of 
Fourier components and simple trigonometric series, respectively. Many exact solutions for isotropic 
elastic thin plates were developed by Timoshenko [4] and Girkmann [5]; the simple trigonometric 
series of Lévy was mostly considered. Jian et al. [6] presented the equations for the lateral buckling 
analysis of fixed rectangular plates under the lateral concentrated load whereby the critical buckling 
strength of the plate calculated by finite element method was analyzed. Xu et al. [7] got exact solutions 
for rectangular anisotropic plates with four clamped edges through the state space method whereby 
the Fourier series in exponential form were adopted. Onyia et al. [8] presented the elastic buckling 
analysis of rectangular thin plates using the single finite Fourier sine integral transform method. 
Imrak et al. [9] presented an exact solution for a rectangular plate clamped along all edges in which 
each term of the series is trigonometric and hyperbolic, and identically satisfies the boundary 
conditions on all four edges. Fogang [10] used the flexibility method and a modified Lévy solution to 
analyze arbitrarily loaded isotropic rectangular thin plates with two opposite edges supported 
(simply supported or clamped), from which one or both are clamped, and the other edges with 
arbitrary support conditions. Mama et al. [11] presented the single finite Fourier sine integral 
transform method for the flexural analysis of rectangular Kirchhoff plate with opposite edges simply 
supported, and the other edges clamped for the case of triangular load distribution on the plate 
domain. Kamel [12] described the operational properties of the finite Fourier transform method, with 
the purpose of solving boundary value problems of partial differential equations. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2023                   doi:10.20944/preprints202307.0112.v2

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.sciencedirect.com/science/article/pii/S0898122111010340#br000035
https://www.sciencedirect.com/science/article/pii/S0898122111010340#br000035
https://doi.org/10.20944/preprints202307.0112.v2
http://creativecommons.org/licenses/by/4.0/


 2 

 

In this paper, isotropic rectangular thin plates were analyzed; they were simply supported or 
clamped along two opposite edges with the other edges having arbitrary support conditions, and 
were subjected to external bending moments, concentrated or distributed and perpendicular to the 
supported edges. The external bending moment was expanded into a Fourier series, leading to a 
distributed external bending moment, and the boundary conditions and continuity equations were 
applied.    

2. Materials and methods 

2.1. Governing equations of the plate  

The Kirchhoff–Love plate theory (KLPT) [1] is used for thin plates whereby shear deformations 
are not considered. The spatial axis convention (X, Y, Z) is represented in Figure 1 below. 

 

Figure 1. Spatial axis convention X, Y, Z. 

The equations of the present section are related to the KLPT. The governing equation of the 
isotropic Kirchhoff plate, derived by Lagrange, is given by 

 

(1) 

where w(x,y,z) is the displacement in z-direction, q(x,y) the applied transverse load per unit 
area, and D the flexural rigidity of the plate.  

The bending moments per unit length mxx and myy, and the twisting moments per unit length 

mxy are given by  

 

 

 

 

  

  

 

The shear forces per unit length are given by 
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The Kirchhoff shear forces per unit length used along the free edges combine shear forces and 
twisting moments, and are expressed as follows: 

 

                                                                                   (4a-b)  

In these equations, E is the elastic modulus of the plate material, h is the plate thickness, and  is the 
Poisson’s ratio.  

2.2. Rectangular plate supported along two opposite edges and subjected to external concentrated bending 

moments 

The plate dimensions in x- and y-direction are denoted by a and b, respectively. The rectangular 
plate is assumed simply supported or clamped along the opposite edges x = 0 and x = a. The external 

concentrated bending moment denoted by Mx0 is applied at the position (x0, y0) and oriented along 

the + x-axis (see Figure 2).  
For rectangular plates simply supported along the edges x = 0 and x = a, bending moment loading 

parallel to those edges are satisfactorily treated in the literature and will not be analyzed in this paper.   
First, the standard solution to this problem will be recalled. Second, the approach of this study 

will be presented whereby plates with two opposite edges simply supported and plates of infinite 
length will be considered. Third, plates with two opposite edges clamped will be treated.    

