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Abstract: Navigation is the most challenging issue in autonomous vehicles. Researchers in the
current era have developed many Artificial Intelligence techniques to navigate, generate paths, and
avoid obstacles for optimum path planning for autonomous vehicles. Different studies have
investigated bio-inspired techniques to overcome the navigation issue, including obstacle
avoidance. This paper uses new meta-heuristic optimization techniques called Dragonfly Algorithm
(DA) to set the goal by detecting and avoiding obstacles with minimum human interference. For
effective results, the Dragonfly-Fuzzy hybrid algorithm is analyzed over the unstructured
environment because individual techniques may not be sure of an optimal solution over all
configurations. The main advantage of the proposed hybrid controller is that it combines the
multiple features of different approaches into a single controller. This paper compares simulation
and experimental findings over various environmental conditions to the individual algorithm.
Regarding time and path optimization, the hybrid Dragonfly-Fuzzy controller performs better than
the respective controller.

Keywords: autonomous vehicle; path planning; hybrid controller; dragonfly algorithm; fuzzy logic

1. Introduction

The fast development of the logistics industry creates the demand for intelligent autonomous
vehicles for efficient and fast processes [1]. Autonomous vehicles replacing human labour in labour-
intensive, repetitive, and dangerous areas have received considerable attention, crucial to the
operational efficiency and resource consumption of modern factories and warehouses [2]. An
autonomous vehicle is an intelligent vehicle that can perceive its environment, gather and analyze
important information from its sensor, and identify its current position. This vehicle also generates a
feasible path from the initial location to the target location with the decision control to achieve the
path through a planned trajectory [3]. Path planning methods is one of the fundamental methods for
realizing autonomous vehicle intelligence, which refers to determining an optimum or suboptimal
path from the initial location to the target location in a complicated spatial environment based on the
initial and target positions provided during vehicle operation [4]. The path planning problems are
divided into different static and dynamic environments [5] and refer to different static and dynamic
obstacle avoidance [6].

Path planning algorithms have been widely employed for outdoor and interior path planning.
Classical approaches, heuristic methods and bioinspired algorithms are typical navigation and
motion planning approaches for autonomous vehicle technologies in the context of pathfinding
algorithms. Many researchers have implemented various Swarm Intelligence meta-heuristics
algorithms inspired by the natural behaviours of some animals (such as grey wolves, ants, and so on)
in their quest for survival. Swarm intelligence is used to solve nonlinear problems with real-world
implementations using the most advanced science and engineering areas, such as data mining and
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neural networks. Different swarm intelligent algorithms are utilized for path optimization. For
addressing the navigational strategies in autonomous vehicles, Ant Colony Optimization (ACO) [7],
Particle Swarm Optimisation (PSO) [8], Firefly Algorithm (FA) [9], Fruit Fly Algorithm (FFA) [10],
Bat Algorithm [11], Grey Wolf Optimizer [12], Grasshopper Optimization Algorithm (GOA) [13] and
many other algorithms have been utilized for solving different navigational problems of autonomous
vehicles.

Various research has been performed on multi-objective-based path planning since it is required
to evaluate numerous elements concurrently, such as travel distance, collision safety, and path
flexibility, rather than simply generating a path considering only one component. Hybridization
techniques, in which bioinspired algorithms are mixed with heuristic algorithms like A* [14] and
Fuzzy logic [15], can improve the efficiency of autonomous vehicles. When compared to separate
controllers, this A*-Fuzzy hybrid approach optimizes the shortest path while also avoiding obstacles
[16]. Another intelligent hybrid approach called Quarter Orbits Particle Swarm Optimization
(QOPSO) secures the optimal path and improves the final path, free from a collision [17]. On the other
hand, when Quarter Orbit is considered alone, it consumes more power and has an unsmooth path.

This paper uses a traditional, bioinspired, and hybrid technique to find the shortest collision-
free path. This proposed work for an unstructured environment delivers a path-planning approach
with obstacle avoidance using Fuzzy Logic and Dragonfly Algorithm. This paper demonstrates
autonomous vehicle path planning and obstacle avoidance utilizing individual and hybrid
controllers. This paper presents a new Dragonfly-Fuzzy hybrid strategy for path finding of
autonomous vehicles in static and dynamic environments to optimize the path length and calculate
the time when compared to the standalone algorithm.

