Submitted:
07 July 2023
Posted:
10 July 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Exploring Biomarkers for Predicting the Therapeutic Effects of TKIs (Table 1)
2.1. Sorafenib Biomarkers
| Agent | Study design | Number of cases | Prognostic and predictive factors | Out-come | Statistical analysis | HR [95% CI] | P-value | Authors [reference no.] |
|---|---|---|---|---|---|---|---|---|
| Sora-fenib | Retrospective, single-arm | 120 | [High serum Ang-2] [High angiogenic group*] *: patients with > three serum cytokines (Ang-2, FST, G-CSF, HGF, Leptin, PDGF-BB, PECAM-1, or VEGF) [MVI (present)] |
PFS OS PFS OS OS |
Univariate Multivariate Univariate Multivariate Multivariate |
1.84 [1.21–2.81] 1.83 [1.12–2.98] 1.98 [1.30–3.06] 1.76 [1.07–2.94] 2.27 [1.36–3.72] |
0.004 0.014 0.001 0.023 0.001 |
Miyahara K et al. [14] |
| Sora-fenib |
Retrospective pooled analysis of two phase 3 trials (vs. placebo) | Sorafenib 448 Placebo 379 |
[Without EHS] [With HCV] [Low NLR] |
OS OS OS |
Multivariate Multivariate Multivariate |
0.55 [0.42–0.72] 0.47 [0.32–0.69] 0.59 [0.46–0.77] |
0.015 0.035 0.0497 |
Bruix J et al. [15] |
| Sora-fenib | Subgroup meta-analyses, single-arm |
170 | [Low NLR] | OS | Univariate | 1.49 [1.17–1.91] | 0.001 | Qi X et al. [18] |
| Sora-fenib | Observational registry, single-arm | 3,371 | [Child-Pugh A] [Bilirubin] [Albumin] |
OS OS OS |
Kaplan-Meier Univariate Univariate |
- 1.71 [1.57–1.86] 1.76 [1.63–1.89] |
N/A N/A N/A |
Marrero JA et al. [19] |
| Sorafe-nib | Retrospective, single-arm, HCV patients only |
103 | [HCV eradication] [ALBI score] |
OS OS |
Multivariate Multivariate |
0.46 [0.26–0.78] 2.29 [1.20–4.37] |
0.004 0.012 |
Kuwano A et al. [20] |
| Sora-fenib | Population-based retrospective cohort, HCV patients only, single-arm |
1,684 | [DAA user] | OS | Univariate PSM univariate |
- - |
< 0.0001 < 0.0001 |
Tsai H-Y et al. [21] |
| Sora-fenib | Retrospective, single-arm | 55 | [FGF3/FGF4amplification] (frozen tumor tissue) [multiple lung metastases] |
CR/PR CR/PR |
Fisher's exact Fisher's exact |
- - |
0.006 0.006 |
Arao T et al. [26] |
| Sora-fenib | Retrospective, single-arm | 20 | [High miR-224 expression] (FFPE tumor tissue) |
PFS OS |
Univariate Univariate |
0.28 [0.09–0.92] 0.24 [0.07–0.79] |
0.029 0.012 |
Gyöngyösi B et al. [28] |
| Sora-fenib | Retrospective, single-arm | Training coh. 26 Valid. coh. 58 |
[High miR-425-3p expression] (FFPE tumor tissue)] |
TTP PFS |
Multivariate Multivariate |
0.4 [0.1–0.7] 0.3 [0.1–0.7] |
0.002 0.0012 |
Vaira V et al. [31] |
| Sora-fenib | Retrospective validation of the pharmacogenomics panel, single-arm | 54 | [High serum DKK-1] | PFS OS |
Univariate Univariate |
- - |
0.0396 0.0171 |
Qiu Z et al. [33] |
| Regora-fenib | Retrospective pooled analysis of the phase 3 trial (vs. placebo) | Protein cohort Regora 332 Placebo 167 miRNA cohort Regora 234 Placebo 109 |
[Plasma ANG-1] (1 ng/mL increase) [Low plasma Cystatin-B] (2-fold increase ) [Low plasma LAP TGF-β1] (2-fold increase) [Low plasma LOX-1] (1 ng/mL increase) [Low plasma MIP-1α] (1 pg/mL increase) [miR-15b] [miR-107] [miR-320b] [miR-122] [miR-374b] [miR-200a] [miR-30a] [miR-125b] [miR-645]* (*dichotomized analysis, not vs. placebo) |
OS TTP OS TTP OS TTP OS TTP OS TTP OS OS OS OS OS OS OS OS OS |
Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate |
1.12 [1.05–1.19] 1.10 [1.04–1.17] 1.46 [1.15–1.85] 1.42 [1.14–1.77] 1.36 [1.12–1.65] 1.41 [1.18–1.68] 1.35 [1.16–1.57] 1.78 [1.33–2.39] 1.02 [1.01–1.04] 1.02 [1.00–1.03] 0.37 [0.20–0.70] 0.54 [0.37–0.81] 0.57 [0.41–0.81] 1.35 [1.14–1.60] 1.36 [1.11–1.65] 1.39 [1.15–1.68] 1.47 [1.14–1.88] 1.54 [1.19–1.99] 3.16 [1.52–6.55] |
0.019 0.017 0.04 0.018 0.04 0.004 0.009 0.003 0.04 0.043 0.002 0.003 0.001 0.0004 0.002 0.001 0.003 0.001 0.002 |