2.2.1. Standard solution to the problem 

Let the external concentrated moment Mx0 be applied at the position (x0, y0) as shown in 

Figure 2 

 

Figure 2. Rectangular plate subjected to a concentrated moment Mx0 at (x0, y0). 

(3a-b) 
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The standard approach is to replace the bending moment with a couple of forces -P and P 

applied at the positions (x0, y0) and (x0, y0 + c), respectively, with c approaching zero and Mx0 = 

Pc.  

Let S (x, y, x0, y0) and S* (x, y, x0, y0) be values of interest (efforts, deformations …) at 

positions (x, y) for the plate subjected to a load P and a unit load, respectively, at a position (x0, y0). 
The values of interest are determined by combining the effect of the forces -P and P as follows 

 

 

 

 

 

 

 
Hence the determination of a quantity of interest for the case of the plate subjected to an external 

concentrated moment Mx0 at a position (x0, y0) requires the analytical formulation of the quantity 

of interest for the case of the plate subjected to a unit load at the position (x0, y0) and its first 

derivative with respect to y0; this result can be found in Girkmann [5].    

2.2.2. Rectangular plate with two opposite edges simply supported and subjected to an external 
concentrated bending moment Mx0 

In this paper the external concentrated bending moment Mx0 (see Figure 2) is expanded into a 

Fourier series as follows   

 

 

Therefore, the external concentrated moment Mx0 is replaced with the distributed external moment 
mx0(x) along the line y = y0.  

Referring further to Figure 2, the efforts and deformations are represented with the subscripts I 

and II for the plate zones  0  yI  y0 and 0  yII  y1, respectively. The continuity equations along 

the line y = y0 express the continuity of deflection w and slope w/y and the equilibrium of 

bending moment myy and shear force Qy; observing that the position y = y0 corresponds to yI = 
y0 and yII = 0, these equations are given by  
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Assuming the rectangular plate simply supported along the edges x = 0 and x = a, the solution by 
Lévy [4] that satisfies the boundary conditions at these edges is considered for the deflection curve 
w(x,y) as follows:  

  

The solution to Equation (7e) as derived in the literature (e.g., Timoshenko [4], Girkmann [5]) is given 
by 

 

 

Hence the efforts and deformations needed for the continuity equations for the plate zone I (0  yI  
y0) can be expressed using Equations (7f), (2b), and (3b) as follows 
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The efforts and deformations for the plate zone II (0  yII  y1) are expressed by replacing the 

subscript I with II in Equations (8a-d). Recalling that the position y = y0 corresponds to yI = y0 

and yII = 0, the continuity equations can be formulated using Equations (7a-d) and (8a-d) as follows 

 

 

 

 

 

 

 

 

 

The Kirchhoff shear forces needed for boundary conditions at free edges are expressed using 
Equations (4b) and (8a) 

 

  

 

In summary, the coefficients AmI, BmI, CmI, and DmI and AmII, BmII, CmII, and DmII are determined 
by satisfying the boundary conditions at y = 0 and y = b and the continuity conditions at y = y0. They 
are calculated for various boundary conditions at y = 0 and y = b in Appendix A whereby the cases of 
bending moment applied at the edge y = 0 are also considered. Then, the bending moments myy are 
calculated using Equation (8c), and the bending moments mxx and twisting moments mxy are 
calculated using Equations (2a, c) and (8a) as follows  

 

 

 

 

 

Load case “Concentrated bending moment applied at the edge x = 0” 

Let now the external concentrated moment My0 be applied at the position (0, y0) as 

represented in Figure 3 
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Figure 3. Rectangular plate subjected to an external concentrated moment My0 at (0, y0). 

