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Abstract: Eicheon properties are discussed. It is shown that the eicheon surface allows setting a

boundary condition for the vacuum polarization and obtaining a solution describing the dark matter

tail in the Milky Way. That is, the dark matter in the Milky Way is explained as the F-type of vacuum

polarization, which could be treated as dark radiation. The model presented is spherically symmetric,

but a surface density of a baryonic galaxy disk is taken into account approximately by smearing

the disk over a sphere. This allows the reproduction of the large distance shape of the Milky Way

rotational curve. Andromeda’s rotational curves are also discussed.

Keywords: eicheon; dark matter; vacuum polarization; rotational curve; galaxy nuclei

1. Introduction

Observation of the stellar orbits around the center of the Milky Way [1,2], detecting the

gravitational waves from the black hole/black hole and black hole/neutron star coalescence (e.g., see

the catalog [3] for an overview), radio-astronomy observation of the “black hole shadows” in the centers

of galaxies [4,5] are widely considered as the direct evidence of an extremely compact astrophysical

object (ECO) existence with a radius of an order of the Schwarzschild one. The observable properties

of such an object are well-described by an exact Schwarzschild (or, more precisely, Kerr) solution of the

general relativity (GR) equations [6,7]. A principal question is whether the Schwarzschild solution

interprets reality quite adequately. Indeed, there are a lot of theoretical attempts to describe ECO

whose properties approach those of an ordinary GR black hole sufficiently far from the event horizon

(so-called horizonless “exotic compact objects” [8]). Some of them are based on the modified theories

of gravity1. Recently, ECOs without a horizon have been discussed intensively (e.g., [12–15]). A zoo of

exotic ECO, such as bosonic stars [16], gravastars [17], and other exotic stars [18,19], was proposed

and theoretically explored. Also, the approaches based on constructing the nonsingular black-hole

metrics in the spacetimes of different dimensions were proposed (e.g., see [20,21]).

The question about the nature of ECO is also related to the need for dark matter (DM) to explain

the galactic rotational curves [22–24]. In particular, the first observation of the DM density around the

stellar-mass ECO appears [25]. It was conjectured that the primordial black holes could be considered

the candidates to DM [26].

Besides, there is a plethora of DM candidates [27]. However, could we advance without

extraordinary physics but only by taking a vacuum polarization into account correctly [28]?

Conventional answer is “No” in the frame of the renormalization technique of quantum field theory

on a curved background [29,30]. Still, this approach demands covariance of the mean value of the

1 For the comprehensive reviews, see [9,10], and one may add an additional alternative approach based on the relativistic
theory of gravity with a massive graviton [11].
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energy-momentum tensor over the vacuum state [29]. This demand has no solid foundation because it

is known that there is no vacuum state invariant relative to the general transformation of coordinates.

On the contrary, an argument was put forward that the preferred conformally-unimodular metric

(CUM) could describe a vacuum polarization and resolve the DM problem [28,31]. In this metric,

a black hole as an object having a horizon is absent. Its disappearance results from the coordinate

transformation relating the Schwarzschild-type metric to CUM, which selects some shell over the

horizon and draws it into a node. As a result, a point mass without a horizon arises in a CUM. It is an

idealized picture. In reality, one must know the equation of the state of a substance forming such ECO

(named “eicheon” [32]).

Here, aiming at understanding the eicheon nature, we will use an approximation of the constant

energy density and a trial “equation of state” relating the maximal pressure and the energy density.

In our approach, we construct eicheon, and, after determining its properties, describe an eicheon

surrounded by “dark radiation” to explain the rotational curves of the Milky Way and Andromeda

(M31). “Dark radiation” is one of two kinds of vacuum polarization considered in [28], namely the

polarization of F-type. Finally, to be closer to observations, we introduce a baryonic matter into the

model by smearing the galactic disks of the Milky Way and M31.

2. What is “eicheon”?

Eicheon is a horizon-free object which appears instead of a black hole in CUM. As an idealized

structure, eicheon represents a solution of a gravitational field of a point mass in CUM. In the metric

of a Schwarzschild type, it looks like a massive shell situated over the Schwarzschild radius. In the

real world, where there is no infinite density and pressure, the eicheon could be modeled in the

Schwarzschild-type metric by a layer of finite width over the horizon, as it is shown in Figure 1. In

CUM, it looks like a solid ball [32,33]. A constant density model is convenient for understanding the

main features of the eicheon.