Teufel M et al. [35] |
| Lenva-tinib | Subgroup analysis of the open-label phase 3 trial (vs. sorafenib) |
Lenvatinib 478 (HBV 251, Alcohol 36) Sorafenib 476 (HBV 228, Alcohol 21) |
[HBV] [Alcohol] |
PFS PFS |
Univariate Univariate |
0.62 [0.50–0.75] 0.27 [0.11–0.66] |
N/A N/A |
Kudo M et al. [8] |
| Lenva-tinib | Retrospective, single-arm | 237 | [NLR ≥ 4] [AFP ≥ 400 ng/mL] [mALBI grade 2b or 3] [BCLC stage ≥ C] |
OS PFS DCR OS OS PFS |
Multivariate Multivariate Chi-square test? Multivariate Multivariate Multivariate |
1.87 [1.10–3.12] 1.90 [1.27–2.84] 1.97 [1.19–3.27] 2.12 [1.27–3.56] 1.52 [1.03–2.24] |
0.021 0.002 0.007 0.009 0.004 0.036 |
Tada T et al. [53] |
| Lenva-tinib | Retrospective, single-arm | 1,325 | [HBV] [NAFLD/NASH] [BCLC stage C] [NLR > 3] [AST > 38] |
OS OS PFS OS PFS OS PFS OS PFS |
Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate Multivariate |
1.56 [1.13–2.17] * 0.58 [0.33–0.98] * 0.87 [0.75–0.93] 1.64 [1.19–2.27] * 1.33 [1.14–1.55] 1.95 [1.46–2.60] * 1.16 [1.01–1.36] 1.52 [1.08–2.13] * 1.21 [1.01–1.45] |
0.0071* 0.0044* 0.0090 0.0027* 0.0002 < 0.0001* 0.0482 0.0167* 0.0365 |
Casadei-Gardini A et al. [54] *: data are from the model 1 of 3 multivariate analyses. |
| Lenva-tinib |
Retrospective validation of the experimentally identified biomarker (vs. sorafenib) |
Lenvatinib 65 (ST6GAL1 high 22, low 43) Sorafenib 31 (ST6GAL1 high 12, low 19) |
[Serum ST6GAL1 high] | OS | Univariate | < 0.05 | Myojin Y et al. [55] |
2.2. Regorafenib Biomarker Studies
2.3. Signaling Pathways as Biomarkers for TKIs: Insights from Trials with mTOR and MET Inhibitors
2.4. New Approaches for Biomarker Discovery in Lenvatinib Treatment
3. AFP as a Predictive Biomarker for Ramucirumab Treatment
4. Exploration of Biomarkers for Predicting the Therapeutic Efficacy of Single-agent ICIs and Combined Immunotherapy (Table 2)
| Agents | Study design | Number of cases | Prognostic and predictive factors | Out-come | analysis | HR [95%CI] | P-value | Author (reference no) |
|---|---|---|---|---|---|---|---|---|
| Anti- PD-(L)1-based immuno-therapy |
Meta-analyses of 3 phase 3 trials: Checkmate 459 (Nivo vs Sora), IMbrave 150 (Ate/Bev vs Sora), KEYNOTE-240 (Pembro vs PBO) Retrospective (ICI single arm) |
ICI 985 Nivo 371 Pembro 278 Ate/Bev 336 Control 672 Sora 372+165 Placebo 135 exploratory 130 validation 118 |
[HBV] [HCV] [NAFLD] |
OS OS OS |
univariate univariate multivariate |
0.64 [0.49-0.83] 0.68 [0.48-0.97] 2.6. [1.2-5.6] |
0.0008 0.04 0.017 |
Pfister D et. al. [75] |
| Ate/Bev Lenva (Sora) |
retrospective | Non-viral cohort Ate/Bev 190 Len 569 NAFLD/NASH cohort Ate/Bev 82 Len 254 |
[Lenvatinib] [Lenvatinib] |
OS PFS OS PFS |
multivariate multivariate multivariate multivariate |
0.65 [0.44-0.95] 0.67 [0.51-0.86] 0.46 [0.26-0.84] 0.55 [0.38-0.82] |
0.0268 0.035 0.011 0.031 |
Rimini M et. al. [77] |
| Anti-PD-(L)1 mono-therapy | retrospective, single arm |
18 | [hyperintensity tumor (RER* ≥ 0.9) on EOB-MRI] | PFS | multivariate | 7.78 [1.59–38.1] | 0.011 | Aoki T et. al. [82] |
| Ate/Bev | retrospective validation based on multiomics study, single arm | Non-viral HCC 30 | [Steatotic HCC] | PFS | univariate | <0.05 | Murai H et.al. [85] |
|
| Ate/Bev Lenva |
retrospective, separate single arm (not vs Len) | Ate/Bev 35 Len 33 |
[hetorogenous tumor on EOB-MRI] [hyperintensity tumor (RER‡ ≥ 0.9) on EOB-MRI] (no significant factor) |
PFS PFS |
univariate univariate |
0.007 0.012 |
Sasaki R et.al. [86] |
|
| Anti-PD-(L)1-based immuno-therapy | retrospective, single arm |
24 | [20 gene inflamed signature] (CCL5, CD2, CD3D, CD48, CD52, CD53, CXCL9, CXCR4, FYB, GZMA, GZMB, GZMK, IGHG1, IGHG3, LAPTM5, LCP2, PTPRC, SLA, TRAC, TRBC2) |
PR |
Wilcoxon rank-sum | 0.047 | Montironi C et.al. [91] |
|
| Anti-PD-(L)1-based immuno-therapy Sora |
retrospective, separate single arm (not vs Sora) | Anti-PD-(L)1-based immuno-therapy: training 190 (anti-PD-(L)1 mono 110, Ate/Bev 75, Others 5) validation 102 (anti-PD-(L)1 mono 68, Ate/Bev 25, Anti-PD-(L)1 + TKI 7, Others 2) Sora 204 |
[Child-Pugh A] [ECOG PS 0] [AFP<100] [CRP<1] [CRAFITY score†] CRAFITY low CRAFITY int. CRAFITY high [CRAFITY score†] [CRAFITY score†] [CRAFITY score†] [CRAFITY score†] |
OS OS OS OS OS ORR DCR OS DCR OS |
multivariate multivariate multivariate multivariate univariate Chi square Chi square univariate Chi square univariate |
2.3 (1.5-3.4) 2.1 (1.4-3.2) 1.7 (1.2-2.6) 1.7 (1.2-2.6) 1 2.0 [1.1-3.4] 3.6 [2.1-6.2] - - - - - |
<0.001 <0.001 0.007 0.007 0.001 0.001 <0.001 0.001 0.037 <0.001 |
Scheiner B [93] |
| Ate/Bev | retrospective, single arm |
297 | [AFP<100] [CRP<1] [CRAFITY score†] |
PFS OS PFS OS PFS OS DCR |
multivariate multivariate multivariate multivariate univariate univariate Chi square |
- - - - - - - |
<0.001 0.028 <0.001 0.032 <0.001 0.029 |
Hatanaka T et.al. [94] |
| Ate/Bev | retrospective, single arm |
40 | [NLR > 3.21] | PFS | univariate | - | <0.0001 | Eso Y et.al [99] |
| Ate/Bev | retrospective, single arm |
249 | [NLR > 3] | OS | multivariate |
3.37 [1.02-11.08] | 0.001 |
Tada T et.al. [100] |
| Ate/Bev Sora |
retrospective pooled analysis of the phase 1b GO30140 (single arm) and the phase 3 trial IMbrave 150 (Ate/Bev vs Sora) |
GO30140 arm A (Ate/Bev 90 single arm) IMbrave 150 (Ate/Bev119 Sora 58) |
<Transcriptome > [ABRSa high] [CD274b high] [Teffc high] <In situ analyses> [CD8+Tcell density] [CD3+Tcell density] [CD3+GZMB+Tcell density] [MHC1+ tumor cells] <Transcriptome > [ABRSa high] [CD274b high] [Teffc high] [Tregd/Teff c low] [GPC3 low] [AFP low] <In situ > [CD8+Tcell high dens.] <Genetic profiling> [CTNNB1 WT] [TERT Mut] |
PFS PFS PFS CR/PR CR/PR CR/PR CR/PR PFS OS PFS OS PFS OS PFS OS PFS OS PFS OS OS PFS OS PFS OS PFS |
univariate univariate univariate Student T Student T Student T Student T multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate multivariate |
0.51 [0.3-0.87] 0.42 [0.25-0.72] 0.46 [0.27-0.78] - - - - 0.49 [0.25-0.97] 0.26 [0.11-0.58] 0.46 [0.25-0.86] 0.3 [0.14-0.64] 0.52 [0.28-0.99] 0.24 [0.11-0.5] 0.42 [0.22-0.79] 0.24 [0.11-0.54] 0.47 [0.27-0.81] 0.29 [0.13-0.62] 0.49 [0.28-0.87] 0.32 [0.14-0.73] 0.29 [0.14-0.61] 0.54 [0.29-1.00] 0.42 [0.19-0.91] 0.45 [0.27-0.86] 0.38 [0.16-0.89] 0.61 [0.33-1.10] |
0.013 0.0011 0.0035 0.007 0.039 0.044 0.0087 0.041 0.0012 0.015 0.002 0.047 0.0002 0.007 0.0006 0.006 0.002 0.014 0.007 0.0011 0.053 3×10-4 0.0086 7.8×10-5 0.047 |
Zhu AX et. al. [72] |
| Ate/Bev | retrospective, single arm |
34 | [high plasma IL-6] | PFS OS |
univariate multivariate univariate |
- 2.785 [1.216-6.38] - |
<0.05 0.01 <0.05 |
Myojin Y et.al. [103] |
| Ate/Bev Len |
retrospective, separate single arm (not vs Len) | Ate/Bev 24 Len 15 |
[High-level CD8+ TILs] (no significant factor) |
PFS ORR DCR |
univariate Chi square Chi square |
- - - |
0.041 0.012 0.031 |
Kuwano A et.al. [104] |
4.1. Known Predictive Markers for the Efficacy of Single-Agent ICI and Combined Immunotherapies for HCC: PD-L1 Expression, Tumor Mutation Burden (TMB), and Microsatellite Instability (MSI)
4.2. NASH as a Background Liver Disease
4.3. Wnt/β-Catenin Mutations as a Biomarker and MRI Findings as Imaging Biomarkers
4.4. Problems with Wnt/β-catenin mutations as a biomarker and MRI findings as imaging biomarkers
4.5. Blood Sample Biomarkers for Predicting the Therapeutic Effect of ICI Therapy: CRAFITY Score and NLR
4.6. Biomarkers Predicting the Therapeutic Effect of Atezolizumab and Bevacizumab Combination Therapy
4.7. Biomarkers for Durvalumab and Tremelimumab Combination Therapy