The concentrated moment assumed applied at a position (x0, y0), with x0 later set to zero, 
is replaced with a couple of forces -P and P applied at the positions (x0 + c, y0) and (x0, y0), 

respectively, with c approaching zero and My0 = Pc. The combined forces can then be expanded 

into a Fourier series along the line y = y0 as follows   

 

 

 

 

 

 

 

Observing that x0 = 0 it yields the following distributed load along the line y = y0 that replaces My0 

 

 

The continuity equations along y = y0 can then be formulated using Equations (7a-d) whereby (7c-
d) are modified as follows 

 

 

 

 

 

(11c) 

(11d) 

(11e-f) 

( ) ( )0 0
0

0

0 0

2

2
sin sin sin

2
cos sin

2
cos sin

y

m

m

y

m

m x c m xP m x
q x

a a a a

m xP m c m x

a a a a

M m x m x
m

a a a

  

 

  

+ 
= − + 

 

= −

= −







( ) 0

0 2

2
sin

y

y

m

M m x
q x m

a a

 
= − 

( )
0

0

, , 0

, , 00

( , ) ( , ) 0

( , ) ( , )

I II

I II

yy I I yy II IIy y y

y I I y II II yy y y

m x y m x y

Q x y Q x y q x

= =

= =

− =

− =

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2023                   doi:10.20944/preprints202307.0112.v2

https://doi.org/10.20944/preprints202307.0112.v2


 8 

 

Equation (11e) corresponds to (9c) by setting to zero the term on the right-hand side of (9c) and (11f) 
is expressed using (8d), (11d), and (11f) as follows  

 

 

 

Load case “Distributed bending moment applied along the edge x = 0” 

Assuming a distributed moment my0 (y) applied along the edge x = 0 as represented in Figure 

4 

 

Figure 4. Rectangular plate subjected to a distributed bending moment along the edge x = 0. 

Inspired by Fogang [10], the deflection curve can be taken  

 

 

 

It is noted that Equation (11h) satisfies the boundary conditions at edges x = 0 and x = a. Substituting 
Equation (11h) into (1) yields 

 

 

 

The following functions contained in Equation (11i) are expanded in Fourier sine series 
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                                                                                        (11j) 
 
Substituting Equations (11j) into (11i) and given that the latter holds for any value of x, it results the 
following differential equation 

 

 
 
The solution to Equation (11k) is  

 

 

where the coefficients Am, Bm, Cm, and Dm are determined by satisfying the boundary conditions at y 
= 0 and y = b, and Fmp(y) is a particular solution to Equation (11k). Substituting Equation (11l) into 
(11h) yields  

 

 

 

 
To satisfy the boundary conditions at y = 0 and y = b, the Fourier series of Equation (11j) is used; so 
Equation (11m) becomes  

 

 

With respect to the boundary conditions at y = 0 and y = b the equations for the slope w/y, the 
bending moment myy and the Kirchhoff shear forces are formulated using Equations (2b) and (4b) as 
follows 
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The special case of a constant bending moment my0 applied along the edge x = 0 will be treated in 

the Results section. 

2.2.3. Rectangular plate of infinite length loaded near its end and having two opposite edges simply 
supported 

The case of loading around the plate middle will be treated in the Results section. 

Let us analyze here a plate of infinite length with two opposite edges x = 0 and x = a simply 

supported and subjected near its end to an external concentrated moment Mx0, as shown in Figure 

5 

 

Figure 5. Rectangular plate of infinite length subjected near its end to an external concentrated 

moment Mx0. 
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The efforts and deformation in plate zone I (0  yI  y0) are formulated according to Section 

2.2.2. 

The edges x = 0 and x = a being simply supported, the deflection curve for the plate of infinite 

length (plate zone yII  0 in Figure 5) as derived in the literature (e.g., Timoshenko [4], Girkmann [5]) 

is given by  

 

 

It yields as follows the slope wII/yII, the bending moment myy and the shear force Qy needed 

for the continuity conditions along y = y0  

 

 

 

 

 

 

The Kirchhoff shear force needed for boundary conditions at free edges is given by 

 

 

Reminding that the position y = y0 corresponds to yI = y0 and yII = 0, the continuity equations 

between the plate zone I (0  yI  y0) and the plate zone II of infinite length (yII  0) can be expressed 

using Equations (7a-d), (8a-d), (12), and (13a-c) 

 

 

 

 

 

 

 

 