Figure 1. (a) Nonsingular eicheon surrounded by dark radiation in CUM (3) has a nonsingular core. (b)

In the Schwarzschild type metric (4), this core looks like a hollow sphere. Vacuum polarization around

an eicheon is shown as the gradient of a density.

CUM for a spherically symmetric space-time is written as

ds2 = a2(dη2 − γ̃ijdxidxj) = e2α
(

dη2 − e−2λ(dx)2 − (e4λ − e−2λ)(xdx)2/r2
)

, (1)

where r = |x|, a = exp α, and λ are the functions of η, r. The matrix γ̃ij with the unit determinant is

expressed through λ(η, r). The interval (1) could be also rewritten in the spherical coordinates:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (2)
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resulting in

ds2 = e2α
(

dη2 − dr2e4λ − e−2λr2
(

dθ2 + sin2 θdφ2
))

. (3)

However, let us discuss eicheon properties in the Schwarzschild-type metric, which is more

convenient for a reader

ds2 = B(R)dt2 − A(R)dR2 − R2dΩ. (4)

In this metric, the Volkov-Tolman-Oppenheimer (TOV) equation for a layer R ∈ {Ri, R f } reads as:

p′(R) = − 3

4πM2
pR2

M(R)ρ(R)

(

1 +
4πR3 p(R)

M(R)

)(

1 +
p(R)

ρ(R)

)

(

1 − 3M(R)

2πM2
pR

)−1

, (5)

where the function

M(R) = 4π
∫ R

Ri

ρ(R′)R′2dR′ (6)

and the reduced Planck mass Mp =
√

3
4πG = 1.065 × 10−8 kg. We will model a layer of constant

density ρ so that M(R) is reduced to

M(R) =
4π

3
ρ
(

R3 − R3
i

)

. (7)

It is convenient to measure distances in units of the Schwarzschild radius rg = 3M
2πM2

p
, and density and

pressure in the units of M2
pr−2

g . In these units, it follows from (7) and M = M(R f ) that

ρ =
1

2(R3
f − R3

i )
. (8)

The TOV equation (5) is reduced to

p′ =
(p + ρ)

(

3pR3 + ρ
(

R3 − R3
i

))

R
(

2ρ
(

R3 − R3
i

)

− R
) (9)

and has to be solved with the boundary condition p(R f ) = p
(

3

√

R3
i +

1
2ρ

)

= 0, where the second

equality follows from (8). Let us simplify the problem further and assume that Ri = 1 in the

Schwarzschild radius units. Even in this case, there is no analytical solution of the equation (9),

but the most interesting quantity is a maximal pressure pmax = p(1), which could be approximated by

the expression

pmax ≈
√

ρ√
6
− 1

3
+

11

36
√

6
√

ρ
− 35

864
√

6ρ3/2
(10)

as is shown in Figure 2.

If one supplements Eq. (10) by the “equation of state”, which connects the maximal pressure with

the density, then it is possible to determine the pressure and density. For instance, the “equation of

state” corresponding to a degenerate relativistic fermion gas

pmax = ρ/3 (11)

gives no solution because of Eqs. (10) and (11) are incompatible.

The equation of state of the nonrelativistic degenerate Fermi gas is written in physical units as

[34]
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Figure 2. Pressure pmax in the center of eicheon (see Figure 1 (a) ) in CUM, coinciding with the

pressure p(Ri) in the metric (4) (see Figure 1 (b) ). Blue and brown curves correspond to the numerical

integration of the equation (9) and approximation (10), respectively.

p̃max =
1

5

(

3π2

m4
N

)2/3

ρ̃5/3, (12)

where mN is a particle mass, and the tilde denotes that the quantity is expressed in the physical units.