2. Path Planning algorithms

The key issue in moving the autonomous vehicle from one position to another was identifying
the best or close to best desired path by avoiding obstacles in order to reach the target with desirable
accuracy. Hence the most crucial function of any navigational technique is safe path planning (by
identifying and avoiding obstacles) from the initial place to the target position. As a result, when
working in a simple or complex environment, the proper selection of the navigational strategy is the
most critical phase in the course planning of an autonomous vehicle. This paper uses Fuzzy Logic
and Dragonfly algorithms for path planning and autonomous mobile robot obstacle detection.

2.1. Dragonfly Algorithm

Seyedali Mirjalili proposed the Dragonfly Algorithm [18] in 2015 to solve multi-objective
optimization challenges. Static and dynamic swarming behaviours inspire the Dragonfly Algorithm
(DA). These two swarming tendencies are very comparable to the two major phases of meta-heuristic
optimization: exploration and exploitation. Static swarming, also known as hunting, creates a small
group of dragonflies that swiftly adjust their steps in search of food. A dynamic swarm, also known
as a migratory swarm, is a huge group of dragonflies travelling long distances for migration. As
proposed by Reynolds in 1987, dragonfly swarming behaviours adhere to the concepts of separation,
alignment, cohesion, attraction to food, and distraction from opponents. The Dragonfly Algorithm,
two primary phases of optimization methods, exploration and utilization, are designed by social
interaction in navigation, hunting for food, and fighting compiled enemies dynamically that use the
Binary Dragonfly Algorithm (BDA), Multi-objective Dragonfly Algorithm (MODA) and Single—
Objective Dragonfly Algorithm (SODA).

The Dragonfly algorithm works on the five basic rules. Where P represents the position of the

current individual flies, P, represents the position of i" neighboring fliesand N be the number

of neighboring individuals.
1. Separation ( S, ) represents the internal collision avoidance with other flies in the

neighborhood, mathematically represented as shown in the Equation (1).

Sj = i]ilP“ _P"i (1)
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2. Alignment ( A ) indicates the matching of the velocity individually between the other

neighborhood individuals of the same group; it is mathematically represented as shown in the
Equation (2).
>,
A =&zt 2
== )
where V, represents the velocity of the ith individuals
3. Cohesion (C,) represents the tendency of individuals towards the centre of the mass of the

neighborhood; it represents as shown in the Equation (3).
P MLI ©)
4. Attraction (At,) represent the food of the source F,, which is mathematically represented as
shown in the Equation (4).
Fd, =Fd, -P (4)
Where Fd; represent the food source of the jth individuals and Fd  represent the position of

the food source.
5. Distraction (De,) represents the distraction from the enemy as shown in Equation (5).

De, =De, +P ®)
Where De, represent the position of the enemy of the j* individuals and De, represent the

enemy position.

If the DA updates the position in the search space, two vectors Step Vector (SV) and Position
Vector (PV), are used. The SV can be uploaded using a similar equation used in the PSO algorithm
[19]. The Equation (6) will be used for calculating the position vector.

PV, =PV +dPV (6)

Where t denotes the current iteration PV,

t+1

denoted as the next position, PV, represents the
current position dPV,,, denotes the step vector which is represented by Equation (7),
dPV,,, =sS,+aA +cC,+fFd, +eDe,+C,dPV, 7)

Where dPV, denotes the current step vectors; s represent the j™ seperation, . represents

the alignment, . represents the cohesion, f represents the food source, and . represent the
distraction, while C = represents the inertia weight.

If sometimes the dragonfly algorithms have no neighbours, then the dragonfly must do some
random movement. In this situation, the position must be updated using Levy’s flight which is
represented by the Equation (8)

X, =X, +Levyx, (8)

The main objective of using DA is to navigate the autonomous vehicle into an unstructured
environment consisting of different obstacles. This objective is transformed into a minimization
problem with two functions. The first is to avoid obstacles, and the second is to find the shortest
possible path. Error! Reference source not found. depicts the environment of the autonomous vehicle

target and goal positions.
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Figure 1. Autonomous vehicle positioning in the presence of an obstacle.