In summary, the coefficients AmI, BmI, CmI, DmI, AmII, and BmII are determined by satisfying the 
boundary conditions at   y = 0 and the continuity conditions at y = y0. They are calculated for various 
support conditions at y = 0 in Appendix B.  
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Then, in the plate zone of infinite length the bending moments myy are calculated using 
Equation (13b), and the bending moments mxx and twisting moments mxy are calculated using 
Equations (2a, c) and (12) as follows  

 

 

 

 

2.2.4. Rectangular plate of infinite length loaded around the plate middle and having two opposite 
edges arbitrarily supported  

A rectangular plate with dimensions a and b in x- and y- direction, respectively, and loaded 
around the plate middle or at a large distance from the edges x = 0 and x = a is analyzed. The plate 
with a very high aspect ratio a/b is then considered of infinite length while the edges y = 0 and y = b 
are arbitrarily supported, as represented in Figure 6   

 

Figure 6. Rectangular plate of infinite length loaded around the plate middle. 

The edges x = 0 and x = a are at a large distance from the loading. Therefore, the structural 
behavior of the plate subjected to this loading does not depend on the support conditions at these 
edges; then the latter can be assumed simply supported and so the Lévy solution (Equation (7e)) can 
be applied. Finally the results are obtained by letting a tend to infinity. This reasoning can be found 
in Courbon et al. [13].   

Furthermore, it is observed that the structural behavior of the plate of infinite length subjected 
to an external concentrated bending moments at a large distance from the edges x= 0 and x = a is the 

same as if the loads were applied at the middle. The    y0- axis of application of the loads is then 
considered as the middle of the plate. 

Load case “Distributed bending moment mx0(y) applied along x = a/2” 

The distributed bending moment mx0 (y) is replaced at any position y with a couple of forces 

and so it yields the distributed load -dmxo(y)/dy along x = a/2. The Fourier series expansion of the 

load applied at x0 yields the following load per unit area throughout the plate   
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The deflection curve follows Equation (7e) and observing that x0 = a/2 the differential equation is 
given by  

 

 

Then the analysis continues using Equations (11l-q) whereby my0 (y) is set to zero.  

Load case “Distributed bending moment my0(y) applied along x = a/2” 

Using Equation (11c) the Fourier series expansion of the load applied at x0 yields the following 
load per unit area throughout the plate   

 

 

The deflection curve follows Equation (7e) and observing that x0 = a/2 the differential equation is 
given by  

 

 

 

Load case “External concentrated bending moments applied at (x = a/2, y = b)” 

These load cases will be treated in the Results section. 

2.2.5. Solution of this study: Rectangular plate with one or two opposite edges clamped 

It is assumed that from the two supported opposite edges x = 0 and x = a, one or both are 
clamped. The analysis can then be conducted using the flexibility method according to Fogang [10]. 

The primary system is the rectangular plate simply supported along the edges x = 0 and x = a, and is 

treated according to the previous sections. The flexibilities j0 (slopes at positions j of the opposite 
edges where the compatibility equations will be set) for the primary problem are calculated for an 
ordinary plate and a plate of infinite length, respectively, as follows 

 

 

 

    

 

The redundant system is the plate simply supported along the opposite edges and subjected to 
bending moments along those edges.  

3. Results and discussion 

3.1. Plate of infinite length subjected to an external concentrated moment at the middle   

The plate of infinite length is subjected to an external concentrated moment at the middle or at 
a large distance from the y edges, as represented in Figure 7.  
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Figure 7. Rectangular plate of infinite length subjected to an external concentrated moment Mx0 at 

the middle. 

Given the anti-symmetrical nature of the load and the symmetry of the system, the deflections 
are zero along the line     y = 0. And since the load is equally divided between the two halves of the 

plate it yields myy(x, y = 0) = mxo(x)/2. Substituting these conditions into Equations (12), (13b), 

and (6) yields for y  0  

 

 

This result can be found in Girkmann [5]. 

3.2. Plate of infinite length subjected to a concentrated moment at its end  

The plate of infinite length is subjected at its end y = 0 to an external concentrated moment, as 
represented in Figure 8.  

 

Figure 8. Rectangular plate of infinite length subjected at its end to an external concentrated bending 

moment Mx0. 

