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Abstract: Navigation is the most challenging issue in autonomous vehicles. Researchers in the 

current era have developed many Artificial Intelligence techniques to navigate, generate paths, and 

avoid obstacles for optimum path planning for autonomous vehicles. Different studies have 

investigated bio-inspired techniques to overcome the navigation issue, including obstacle 

avoidance. This paper uses new meta-heuristic optimization techniques called Dragonfly Algorithm 

(DA) to set the goal by detecting and avoiding obstacles with minimum human interference. For 

effective results, the Dragonfly-Fuzzy hybrid algorithm is analyzed over the unstructured 

environment because individual techniques may not be sure of an optimal solution over all 

configurations. The main advantage of the proposed hybrid controller is that it combines the 

multiple features of different approaches into a single controller. This paper compares simulation 

and experimental findings over various environmental conditions to the individual algorithm. 

Regarding time and path optimization, the hybrid Dragonfly-Fuzzy controller performs better than 

the respective controller. 
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1. Introduction 

The fast development of the logistics industry creates the demand for intelligent autonomous 

vehicles for efficient and fast processes [1]. Autonomous vehicles replacing human labour in labour-

intensive, repetitive, and dangerous areas have received considerable attention, crucial to the 

operational efficiency and resource consumption of modern factories and warehouses [2]. An 

autonomous vehicle is an intelligent vehicle that can perceive its environment, gather and analyze 

important information from its sensor, and identify its current position. This vehicle also generates a 

feasible path from the initial location to the target location with the decision control to achieve the 

path through a planned trajectory [3]. Path planning methods is one of the fundamental methods for 

realizing autonomous vehicle intelligence, which refers to determining an optimum or suboptimal 

path from the initial location to the target location in a complicated spatial environment based on the 

initial and target positions provided during vehicle operation [4]. The path planning problems are 

divided into different static and dynamic environments [5] and refer to different static and dynamic 

obstacle avoidance [6]. 

Path planning algorithms have been widely employed for outdoor and interior path planning. 

Classical approaches, heuristic methods and bioinspired algorithms are typical navigation and 

motion planning approaches for autonomous vehicle technologies in the context of pathfinding 

algorithms. Many researchers have implemented various Swarm Intelligence meta-heuristics 

algorithms inspired by the natural behaviours of some animals (such as grey wolves, ants, and so on) 

in their quest for survival. Swarm intelligence is used to solve nonlinear problems with real-world 

implementations using the most advanced science and engineering areas, such as data mining and 
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neural networks. Different swarm intelligent algorithms are utilized for path optimization. For 

addressing the navigational strategies in autonomous vehicles, Ant Colony Optimization (ACO) [7], 

Particle Swarm Optimisation (PSO) [8], Firefly Algorithm (FA) [9], Fruit Fly Algorithm (FFA) [10], 

Bat Algorithm [11], Grey Wolf Optimizer [12], Grasshopper Optimization Algorithm (GOA) [13] and 

many other algorithms have been utilized for solving different navigational problems of autonomous 

vehicles. 

Various research has been performed on multi-objective-based path planning since it is required 

to evaluate numerous elements concurrently, such as travel distance, collision safety, and path 

flexibility, rather than simply generating a path considering only one component. Hybridization 

techniques, in which bioinspired algorithms are mixed with heuristic algorithms like A* [14] and 

Fuzzy logic [15], can improve the efficiency of autonomous vehicles. When compared to separate 

controllers, this A*-Fuzzy hybrid approach optimizes the shortest path while also avoiding obstacles 

[16]. Another intelligent hybrid approach called Quarter Orbits Particle Swarm Optimization 

(QOPSO) secures the optimal path and improves the final path, free from a collision [17]. On the other 

hand, when Quarter Orbit is considered alone, it consumes more power and has an unsmooth path. 

This paper uses a traditional, bioinspired, and hybrid technique to find the shortest collision-

free path. This proposed work for an unstructured environment delivers a path-planning approach 

with obstacle avoidance using Fuzzy Logic and Dragonfly Algorithm. This paper demonstrates 

autonomous vehicle path planning and obstacle avoidance utilizing individual and hybrid 

controllers. This paper presents a new Dragonfly-Fuzzy hybrid strategy for path finding of 

autonomous vehicles in static and dynamic environments to optimize the path length and calculate 

the time when compared to the standalone algorithm. 