Error! Reference source not found. depicts the architecture of the proposed DA controller, and
Error! Reference source not found. illustrates the pseudo-code for the DA to describe its execution.

Figure 2. Dragonfly Algorithm architecture.
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Begin
Initialize Population Xj
Initialize Step Vectors AX;
While the End condition is not satisfied
Calculate the objective values of all dragonflies.
Update the food source and enemy.
Update separation, alignment, cohesion, food and enemy factors
Calculate separation, alignment, cohesion, attraction and distraction.
Update neighbouring radius.
If A dragonfly has at least one neighbouring dragonfly
Update velocity vector
Update position vector
Else
Update position vector with Levy flight of dimension
End if
Check and correct the new positions based on the boundaries of variables.
End While

Figure 3. Pseudo-code of Dragonfly Algorithm.

2.2. Fuzzy Logic Concept

Lotfi Zadeh invented the concept or origin of fuzzy logic approaches in 1965 [20], and its
mechanism is based on human decisions such as yes or no or if-else. The fuzzy logic concept of the
numerous dilemma factors provides a meaningful choice representation via its if-else, rule-based
mechanism. Its operation is based on misleading and randomly distributed partial data for multiple
issues. Unlike linear logic, fuzzy logic models complicated data problems with the most uncertainty.
The basic fuzzy logic working model is illustrated in Error! Reference source not found..

Adoption of Fuzzy Performance
— |
Systems Measure

+— Sensory Input — | Membership Flnctio

Process —

If-Then rules

Fuzzy Operator

Fuzzy Interface System

Figure 4. Schematic diagram of fuzzy logic.

The basic parameters of the fuzzy logic are given as follows:

e  Fuzzification: It is represented as a membership function that defines the input variables.
e Inference and Aggregation: Its parameter shows the final output of the fuzzy rules.

e Defuzzification: Its Crisp value converted from fuzzy-based output will be found.
The concept of fuzzy inference Basic mapping techniques uses input data with output variables.
In fuzzy inference, the if-then rule is used. It is also the foundation for its decision-making. Let the

different objects(x) denoted by X' and x be the known pair for fuzzy set A.
A =1 HAX)EX] )
From the Equation (9), pA(x) defines the fuzzy membership function provided for set A. In
other, the membership values used to measure x will be 0 to 1. The basic fuzzy logic problem is solved
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by two types of function, i.e., trapezoidal and triangular. The Equation (10) describes the triangular
membership function.
0,x<p

X—p

q-p ps<x=<q (10)

r-x q<x<r

r—q
0,r<X

To explain the principle of maxima and minima, the given Equation (10) can represent by the

Equation (11),

Triangle(x,p,q,r) =

Triangle(x,p,q,r) = max[min {x_—p ’r—_x}’ O] (11)
q-p r=q
Similarly, the given trapezoidal function can be explained by using the four parameters
{p,q,1,8} , as represented in the Equation (12) given below,
0,x<p
X—p
q-p
s—X
s—q
0,s<X
In above equation (p,q,r,s) determines the values of the x-coordinates (with P<q<I<S) of the

Trapezoid(x,p,q,1,5) = Lg<x<r (12)

corners of the defuzzification-trapezoidal membership function.
Defuzzification is mathematically explained in the subsequent equation, which employs the
centre of gravity principle to turn the fuzzy set into a crisp value.

b. .
:Zé: I{t “ (13)

Where p**r define the crisp output value and b, represents the centre of the membership

u

function. While 1 and u, reflects the area under the membership function.

Research manuscripts reporting large datasets that are deposited in a publicly available database
should specify where the data have been deposited and provide the relevant accession numbers. If
the accession numbers have not yet been obtained at the time of submission, please state that they
will be provided during review. They must be provided prior to publication.

Interventionary studies involving animals or humans, and other studies that require ethical
approval, must list the authority that provided approval and the corresponding ethical approval
code.