Case 1: Edge y = 0 simply supported 

The deflections are zero along the line y = 0 and the bending moment myy at y = 0 is equal to the 

distributed moment mxo (x) (the concentrated moment Mx0 expanded into a Fourier series 

according to Equation (6)). Substituting these conditions into Equations (12) and (13b) yields  

  

(17) 0
0

1
( , ) sin sin

2
m yx

m m

m

M y
w x y e x x

D m

  


−= 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 July 2023                   doi:10.20944/preprints202307.0112.v2

https://doi.org/10.20944/preprints202307.0112.v2


 15 

 

 

 

Case 2: Edge y = 0 free 

The Kirchhoff shear force is zero along the line y = 0 and the bending moment myy at y = 0 is 

equal to the distributed moment (the concentrated moment Mx0 expanded into a Fourier series 

according to Equation (6)). Substituting these conditions into Equations (13b) and (14) yields  

 

 

3.3. Rectangular plate with the edges x = 0 and x = a simply supported and subjected to a constant bending 

moment loading along x = 0    

The plate simply supported along the edges x = 0 and x = a is subjected at x = 0 to a constant 

bending moment loading myo, as represented in Figure 9. The edges y = 0 and y = b are taken both 

simply supported and both clamped; therefore, for simplification purpose the x-axis can be shifted 
to the middle of the plate  

 

Figure 9. Rectangular plate subjected at the edge x = 0 to a constant bending moment loading myo. 

Case y = 0 and y = b simply supported 

Using Equation (11k) yields the particular solution Fmp(y) is zero. From the conditions of 
symmetry Cm = Dm = 0. 

The satisfaction of the boundary conditions yields the deflection curve as follows 

 

 

 

  

Then the bending moments per unit length mxx and myy, and the twisting moments per unit length 

mxy are calculated using Equations (2a-c) and (20).  
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Case y = 0 and y = b clamped 

Similarly, the deflection curve is as follows 

 

 

 

3.4. Cantilever plate of infinite length subjected to external concentrated moments at the middle  

The cantilever plate of infinite length is subjected to concentrated bending moments at the 
middle, as shown in Figure 10 

 

Figure 10. Cantilever plate of infinite length subjected to external concentrated bending moments at 
the middle. 

Load case “Concentrated bending moment Mx0 applied at (x = a/2, y = b)” 

The dispositions of Section 2.2.4 are applied whereby the Poisson’s ratio is not considered for 
simplification purpose. The following boundary conditions are set using Equations (6), (8a-c), and 
(10)  

 

 

Then the coefficients Am, Bm, Cm, and Dm are determined as follows 

 

 

 

 

Setting Ym = m with  = b/a → 0, the bending moments myy at any position (x = a/2, y = kb) are  
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The summation F(k) in Equation (22c) for  tending to zero is evaluated depending on k and the 
values are calculated in the Supplementary Material “Cantilever plate of infinite length under 
bending moment Mxo” and listed in Table 1  

Table 1. Coefficient F(k) of the bending moment myy at a position y = kb along x = a/2. 

k = 0,00 0,20 0,40 0,50 0,60 0,70 0,80 0,90 

F(k) = 0,3820 0,4992 0,6289 0,7302 0,8853 1,1514 1,7021 3,4303 

So, the bending moments myy at the middle of the clamped edge and at  y = b/2, respectively, 
are  

 

 

At the point of application of the load (k = 1.0) the summation F(k) did not converge. This result is in 
agreement with Timoshenko [4].  

Moreover, the calculated moments in the vicinity of the load (k = 0.80, 0.90) showed a rapid 
increase and must be verified. For this purpose the external concentrated moment is replaced with a 

distributed moment Mx0 /2c acting over a length 2c; this distributed moment is expanded in Fourier 

series as follows  

 

 

Equation (22e) replaces then (6) in the analysis whereby x0 = a/2. Setting c = b and  = b/a → 0, the 

bending moments myy at positions (x = a/2, y = kb) are expressed as follows 

 

 

 

 

The summation F(k, ) in Equation (22f) for  tending to zero is evaluated depending on k for  = 0.05 

and 0.10, and the values are calculated in the above mentioned supplementary material and 
displayed in Table 2.  

