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Article

Another Approach to the Analysis of Isotropic
Rectangular Thin Plates Subjected to External
Bending Moments Using the Fourier Series

Valentin Fogang

Civil Engineer, C/o BUNS Sarl, P.O Box 1130, Yaounde, Cameroon; valentin.fogang@bunscameroun.com

Abstract: The object of this paper is the analysis of isotropic rectangular thin plates supported (simply
supported or clamped) along two opposite edges whereby the other edges have arbitrary support conditions;
the plates are subjected to external bending moments, concentrated or distributed, and perpendicular to the
supported edges. The standard approach to this problem is to replace the bending moment with a couple of
forces infinitely close and to use the known expressions of efforts and deformations for the plate subjected to
concentrated forces; the results are then related to the first derivatives of those efforts and deformations with
respect to the position of application of the load. In this study, the external bending moment was expanded
into a Fourier series, leading to a distributed external bending moment, and the boundary conditions and
continuity equations were applied. Various types of rectangular plates were analyzed, as well as plates of
infinite length whose results were identical to those in the literature. In addition, results for cantilever plates of
infinite length were presented.

Keywords: isotropic rectangular thin plate; concentrated/distributed bending moment; plates of
infinite length; Lévy solution; Fourier sine series

1. Introduction

The Kirchhoff-Love plate theory (KLPT) was developed in 1888 by Love using assumptions
proposed by Kirchhoff [1]. The KLPT is governed by the Germain-Lagrange plate equation; this
equation was first derived by Lagrange in December 1811 in correcting the work of Germain [2] who
provided the basis of the theory. Lévy [3] proposed in 1899 an approach for rectangular plates simply
supported along two opposite edges; the applied load and the deflection were expressed in terms of
Fourier components and simple trigonometric series, respectively. Many exact solutions for isotropic
elastic thin plates were developed by Timoshenko [4] and Girkmann [5]; the simple trigonometric
series of Lévy was mostly considered. Jian et al. [6] presented the equations for the lateral buckling
analysis of fixed rectangular plates under the lateral concentrated load whereby the critical buckling
strength of the plate calculated by finite element method was analyzed. Xu et al. [7] got exact solutions
for rectangular anisotropic plates with four clamped edges through the state space method whereby
the Fourier series in exponential form were adopted. Onyia et al. [8] presented the elastic buckling
analysis of rectangular thin plates using the single finite Fourier sine integral transform method.
Imrak et al. [9] presented an exact solution for a rectangular plate clamped along all edges in which
each term of the series is trigonometric and hyperbolic, and identically satisfies the boundary
conditions on all four edges. Fogang [10] used the flexibility method and a modified Lévy solution to
analyze arbitrarily loaded isotropic rectangular thin plates with two opposite edges supported
(simply supported or clamped), from which one or both are clamped, and the other edges with
arbitrary support conditions. Mama et al. [11] presented the single finite Fourier sine integral
transform method for the flexural analysis of rectangular Kirchhoff plate with opposite edges simply
supported, and the other edges clamped for the case of triangular load distribution on the plate
domain. Kamel [12] described the operational properties of the finite Fourier transform method, with
the purpose of solving boundary value problems of partial differential equations.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In this paper, isotropic rectangular thin plates were analyzed; they were simply supported or
clamped along two opposite edges with the other edges having arbitrary support conditions, and
were subjected to external bending moments, concentrated or distributed and perpendicular to the
supported edges. The external bending moment was expanded into a Fourier series, leading to a
distributed external bending moment, and the boundary conditions and continuity equations were
applied.

2. Materials and methods

2.1. Governing equations of the plate

The Kirchhoff-Love plate theory (KLPT) [1] is used for thin plates whereby shear deformations
are not considered. The spatial axis convention (X, Y, Z) is represented in Figure 1 below.

Rectangular plate

|
|
|
|
N

Figure 1. Spatial axis convention X, Y, Z.

The equations of the present section are related to the KLPT. The governing equation of the
isotropic Kirchhoff plate, derived by Lagrange, is given by
4 4 4

o'w dw d'w q(x,y)

+2 +—F= 5 )

where w(x,1,z) is the displacement in z-direction, q(xy) the applied transverse load per unit
area, and D the flexural rigidity of the plate.

4
ox ox20y?

-

The bending moments per unit length mxx and Myy, and the twisting moments per unit length

IMxy are given by

w 0w w 0w
m_ =-Dx —+V—F | myy:—Dx —+V—F |
ox oy oy ox
2
m, =—-Dx(1-v)x Ow ,
Ox0y (2a-d)

3
oo Eh 2
12(1-v?)

The shear forces per unit length are given by
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o'w 0w o'w  O'w
Q,=-Dx| —+ : Q =-Dx| —+——|  (3a-b)
oy  Ox 0y
The Kirchhoff shear forces per unit length used along the free edges combine shear forces and
twisting moments, and are expressed as follows:

3 3 3 3
V. =-Dx a—v:}+(2—v)a—w2 , Vy:—Dx 8_:v+(2_v)8Tw .
ox Oxdy oy’ Ox*dy (4a-b)
In these equations, E is the elastic modulus of the plate material, h is the plate thickness, and v is the
Poisson’s ratio.

2.2. Rectangular plate supported along two opposite edges and subjected to external concentrated bending
moments

The plate dimensions in x- and y-direction are denoted by a and b, respectively. The rectangular
plate is assumed simply supported or clamped along the opposite edges x = 0 and x = a. The external

concentrated bending moment denoted by Mx0 is applied at the position (X0, Y0) and oriented along
the + x-axis (see Figure 2).
For rectangular plates simply supported along the edges x =0 and x = 4, bending moment loading
parallel to those edges are satisfactorily treated in the literature and will not be analyzed in this paper.
First, the standard solution to this problem will be recalled. Second, the approach of this study
will be presented whereby plates with two opposite edges simply supported and plates of infinite
length will be considered. Third, plates with two opposite edges clamped will be treated.