5. Conclusions and Future Directions
Data and material availability
Ethics approval and consent to participate
Competing interests
Author Contributions
Funding
Acknowledgments
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2021, 73, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 2021, 7, 6 . [Google Scholar] [CrossRef]
- Mathurin, P.; Rixe, O.; Carbonell, N.; Bernard, B.; Cluzel, P.; Bellin, M.F.; Khayat, D.; Opolon, P.; Poynard, T. Overview of medical treatments in unresectable hepatocellular carcinoma--an impossible meta-analysis? Aliment Pharmacol. Ther. 1998, 12, 111–126. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Dao, T.V.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.H.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Peña, C.E.A.; Lathia, C.D.; Shan, M.; Meinhardt, G.; Bruix, J.; SHARP Investigators Study Group (2012). Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer. Res. 2012, 18, 2290–2300. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, K.; Nouso, K.; Morimoto, Y.; Takeuchi, Y.; Hagihara, H.; Kuwaki, K.; Onishi, H.; Ikeda, F.; Miyake, Y.; Nakamura, S.; et al. Pro-angiogenic cytokines for prediction of outcomes in patients with advanced hepatocellular carcinoma. Br. J. Cancer. 2013, 109, 2072–2078. [Google Scholar] [CrossRef]
- Bruix, J.; Cheng, A.-L.; Meinhardt, G.; Nakajima, K.; De Sanctis, Y.; Llovet, J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. J. Hepatol. 2017, 67, 999–1008. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef]
- Qi, X.; Li, J.; Deng, H.; Li, H.; Su, C.; Guo, X. Neutrophil-to-lymphocyte ratio for the prognostic assessment of hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Oncotarget. 2016, 7, 45283–45301. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kudo, M.; Venook, A.P.; Ye, S.-L.; Bronowicki, J.-P.; Chen, X.-P.; Dagher, L.; Furuse, J.; Geschwind, J.-F.H.; Ladrón de Guevara, L.; et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J. Hepatol. 2016, 65, 1140–1147. [Google Scholar] [CrossRef]
- Kuwano, A.; Yada, M.; Nagasawa, S.; Tanaka, K.; Morita, Y.; Masumoto, A.; Motomura, K. Hepatitis C virus eradication ameliorates the prognosis of advanced hepatocellular carcinoma treated with sorafenib. J. Viral Hepat. 2022, 29, 543–550. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Chang, H.-P.; Chen, C.-J.; Hsu, W.-L.; Huang, L.-Y.; Lee, P.-C. Effects of direct-acting antiviral therapy for patients with advanced hepatocellular carcinoma and concomitant hepatitis C-A population-based cohort study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7543–7552. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Schwartz, L.; Ricci, S.; Amadori, D.; Santoro, A.; Figer, A.; De Greve, J.; Douillard, J.Y.; Lathia, C.; Schwartz, B.; et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 2006, 24, 4293–4300. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhao, P.; Li, S.Q.; Xiao, W.K.; Yin, X.Y.; Peng, B.G.; Liang, L.J. Prognostic impact of pERK in advanced hepatocellular carcinoma patients treated with sorafenib. Eur. J. Surg. Oncol. 2013, 39, 974–980. [Google Scholar] [CrossRef]
- Negri, F.; Bello, B.D.; Porta, C.; Campanini, N.; Rossi, S.; Tinelli, C.; Poggi, G.; Missale, G.; Fanello, S.; Salvagni, S.; et al. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. Liver Int. 2015, 35, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Personeni, N.; Rimassa, L.; Pressiani, T.; Destro, A.; Ligorio, C.; Tronconi, M.C.; Bozzarelli, S.; Carnaghi, C.; Di Tommaso, L.; Giordano, L.; et al. Molecular determinants of outcome in sorafenib-treated patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2013, 139, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Arao, T.; Ueshima, K.; Matsumoto, K.; Nagai, T.; Kimura, H.; Hagiwara, S.; Sakurai, T.; Haji, S.; Kanazawa, A.; Hidaka, H.; et al. FGF3/FGF4 amplification and multiple lung metastases in responders to sorafenib in hepatocellular carcinoma. Hepatology. 2013, 57, 1407–1415. [Google Scholar] [CrossRef]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef]