Table 2. Coefficients F(k, ) of the bending moments myy at (x = a/2, y = kb) for  = 0.05, 0.10. 

k = 0,00 0,20 0,40 0,50 0,60 0,70 0,80 0,90 

F(k,  = 0.05) = 0,3826 0,4992 0,6288 0,7300 0,8853 1,1510 1,6970 3,3397 

F(k,  = 0.10) = 0,3842 0,4994 0,6287 0,7297 0,8846 1,1484 1,6779 3,0979 

At the point of application of the load (k = 1.0) the summation F(k, ) did not converge; however 

the bending moment at this position is a boundary condition namely myy = -Mx0 /2c.  

In the vicinity of the load (k = 0.80, 0.90) the results for a distributed moment acting over a length 
2c (c = 0.05b) were in good agreement with those of a concentrated moment.  
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In addition, the results showed that away from the point of application of the load the results 
for concentrated load are identical to those with the load distributed over a small length: this is in 
agreement with the Saint Venant’s principle.        

The values of deflection along the axis x = a/2 of application of the concentrated moment for 
positions y = kb are  

 

 

 

The summation F(k) in Equation (22g) for  tending to zero is evaluated depending on the position k 
and the values calculated in the above mentioned supplementary material are listed in Table 3  

Table 3. Coefficient F(k) of the deflection at a position y = kb along the axis x = a/2. 

k = 0,20 0,40 0,50 0,60 0,70 0,80 0,90 1,00 

F(k) = 0,0085 0,0370 0,0603 0,0910 0,1307 0,1821 0,2513 0,3610 

So, the maximal deflection is at the tip and its value is  

 

 

Load case “Concentrated bending moment My0 applied at (x = a/2, y = b)” 

Using Equation (11c) the concentrated moment Myo is replaced with a distributed load whereby 
x0 = a/2. The boundary conditions are identical to Equation (22a) with following modifications 

 

 

Then the coefficients Am, Bm, Cm, and Dm are determined as follows 

 

 

 

 

The bending moments myy along the clamped edge, at a distance x0 from the middle, are given by  

 

 

The bending moment myy is zero along the axis x = a/2 (x0 = 0) of application of the concentrated 
moment.  

Setting Ym = m with  = b/a → 0, and x0 = kb, the bending moment myy along the clamped 
edge is  
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The summation F(k) in Equation (23d) for  tending to zero is evaluated depending on k and the 
values calculated in Supplementary Material “Cantilever plate of infinite length under bending 
moment Myo” are listed in Table 4  

Table 4. Coefficient F(k) of the bending moment myy at a position x0 = kb of the clamped edge. 

k = 0,00 0,25 0,50 0,75 1,00 1,50 2,50 

F(k) = 0,000 0,1846 0,2686 0,2577 0,2070 0,1081 0,0264 

k =  0,45 0,5 0,6  

F(k) = 0,2610 0,2686 0,2725  

The maximal/minimal value of F(k) is obtained by a parabolic interpolation between k = 0.45 and 
k = 0.60: it yields the value F(k),max,min = 0.2730 for k = 0.5759. 

So the maximal/minimal bending moments myy are found  0.5759b from the middle of the 
plate and the values are  

 

 

3.5. Plate of infinite length subjected to a concentrated moment Mx0 at (x = a/2, y = b)   

Case y = 0 clamped and y = b simply supported 

The plate of infinite length is subjected to a concentrated moment Mx0 at the middle of the 
simply supported edge. 