2. Path Planning algorithms 

The key issue in moving the autonomous vehicle from one position to another was identifying 

the best or close to best desired path by avoiding obstacles in order to reach the target with desirable 

accuracy. Hence the most crucial function of any navigational technique is safe path planning (by 

identifying and avoiding obstacles) from the initial place to the target position. As a result, when 

working in a simple or complex environment, the proper selection of the navigational strategy is the 

most critical phase in the course planning of an autonomous vehicle. This paper uses Fuzzy Logic 

and Dragonfly algorithms for path planning and autonomous mobile robot obstacle detection. 

2.1. Dragonfly Algorithm 

Seyedali Mirjalili proposed the Dragonfly Algorithm [18] in 2015 to solve multi-objective 

optimization challenges. Static and dynamic swarming behaviours inspire the Dragonfly Algorithm 

(DA). These two swarming tendencies are very comparable to the two major phases of meta-heuristic 

optimization: exploration and exploitation. Static swarming, also known as hunting, creates a small 

group of dragonflies that swiftly adjust their steps in search of food. A dynamic swarm, also known 

as a migratory swarm, is a huge group of dragonflies travelling long distances for migration. As 

proposed by Reynolds in 1987, dragonfly swarming behaviours adhere to the concepts of separation, 

alignment, cohesion, attraction to food, and distraction from opponents. The Dragonfly Algorithm, 

two primary phases of optimization methods, exploration and utilization, are designed by social 

interaction in navigation, hunting for food, and fighting compiled enemies dynamically that use the 

Binary Dragonfly Algorithm (BDA), Multi-objective Dragonfly Algorithm (MODA) and Single–

Objective Dragonfly Algorithm (SODA). 

The Dragonfly algorithm works on the five basic rules. Where 
nP  represents the position of the 

current individual flies, 
i

P  represents the position of 
thi  neighboring flies and N  be the number 

of neighboring individuals. 

1. Separation ( jS ) represents the internal collision avoidance with other flies in the 

neighborhood, mathematically represented as shown in the Equation (1). 

                                       
N

j n ni 1 i
S P P

=
= −                                      (1) 
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2. Alignment ( jA ) indicates the matching of the velocity individually between the other 

neighborhood individuals of the same group; it is mathematically represented as shown in the 

Equation (2). 

                                   
N

ii 1
j

V
A

N
==

                                            (2) 𝑤here iV  represents the velocity of the ith individuals 

3. Cohesion j(C )  represents the tendency of individuals towards the centre of the mass of the 

neighborhood; it represents as shown in the Equation (3). 

                                    
N

ii 1
j

P
C P

N
== −

                                           (3) 

4. Attraction i(At )  represent the food of the source dF , which is mathematically represented as 

shown in the Equation (4). 

                                    j PFd Fd P= −                                              (4) 

Where jFd  represent the food source of the jth individuals and pF d  represent the position of 

the food source. 

5. Distraction j(D e )  represents the distraction from the enemy as shown in Equation (5). 

                                      j PDe De P= +                                             (5) 

Where jD e  represent the position of the enemy of the thj individuals and PD e represent the 

enemy position. 

If the DA updates the position in the search space, two vectors Step Vector (SV) and Position 

Vector (PV), are used. The SV can be uploaded using a similar equation used in the PSO algorithm 

[19]. The Equation (6) will be used for calculating the position vector. 

                                     t 1 t t 1PV PV dPV
+ +

= +                                       (6) 

Where t  denotes the current iteration t 1PV
+

 denoted as the next position , tP V  represents the 

current position t 1dPV
+

 denotes the step vector which is represented by Equation (7), 

                         t 1 j j j j j P tdPV s.S a.A c.C f .Fd e.De C dPV
+

= + + + + +                          (7) 

Where tdPV  denotes the current step vectors; s  represent the  thj  seperation, a  represents 

the alignment, c  represents the cohesion, f  represents the food source, and e  represent the 

distraction, while pC  represents the inertia weight. 

If sometimes the dragonfly algorithms have no neighbours, then the dragonfly must do some 

random movement. In this situation, the position must be updated using Levy’s flight which is 

represented by the Equation (8)  

                                       t 1 t tx x Levy.x
+

= +                                       (8) 

The main objective of using DA is to navigate the autonomous vehicle into an unstructured 

environment consisting of different obstacles. This objective is transformed into a minimization 

problem with two functions. The first is to avoid obstacles, and the second is to find the shortest 

possible path. Error! Reference source not found. depicts the environment of the autonomous vehicle 

target and goal positions. 
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Figure 1. Autonomous vehicle positioning in the presence of an obstacle. 

Error! Reference source not found. depicts the architecture of the proposed DA controller, and 

Error! Reference source not found. illustrates the pseudo-code for the DA to describe its execution. 

 

Figure 2. Dragonfly Algorithm architecture. 
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Figure 3. Pseudo-code of Dragonfly Algorithm. 

2.2. Fuzzy Logic Concept 

Lotfi Zadeh invented the concept or origin of fuzzy logic approaches in 1965 [20], and its 

mechanism is based on human decisions such as yes or no or if-else. The fuzzy logic concept of the 

numerous dilemma factors provides a meaningful choice representation via its if-else, rule-based 

mechanism. Its operation is based on misleading and randomly distributed partial data for multiple 

issues. Unlike linear logic, fuzzy logic models complicated data problems with the most uncertainty. 

The basic fuzzy logic working model is illustrated in Error! Reference source not found.. 

 

Figure 4. Schematic diagram of fuzzy logic. 

The basic parameters of the fuzzy logic are given as follows: 

• Fuzzification: It is represented as a membership function that defines the input variables. 

• Inference and Aggregation: Its parameter shows the final output of the fuzzy rules. 

• Defuzzification: Its Crisp value converted from fuzzy-based output will be found. 

The concept of fuzzy inference Basic mapping techniques uses input data with output variables. 

In fuzzy inference, the if-then rule is used. It is also the foundation for its decision-making. Let the 

different objects(x) denoted by X  and x be the known pair for fuzzy set A. 

A {(x, A(x) X}€= µ   (9) 

From the Equation (9), A(x)µ  defines the fuzzy membership function provided for set A. In 

other, the membership values used to measure x will be 0 to 1. The basic fuzzy logic problem is solved 
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by two types of function, i.e., trapezoidal and triangular. The Equation (10) describes the triangular 

membership function. 

0, x p
x p

p x qq p
Triangle(x, p,q, r)

r x q x r
r q

0, r X

<


−
≤ ≤−

= 
− ≤ ≤

 −


≤

  (10) 

To explain the principle of maxima and minima, the given Equation (10) can represent by the 

Equation (11), 

x p r xTriangle(x,p,q,r) max min , ,0
q p r q

  − −
=   

− −  
 (11) 

Similarly, the given trapezoidal function can be explained by using the four parameters 

{p, q, r, s} , as represented in the Equation (12) given below, 

0, x p
x p p x q
q p

Trapezoid(x, p, q, r, s) 1, q x r
s x

r x s
s q

0,s X

<


− ≤ ≤
−

= ≤ ≤
− ≤ ≤ −


≤

 (12) 

In above equation (p,q, r,s)  determines the values of the x-coordinates (with p q r s< < < ) of the 

corners of the defuzzification-trapezoidal membership function. 

Defuzzification is mathematically explained in the subsequent equation, which employs the 

centre of gravity principle to turn the fuzzy set into a crisp value. 

i i icrisp

i i

b µ
µ =

µ

 
 

  (13) 

Where crispµ  define the crisp output value and ib  represents the centre of the membership 

function. While i  and iµ  reflects the area under the membership function. 

Research manuscripts reporting large datasets that are deposited in a publicly available database 

should specify where the data have been deposited and provide the relevant accession numbers. If 

the accession numbers have not yet been obtained at the time of submission, please state that they 

will be provided during review. They must be provided prior to publication. 

Interventionary studies involving animals or humans, and other studies that require ethical 

approval, must list the authority that provided approval and the corresponding ethical approval 

code. 