- Gyöngyösi, B.; Végh, É.; Járay, B.; Székely, E.; Fassan, M.; Bodoky, G.; Schaff, Z.; Kiss, A. Pretreatment MicroRNA Level and Outcome in Sorafenib-treated Hepatocellular Carcinoma. J. Histochem. Cytochem. 2014, 62, 547–555. [Google Scholar] [CrossRef]
- Giordano, S.; Columbano, A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013, 57, 840–847. [Google Scholar] [CrossRef]
- Ghidini, M.; Braconi, C. Non-Coding RNAs in Primary Liver Cancer. Front. Med. (Lausanne). 2015, 2, 36. [Google Scholar] [CrossRef]
- Vaira, V.; Roncalli, M.; Carnaghi, C.; Faversani, A.; Maggioni, M.; Augello, C.; Rimassa, L.; Pressiani, T.; Spagnuolo, G.; Di Tommaso, L.; et al. MicroRNA-425-3p predicts response to sorafenib therapy in patients with hepatocellular carcinoma. Liver Int. 2015, 35, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, Z.; Lin, Q.; Luo, Q.; Cen, Y.; Li, J.; Fang, X.; Gong, C. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes (Basel). 2021, 12, 1289. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Li, H.; Zhang, Z.; Zhu, Z.; He, S.; Wang, X.; Wang, P.; Qin, J.; Zhuang, L.; Wang, W.; et al. A Pharmacogenomic Landscape in Human Liver Cancers. Cancer Cell. 2019, 36, 179–193.e11. [Google Scholar] [CrossRef] [PubMed]
- Semënov, M.V.; Zhang, X.; He, X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 2008, 283, 21427–21432. [Google Scholar] [CrossRef]
- Teufel, M.; Seidel, H.; Köchert, K.; Meinhardt, G.; Finn, R.S.; Llovet, J.M.; Bruix, J. Biomarkers Associated With Response to Regorafenib in Patients With Hepatocellular Carcinoma. Gastroenterology. 2019, 156, 1731–1741. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef]
- Cataldo, V.D.; Gibbons, D.L.; Pérez-Soler, R.; Quintás-Cardama, A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N. Engl. J. Med. 2011, 364, 947–955. [Google Scholar] [CrossRef]
- Solomon, B.J.; Mok, T.; Kim, D.W.; Wu, Y.L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef]
- Llovet, J.M.; Hernandez-Gea, V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res. 2014, 20, 2072–2079. [Google Scholar] [CrossRef]
- Villanueva, A.; Chiang, D.Y.; Newell, P.; Peix, J.; Thung, S.; Alsinet, C.; Tovar, V.; Roayaie, S.; Minguez, B.; Sole, M.; et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008, 135, 1972–1983. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kudo, M.; Assenat, E.; Cattan, S.; Kang, Y.K.; Lim, H.Y.; Poon, R.T.; Blanc, J.F.; Vogel, A.; Chen, C.L.; et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014, 312, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Finn, R.S. Personalized Clinical Trials in Hepatocellular Carcinoma Based on Biomarker Selection. Liver Cancer. 2016, 5, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Rimassa, L.; Borbath, I.; Daniele, B.; Salvagni, S.; Van Laethem, J.L.; Van Vlierberghe, H.; Trojan, J.; Kolligs, F.T.; Weiss, A.; et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013, 14, 55–63. [Google Scholar] [CrossRef]
- Rimassa, L.; Assenat, E.; Peck-Radosavljevic, M.; Pracht, M.; Zagonel, V.; Mathurin, P.; Rota Caremoli, E.; Porta, C.; Daniele, B.; Bolondi, L.; et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018, 19, 682–693. [Google Scholar] [CrossRef]
- Kudo, M.; Morimoto, M.; Moriguchi, M.; Izumi, N.; Takayama, T.; Yoshiji, H.; Hino, K.; Oikawa, T.; Chiba, T.; Motomura, K.; et al. A randomized, double-blind, placebo-controlled, phase 3 study of tivantinib in Japanese patients with MET-high hepatocellular carcinoma. Cancer Sci. 2020, 111, 3759–3769. [Google Scholar] [CrossRef]
