Altmetrics
Downloads
182
Views
91
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
10 July 2023
Posted:
12 July 2023
You are already at the latest version
Domain | Features | Equations | Description | #no. features |
---|---|---|---|---|
Line Length [38] [39] | Called curve length, is the total vertical length of the signal | 1 | ||
Time | Kurtosis [40] | Shows the sharpness of EEG signals’ peak | 1 | |
Peak to peak amplitude | Time of EEG signal peaks between the various windows | 1 | ||
Skewness [40] | A asymmetry of an EEG signal | 1 | ||
Hjorth Parameters [36,40] | A variance of the time function. | 1 | ||
A mean frequency or the proportion of standard deviation of the power spectrum. | 1 | |||
Indicates how the shape of a signal is similar to a pure sine wave. | 1 | |||
Frequency | Relative Power [41] of: theta (4-8Hz) alpha(8-12Hz) sigma(12-15Hz) low beta(15-20Hz) high beta (20-30Hz) |
Average absolute power of the given band interval. | 5 | |
Time-Freqeucny | Energy of Wavelet decomposition coefficients (db4, 6 level) [11,42]. |
Measure the square sum of wavelet coefficients of each db level | 6 | |
Spectral Entropy (PSD,Welch) [43] |
|
Measure the distribution of signal power over frequency. | 1 | |
katz Fractal Dimension [38] | Compute the maximum distance between the first point and any other point of the Signal’ time window. | 1 |
No. | Classifier | Default Value |
---|---|---|
1 | SVM | C=1.0, Kernal = Radial Basis Function (RBF), |
2 | KNN | K=10, distance function= euclidean distance |
All Channels+KNN | All Channels+ SVM | Proposed Channels+KNN | Proposed Channels+SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Participant Id | precision | recall | accuracy | precision | recall | accuracy | precision | recall | accuracy | precision | recall | accuracy |
1 | 0.92 | 0.70 | 0.85 | 0.91 | 0.69 | 0.84 | 0.71 | 0.62 | 0.78 | 0.86 | 0.65 | 0.82 |
2 | 0.82 | 0.80 | 0.79 | 0.90 | 0.90 | 0.90 | 0.84 | 0.80 | 0.78 | 0.91 | 0.91 | 0.91 |
4 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
5 | 0.94 | 0.93 | 0.93 | 0.98 | 0.98 | 0.98 | 0.80 | 0.79 | 0.79 | 0.90 | 0.90 | 0.90 |
8 | 0.91 | 0.92 | 0.91 | 0.98 | 0.97 | 0.98 | 0.83 | 0.84 | 0.84 | 0.92 | 0.86 | 0.89 |
10 | 0.79 | 0.77 | 0.77 | 0.83 | 0.83 | 0.83 | 0.60 | 0.60 | 0.60 | 0.62 | 0.62 | 0.62 |
11 | 0.69 | 0.71 | 0.69 | 0.75 | 0.71 | 0.76 | 0.67 | 0.68 | 0.66 | 0.76 | 0.71 | 0.77 |
12 | 0.67 | 0.65 | 0.74 | 0.81 | 0.64 | 0.80 | 0.74 | 0.70 | 0.79 | 0.76 | 0.68 | 0.80 |
13 | 0.55 | 0.55 | 0.67 | 0.78 | 0.58 | 0.80 | 0.55 | 0.54 | 0.69 | 0.76 | 0.57 | 0.79 |