3. DRAGONFLY-FUZZY HYBRID CONTROLLER 

The proposed hybrid controller was modelled by considering the vehicle-to-obstacle distance, 

vehicle-to-goal distance and the mutual distance between the vehicle and its motion. This controller 

filters all navigation parameters to give the required angle for an autonomous vehicle. Dragonfly 

controller will be placed first in the hybrid controller, which gets the input as Front Obstacle Distance 

(FOD), Left Obstacle Distance (LOD) and Right Obstacle Distance (ROD), whereas the output will be 

the Steep Heading Angle (SHA). The output of the DA controller and the vehicle’s current position ( 

FOD, LOD, ROD) will be the input of the fuzzy logic controller. Error! Reference source not found. 

shows the hybrid controller architecture. 
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Figure 5. Dragonfly-Fuzzy hybrid controller architecture. 

To calculate the key pointers (FOD, LOD, ROD), the autonomous vehicle used in this study is 

equipped with eight sensors around its periphery to detect the obstacle and position of the goal. The 

hybrid controller considers the DA controller’s input and distance from the obstacles to providing 

the SHA. This finding from the DA controller is used to train the fuzzy logic controller to get the Total 

Heading Angle (THA) for all environmental conditions. 

The obstacle avoidance feature is built to maintain the vehicle from colliding with the obstacles 

in the environment. The food source should be kept as far away from the nearest obstacle as possible 

(global best position). The source of food should be kept as far away from the nearest obstacle as 

possible (global best position). The Euclidean distance F OBD
−

 between the global best position ( food 

Source) and the most immediate environmental obstacle is used to calculate the objective function 

given by the Equation (14), 

( ) ( )( )
1/2

F OB OB Fi OB FiD x x y y
−

= − + −   (14) 

Where Fix  and Fiy  are the best position while OBx  and OBy  is the closest obstacle position. The 

Euclidean distance between the most relative obstacle and the vehicle is calculated using the Equation 

(15), 

( ) ( )( )
1/ 2

V OB OBn V OB Vn
D x x y y

−
= − + −   (15) 

The best position for the Dragongly food source should be as close to the goal as possible. The 

target-seeking objective function is defined as the Euclidean distance between the best position and 

the goal in the environment is given by the Equation (16), 

( ) ( )( )
1/ 2

F G G F G Fi i
D x x y y

−
= − + −   (16) 

Where Gx  and Gy  are the goal position and F GD
−

 is the minimum Euclidean distance from 

the vehicle to the source position of food. 

The equation defines the objective function of path optimization, which combines obstacle-

seeking and target-seeking behaviour. 

1 1 2 F G

OB d V OBj d

1f C C D
min OB D −

−

= +
∈

  (17) 

When the vehicle moves in an unstructured environment, encounter different obstacle known 

as { }d 1 2 nOB OB , OB , ..., OB∈ . In this objective function, it is clearly specified that when iF comes closer 

to the goal, F GD
−

 it decreases, resulting iF  moves far away from the obstacles. C1 and C2 in the 

objective function are known as fitting/controlling parameters, and it is evident that these parameters 

have a direct influence on the vehicle trajectory. If C1 is too large, the robot will be far away from the 

obstacles; if C1 is too tiny, the robot may crash with an object in the surroundings. Similarly, if C2 is 

big, the robot is more likely to take a short/optimal approach to the target, but small values result in 

longer pathways. These control settings will result in faster convergence of the objective function and 

removal of local minima. The control settings in this work are chosen using trial and error 

approaches. 
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Fuzzy logic is the universal approximator capable of performing any nonlinear mapping 

between sensor data input and central variable output. Terms used for FOD, LOD, and ROD are 

“much closer”, “very closer”, “closer”, “away”, “very away”, and “much away”. The heading angle 

uses the terms “wider wide”, “moderately wide”, “wide”, “short”, “moderately short”, and “too 

short” as output. The membership functions used are shown in Error! Reference source not found.. 

All the Fuzzy if-then rule mechanisms are illustrated in the Error! Reference source not found. and 

Error! Reference source not found.. 

 

Figure 6. Fuzzy Logic membership function (a) Trangular (b) Trapezoidal (v) Gaussian. 

Table 1. FL parameters for obstacles. 

Linguistic Variable MN VC C A VA MA 

LOD 0.0 0.2 0.4 0.6 0.8 1.0 

ROD 0.2 0.4 0.6 0.8 1.0 1.2 

FOD 0.4 0.6 0.8 1.0 1.2 0.0 

Table 2. FL parameters of heading angle. 