2.2.1. Standard solution to the problem

Let the external concentrated moment Mx0 be applied at the position (X0, Y0) as shown in

Figure 2
L a [
I A
; X .
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sl oL quHr
yll =1
R
¥

Figure 2. Rectangular plate subjected to a concentrated moment Mx0 at (Xo, yo).
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The standard approach is to replace the bending moment with a couple of forces -P and P
applied at the positions (Xo, y0) and (Xo, yo + ), respectively, with C approaching zero and Mx0 =

Pxc.
Let S (X, Y, Xo, yo) and S’ (X, Y, Xo, yo) be values of interest (efforts, deformations ...) at

positions (x, y) for the plate subjected to a load P and a unit load, respectively, at a position (Xo, yo).
The values of interest are determined by combining the effect of the forces -P and P as follows

S(x,y,)co,y0 +c)—S(x, y,xo,yo)
:PxS*(x, Vs Xy, Yo +c)—P><S*(x,y,x0,y0)
P@S*(x,y,xo,yo)c
Y,
85*(x,y,x0,y0)
Y,

Hence the determination of a quantity of interest for the case of the plate subjected to an external

(5)

x0

concentrated moment Mx0 at a position (X0, Y0) requires the analytical formulation of the quantity

of interest for the case of the plate subjected to a unit load at the position (X0, Y0) and its first
derivative with respect to yo; this result can be found in Girkmann [5].

2.2.2. Rectangular plate with two opposite edges simply supported and subjected to an external
concentrated bending moment Mxo

In this paper the external concentrated bending moment IMx0 (see Figure 2) is expanded into a
Fourier series as follows

m(x)= My D sin 7% gin 222 (6)

a a a

Therefore, the external concentrated moment IMx0 is replaced with the distributed external moment

me(X) along the line y = yo.
Referring further to Figure 2, the efforts and deformations are represented with the subscripts I

and II for the plate zones 0<YI < Yoand 0<Yy1I < V1, respectively. The continuity equations along
the line Y = YO0 express the continuity of deflection W and slope ow/ (9y and the equilibrium of
bending moment Myy and shear force Qy; observing that the position Y = Y0 corresponds to Y1 =

Yoand Y1 = 0, these equations are given by
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W[ (-xa y] )|y1:y0 = w[[ (x, y11)|y11:0

ow,(x,y)|  _ owy(x, )
dy, 0y,

Yir=Yo v =0

(7a-d)

myy,l (‘x’ Vi )‘YI:)’O - myy’]] (x’ yl])

=y (%)

Qy,l (.X, y,)‘y]:yo - Qy,][ (-x, Yir )‘yn=0 =0

Assuming the rectangular plate simply supported along the edges x = 0 and x = 4, the solution by

Y=

Lévy [4] that satisfies the boundary conditions at these edges is considered for the deflection curve
w(x,y) as follows:

1 :
w(x, y) = 5 Z F (y)sina,x, o, = % (Te)

The solution to Equation (7e) as derived in the literature (e.g., Timoshenko [4], Girkmann [5]) is given
by

A cosha, y+B a ysinha, y+

1 :
wix, y) =— Z . sing, x
D5\ C sinha,y+D o ycosha, y

Hence the efforts and deformations needed for the continuity equations for the plate zone I (0 <Y1 <

Y0) can be expressed using Equations (7f), (2b), and (3b) as follows

1 A cosha,y, +B ,a y,sinha,y, +) . mrx
Wl(x’yI)ZBZ sin

g sinha, y, +D,,a,y, cosha,y, a

m

ow, (x,y,) —iZa A, sinhamy,+Bm,(sinhamy,+amy, coshamy,)+
ayl D m "

) sina,, x
C, cosha,y, +D,, (cosha,y, +a,y, sinha,y,) (8a-d)

2 .
A, cosha,y, +B,, (Ecosh a,y,+a,y,sinha,y, |+
sine, x

my, = ‘Z“i (l_v)

. 2 .
C,sinha,y, +D,, (l—smh a,y, +a,y, cosh amy,)

0, = _Z a, [2B,, sinha, y, +2D,, cosha, y, |sina, x

do0i:10.20944/preprints202307.0112.v2
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The efforts and deformations for the plate zone II (0 < y1I < V1) are expressed by replacing the
subscript I with II in Equations (8a-d). Recalling that the position Y = Y0 corresponds to YI = Y0

and V11 = 0, the continuity equations can be formulated using Equations (7a-d) and (8a-d) as follows
y yeq g Eq

A ,cosha, y,+B ,a, y,sinha, y,+C,  sinha,y,+D, o y,cosha, y,—A , =0

A, sinha, y, +B,, (sinha,y, +a,y,cosha,y,)+C,, cosha,y, +

D, (COSh a,y, +a,y,sinh amyO)_C n =D,y =0

m

(9a-d)

Aml

2 . .
cosha,y,+B,, (1— cosha,y,+a,y,sinha, y, j +C,, sinha, y, +

—Au- B, = sin

J 2 1 2M , . mrx,
1-v a’(1-v) a a

2 .
D, [—1 sinhe,,y, +a,y,cosha,y,
-V

B, sinhe,y,+D,  cosha,y,—D,, =0

The Kirchhoff shear forces needed for boundary conditions at free edges are expressed using
Equations (4b) and (8a)

+1
A,sinha,y, +B , [V—l sinha,y, +a,y, cosha,y, |+

sina,,x (10)

C,cosha,y +D,, [mcosh a,y, +a,y,sinh amylj

In summary, the coefficients Ami, Bmi, Cmi, and Dmr and Ami, Bmi, Cmi, and Dmir are determined

by satisfying the boundary conditions at y = 0 and y = b and the continuity conditions at y = yo. They

are calculated for various boundary conditions at y =0 and y = b in Appendix A whereby the cases of

bending moment applied at the edge y = 0 are also considered. Then, the bending moments myy are

calculated using Equation (8c), and the bending moments mxx and twisting moments mxy are
calculated using Equations (2a, c) and (8a) as follows

2 .
A, cosha,y +B,, (—Vl cosha,y, +a,y, sinha,y, |+
V —

m,, =-y a,(v-1) sina,, x

’ " . v .