14 | 0.79 | 0.73 | 0.88 | 0.95 | 0.67 | 0.90 | 0.74 | 0.76 | 0.86 | 0.83 | 0.65 | 0.88 |
15 | 0.84 | 0.82 | 0.82 | 0.90 | 0.90 | 0.90 | 0.69 | 0.67 | 0.67 | 0.72 | 0.71 | 0.71 |
16 | 0.54 | 0.53 | 0.58 | 0.53 | 0.52 | 0.56 | 0.70 | 0.66 | 0.69 | 0.58 | 0.57 | 0.60 |
18 | 0.98 | 0.94 | 0.97 | 0.97 | 0.91 | 0.95 | 0.98 | 0.94 | 0.97 | 0.98 | 0.94 | 0.97 |
19 | 0.65 | 0.56 | 0.64 | 0.95 | 0.92 | 0.94 | 0.56 | 0.56 | 0.59 | 0.83 | 0.76 | 0.80 |
20 | 0.84 | 0.84 | 0.85 | 0.96 | 0.94 | 0.95 | 0.85 | 0.86 | 0.86 | 0.93 | 0.88 | 0.91 |
21 | 0.83 | 0.82 | 0.84 | 0.92 | 0.84 | 0.88 | 0.73 | 0.71 | 0.74 | 0.88 | 0.80 | 0.84 |
22 | 0.62 | 0.60 | 0.67 | 0.73 | 0.66 | 0.74 | 0.66 | 0.66 | 0.69 | 0.74 | 0.69 | 0.75 |
24 | 0.32 | 0.38 | 0.52 | 0.35 | 0.48 | 0.67 | 0.32 | 0.38 | 0.53 | 0.33 | 0.42 | 0.58 |
25 | 0.83 | 0.73 | 0.79 | 0.80 | 0.74 | 0.79 | 0.80 | 0.79 | 0.81 | 0.83 | 0.81 | 0.84 |
26 | 0.98 | 0.97 | 0.98 | 0.97 | 0.94 | 0.96 | 0.90 | 0.92 | 0.92 | 0.96 | 0.91 | 0.94 |
27 | 0.45 | 0.50 | 0.89 | 1.00 | 1.00 | 1.00 | 0.45 | 0.50 | 0.89 | 1.00 | 1.00 | 1.00 |
28 | 0.81 | 0.84 | 0.82 | 0.96 | 0.92 | 0.95 | 0.90 | 0.88 | 0.91 | 0.98 | 0.97 | 0.98 |
29 | 0.86 | 0.71 | 0.80 | 0.92 | 0.81 | 0.88 | 0.82 | 0.70 | 0.79 | 0.94 | 0.86 | 0.91 |
31 | 0.59 | 0.58 | 0.58 | 0.63 | 0.63 | 0.63 | 0.46 | 0.46 | 0.46 | 0.56 | 0.56 | 0.56 |
32 | 0.85 | 0.71 | 0.78 | 0.89 | 0.80 | 0.84 | 0.57 | 0.54 | 0.62 | 0.60 | 0.58 | 0.63 |
Average | 0.76 | 0.73 | 0.79 | 0.85 | 0.79 | 0.85 | 0.71 | 0.70 | 0.75 | 0.80 | 0.76 | 0.81 |
Method | No. Channels | Channel Subsets | Classifier | Accuracy | Execution Time |
---|---|---|---|---|---|
mRMR | 11 | ’C4’, ’FC2’, ’CP6’, ’Cz’, ’T8’, ’F4’, ’F8’, ’P4’, ’Fz’, ’FC6’, ’Pz’ | SVM | 0.80±0.12 | 1.42 s |
KNN | 0.74±0.12 | ||||
STFT+MI | 15 | ’AF3’,’F7’,’FC5’,’P3’,’P7’,’Pz’,’O2’,’P4’,’FC6’,’Fp2’,’FC1’,’CP2’,’C4’,’F4’,’Fz’ | SVM | 0.82±0.11 | 4.46s |
KNN | 0.74±0.12 | ||||
GA | 13 | ’O2’, ’O1’, ’PO3’, ’AF3’, ’P4’, ’P8’, ’F8’, ’P7’, ’C4’, ’CP5’, ’Pz’, ’FC5’, ’Fp2’ | SVM | 0.82±0.12 | 1h 3min 34s |
KNN | 0.76±0.13 | ||||
Proposed | 8 | ’AF3’, ’FC5’, ’F8’, ’Fp1’, ’AF4’, ’P7’, ’Fp2’, ’F7’ | SVM | 0.81±0.11 | 0.34s |
KNN | 0.75±0.12 |
Author | Method | Number of EEG Channels | Dataset | Accuracy / Class |
---|---|---|---|---|
Shon [36] | Genetic Algorithm-Based Feature Selection | 32 | DEAP | 71.76% (Stress/Calm) |
Hasan [35] | Boruta-based k-NN feature selection | 32 | DEAP | 73.38% (Stress/Calm) |
Proposed | Full Channels SET+SVM | 32 | DEAP | 85.68% (Stress/Calm) |
CCHP+SVM | 8 | DEAP | 81.56% (Stress/Calm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated