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Article

Finding an Extension of the Expected Value That Is
Unique, Finite, and "Natural" for All Functions in
Prevalent Subset of the Set of All Functions

Bharath Krishnan

Department of Mathematics, Indiana East University, bharathk98@gmail.com

Abstract: Suppose for n ∈ N, set A ⊆ Rn and function f : A → R. If set A, using the Hausdorff outer

measure, is measurable in the sense of Carathèodory; we want to find an extension of the expected

value, w.r.t the Hausdorff measure, that’s unique, finite and "natural" (defined on §3.3 & §3.4) for all f in

a prevalent subset of RA. The issue is current extensions of the expected value are finite for all functions

in only a shy subset of RA. The reason this issue wasn’t resolved is mathematicians have not thought of

the problem, focusing on application rather than generalization. Despite the lack of potential use, we’ll

attempt to solve the problem by defining a choice function—this shall choose a unique set of equivalent

sequences of sets (F⋆⋆⋆

k )k∈N, where the set-theoretic limit of F⋆⋆⋆

k is the graph of f ; the measure Hh is the

h-Hausdorff measure, such for each k ∈ N, 0 < Hh(F⋆⋆⋆

k ) < +∞; and ( f ⋆k )k∈N is a sequence of functions

where {(x, f ⋆k (x)) : x ∈ dom(F⋆⋆⋆

k )} = F⋆⋆⋆

k . Thus, the extended expected value of f or E∗∗[ f , F⋆⋆⋆

k ]

is: ∀(ǫ > 0)∃(N ∈ N)∀(k ∈ N)

(

k ≥ N ⇒

∣

∣

∣

∣

1
Hh(dom(F⋆⋆⋆

k ))

∫

dom(F⋆⋆⋆

k ) f ⋆k dHh −E∗∗[ f , F⋆⋆⋆

k ]

∣

∣

∣

∣

< ǫ

)

which

should be unique, finite, and "natural" (defined on §3.3 & §3.4) for all f in a prevalent subset of RA.

Note we guessed the choice function using computer programming but we don’t use mathematical

proofs due to the lack of expertise in the subject matter. Despite this, the biggest use of this research is

the extension of the expected value is finite for "almost all" functions: this is easier to use in application

when finding the "average" of functions covering an infinite expanse of space.

Keywords: expected value; hausdorff measure; (exact) dimension function; function space; prevalent

and shy sets; entropy; choice function

1. Introduction

According to an article in Quanta Magazine [3] Wood writes, "No known mathematical procedure

can meaningfully average an infinite number of objects covering an infinite expanse of space in general.

The path integral is more of a physics philosophy than an exact mathematical recipe." The cited paper

[4] presents a constructive approach to Wood’s statement using filters over families of finite set; however,

the average in the approach is not unique: the method determines the average value of functions with a

range that lies in any algebraic structure for which the finite averages make sense. In this paper, we will

explore a more constructive approach where the average unique, finite, and "natural" (defined in §3.3 &

§3.4) for a prevalent subset [6] of the set of all functions.

We begin with describing "the infinite objects" which cover "an infinite expanse of space" as

unbounded functions, since the definition is more approachable from a mathematical standpoint.

Moreover, for n ∈ N, set A ⊆ Rn and function f : A → R; suppose we get a prevalent subset of a

function-space means "almost all" functions are in that space, and a shy subset of a function-space

means "almost no" functions are in that space. Using the Hausdorff outer measure (for A measurable

in the Carathèodory sense); we then get the set of unbounded f where the expected value is infinite
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or undefined, forms a prevalent subset of RA. Furthermore, the set of all f with finite expected values

forms only a shy subset of RA, meaning "almost no" functions have finite expected values.

Therefore, after we define prevalent and shy sets with mathematics in §2.1; we define two attempts

to answer the thesis 1 of the first paragraph in §2.2. Note neither attempts give complete answers: they

extend the Hausdorff measure of A to be positive and finite but do not guarantee unbounded functions

will have finite expected values. Infact, the expected value from both attempts are positive and finite for

only a shy subset of RA.