Linguistic Variable WW MW W S MS TS 

 

THA 

-180 -120 -60 -10 10 60 

-120 -60 -30 0 60 120 

-60 -30 0 10 120 180 

4. EXPERIMENTAL AND SIMULATION RESULTS 

The simulation and experimental results are provided here to validate the proposed 

experimental controller. The FIREBIRD V robot is used in this experiment, as shown in Error! 

Reference source not found.. Fire Bird V supports ATMEGA2560 (AVR) microcontroller adaptor 

board, making it very versatile. 
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Figure 7. Firebird V robot. 

An environment with obstacles was tested on the simulation software MATLAB to determine 

the optimality of the proposed DFA-based controller in terms of path length and time required for 

navigation. Three controllers (DA, FL, DA-FL) were used for navigation, and the output is illustrated 

in Error! Reference source not found.–Error! Reference source not found.. The Path length and time 

of the three controllers are shown in Error! Reference source not found.. 

 

Figure 8. Navigation using DA standalone. 

 

Figure 9. Navigation using FL standalone. 
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Figure 10. Navigation using DA-FL hybrid. 

Table 3. Simulation path length and time of DA, FL, DA-FL. 

S.No Controller Simulation Path Length (‘cm’) Simulation Path Time (‘cm’) 

1 Dragonfly 120.4 11.8 

2 Fuzzy logic 169.8 13.2 

3 DA-FL hybrid 113.0 10.9 

All three controllers (DA, FL, DA-FL) are experimentally run in a similar environment to 

validate the simulation results, as shown in Error! Reference source not found.–Error! Reference 

source not found.. These results are presented over its path length and navigation time, as shown in 

Error! Reference source not found. 

 

Figure 11. Navigation using DA standalone. 
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Figure 12. Navigation using FL standalone. 

 

Figure 13. Navigation using DA-FL hybrid. 

Table 4. Experimental path length and time of DA, FL, DA-FL. 

S.No Controller Experimental Path Length (‘cm’) Experimental Path Time (‘sec’) 

1 Dragonfly 126.22 12.6 
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2 Fuzzy logic 136.68 14 

3 DA-FL hybrid 118.66 11.5 

The proposed Dragongly-Fuzzy hybrid controller is compared to existing standalone 

navigational controllers in the same environmental configuration shown in Error! Reference source 

not found. to determine its success. Error! Reference source not found. and Error! Reference source 

not found. compares the simulation and experimental results for all three controllers in terms of time 

and path length. 

 

Figure 14. DA-FL hybrid controller versus another controller. 

Table 5. Path length comparison of DA, FL, DA-FL. 

Controller Experimental Path Length (‘cm’) Simulation Path Length (‘cm’) % Error 

Dragonfly 126.3 120.4 4.58 

Fuzzy logic 136.7 169.8 5.10 

DA-FL 

hybrid 

118.6 113.0 4.40 

Table 6. Navigational time comparison of DA, FL, DA-FL. 

Controller Experimental Path Time (‘Sec’) Simulation Path Time (‘Sec’) % Error 

Dragonfly 12.6 11.8 5.80 

Fuzzy logic 14 13.2 5.76 

DA-FL hybrid 11.5 10.9 5.20 

5. Conclusion 

Different standalone metaheuristic algorithms were investigated in this proposed work to solve 

the navigational problem of an autonomous vehicle, and a new hybrid method was introduced. The 

proposed DA-FL controller is tested successfully over the standalone DA and FL controllers in a static 

obstacle environment. A set of experiments are performed to adjust the autonomous vehicle's 

parameters, which are directly connected to the smoothness of the generated path. The suggested 

technique allows the autonomous vehicle to reach its destination while avoiding obstacles and 

following a much-optimized path. Experimental and simulation findings demonstrate that the 

variation percentage is around 4% to 5% with the optimum path and time. When comparing the 

proposed hybrid controller and the standalone controller, it was found that the DA-FL hybrid 

controller takes the shortest path and time. In the future, the Dragonfly-Fuzzy controller can be 

implemented in a dynamic environment. It can be tested for navigation for underwater robots and 

aerial vehicles. 
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