C,sinha,y, +D,, —lsmh a,y, +a,y cosha,y,
V_
(11a-b)
,| Ay sinhe,y, +B,, (sinha,y, +a,y, cosha,y, )+

m,,, =—(1-v)x Zam ] cosa, x.

' " C, cosha,y, +D,, (cosha,y, +a,y, sinha,y,)

Load case “Concentrated bending moment applied at the edge x = 0"

Let now the external concentrated moment MyO be applied at the position O, Yo) as

represented in Figure 3
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Figure 3. Rectangular plate subjected to an external concentrated moment MyO0 at (0, yo).

The concentrated moment assumed applied at a position (Xo, yo), with Xo later set to zero,
is replaced with a couple of forces -P and P applied at the positions (Xo+ ¢, yo) and (Xo, yo),
respectively, with C approaching zero and MyO = PXC. The combined forces can then be expanded

into a Fourier series along the line y = yo as follows

a <, a a a

q,0(x)= 2P > | =sin (% +c) +sin 2250 |gin 122

2P~mmc  mux, . Mux
- Z COS

Sin (11c)
a 5" a a a

2zM mwx, . mMrx
=———2> mcos sin

2
a - a a

Observing that xo = 0 it yields the following distributed load along the line y = yo that replaces Myo

a
The continuity equations along y = Yo can then be formulated using Equations (7a-d) whereby (7c-

2xM
dyo (x)=_—ﬁaz = stin e (11d)

d) are modified as follows

myy,l ('X’ yl) _ myy,II (‘x’ yII) = O

Yir=Yo =0

Qy,] (X, Vi )|)’1:)’o o Qy,II (X, Yu )|y11 —0 = qyo (X)

(11e-f)
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Equation (11e) corresponds to (9¢) by setting to zero the term on the right-hand side of (9c) and (11f)
is expressed using (8d), (11d), and (11f) as follows

B, sinhe,y,+D, , coshe,y,—D,, = y;) (11g)

ao

m

Load case “Distributed bending moment applied along the edge x = 0"

Assuming a distributed moment INyO0 (y) applied along the edge x = 0 as represented in Figure

4
|- d %

1 71

A,\T l|' %
¥
|
:

o gl

|
:
!

=L ¥

\
7

Figure 4. Rectangular plate subjected to a distributed bending moment along the edge x =0.

Inspired by Fogang [10], the deflection curve can be taken

2

1 a X X ’
wx,y)=—> F sina. x———\|1—-———|1-—| |m
(x,y) D; L(Msina,x——1-= [ aj L) am

It is noted that Equation (11h) satisfies the boundary conditions at edges x = 0 and x = a. Substituting
Equation (11h) into (1) yields

‘F, °F, :
lz d'F,Q) ’"4();)—205,121—0[ ’”z(y)+a;Fm(y) sina, x+
DSEL dy
(111)
20( \Pm(y) @[ x (. x) |d'm(y) 1
Tl P ASE AN P P [ LTI A
D a dy 6D a a dy

The following functions contained in Equation (11i) are expanded in Fourier sine series
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3
X 2 . X X 12 .
1__:2—s1namx, 1———(1—_j :;m3ﬂ3 Sina,, x (113)

Substituting Equations (11j) into (11i) and given that the latter holds for any value of x, it results the
following differential equation

d*F,(y)
a’y4

20’ d'my(y) 4 d’my()

(11k)
mr  dy mr dy’

d’F,
202 T e ()=

The solution to Equation (11k) is

F,(y)=A4,cosha,y+B,a,ysinhe,y+C, sinhe,y+D,a,ycosha,y+F, (y)(111)

where the coefficients Am, Bm, Cm, and Dm are determined by satisfying the boundary conditions at y
=0 and y = b, and Fmp(y) is a particular solution to Equation (11k). Substituting Equation (11I) into
(11h) yields

A cosha,y+B, «a, ysinha, y+

1
W(x’y):BZ|:

m

a2 X X }
2z 2] o

' sina_x+
C, smhamy+Dm06myCOShamy+Fmp(yJ " (11m)

6D a

To satisfy the boundary conditions at y = 0 and y = b, the Fourier series of Equation (11j) is used; so
Equation (11m) becomes

A cosha,y+B a ysinha, y+C sinhea,y+

w(x, y) = 12 2a° sin@, X (11n)
D% D,a,ycosha,y+F, (y)———m,(y)
mr

3

With respect to the boundary conditions at y = 0 and y = b the equations for the slope dw/dy, the
bending moment myy and the Kirchhoff shear forces are formulated using Equations (2b) and (4b) as
follows

A, sinhe,y+B, (sinhe, y+a,ycosha,y)+ (110)
| 0
ow(x,y) _ > a,|C,cosha,y+D, (cosha,y+a,ysinhe,y)+ |sina,x

oy D
1 dF,(y) 24 dm,(y)
a dy m'z*  dy

m
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A cosha,y+B, (IL coshe,, y+a, ysinh amyj +
-V

. 2 .
C,sinha,y+D, (1— sinha, y+a,,ycosh amyj+

_— 2 —_—
m, = ;am(l /I dCF,0 |+
e o e nFp (¥
L 2w dm ) o
a, (1-v)| m’7m®  dy’ mz

sina,,x

A, sinha,y+B, (V—-Fisinhameramycoshamy]ﬁL (11p-q)
v—

Vi==2a,(v-1) 4’F, (y)
a, (v-1) -

1 .
C,cosha,y+D, (V—+1 cosha,,y+a,,ysinh amy) +

dF sina,, x
dy dy

i dy’ mr dy

1 2q° d’my,(y) 2(2-v)dm,(y)
+
a, (v-1)
The special case of a constant bending moment INy0 applied along the edge x = 0 will be treated in
the Results section.

2.2.3. Rectangular plate of infinite length loaded near its end and having two opposite edges simply
supported

The case of loading around the plate middle will be treated in the Results section.
Let us analyze here a plate of infinite length with two opposite edges x = 0 and x = 4 simply

supported and subjected near its end to an external concentrated moment Mx0, as shown in Figure
5

|~ =]
[

- %0 -

X
y' [
Mo
:vll—|v7

—

—

Figure 5. Rectangular plate of infinite length subjected near its end to an external concentrated

moment MxO0.
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The efforts and deformation in plate zone I (0 < Y1 < Y0) are formulated according to Section
222,

The edges x = 0 and x = a being simply supported, the deflection curve for the plate of infinite

length (plate zone Y11 > 0 in Figure 5) as derived in the literature (e.g., Timoshenko [4], Girkmann [5])
is given by

1 _ :
WII ('x’ yII) - B Z(Amll + Bmllamyll )e i S1n am'x (12)

m
It yields as follows the slope owi/ 8}7 I, the bending moment Myy and the shear force Qy needed

for the continuity conditions along Y = Y0

oWy (%, ) _ 1 e g
& (x y”) R Zam ( Bmll - Amll - Bmllam Y )e " sin &t
6yﬂ D75

my, (X, y,) = _Z ari [(1 - V) Ay—2B,,+ (1 - V) B0,y :Ieiamy” sina, x  (13a-c)

= 3 —%Y, 1
Q,,(x,y,) == 2a, B, e " sina,x
m

The Kirchhoff shear force needed for boundary conditions at free edges is given by

Voi==>a, [(l—v) A+ (1+V)B,, + (l—v)Bm,,amy”]e_“my” sina, x (14

Reminding that the position Y = Y0 corresponds to Y1 = Y0 and y1I = 0, the continuity equations
between the plate zone I (0 <Y1 < Y0) and the plate zone II of infinite length (Y11 > 0) can be expressed
using Equations (7a-d), (8a-d), (12), and (13a-c)

A, cosha, y +B o, y,sinha,y,+C,, sinha,y, +D,

ml

a,y,cosha,y,—A,, =0

A, sinha, y,+B,, (sinha,y, +a,y,cosha,y,)+C,, cosha, y, +

D, (COSh a,,y, +a,,y,sinh amy0)+Amll -B,, =0

2 (15a-d)
A, cosha,y,+B,, (1— coshe,,y, +a, y,sinha,, yoj +C,, sinha,y, +
2 . 2 1 2M ., .
D, (— sinhe,,y, + @, y,cosha, yoj - A+ B,,=— 10 i 1%
1- 1-v a,(1-v) a a

2B, sinha, y,+2D,  cosha,y,—2B,, =0

In summary, the coefficients Ami, Bmi, Cm, Dmi, Amn, and Bmn are determined by satisfying the
boundary conditions at  y =0 and the continuity conditions at y = yo. They are calculated for various
support conditions at y = 0 in Appendix B.
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Then, in the plate zone of infinite length the bending moments myy are calculated using
Equation (13b), and the bending moments mxx and twisting moments mxy are calculated using
Equations (2a, c) and (12) as follows

m (X, y,)= Zaj, [ 1- v) A ,+2VB  + (1 V)Bm,,amy,, ]e‘“"’y” sina, x
(15e-1)
u=—(1=-v)x Z a, AmII + B,,— B, amyll] e " cosa,,x

2.2.4. Rectangular plate of infinite length loaded around the plate middle and having two opposite
edges arbitrarily supported

A rectangular plate with dimensions 4 and b in x- and y- direction, respectively, and loaded
around the plate middle or at a large distance from the edges x =0 and x = a is analyzed. The plate
with a very high aspect ratio a/b is then considered of infinite length while the edgesy=0and y = b
are arbitrarily supported, as represented in Figure 6

L a— o %
- 71

Arbitrarily supported (AS}
s

& mxo(y)—wi
myo(y)
. —

vy

by |

Figure 6. Rectangular plate of infinite length loaded around the plate middle.

The edges x = 0 and x = a are at a large distance from the loading. Therefore, the structural
behavior of the plate subjected to this loading does not depend on the support conditions at these
edges; then the latter can be assumed simply supported and so the Lévy solution (Equation (7e)) can
be applied. Finally the results are obtained by letting a tend to infinity. This reasoning can be found
in Courbon et al. [13].

Furthermore, it is observed that the structural behavior of the plate of infinite length subjected
to an external concentrated bending moments at a large distance from the edges x=0 and x = a is the
same as if the loads were applied at the middle. The  yo- axis of application of the loads is then
considered as the middle of the plate.

Load case “Distributed bending moment mx0(y) applied along x = a/2”

The distributed bending moment IMx0 (y) is replaced at any position i with a couple of forces

and so it yields the distributed load -dINxo(y)/dy along x = a/2. The Fourier series expansion of the
load applied at Xo yields the following load per unit area throughout the plate

sin (159)

2 dmxo (») mﬂxo mrx
a Z a

q.(x.y)=-

do0i:10.20944/preprints202307.0112.v2
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The deflection curve follows Equation (7e) and observing that Xo = a/2 the differential equation is
given by

d*F,(y) d°F,(y) 4

4 _zalfi 2 m- m T
dy dy a dy 2

Then the analysis continues using Equations (111-q) whereby My0 (y) is set to zero.
Load case ”Distributed bending moment my0(y) applied along x = a/2”

Using Equation (11c) the Fourier series expansion of the load applied at Xo yields the following
load per unit area throughout the plate

27m o (y) MzX, . MITX
———> mcos

CIZ(X,Y)Z— > sin (151)
a - a a

The deflection curve follows Equation (7e) and observing that Xo = a/2 the differential equation is
given by

d'F,(y) d’F,(y) 2mm,(y) mz

2 4 0 .
+y—2am+y+amFm( )Z——yzl’l’lCOS— (15))
dy a

Load case “External concentrated bending moments applied at (x =a/2, y="b)"

These load cases will be treated in the Results section.

2.2.5. Solution of this study: Rectangular plate with one or two opposite edges clamped

It is assumed that from the two supported opposite edges x = 0 and x = 4, one or both are
clamped. The analysis can then be conducted using the flexibility method according to Fogang [10].

The primary system is the rectangular plate simply supported along the edges x =0 and x = 4, and is
treated according to the previous sections. The flexibilities 9jo0 (slopes at positions j of the opposite

edges where the compatibility equations will be set) for the primary problem are calculated for an
ordinary plate and a plate of infinite length, respectively, as follows

ow(x, 1 A, cosha,y +B o,y sinha,y, +
5,-02—W(x ) =—Zam " ' S ! cos &, x;
' ox |=x D C, sinha,y +D, a,y cosha,y,
o (16a-b)
ow(x,y) 1 e,y
5, o BZam (Aml +Bm,amyj)e cosa, X,

y=y;
The redundant system is the plate simply supported along the opposite edges and subjected to
bending moments along those edges.

3. Results and discussion

3.1. Plate of infinite length subjected to an external concentrated moment at the middle

The plate of infinite length is subjected to an external concentrated moment at the middle or at
a large distance from the y edges, as represented in Figure 7.
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[

Mxo

.—F—‘/_'_’—_\_\‘_\—\_\_'_’/_——'—’

y

Figure 7. Rectangular plate of infinite length subjected to an external concentrated moment Mx0 at
the middle.

Given the anti-symmetrical nature of the load and the symmetry of the system, the deflections
are zero along the line y =0. And since the load is equally divided between the two halves of the

plate it yields myy(X, y= O) = mxo(X)/ 2. Substituting these conditions into Equations (12), (13b),
and (6) yields for y > 0

M 1 _ ) .
w(x, )’) = ;Oy —e “?sin a, X, sma, x (17)
27D 57 m

This result can be found in Girkmann [5].

3.2. Plate of infinite length subjected to a concentrated moment at its end

The plate of infinite length is subjected at its end y = 0 to an external concentrated moment, as

represented in Figure 8.

3 . g
. X0 .
Mxp X
Fﬂ'/_’—_'_\i\‘—‘\\k_w_/,_ﬁ—'
¥

Figure 8. Rectangular plate of infinite length subjected at its end to an external concentrated bending

moment MxO0.

Case 1: Edge y = 0 simply supported
The deflections are zero along the line y = 0 and the bending moment myy at y =0 is equal to the

distributed moment Mxo (X) (the concentrated moment IMx0 expanded into a Fourier series
according to Equation (6)). Substituting these conditions into Equations (12) and (13b) yields
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M | R .
wix, y) = —2L 3" g gin a, x,sina, x (18)

D S m
Case 2: Edge y =0 free
The Kirchhoff shear force is zero along the line y = 0 and the bending moment myy at y =0 is
equal to the distributed moment (the concentrated moment Mxo expanded into a Fourier series
according to Equation (6)). Substituting these conditions into Equations (13b) and (14) yields

2M — (1+V)a Yy ~0y :
= X m (19)
w(x, y) ) ; (=) (3+v)em + (o v)em e “sina, x,sina, x

3.3. Rectangular plate with the edges x = 0 and x = a simply supported and subjected to a constant bending
moment loading along x =0
The plate simply supported along the edges x = 0 and x = a is subjected at x = 0 to a constant

bending moment loading Myo, as represented in Figure 9. The edges y = 0 and y = b are taken both
simply supported and both clamped; therefore, for simplification purpose the x-axis can be shifted
to the middle of the plate

| g |+
| ]
T~
o
]
0
e "
o
)
0
!

Figure 9. Rectangular plate subjected at the edge x =0 to a constant bending moment loading I1yo.

Case y =0 and y = b simply supported
Using Equation (11k) yields the particular solution Fmp(y) is zero. From the conditions of

symmetry Cm=Dm =0.
The satisfaction of the boundary conditions yields the deflection curve as follows

1 . . ’ ’
w(x,y) = BZ[Am cosha, y+B,a,ysinha, y]sin amx—g—D{l—f—(l—zj :lmyo
(20)

- a a
A a’(2+Y, tanhY,) -a’ y _mab
= m 07 m = m 0 m =
m'z’ coshY, * m'z’coshY, 2a

Then the bending moments per unit length mxx and myy, and the twisting moments per unit length

IMxy are calculated using Equations (2a-c) and (20).


https://doi.org/10.20944/preprints202307.0112.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 July 2023 do0i:10.20944/preprints202307.0112.v2

16

Case y =0 and y =0b clamped

Similarly, the deflection curve is as follows

- a a

5 3
w(x, y) = %Z[Am cosha, y+B,a,ysinha, y]sin amx—g—D{l —f—(l—ﬁj }mw o)

2a’ sinhY, +Y coshY, -2a’ sinhY mzub
Am: 3 3 . myo’ Bm: 3 3 . myo’ m:
mz” Y +1/2sinh2Y m'z” Y +1/2sinh2Y, 2a

3.4. Cantilever plate of infinite length subjected to external concentrated moments at the middle

The cantilever plate of infinite length is subjected to concentrated bending moments at the
middle, as shown in Figure 10

a— o0

L
“|

>\ \ Clamped edge / /
5 A PPl il P i P -V AP s i

e )
Y

Free edge / /

¥y

Figure 10. Cantilever plate of infinite length subjected to external concentrated bending moments at
the middle.