Hence, we define a sequence of sets called ⋆-sequence of sets (def. 4) whose properties allow for

finite expected values for all f in a prevalent subset RA. Note these ⋆-sequences of sets converge to the

graph of f i.e. {(x, f (x)) : x ∈ A} rather than A; otherwise, the generalized expected value of f w.r.t to

their own ⋆-sequence (def. 5) cannot be finite for all f in a prevalent subset of RA. Moreover, since there

are functions where there are multiple ⋆-sequences of sets which we may choose, with the generalized

expected values of f w.r.t each ⋆-sequence different and non-unique—we must have a choice function

choosing a unique set of equivalent ⋆-sequences with the same, unique expected value.

For defining the choice function, we ask a question in §3.4 where with previous sections; we define

equivalent & non-equivalent ⋆-sequences of sets for §3.1, and "natural" expected values for §3.3. We

attempt to answer the question in §3.4 by redefining linear/super-linear convergence (def. 8) in terms of

Entropy and Samples, where the samples are derived by taking points of each partitions of the domain of

a ⋆-sequence of sets, such that the partitions have equal Hausdorff measure. Since all samples have finite

points; we order the x-values of the points from least to greatest, take the difference between consecutive

pairs of x-values in the sample, multiply the differences by a constant so they add up to one (i.e. a

discrete probability distribution), and use the Entropy of the distribution [5] to redefine def. 8 as def. 12.

We then use the redefined definition to create a choice function.

In the case that a choice function does not give a unique expected value in equation 20; we’ll

use iterations of choice function C (eq. 18) in §5.2, to increase the chance of choosing non-equivalent

⋆-sequences of sets, such that the generalized expected values of f w.r.t each ⋆-sequence is the same.

2. Preliminary Definitons/Motivation

Other than integration with filters [4], there is no constructive approach to finding a meaningful

average of functions covering an infinite expanse of space; however, there are two constructive

approaches to making the average unique, finite, and "natural". Before beginning, consider the following

mathematical definitions:

2.1. Preliminary Definitions

Let X be a completely metrizable topological vector space.

Definition 1 (Prevalent Subset of X). A Borel set E ⊂ X is said to be prevalent if there exists a Borel measure

µ on X such that:

1. 0 < µ(C) < ∞ for some compact subset C of X, and
2. the set {E + x : x ∈ X} has full µ-measure (that is, the complement of {E + x : x ∈ X} has measure zero).

1 We want to find an extension of the expected value, w.r.t the Hausdorff measure, that’s unique, finite and "natural" for all f in
a prevalent subset of RA
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More generally, a subset F of X is prevalent if F contains a prevalent Borel Set. Also note:

Definition 2 (Shy Subset of X). The complement of a prevalent set is called a shy set.

Therefore, we can use definitions 1 and 2 to prove or disprove:

Theorem 1. The set of unbounded functions forms a prevalent subset of the set of all functions.

Moreover, let (V, d) be a metric space. If set A ⊆ V, where we restrict A using Hausdorff outer

measure to sets measurable in the Carathèodory sense; let Hα be the α-dimensional Hausdorff measure

on A, where α ∈ [0,+∞) and dimH(A) is the Hausdorff dimension of set A. In addition, when

dimH(A) ∈ N, suppose HdimH(A)(A) equals the dimH(A)-dimensional Lebesgue measure with the

expected value w.r.t the Hausdorff measure defined to be the following:

Definition 3 (Expected Value of f ). If n ∈ N, where set A ⊆ Rn, the expected value of function f : A → R is

E[ f ] =
1

HdimH(A)(A)

∫

A
f dHdimH(A)

where we can see there are cases where E[ f ] is undefined or infinite (e.g. HdimH(A)(A) is zero, +∞ or f

is unbounded). In this case, if topological vector space X is RA (see §2.1), we also must prove:

Theorem 2. The expected value E[ f ] is finite for all f in only a shy subset of RA

2.2. Extended Expected Values

Two solutions to getting a finite expected value for "larger" subset of RA is:

1. Defining a dimension function; i.e., h : [0,+∞) → [0,+∞], that’s monotonically increasing, strictly

positive and right continuous, such that when R denotes the radius of a ball in a covering for the

definition of the Hausdorff Measure, we replace RdimH(A) with h(R) so Hh(A): the h-Hausdorff

measure, is positive and finite. This leads to the extended expected value E⋆[ f ], where:

E
⋆[ f ] =

1

Hh(A)

∫

A
f dHh

Note, however, not all A has dimension function h which leads to:

2. If A is fractal but has no gauge function, we could use this paper [1] which is an extension of the

Lebesgue density theorem and this paper [2] which is an extension of the Hausdorff measure using

Hyperbolic Cantor sets. Note, however, when A is non-fractal (e.g. countably infinite) or f is

unbounded, there is a possibility that the expected value is infinite or undefined. Infact, we need

to prove:

Theorem 3. The extended expected value in (1) and (2) is finite for all f in only a shy subset of RA

The suspicion is either extensions extend the Hausdorff measure to be positive and finite for the most

subsets A of Rn. However, if every subset of Rn had positive and finite measure; when f is unbounded,

the expected value w.r.t these measures/densities are still infinite or undefined for all f in a prevalent

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2023                   doi:10.20944/preprints202307.0560.v2

https://doi.org/10.20944/preprints202307.0560.v2


4 of 11

subset of RA. This means all unbounded f with finite expected values and bounded f form only a shy

subset of the set of all f .

3. Attempt to Answer Thesis

Suppose h is the dimension function and Hh is the h-Hausdorff measure (§2.2, crit. 1).

Definition 4 (⋆-Sequence of Sets). If we define a sequence of sets (F⋆

r )r∈N, where h is the dimension function,

then when:

1. the set theoretic limit of a sequence of sets (F⋆

r )r∈N is {(x, f (x)) : x ∈ A} (i.e. (F⋆

r )r∈N converges to

{(x, f (x)) : x ∈ A}) where:

lim sup
r→∞

F⋆

r = lim inf
r→∞

F⋆

r = {(x, f (x)) : x ∈ A}

2. For all r ∈ N, 0 < Hh(F⋆

r ) < +∞

3. we define sequence of functions ( f ⋆r )r∈N where f ⋆r : dom(F⋆

r ) → range(F⋆

r ) such that

{(x, f ⋆r (x)) : x ∈ dom(F⋆

r )} = F⋆

r

we have (F⋆

r ) is a ⋆-sequence of sets or starred-sequence of sets.

Note this will lead to a new extension of the expected value where when there’s at least one

starred-sequence of sets where the extension is finite, the extension could be finite for all f in a prevalent

subset of RA.

Definition 5 (Generalized Expected Value). If (F⋆

r )r∈N is a ⋆-sequence of sets (def. 4), the generalized

expected value of f w.r.t (F⋆

r )r∈N is E∗∗[ f , F⋆

r ] where:

∀(ǫ > 0)∃(N ∈ N)∀(r ∈ N)

(

r ≥ N ⇒

∣

∣

∣

∣

1

Hh (dom (F⋆
r ))

∫

dom(F⋆
r )

f ⋆r dHh −E
∗∗[ f , F⋆

r ]

∣

∣

∣

∣

< ǫ

)

(1)

3.1. Equivalent and Non-Equivalent ⋆-sequences of Sets

Next, we define set V′, where we want the generalized expected value to exist for all f ∈ V′ w.r.t at

least one sequence (in a set of ⋆-sequences of sets) where

Definition 6 (Equivalent Starred-Sequences of Sets). All starred-sequences of sets are equivalent (in the set

of ⋆-sequences of sets), if we get for all f ∈ V′; the generalized expected value of f w.r.t each starred-sequence of

sets has the same value.