3. DRAGONFLY-FUZZY HYBRID CONTROLLER

The proposed hybrid controller was modelled by considering the vehicle-to-obstacle distance,
vehicle-to-goal distance and the mutual distance between the vehicle and its motion. This controller
filters all navigation parameters to give the required angle for an autonomous vehicle. Dragonfly
controller will be placed first in the hybrid controller, which gets the input as Front Obstacle Distance
(FOD), Left Obstacle Distance (LOD) and Right Obstacle Distance (ROD), whereas the output will be
the Steep Heading Angle (SHA). The output of the DA controller and the vehicle’s current position (
FOD, LOD, ROD) will be the input of the fuzzy logic controller. Error! Reference source not found.
shows the hybrid controller architecture.
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Figure 5. Dragonfly-Fuzzy hybrid controller architecture.

To calculate the key pointers (FOD, LOD, ROD), the autonomous vehicle used in this study is
equipped with eight sensors around its periphery to detect the obstacle and position of the goal. The
hybrid controller considers the DA controller’s input and distance from the obstacles to providing
the SHA. This finding from the DA controller is used to train the fuzzy logic controller to get the Total
Heading Angle (THA) for all environmental conditions.

The obstacle avoidance feature is built to maintain the vehicle from colliding with the obstacles
in the environment. The food source should be kept as far away from the nearest obstacle as possible
(global best position). The source of food should be kept as far away from the nearest obstacle as
possible (global best position). The Euclidean distance D, ., between the global best position ( food
Source) and the most immediate environmental obstacle is used to calculate the objective function
given by the Equation (14),

1/2
DF—OB :((XOB _XF1)+(YOB _YFi)) (14)

Where x, and y, arethebestposition while x,, and y,, isthe closestobstacle position. The
Euclidean distance between the most relative obstacle and the vehicle is calculated using the Equation
(15)

Dv-os :((XOBn _XV)+(YOBn _Y\/))Hz (15)

The best position for the Dragongly food source should be as close to the goal as possible. The

target-seeking objective function is defined as the Euclidean distance between the best position and
the goal in the environment is given by the Equation (16),

1/2
Dig Z((XG _XFi)+(YG _YFi)) (16)
Where x, and y, are the goal position and D, _, is the minimum Euclidean distance from

the vehicle to the source position of food.
The equation defines the objective function of path optimization, which combines obstacle-
seeking and target-seeking behaviour.

1

min, € OB,

f=C +C, Dy (17)

D V-0By

When the vehicle moves in an unstructured environment, encounter different obstacle known
asOB, € {OB,,0B,,...,0B, } . In this objective function, it is clearly specified that when E comes closer

to the goal, D, , it decreases, resulting F moves far away from the obstacles. C1 and C2 in the

objective function are known as fitting/controlling parameters, and it is evident that these parameters
have a direct influence on the vehicle trajectory. If C1 is too large, the robot will be far away from the
obstacles; if C1 is too tiny, the robot may crash with an object in the surroundings. Similarly, if C2 is
big, the robot is more likely to take a short/optimal approach to the target, but small values result in
longer pathways. These control settings will result in faster convergence of the objective function and
removal of local minima. The control settings in this work are chosen using trial and error
approaches.
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Fuzzy logic is the universal approximator capable of performing any nonlinear mapping
between sensor data input and central variable output. Terms used for FOD, LOD, and ROD are

Va7 V/7i

“much closer”, “very closer”, “closer”, “away”, “very away”, and “much away”. The heading angle
uses the terms “wider wide”, “moderately wide”, “wide”, “short”, “moderately short”, and “too
short” as output. The membership functions used are shown in Error! Reference source not found..
All the Fuzzy if-then rule mechanisms are illustrated in the Error! Reference source not found. and

Error! Reference source not found..

FOD '
ROD
—_—

LoD "
—

Figure 6. Fuzzy Logic membership function (a) Trangular (b) Trapezoidal (v) Gaussian.

Table 1. FL parameters for obstacles.

Linguistic Variable MN VC C A VA MA

LOD 00 02 04 06 08 1.0
ROD 02 04 06 08 1.0 12
FOD 04 06 08 1.0 12 00

Table 2. FL parameters of heading angle.