Load case “Concentrated bending moment Mx0 applied at (x =a/2, y=15b)"

The dispositions of Section 2.2.4 are applied whereby the Poisson’s ratio is not considered for
simplification purpose. The following boundary conditions are set using Equations (6), (8a-c), and

(10)
_o Oy _ _
w(x,y)| _, =0, o |." 0, my[  =-m,(x). V,| =0 @2
y=
Then the coefficients Am, Bm, Cm, and Dm are determined as follows
A =0, B - 2M)260 20(;sh Y —Yn; sinhY sin " ’
aa, Y +3cosh’Y +1 2
. (22b)
C --D., D - —2szo 81r12h Y -Y 2cosh Y gin M7 . mih
aa, Y +3cosh”Y +1 2 a

Setting Ym = mp with p = nb/a — 0, the bending moments Myy at any position (x = a/2, y = kb) are

2coshmp —mpsinhmp

2cosh kmp + kmpsinh kmp ) —
m’p* +3cosh® mp +1 ( » » p)
m

(22¢)

yy |x=a/2 =

y=kb b o0, 455 | sinhmp—mpcoshmp

sinh kmp + kmp cosh km
m’p* +3cosh’ mp +1 ( P P p)
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The summation F(k) in Equation (22c) for p tending to zero is evaluated depending on k and the
values are calculated in the Supplementary Material “Cantilever plate of infinite length under
bending moment Mxo” and listed in Table 1

Table 1. Coefficient F(k) of the bending moment IMyy at a position y = kb along x = a/2.

k= 0,00 0,20 0,40 0,50 0,60 0,70 0,80 0,90

F(k) = 0,3820 0,4992 0,6289 0,7302 0,8853 1,1514 1,7021 3,4303

So, the bending moments Myy at the middle of the clamped edge and at y =b/2, respectively,
are

(22d)

0.764M 1.460M
m -, m =

vy [x=al2 = yy |x=al2 —
y=0 b y=b/2 b
At the point of application of the load (k = 1.0) the summation F(k) did not converge. This result is in
agreement with Timoshenko [4].
Moreover, the calculated moments in the vicinity of the load (k = 0.80, 0.90) showed a rapid
increase and must be verified. For this purpose the external concentrated moment is replaced with a

distributed moment IMx0 /2c acting over a length 2¢; this distributed moment is expanded in Fourier
series as follows

2M 1 . mrc . mrx, . mrx
m(x)="—L> —sin sin——"sin (22¢)
me m a a a

Equation (22e) replaces then (6) in the analysis whereby xo = a/2. Setting ¢ = Ab and p = nb/a — 0, the

bending moments IMyy at positions (x = a/2, y = kb) are expressed as follows

sin Amp 2coshmp —mpsinhmp

2cosh kmp + kmpsinh kmp)—
Z Am  m’p’+3cosh’ mp+1 ( P P ) (221)

y=kb b o0, 455 | sin Amp sinhmp —mp coshmp

sinh kmp + kmp cosh km
Am m2p2+3cosh2mp+l( P P ,0)

The summation F(k, 1) in Equation (22f) for p tending to zero is evaluated depending on k for A = 0.05
and 0.10, and the values are calculated in the above mentioned supplementary material and
displayed in Table 2.

Table 2. Coefficients F(k, 1) of the bending moments Myy at (x = a/2, y = kb) for A = 0.05, 0.10.

k= 0,00 0,20 0,40 0,50 0,60 0,70 0,80 0,90

Fk,A=0.05)= 03826 04992 0,628 07300 08853  1,1510 1,6970  3,3397

Fk,A=010)= 03842 04994 06287 0,7297  0,8846 1,1484 1,6779  3,0979

At the point of application of the load (k =1.0) the summation F(k, 1) did not converge; however

the bending moment at this position is a boundary condition namely myy =-Mx0 /2c.
In the vicinity of the load (k = 0.80, 0.90) the results for a distributed moment acting over a length
2¢ (c=0.05b) were in good agreement with those of a concentrated moment.

do0i:10.20944/preprints202307.0112.v2
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In addition, the results showed that away from the point of application of the load the results
for concentrated load are identical to those with the load distributed over a small length: this is in
agreement with the Saint Venant's principle.

The values of deflection along the axis x = a/2 of application of the concentrated moment for
positions y = kb are

k 2coshmp—mpsinhmp

sinh kmp —
m m’p° +3cosh>mp+1 r (229)

y=kb zD r,o0 61 1 sinhmp—mpcoshmp

kmp cosh kmp —sinh km
pm’> m’p* +3cosh’ mp+1( r r p)

The summation F(k) in Equation (22g) for p tending to zero is evaluated depending on the position k
and the values calculated in the above mentioned supplementary material are listed in Table 3

Table 3. Coefficient F(k) of the deflection at a position y = kb along the axis x = a/2.

k= 0,20 0,40 0,50 0,60 0,70 0,80 0,90 1,00

F(k) = 0,0085 0,0370 0,0603 0,0910 0,1307 0,1821 0,2513 0,3610

So, the maximal deflection is at the tip and its value is

s =0.232M0

y=b

w (22h)

Load case “Concentrated bending moment MyO0 applied at (x =a/2, y=15b)"

Using Equation (11c) the concentrated moment Myo is replaced with a distributed load whereby
x0 = a/2. The boundary conditions are identical to Equation (22a) with following modifications