Definition 7 (Non-Equivalent Starred-Sequences of Sets). All starred-sequences of sets are non-equivalent

(in a set of ⋆-sequences of sets), if there exists an f ∈ V′, where the generalized expected values of f w.r.t each

starred-sequence of sets has two or more different values; e.g., defined vs undefined values.

However, proving that two or more starred-sequences of sets are equivalent or non-equivalent

(using def. 6 or 7) is tedious. Therefore, we ask the following:

3.1.1. Question 1

Is there are a simpler definition of equivalent and non-equivalent ⋆-sequences of sets.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2023                   doi:10.20944/preprints202307.0560.v2

https://doi.org/10.20944/preprints202307.0560.v2


5 of 11

3.2. Motivation for Question

For all f in a prevalent subset of RA (def. 1), we may choose a ⋆-sequence of sets (F⋆

r )r∈N where

the generalized expected value of f w.r.t least one starred-sequence is finite. However, consider the

following problem:

Theorem 4. The set of all f , where the generalized expected values of f w.r.t two or more non-equivalent

⋆-sequences of sets has different values, form a prevalent subset of RA.

This means "almost all" functions have several generalized expected values depending on the

starred-sequence chosen. Therefore, we need to choose a unique ⋆-sequence of sets where the new

extended expected value is also "natural" and unique:

3.3. Essential Definitions for a "Natural" Expected Value

Suppose (F⋆

r )r∈N and (F⋆⋆

j )j∈N are non-equivelant starred-sequences of sets (def. 4 & 7): we have

the following is essential for a "natural" expected value.

Definition 8 (Linear & Super-linear Convergence of a ⋆-Sequence of Sets To That Of Another

⋆-Sequence of Sets). If we define function S : R → R, where r, j ∈ N such that:

Hh(F⋆

r ) = O(S(Hh(F⋆⋆

j )))

where we have O as the Big-O notation and 0 < lim
x→∞

S(x)/x, then (F⋆

r )r∈N converges to the graph of f :

{(x, f (x)) : x ∈ A} at a linear or super-linear rate compared to that of (F⋆⋆

j )j∈N.

Now we may combine the previous definitions into a main question with an answer that solves the

thesis 2.

3.4. Main Question

Does there exist a choice function that chooses a unique set (of equivalent ⋆-sequences of sets) such

that:

1. The chosen starred-sequences of sets converge to {(x, f (x)) : x ∈ A} at a rate linear or super-linear

(def. 8) to the rate non-equivalent ⋆-sequences of sets converge to {(x, f (x)) : x ∈ A}
2. The generalized expected value (def. 5) of f w.r.t the chosen (and equivalent) starred-sequences of sets

is finite.
3. The choice function chooses a unique set of equivalent ⋆-sequences of sets which satisfy (1) and (2),

for all f ∈ Q such that Q is a prevalent subset of RA.
4. Out of all the choice functions which satisfy (1), (2) and (3), we choose the one with the

simplest form, meaning for each choice function fully expanded, we take the one with the fewest

variables/numbers (excluding those with quantifiers)?

2 We want to find an extension of the expected value, w.r.t the Hausdorff measure, that’s unique, finite and "natural" for all f in
a prevalent subset of RA
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Note 1 (Notes On Question). Note, the unique set of equivalent and chosen starred-sequences of sets is defined

using notation ∼ (F⋆⋆⋆

k )k∈N, where (F⋆⋆⋆

k )k∈N is a starred-sequence in ∼ (F⋆⋆⋆

k )k∈N. Therefore, after we define

the choice function, the answer should be:

∀(ǫ > 0)∃(N ∈ N)∀(k ∈ N)

(

k ≥ N ⇒

∣

∣

∣

∣

∣

1

Hh
(

dom
(

F⋆⋆⋆

k

))

∫

dom(F⋆⋆⋆

k )
f ⋆k dHh −E

∗∗[ f , F⋆⋆⋆

k ]

∣

∣

∣

∣

∣

< ǫ

)

(2)

Also, consider the following: if the solution to the main question is extraneous, what other criteria can be included

to get a unique choice function? (Note if the solution is always extraneous, we want to replace “equivelant

starred-sequences of sets” with the following: ”the set of all ⋆-sequences of sets, where the generalized expected

values of f w.r.t each starred-sequence is the same”.)

4. Solution To The Main Question Of Section 2.4

Suppose h is the dimension function, Hh is the h-Hausdorff measure (§2.2, crit. 1), and (F⋆

r )r∈N

is the starred-sequence of sets (def. 4). We will use an alternative approach to definition 8 or def. 12

so we can define a choice function which solves the main question. Read from the second sentence of

second-to-last paragraph of the intro of §1 for a summary.

4.1. Preliminary Definitions

Definition 9 (Uniform ε coverings of each term of a ⋆-sequence of sets). We define the uniform ε coverings

of each term of (dom(F⋆

r ))r∈N (dom(F⋆

r ) for some r) as a group of pair-wise disjoint sets covering dom(F⋆

r ), such

that when taking dimension function h of dom(F⋆

r ), we want Hh of each of the sets covering dom(F⋆

r ) to have

the same value ε ∈ range(Hh), where ε > 0 and the total sum of Hh of the coverings is minimized. In shorter

notation, if

• The element t ∈ N

• The set T ⊃ N is arbitrary and uncountable.

and set Ω is defined as:

Ω =















{1, · · ·, t} if there are t ways of writing uniform ε coverings of dom(F⋆

r )

N if there are countably infinite ways of writing uniform ε coverings of dom(F⋆

r )

T if there are uncountable ways of writing uniform ε coverings of dom(F⋆

r )

(3)

then for every ω ∈ Ω, the set of uniform ε coverings is defined using U (ǫ, dom(F⋆

r ), ω) where ω “enumerates"

all possible uniform ε coverings of dom(F⋆

r ) for every r ∈ N.

Definition 10 (Sample of the uniform ε coverings of each term of a ⋆-sequence of sets). The sample of

uniform ε coverings of each term of (dom(F⋆

r ))r∈N (or dom(F⋆

r ) for some r) is the set of points where for every

ε ∈ range(Hh) and r ∈ N, we take a point from each pair-wise disjoint set in the uniform ε coverings of dom(F⋆

r )

(def. 9). In shorter notation, if

• The element k ∈ N

• The set K ⊃ N is arbitrary and uncountable.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 July 2023                   doi:10.20944/preprints202307.0560.v2

https://doi.org/10.20944/preprints202307.0560.v2


7 of 11

and set Ψω is defined as:

Ψω =















{1, · · ·, k} if there are k ways of writing the sample of uniform ε coverings of dom(F⋆

r )

N if there are countably infinite ways of writing the sample of uniform ε coverings of dom(F⋆

r )

K if there are uncountable ways of writing the sample of uniform ε coverings of dom(F⋆

r )

(4)

then for every ψ ∈ Ψω , the set of all samples of the set of uniform ε coverings is defined using

S(U (ǫ, dom(F⋆

r ), ω), ψ), such that ψ “enumerates" all possible samples of U (ǫ, dom(F⋆

r ), ω).

Definition 11 (Entropy on the sample of uniform coverings of each term of ⋆-sequence of sets). Since

there are finitely many points in the sample of the uniform ε coverings of each term of (dom(Fr))r∈N (def. 10), we:

1. Arrange the x-value of the points in the sample of uniform ε coverings from least to greatest. This is defined

as:

Ord(S(U (ǫ, dom(F⋆

r ), ω), ψ))

2. Take the multi-set of the absolute differences between each consecutive pairs of elements in (1). This is defined

as: ∇

∇Ord(S(U (ǫ, dom(F⋆

r ), ω), ψ))

3. Normalize (2) into a discrete probability distribution. This is defined as:

P(S(U (ǫ, dom(F⋆

r ), ω), ψ)) =







y

/



 ∑
z∈∇Ord(S(U (ǫ,dom(F⋆r ),ω),ψ))

z



 : y ∈ ∇Ord(S(U (ǫ, dom(F⋆

r ), ω), ψ))







(5)

4. Take the entropy of (3), (for further reading, see [5, p.61-95]). This is defined as:

E(S(U (ǫ, dom(F⋆

r ), ω), ψ)) = − ∑
x∈P(S(U (ǫ,dom(F⋆

r ),ω),ψ))

x log2 x

where (4) is the entropy on the sample of uniform coverings of dom(F⋆

r ).

Definition 12 (Starred-Sequence of sets converging Sublinearly, Linearly, or Superlinearly to A

compared to that of another ⋆-Sequence). Suppose we define starred-sequences of sets (dom(F⋆

r ))r∈N and

(dom(F⋆⋆

j ))j∈N, where for every ε ∈ range(Hh), we get ε > 0 and r ∈ N such that:

(a) From def. 10 and 11, suppose we have:

|S(U (ǫ, dom(F⋆
r ), ω), ψ)| = (6)

inf
{

|S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)) ≥ E(S(U (ǫ, dom(F⋆

r ), ω), ψ))
}

then (using |S(U (ǫ, dom(F⋆
r ), ω), ψ)|) we have:

α (ǫ, r, ω, ψ) = |S(U (ǫ, dom(F⋆

r ), ω), ψ))| /|S(U (ǫ, dom(F⋆
r ), ω), ψ)| (7)

(b) Using def. 10 and 11, suppose we have:

|S(U (ǫ, dom(F⋆

r ), ω), ψ)| = (8)

sup
{

|S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)) ≤ E(S(U (ǫ, dom(F⋆

r ), ω), ψ))
}
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then (using |S(U (ǫ, dom(F⋆

r ), ω), ψ)| ) we get

α (ǫ, r, ω, ψ) = |S(U (ǫ, dom(F⋆

r ), ω), ψ))| /|S(U (ǫ, dom(F⋆

r ), ω), ψ)| (9)

1. If using α (ǫ, r, ω, ψ) and α (ǫ, r, ω, ψ) we have that:

lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) = lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) = 0

we say (dom(F⋆

r ))r∈N converges to A at a rate superlinear rate to that of (dom(F⋆⋆

j ))j∈N.

2. If using equations α (ǫ, r, ω, ψ) and α (ǫ, r, ω, ψ) we have either:

(a) 0 ≤ lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) < +∞

0 < lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) ≤ +∞

(b) 0 < lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) ≤ +∞

0 ≤ lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) < +∞

(c) 0 ≤ lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) < +∞

0 < lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) ≤ +∞

(d) 0 < lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) ≤ +∞

0 ≤ lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) < +∞

we then say (dom(F⋆

r ))r∈N converges to A at a rate linear to that of (dom(F⋆⋆

j ))j∈N.

3. If using equations α (ǫ, r, ω, ψ) and α (ǫ, r, ω, ψ) we have that:

lim inf
ε→0

lim inf
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) = lim sup
ε→0

lim sup
r→∞

sup
ω∈Ω

sup
ψ∈Ψω

α (ǫ, r, ω, ψ) = +∞

we say (dom(F⋆

r ))r∈N converges uniformly to A at a rate sublinear to that of (dom(F⋆⋆

j ))j∈N.

5. Attempt to Answer Main Question Of Section 2.4

5.1. Choice Function

Suppose S′(A) is the set of the starred-sequences of sets that have finite generalized expected values

(def. 5). We shall attempt to define a ⋆-sequence of sets (i.e. (F⋆⋆⋆

k )k∈N) which satisfy (1), (2), and

(3) of the main question §3.4 and include ⋆-sequence (F⋆⋆

j )j∈N which is an element S′(A) but not

an element of the set of equivalent starred-sequences of sets of (F⋆⋆⋆

k )k∈N i.e. ∼ (F⋆⋆⋆

k )k∈N, where

(F⋆⋆

j )j∈N ∈ S′(A)\ ∼ (F⋆⋆⋆

k )k∈N.
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Further note from def. 4, if we take:

|S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ)| = (10)

inf
{

|S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)) ≥ E(S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ))
}

and from def. 4, we take:

|S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ)| = (11)

sup
{

|S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)| : j ∈ N, ω′ ∈ Ω, ψ′ ∈ Ψω , E(S(U (ǫ, dom(F⋆⋆

j ), ω′), ψ′)) ≤ E(S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ))
}

Then, using def. 10 with equations |S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ)| and |S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ)|, if:

sup
ω∈Ω

sup
ψ∈Ψω

S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ) = S ′(ε, dom(F⋆⋆⋆

k )) = S ′ (12)

sup
ω∈Ω

sup
ψ∈Ψω

|S(U (ǫ, dom(F⋆⋆⋆

k ), ω), ψ)| = |S ′(ε, dom(F⋆⋆⋆

k ))| = |S ′| (13)

sup
ω∈Ω

sup
ψ∈Ψω

|S(U (ǫ, dom(F′′
k ), ω), ψ)| = |S ′(ε, dom(F⋆⋆⋆

k ))| = |S ′| (14)

where, using absolute value function ||·||, we have:

S(k) =
(

sup(dom(F⋆⋆⋆

k+1))− sup (dom(F⋆⋆⋆

k ))
) (

inf(dom(F⋆⋆⋆

k ))− inf
(

dom(F⋆⋆⋆

k+1)
))

(15)
∣

∣

∣

∣

(

inf(dom(F⋆⋆⋆

k ))− inf
(

dom(F⋆⋆⋆

k+1)
) ) (

sup(dom(F⋆⋆⋆

k+1))− sup (dom(F⋆⋆⋆

k ))− 1
) ∣

∣

∣

∣

such that we define:

T(k) =
(

sup
(

dom(F⋆⋆⋆

k+1)
)

inf (dom(F⋆⋆⋆

k ))− sup (dom(F⋆⋆⋆

k )) inf
(

dom(F⋆⋆⋆

k+1)
))

(16)
(

(

inf (dom(F⋆⋆⋆

k ))− inf
(

dom(F⋆⋆⋆

k+1)
))

−
(

sup
(

dom(F⋆⋆⋆

k+1)
)

− sup (dom(F⋆⋆⋆

k ))
)

− 1
)

(

inf (dom(F⋆⋆⋆

k ))− inf
(

dom(F⋆⋆⋆

k+1)
)) (

sup
(

dom(F⋆⋆⋆

k+1)
)

− sup (dom(F⋆⋆⋆

k ))
)

then using equations S ′, |S ′|, |S ′|, S(k), T(k) with the nearest integer function [·], we want:

K(ε, dom(F⋆⋆⋆

k )) = ||1 − S(k)||

(∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|S ′|

(

1 +

[

|S ′ |(|S ′ |+2|S ′ |)
(|S ′ |+|S ′ |)(|S ′ |+|S ′ |+|S ′ |)

])

(

1 +
[

|S ′|/|S ′|
])

(

1 +
[

|S ′|/|S ′|
]) (

1 +
[

|S ′|/|S ′|
]) − |S ′|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ |S ′|

)

− T(k) (17)

where using K(ε, F⋆⋆⋆

k ), if set S′′(A) ⊆ S′(A) and P (·) is the power-set, then set C(A) is the largest
element of:

{

S
′′(A) ⊆ S

′(A) : ∀(ǫ1 > 0)∃(M ∈ N)∀(ε ∈ range(Hh))∃ (v ∈ N) ∀ (k ∈ N) ∀ ({F⋆⋆⋆

k } ∈ S
′′(A)) (18)