The coefficients Am, Bm, Cm, and Dm are determined as follows 

 

 

 

 

Setting Ym = m with  = b/a → 0, the bending moments myy at positions (x = a/2, y = kb) are    

 

 

 

The summation F(k) in Equation (24b) for  tending to zero is evaluated depending on k and the 
values are calculated in the Supplementary Material “Plate of infinite length clamped simply 
supported under moment Mxo” and listed in Table 5  

Table 5. Coefficient F(k) of the bending moment myy at a position y = kb along x = a/2. 

k = 0,00 0,30 0,40 0,50 0,60 0,70 0,80 0,90 

F (k) = -0,7258 -0,1205 0,0369 0,2018 0,3984 0,6782 1,1577 2,6953 

So, the bending moments myy at the middle of the clamped edge and in the middle of the y-
dimension b, respectively, are  
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Case y = 0 and y = b simply supported 

The coefficients Am, Bm, Cm, and Dm are determined as follows 

 

 

Setting Ym = m with  = b/a → 0, the bending moments myy at positions (x = a/2, y = kb) are given 
by    

 

 

 

 

The summation F(k) in Equation (24e) for  tending to zero is evaluated depending on k and the 
values are calculated in the Supplementary material “Plate of infinite length simply supported under 
bending moment Mxo”and listed in Table 6  

Table 6. Coefficient F(k) of the bending moment myy at a position y = kb along x = a/2. 

k = 0,00 0,30 0,40 0,50 0,60 0,70 0,80 0,90 

F (k) = 0,0000 -0,4002 -0,5707 -0,7858 -1,0839 -1,5619 -2,5538 -5,4557 

4. Conclusions 

In this paper, isotropic rectangular thin plates were analyzed; they were simply supported or 
clamped along two opposite edges with the other edges having arbitrary support conditions, and 
were subjected to external bending moments perpendicular to the supported edges. Bending 
moments parallel to the supported opposite edges are satisfactorily treated in the literature and were 
less analyzed in this study. The standard approach to this problem is to replace the bending moment 
with a couple of forces infinitely close and to use the known expressions of efforts and deformations 
for the plate subjected to concentrated forces; the results are then related to the first derivatives of 
these efforts and deformations with respect to the position of application of the load. In this study 
the external bending moment was expanded into a Fourier series, leading to a distributed external 
bending moment, and the boundary conditions and continuity equations were applied. Various types 
of rectangular plates were so analyzed and also plates of infinite length whose results were identical 
to those in the literature.  

The following aspect was not addressed in this study but could be analyzed in the future: 
Rectangular anisotropic plate  
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Supplementary Materials: The following files were uploaded during submission: “Cantilever plate 
of infinite length under bending moment Mxo”; “Cantilever plate of infinite length under bending 
moment Myo”; “Plate of infinite length clamped simply supported under moment Mxo”; “Plate of 
infinite length clamped simply supported under moment Mxo.”. 

Conflicts of Interest: The author declares no conflict of interest.  

Appendix A. Coefficients AmI, BmI, CmI, and DmI and AmII, BmII, CmII, and DmII for various support 

conditions at y = 0 and y = b 

Edges y = 0 and y = b clamped  
The plate is represented in Figure 2. We set 

 

 

The boundary conditions and continuity equations are expressed in matrices form as follows, 
whereby the first two rows and the last two rows represent the boundary conditions at the edges y = 
0 and y = b, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 
Edge y = 0 simply supported and edge y = b free  
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Plates with other combinations of support conditions at y = 0 and y = b can be analyzed similarly. The 
first two rows and last two rows are modified accordingly. 

Edge y = 0 simply supported and edge y = b free: bending moment acting at (x0, y0 = 0)  

The plate is represented in Figure 2 with y0 = 0. We set  

 

 

 

 

 

 

 

Edge y = 0 free and edge y = b clamped: bending moment acting at (x0, y0 = 0)  
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Plates with other support conditions at y = b can be analyzed similarly, the last two rows being 
modified accordingly. Then, the bending moments myy are calculated using Equation (8c), and the 
bending moments mxx and twisting moments mxy are calculated using Equations (11a-b). 

Appendix B. Plate of infinite length: coefficients AmI, BmI, CmI, DmI, AmII, and BmII for various 

support conditions at y = 0 

Edge y = 0 simply supported  
The plate is represented in Figure 2. We set 

 

 

The boundary conditions and continuity equations are expressed in matrices form as follows, 
whereby the first two rows represent the boundary conditions at the edge y = 0.  

 

 

 

 

 

 

 

 

 

 

Edge y = 0 clamped  
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Edge y = 0 free  
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