2zM mr . MEX o
m, =0, Vy :——Zchos sin a
y=b y=b a - 2 a
Then the coefficients Am, Bm, Cm, and Dm are determined as follows
—2M , sinhY +Y coshY mi
A,=0, B, = 0w cos—,
ac, Y +3cosh”Y +1 2
3 _2M , 2coshY, +Y, sinhY, — mzx _ mub (23b)
c,=-D,, = > > 2 coSs D
ac, Y +3cosh’Y +1 2 a

The bending moments myy along the clamped edge, at a distance x0 from the middle, are given by

m}'y

4M , sinhY, +Y, coshY, mrx . (mxr  mrx, mh
z > n ’”2 " cos—Ssin , Y =—— (23¢)
wa Y +3cosh”Y +1 a

x=al2+x0 —
y=0

The bending moment Myy is zero along the axis x = a/2 (x0 = 0) of application of the concentrated
moment.

Setting Ym = mp with p = tb/a — 0, and x0 = kb, the bending moment Myy along the clamped
edge is

y0

. _4aM lim 3 sinh mp +mp coshmp
yy |x=al2+kb —

sin(kmp) (23d)
=0 b 0,55 " m’p® +3cosh’ mp +1 (kmp)
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The summation F(k) in Equation (23d) for p tending to zero is evaluated depending on k and the
values calculated in Supplementary Material “Cantilever plate of infinite length under bending
moment Myo” are listed in Table 4

Table 4. Coefficient F(k) of the bending moment IMyy at a position x0 = kb of the clamped edge.

k= 0,00 0,25 0,50 0,75 1,00 1,50 2,50
F(k) = 0,000 0,1846 0,2686 0,2577 0,2070 0,1081 0,0264
k= 0,45 0,5 0,6
F(k) = 0,2610 0,2686 0,2725

The maximal/minimal value of F(k) is obtained by a parabolic interpolation between k = 0.45 and
k =0.60: it yields the value F(k),max,min = +0.2730 for k = £0.5759.

So the maximal/minimal bending moments Myy are found * 0.5759xb from the middle of the
plate and the values are

_ Loom,,

Yy *max,min (23¢)
b

m

3.5. Plate of infinite length subjected to a concentrated moment Mx0 at (x =a/2, y =b)

Case y = 0 clamped and y = b simply supported

The plate of infinite length is subjected to a concentrated moment Mx0 at the middle of the
simply supported edge.
The coefficients Am, Bm, Cm, and Dm are determined as follows

_2M Y, coshY —sinhY, . mzx

Am = 0, Bm ) _ sin s
aa,  2Y —sinh2Y, 2 (24a)
C -—D., D - 2M 0 Y, 51r.1h Y, gin % Y, - mzb
ac, 2Y —sinh2Y 2 a

Setting Ym = mp with p = nb/a — 0, the bending moments Myy at positions (x = a/2, y = kb) are

mp coshmp —sinhmp

- (2cosh kmp + kmp sinh kmp ) —
2mp —sinh 2mp (24b)

mpsinhmp

20 lim
b ro0, 455

m

y

x=al2 =
y=kb

————— (sinhkmp + kmpcosh km
p2mp—sinh 2mp( P P ,0)

The summation F(k) in Equation (24b) for p tending to zero is evaluated depending on k and the
values are calculated in the Supplementary Material “Plate of infinite length clamped simply
supported under moment Mxo” and listed in Table 5

Table 5. Coefficient F(k) of the bending moment IMyy at a position y = kb along x = a/2.

k= 0,00 0,30 0,40 0,50 0,60 0,70 0,80 0,90
F (k)= -0,7258  -0,1205 0,0369 0,2018 0,3984 0,6782 1,1577 2,6953

So, the bending moments Myy at the middle of the clamped edge and in the middle of the y-
dimension b, respectively, are

do0i:10.20944/preprints202307.0112.v2
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m l\i=ar =" m, a2 = (24¢)
x=al2 ’ x=al2
» y=0 b » y=b/2 b
Case y =0 and y = b simply supported
The coefficients Am, Bm, Cm, and Dm are determined as follows
An = O’ Bm = 0
Cm —_ Mx;) Ym.COih Ym 1 m_ﬂ-’ Dm — MX;) - 1 Sinm_ﬂ-’ Ym = _mﬂ.b
ac, sinh“Y, 2 ac, sinhY, 2 a (24d)
Setting Ym = mp with p = nb/a — 0, the bending moments IMyy at positions (x = a/2, y = kb) are given
by
- 5 -
mp” coshmp .
'0. > P sinh km 0 —
— 20 Jim Z sinh” mp (24e)
x=al2
e b r—0, 455 yo

———(2sinh kmp + kmp cosh kmp)
| sinhmp

The summation F(k) in Equation (24e) for p tending to zero is evaluated depending on k and the
values are calculated in the Supplementary material “Plate of infinite length simply supported under
bending moment Mxo”and listed in Table 6

Table 6. Coefficient F(k) of the bending moment IMyy at a position y = kb along x = a/2.

k= 0,00 0,30 0,40 0,50 0,60 0,70 0,80 0,90
F (k)= 0,0000 -0,4002  -0,5707 -0,7858  -1,0839  -1,5619  -2,5538  -5,4557

4. Conclusions

In this paper, isotropic rectangular thin plates were analyzed; they were simply supported or
clamped along two opposite edges with the other edges having arbitrary support conditions, and
were subjected to external bending moments perpendicular to the supported edges. Bending
moments parallel to the supported opposite edges are satisfactorily treated in the literature and were
less analyzed in this study. The standard approach to this problem is to replace the bending moment
with a couple of forces infinitely close and to use the known expressions of efforts and deformations
for the plate subjected to concentrated forces; the results are then related to the first derivatives of
these efforts and deformations with respect to the position of application of the load. In this study
the external bending moment was expanded into a Fourier series, leading to a distributed external
bending moment, and the boundary conditions and continuity equations were applied. Various types
of rectangular plates were so analyzed and also plates of infinite length whose results were identical
to those in the literature.