(

0 < ε ≤ M, k ≥ v ⇒
∣

∣S ′(ε, dom(F⋆⋆⋆

k ))− K(ε, dom(F⋆⋆⋆

k ))− inf
{

F⋆g

}

∈S′ (A)

(

S ′(ε, dom(F⋆

g ))− K(ε, dom(F⋆

g ))
)

∣

∣ < ǫ1

)}

⊆ P(S′(A))

w.r.t to inclusion, such that the choice function is C(A) if the following only contains sequences of sets

equivelant to F⋆⋆⋆

k (see original post).
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Otherwise, for k ∈ N, suppose we say Ck(A) represents the k-th iteration of the choice function of

A, e.g. C3(A) = C(C(C(A))), where the infinite iteration of C(A) (if it exists) is lim
k→∞

Ck(A) = C∞(A).

Therefore, when taking the following:

C′(A) =















C(A) if C(A) contains one element

Cj(A) if j ∈ N, such for all k ≥ j, Ck(A) contains one element

C∞(A) if it exists, and C∞(A) contains one element

(19)

we say C′(A) is the choice function and the chosen expected value, using the generalized expected value

in the original post, is E∗∗[ f , F⋆⋆⋆

k ], i.e.:

∀(ǫ > 0)∃(N ∈ N)∀(k ∈ N)

(

k ≥ N ⇒

∣

∣

∣

∣

∣

1

Hh
(

dom
(

F⋆⋆⋆

k

))

∫

dom(F⋆⋆⋆

k )
f ⋆k dHh −E

∗∗[ f , F⋆⋆⋆

k ]

∣

∣

∣

∣

∣

< ǫ

)

(20)

5.2. Increasing the Chances of A Unique Expected Value

In case C′(A), in equation 19, does not exist; if there exists a unique and finite E∗∗[ f , F⋆⋆⋆

k ] where:

∀ ((F⋆⋆⋆

k )k∈N ∈ C (A)) (E∗∗[ f , F⋆⋆⋆

k ] is unique & finite) (21)

Then E∗∗[ f , F⋆⋆⋆

k ] is the generalized expected value w.r.t choice function C, which answers criteria (1),

(2) and (3) of the question in the OP; however, there is still a chance that the equation above fails to

give an unique E∗∗[ f , F⋆⋆⋆

k ]. Hence; if s ∈ N, we take the s-th iteration of the choice function C(A), such

[that] there exists a t ∈ N, where for all s ≥ t, if E∗∗[ f , F⋆⋆⋆

k ] is unique and finite then the following is the

generalized expected value w.r.t finitely iterated C.

In other words, if the s-th iteration of C is represented as C[s] (where e.g. C3(A) = C(C(C(A)))),

we want a unique and finite E∗∗[ f , F⋆⋆⋆

k ] where:

∃ (t ∈ N) ∀(s ∈ N)(s ≥ t ⇒ ∀

(

(F⋆⋆⋆

k )k∈N ∈ C[k] (A)

)

(E∗∗[ f , F⋆⋆⋆

k ] is unique & finite)) (22)

If this still does not give a unique and finite expected value, we then take the most generalized

expected value w.r.t an infinitely iterated C where if the infinite iteration of C is stated as

lim
m→∞

C[m]( f [A]) = C∞( f [A]), we then want a unique E∗∗[ f , F⋆⋆⋆

k ] where:

∀

(

(F⋆⋆⋆

k )k∈N ∈ C∞ (A)

)

(E∗∗[ f , F⋆⋆⋆

k ] is unique & finite) (23)

5.3. Notes on Answer

If either of the attempts answer criteria 1., 2., 3. (or even 4.) of the question on the original post,

we can apply either attempts when A has no dimension function, A is non-fractal, or the points on the

graph of f cover an infinite expanse of space.
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