- Rimassa, L.; Kelley, R.K.; Meyer, T.; Ryoo, B.Y.; Merle, P.; Park, J.W.; Blanc, J.F.; Lim, H.Y.; Tran, A.; Chan, Y.W.; et al. Outcomes Based on Plasma Biomarkers for the Phase 3 CELESTIAL Trial of Cabozantinib versus Placebo in Advanced Hepatocellular Carcinoma. Liver Cancer. 2021, 11, 38–47. [Google Scholar] [CrossRef]
- Totoki, Y.; Tatsuno, K.; Covington, K.R.; Ueda, H.; Creighton, C.J.; Kato, M.; Tsuji, S.; Donehower, L.A.; Slagle, B.L.; Nakamura, H.; et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014, 46, 1267–1273. [Google Scholar] [CrossRef]
- Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Li, R.; Guo, H.; Guo, L.; Su, Z.; Ni, X.; Qi, L.; Zhang, T.; Li, Q.; Zhang, Z.; et al. Variable Intra-Tumor Genomic Heterogeneity of Multiple Lesions in Patients With Hepatocellular Carcinoma. Gastroenterology. 2016, 150, 998–1008. [Google Scholar] [CrossRef]
- Pinter, M.; Peck-Radosavljevic, M. Review article: systemic treatment of hepatocellular carcinoma. Aliment Pharmacol. Ther. 2018, 48, 598–609. [Google Scholar] [CrossRef]
- Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Funahashi, Y. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res. 2014, 2014, 638747. [Google Scholar] [CrossRef] [PubMed]
- Matsuki, M.; Hoshi, T.; Yamamoto, Y.; Ikemori-Kawada, M.; Minoshima, Y.; Funahashi, Y.; Matsui, J. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018, 7, 2641–2653. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Kumada, T.; Hiraoka, A.; Michitaka, K.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; Takaguchi, K.; Kariyama, K.; et al. Neutrophil-to-lymphocyte ratio is associated with survival in patients with unresectable hepatocellular carcinoma treated with lenvatinib. Liver Int. 2020, 40, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Casadei-Gardini, A.; Rimini, M.; Kudo, M.; Shimose, S.; Tada, T.; Suda, G.; Goh, M.J.; Jefremow, A.; Scartozzi, M.; Cabibbo, G.; et al. Real Life Study of Lenvatinib Therapy for Hepatocellular Carcinoma: RELEVANT Study. Liver Cancer. 2022, 11, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Kodama, T.; Maesaka, K.; Motooka, D.; Sato, Y.; Tanaka, S.; Abe, Y.; Ohkawa, K.; Mita, E.; Hayashi, Y.; et al. ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin. Cancer Res. 2021, 27, 1150–1161. [Google Scholar] [CrossRef]
- Wilson, L.J.; Linley, A.; Hammond, D.E.; Hood, F.E.; Coulson, J.M.; MacEwan, D.J.; Ross, S.J.; Slupsky, J.R.; Smith, P.D.; Eyers, P.A.; et al. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O'Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Mulcahy, M.; Gurtler, J.; Sun, W.; Schwartz, J.D.; Dalal, R.P.; Joshi, A.; Hozak, R.R.; Xu, Y.; et al. A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin. Cancer Res. 2013, 19, 6614–6623. [Google Scholar] [CrossRef]
- Zhu, A.X.; Park, J.O.; Ryoo, B.Y.; Yen, C.J.; Poon, R.; Pastorelli, D.; Blanc, J.F.; Chung, H.C.; Baron, A.D.; Pfiffer, T.E.F.; et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 859–870. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O'Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef]
- Montal, R.; Andreu-Oller, C.; Bassaganyas, L.; Esteban-Fabró, R.; Moran, S.; Montironi, C.; Moeini, A.; Pinyol, R.; Peix, J.; Cabellos, L.; et al. Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials. Br. J. Cancer. 2019, 121, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Donne, R.; Lujambio, A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 2023, 77, 1773–1796. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling Rd, T.H.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017, 389, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients From Asia With Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996, 271, 1734–1736. [Google Scholar] [CrossRef]
- Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA. 2002, 99, 12293–12297. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O'Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Ang, C.; Klempner, S.J.; Ali, S.M.; Madison, R.; Ross, J.S.; Severson, E.A.; Fabrizio, D.; Goodman, A.; Kurzrock, R.; Suh, J.; Millis, S.Z. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget. 2019, 10, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.H.; He, A.R.; Ryoo, B.Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Pembrolizumab for the Treatment of Hepatocellular Carcinoma. Liver Cancer. 2019, 8, 143–154. [Google Scholar] [CrossRef]
- Pinato, D.J.; Mauri, F.A.; Spina, P.; Cain, O.; Siddique, A.; Goldin, R.; Victor, S.; Pizio, C.; Akarca, A.U.; Boldorini, R.L.; et al. Clinical implications of heterogeneity in PD-L1 immunohistochemical detection in hepatocellular carcinoma: the Blueprint-HCC study. Br. J. Cancer. 2019, 120, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature. 2021, 592, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Rimini, M.; Rimassa, L.; Ueshima, K.; Burgio, V.; Shigeo, S.; Tada, T.; Suda, G.; Yoo, C.; Cheon, J.; Pinato, D.J.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: an international propensity score matching analysis. ESMO Open. 2022, 7, 100591. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2019, 25, 2116–2126. [Google Scholar] [CrossRef]
- Ueno, A.; Masugi, Y.; Yamazaki, K.; Komuta, M.; Effendi, K.; Tanami, Y.; Tsujikawa, H.; Tanimoto, A.; Okuda, S.; Itano, O.; et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 2014, 61, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Nishida, N.; Ueshima, K.; Morita, M.; Chishina, H.; Takita, M.; Hagiwara, S.; Ida, H.; Minami, Y.; Yamada, A.; et al. Higher Enhancement Intrahepatic Nodules on the Hepatobiliary Phase of Gd-EOB-DTPA-Enhanced MRI as a Poor Responsive Marker of Anti-PD-1/PD-L1 Monotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer. 2021, 10, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.; Suda, G.; Kimura, M.; Maehara, O.; Tokuchi, Y.; Kitagataya, T.; Ohara, M.; Yamada, R.; Shigesawa, T.; Suzuki, K.; et al. Characteristics and Lenvatinib Treatment Response of Unresectable Hepatocellular Carcinoma with Iso-High Intensity in the Hepatobiliary Phase of EOB-MRI. Cancers (Basel). 2021, 13, 3633. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, A.; Tanaka, K.; Yada, M.; Nagasawa, S.; Morita, Y.; Masumoto, A.; Motomura, K. Therapeutic efficacy of lenvatinib for hepatocellular carcinoma with iso-high intensity in the hepatobiliary phase of Gd-EOB-DTPA-MRI. Mol. Clin. Oncol. 2022, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Murai, H.; Kodama, T.; Maesaka, K.; Tange, S.; Motooka, D.; Suzuki, Y.; Shigematsu, Y.; Inamura, K.; Mise, Y.; Saiura, A.; et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology. 2023, 77, 77–91. [Google Scholar] [CrossRef]
- Sasaki, R.; Nagata, K.; Fukushima, M.; Haraguchi, M.; Miuma, S.; Miyaaki, H.; Soyama, A.; Hidaka, M.; Eguchi, S.; Shigeno, M.; et al. Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma. Cancers (Basel). 2022, 14, 827. [Google Scholar] [CrossRef]
- Kuwano, A.; Yada, M.; Narutomi, F.; Nagasawa, S.; Tanaka, K.; Kurosaka, K.; Ohishi, Y.; Masumoto, A.; Motomura, K. Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β-catenin signal activation. Oncol. Lett. 2022, 24, 216. [Google Scholar] [CrossRef]
- Yamashita, T.; Kitao, A.; Matsui, O.; Hayashi, T.; Nio, K.; Kondo, M.; Ohno, N.; Miyati, T.; Okada, H.; Yamashita, T.; et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology. 2014, 60, 1674–1685. [Google Scholar] [CrossRef]