The following aspect was not addressed in this study but could be analyzed in the future:
Rectangular anisotropic plate
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Supplementary Materials: The following files were uploaded during submission: “Cantilever plate
of infinite length under bending moment Mxo”; “Cantilever plate of infinite length under bending
moment Myo”; “Plate of infinite length clamped simply supported under moment Mxo”; “Plate of
infinite length clamped simply supported under moment Mxo.”.

Conflicts of Interest: The author declares no conflict of interest.
Appendix A. Coefficients Ami, Bmi, Cmi, and Dmt and Ami, Bmi, Cmii, and Dmu for various support
conditionsaty=0andy=b

Edges y =0 and y =b clamped
The plate is represented in Figure 2. We set

1 2M MXx
* .
m., = 20 gin 0

g (1-v) a a

Y():amyO’ leamyl’

The boundary conditions and continuity equations are expressed in matrices form as follows,
whereby the first two rows and the last two rows represent the boundary conditions at the edges y =
0 and y = b, respectively.

Edge y = 0 simply supported and edge y =b free

(1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
coshY) Y sinhY, sinhY, Y coshY] -1 0 0 0
. . (A, [ 0]
sinhY, sinhY;+ coshY, coshY,+ 0 0 -1 -1 B 0
. ml
Y, cosh¥] Y, sinh Y, c, 0
D, 0 (A1)
2cosh¥, 2sinh Y, .
coshy, 2600% - ppy Zsmbk o2 0 Ayl m,
1-v 1-v I-v B 0
Y, sinh ¥ Y, cosh¥] it
Co 0
0 2sinhY, 0 2cosh¥, 0 0 0 -2 D] L0
0 0 0 0 coshY, Y sinhY, sinhY, Y coshY]
0 0 0 0 sinhY, sinhY + coshY, coshY, +
| Y, coshY, Y sinhY] |
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(1 0 0 0 0 0 0 0 ]
1 2 0 0 0 0 0 0
I-v
coshY, Y sinhY, sinhYy Y cosh¥, -1 0 0 0
sinhYy sinhY + coshY, coshY+ 0 0 -1 -1
Y, cosh Y, sinh Y] A 0
B,, 0
i Cm 0
cosh¥, 2coshy + sinhY] 2sinh ¥y + - - 0 0 '
I-v I-v 1-v < D, _ 0
Y, sinhY, Y, cosh¥, Ayl |m,, | (A2)
Bmll 0
0 2sinh Y, 0 2coshY, 0 0 0 -2 C.u 0
_Dmll J L 0 _
0 0 0 0 coshy 2SOV Gy 2sinhd
I-v 1-v
Y sinhY, Y, coshY,
0 0 0 0 sinhY, Viisinh Y+ cosh, V—Jricosh Y, +
v— -
L Y, coshY, Y sinhY,

Plates with other combinations of support conditions at y =0 and y =b can be analyzed similarly. The
first two rows and last two rows are modified accordingly.
Edge y = 0 simply supported and edge y = b free: bending moment acting at (xo, yo =0)

The plate is represented in Figure 2 with Y0 = 0. We set

" 1 2M , . mrx
Y=ab, m,, =— 20 gin ——
a,(1-v) a a
1 0 0 0 ]
1 2 0 0
I-v
A 0 (A3)
coshY, 2coshl sinhY, 2sinhY; B, | |-m,,
l1-v 1-v X c 17l o
Y, sinh Y] Y, coshY, il
Dmll O
. v+l . v+1
sinhY, ——sinhY, + coshY, ——coshY +
v—1 v—1
| Y, cosh Y Y sinhY |

Edge y =0 free and edge y =b clamped: bending moment acting at (xo, yo = 0)
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| sinhY]

0
2
1-v

Y sinhY,

sinhY, +Y, coshY,
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| v+l
v—1
0 0 Aml] 0
y B, | —n,, (A4)
CmII 0
sinhY, Y, coshY, D, 0
coshY, coshY +Y sinhY,

Plates with other support conditions at y = b can be analyzed similarly, the last two rows being
modified accordingly. Then, the bending moments myy are calculated using Equation (8c), and the
bending moments mxx and twisting moments mxy are calculated using Equations (11a-b).

Appendix B. Plate of infinite length: coefficients Ami, Bmi, Cmi, Dmi, Amu, and Bmn for various
support conditions aty =0

Edge y = 0 simply supported
The plate is represented in Figure 2. We set

YO :amyO’

* 1 2M,

= sin

MTX,

o T (1) a

a

The boundary conditions and continuity equations are expressed in matrices form as follows,
whereby the first two rows represent the boundary conditions at the edge y = 0.

cosh Y,

sinh Y,

cosh,

Y, sinh Y,

sinh Y, +
Y, coshY,
2coshy,
—_—+
1-v

Y, sinh ¥,

2sinh Y

Edge y = 0 clamped

0 0 0 0]
0] 0 0 0]
sinhY, Y,coshY, -1 0
coshY, coshY,+ 1 -1
Y, sinh ¥,
sinhY, 2sinhY] N -1 2
1-v 1-v
Y, coshY
0 2coshy, 0 -2

i Am] i i O |
B, , (0]
C.|_| 0| BD
> =
D, , 0
AmH m;Om
_BmII _| L O _
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1 (0] (0) 0] (0] (0]
(0] (0] 1 1 (0] (0]
coshY, Y,sinhY] sinhY, Y,coshY, -1 0] - -
A, 0]
. . Bml O
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