Linguistic Variable WW MW W S MS TS
-180 -120 -60 -10 10 60

THA -120 -60 30 0 60 120
-0 -30 0 10 120 180

4. EXPERIMENTAL AND SIMULATION RESULTS

The simulation and experimental results are provided here to validate the proposed
experimental controller. The FIREBIRD V robot is used in this experiment, as shown in Error!
Reference source not found.. Fire Bird V supports ATMEGA2560 (AVR) microcontroller adaptor
board, making it very versatile.
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Figure 7. Firebird V robot.

An environment with obstacles was tested on the simulation software MATLAB to determine
the optimality of the proposed DFA-based controller in terms of path length and time required for
navigation. Three controllers (DA, FL, DA-FL) were used for navigation, and the output is illustrated
in Error! Reference source not found.—Error! Reference source not found.. The Path length and time
of the three controllers are shown in Error! Reference source not found..

MOBILE ROBOT NAVIGATION-Dragonfly

Figure 8. Navigation using DA standalone.

%\[‘]‘IOBILE ROBOT NAVIGATION- Fuzzy

45

40

0 10 20 30 40 50

Figure 9. Navigation using FL standalone.
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Figure 10. Navigation using DA-FL hybrid.

Table 3. Simulation path length and time of DA, FL, DA-FL.

S.No Controller Simulation Path Length (‘cm’) Simulation Path Time (‘cm’)
1 Dragonfly 120.4 11.8
2 Fuzzy logic 169.8 13.2
3 DA-FL hybrid 113.0 10.9

All three controllers (DA, FL, DA-FL) are experimentally run in a similar environment to
validate the simulation results, as shown in Error! Reference source not found.—-Error! Reference
source not found.. These results are presented over its path length and navigation time, as shown in
Error! Reference source not found.

Figure 11. Navigation using DA standalone.
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Figure 13. Navigation using DA-FL hybrid.

Table 4. Experimental path length and time of DA, FL, DA-FL.

S.No Controller Experimental Path Length (‘cm’) Experimental Path Time (“sec’)
1 Dragonfly 126.22 12.6
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2 Fuzzy logic 136.68 14
3 DA-FL hybrid 118.66 11.5

The proposed Dragongly-Fuzzy hybrid controller is compared to existing standalone
navigational controllers in the same environmental configuration shown in Error! Reference source
not found. to determine its success. Error! Reference source not found. and Error! Reference source
not found. compares the simulation and experimental results for all three controllers in terms of time
and path length.

MDA
EFL
[IDA-FL

10 20 30 40 50

Figure 14. DA-FL hybrid controller versus another controller.

Table 5. Path length comparison of DA, FL, DA-FL.

Controller  Experimental Path Length (‘cm’) Simulation Path Length (‘cm’) % Error

Dragonfly 126.3 1204 4.58

Fuzzy logic 136.7 169.8 5.10
DA-FL 118.6 113.0 4.40
hybrid

Table 6. Navigational time comparison of DA, FL, DA-FL.

Controller Experimental Path Time ("Sec’) Simulation Path Time (‘Sec’) % Error
Dragonfly 12.6 11.8 5.80
Fuzzy logic 14 13.2 5.76

DA-FL hybrid 11.5 10.9 5.20

5. Conclusion

Different standalone metaheuristic algorithms were investigated in this proposed work to solve
the navigational problem of an autonomous vehicle, and a new hybrid method was introduced. The
proposed DA-FL controller is tested successfully over the standalone DA and FL controllers in a static
obstacle environment. A set of experiments are performed to adjust the autonomous vehicle's
parameters, which are directly connected to the smoothness of the generated path. The suggested
technique allows the autonomous vehicle to reach its destination while avoiding obstacles and
following a much-optimized path. Experimental and simulation findings demonstrate that the
variation percentage is around 4% to 5% with the optimum path and time. When comparing the
proposed hybrid controller and the standalone controller, it was found that the DA-FL hybrid
controller takes the shortest path and time. In the future, the Dragonfly-Fuzzy controller can be
implemented in a dynamic environment. It can be tested for navigation for underwater robots and
aerial vehicles.
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