- Hagiwara, S.; Nishida, N.; Kudo, M. Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers (Basel). 2023, 15, 2070. [Google Scholar] [CrossRef]
- Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; Castro de Moura, M.; Putra, J.; Camprecios, G.; Bassaganyas, L.; Akers, N.; et al. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology. 2017, 153, 812–826. [Google Scholar] [CrossRef]
- Montironi, C.; Castet, F.; Haber, P.K.; Pinyol, R.; Torres-Martin, M.; Torrens, L.; Mesropian, A.; Wang, H.; Puigvehi, M.; Maeda, M.; et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. J. Hepatol. 2023, 72, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, B.; Pomej, K.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Waidmann, O.; Himmelsbach, V.; Schulze, K.; von Felden, J.; Fründt, T.W.; et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy - development and validation of the CRAFITY score. J. Hepatol. 2022, 76, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Kakizaki, S.; Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; et al. Prognostic impact of C-reactive protein and alpha-fetoprotein in immunotherapy score in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: a multicenter retrospective study. Hepatol. Int. 2022, 16, 1150–1160. [Google Scholar] [CrossRef]
- Capone, M.; Giannarelli, D.; Mallardo, D.; Madonna, G.; Festino, L.; Grimaldi, A.M.; Vanella, V.; Simeone, E.; Paone, M.; Palmieri, G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer. 2018, 6, 74. [Google Scholar] [CrossRef]
- Bilen, M.A.; Dutcher, G.M.A.; Liu, Y.; Ravindranathan, D.; Kissick, H.T.; Carthon, B.C.; Kucuk, O.; Harris, W.B.; Master, V.A. Association Between Pretreatment Neutrophil-to-Lymphocyte Ratio and Outcome of Patients With Metastatic Renal-Cell Carcinoma Treated With Nivolumab. Clin. Genitourin. Cancer. 2018, 16, e563–e575. [Google Scholar] [CrossRef]
- Ogata, T.; Satake, H.; Ogata, M.; Hatachi, Y.; Inoue, K.; Hamada, M.; Yasui, H. Neutrophil-to-lymphocyte ratio as a predictive or prognostic factor for gastric cancer treated with nivolumab: a multicenter retrospective study. Oncotarget. 2018, 9, 34520–34527. [Google Scholar] [CrossRef]
- Bagley, S.J.; Kothari, S.; Aggarwal, C.; Bauml, J.M.; Alley, E.W.; Evans, T.L.; Kosteva, J.A.; Ciunci, C.A.; Gabriel, P.E.; Thompson, J.C.; et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017, 106, 1–7. [Google Scholar] [CrossRef]
- Eso, Y.; Takeda, H.; Taura, K.; Takai, A.; Takahashi, K.; Seno, H. Pretreatment Neutrophil-to-Lymphocyte Ratio as a Predictive Marker of Response to Atezolizumab Plus Bevacizumab for Hepatocellular Carcinoma. Curr. Oncol. 2021, 28, 4157–4166. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; et al. Neutrophil-lymphocyte ratio predicts early outcomes in patients with unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab: a multicenter analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 698–706. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Durvalumab Plus Tremelimumab: A Novel Combination Immunotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer. 2022, 11, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Kodama, T.; Sakamori, R.; Maesaka, K.; Matsumae, T.; Sawai, Y.; Imai, Y.; Ohkawa, K.; Miyazaki, M.; Tanaka, S.; et al. Interleukin-6 Is a Circulating Prognostic Biomarker for Hepatocellular Carcinoma Patients Treated with Combined Immunotherapy. Cancers (Basel). 2022, 14, 883. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, A.; Yada, M.; Miyazaki, Y.; Tanaka, K.; Kurosaka, K.; Ohishi, Y.; Masumoto, A.; Motomura, K. Tumor-infiltrating CD8+ T cells as a biomarker for chemotherapy efficacy in unresectable hepatocellular carcinoma. Oncol. Lett. 2023, 25, 259. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