When ρ is large, one could use only the first term in Eq. (10), and its equating to the pressure from (12)

gives the following expression

Mpr−1
g

√
ρ̃

√
6

=
32/3π4/3

5

(

1

m4
N

)2/3

ρ̃5/3, (13)

allowing us to find the physical density

ρ̃ =

(

5
3

)6/7
23/7mN

16/7Mp
18/7

3π2/7M6/7
, (14)

which decreases with an increase of mass M of the eicheon. Dimensionless density is found by dividing

(14) by M2
pr−2

g and reads

ρ =
7
√

3 56/7
M

8/7m16/7
N

211/7π16/7M24/7
p

. (15)

It grows with the increase of M, so that approximation pmax ≈
√

ρ/6 becomes justified at some mass

according to (10). Respectively, the width of the eicheon shell decreases: ∆R = 3

√

1 + 1
2ρ − 1 ≈ 1

6ρ and

becomes very thin at large M. Certainly, we measure the relative width in units of rg. For instance,

if one takes the eicheon mass equal to the Sun mass M = M⊙ = 1.989 × 1030 kg and mN equals the

neutron mass, then the dimensional density ρ̃ = 2.4 × 1019 kg/m3, while the dimensionless ρ equals

0.66. This eicheon has a rather thick skin ∆R ≈ 0.33 and, in the principle can be distinguished from

a conventional black hole. One more example is the eicheon of a large mass 40 × 109M⊙. In this

case, the physical density is much lower and we could consider the “equation of state” for a cold

hydrogen plasma, where the pressure is created by a degenerate electron gas, and the dimensional

density satisfies

Mpr−1
g

√
ρ̃

√
6

=
32/3π4/3

5

(

1

m4
e

)2/3 ( ρ̃ me

mN

)5/3

, (16)
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so that

ρ̃ =

(

5
3

)6/7
23/7me

6/7mN
10/7Mp

18/7

3π2/7M6/7
. (17)

The dimensionless density is given by

ρ =
7
√

3 56/7
M

8/7me
6/7mN

10/7

211/7π16/7Mp
24/7

. (18)

Numerically, these values are ρ̃ = 3.1 × 107 kg/m3, ρ = 1.4 × 109. The eicheon skin is very thin

∆R ∼ 1
6ρ ∼ 10−10. Such eicheon is indistinguishable from a conventional black hole. At the same time,

it is rather “mellow” by virtue of (17). Certainly, there is no paradox here because ∆R is measured

in the units of rg, which is large in the case considered. Finally, we can estimate eicheon in the

center of the Milky Way using the formulas (16), (17), (18). For M = 4.154 × 106M⊙, they give

ρ ≈ 3.8 × 104, ∆R ∼ 10−6 and ρ̃ ≈ 8.2 × 1010 kg/m3 that is greater than the white dwarf mean density

ρ̃ ≈ 4 × 108 kg/m3 [35]. The eicheons of any mass exist because the inner Ri and outer R f radii (see

Figure 1b ) exceed the Schwarzschild radius, and Buchdahl’s bound [36] M < 4R/9G is not eligible.

To consider eicheon in CUM (3), one could set t = η, R = R(r) and compare the metrics (3) and

(4) to obtain:

B(R) = e2α, (19)

R2 = r2e−2λ+2α, (20)

A(R)

(

dR

dr

)2

= e4λ+2α. (21)

Using (19), (20) in (21) to exclude λ and α yields

dr

dR
=

R2

r2

A1/2

B3/2
. (22)

In the region filled by matter, A(R) and B(R) obey [37]

d

dR

(

R

A

)

= 1 − 6ρR2,

1

B

dB

dR
= − 2

p + ρ

dp

dR
. (23)

For the model of a constant density ρ(R) = const, the equation (23) can be integrated explicitly

A =
R

R − 1 − 2ρ
(

R3 − R3
f

) . (24)

B =

(

1 − 1

R f

)

ρ2

(p(R) + ρ)2
≈ 1 − 1

R f
, (25)

where the pressure is neglected compared to the energy density in the last equality of (25). According

to (22), the eicheon radius is

r f =
3

√

3
∫ R f

1

A1/2

B3/2
R2dR ≈

√
3 3
√

11 ρ1/6

25/6
+

43

25/6 35/2 112/3ρ5/6
, (26)
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where a small “thickness” of the eicheon surface R f − 1 is assumed, and R f is expressed as R f =

3

√

1 + 1
2ρ . For a supermassive eicheon, using (18) and first term of (26) results

r f ≈
311/21 7

√
5 3
√

11

223/21π8/21
42

√

M8m6
e m10

N

M24
p

, (27)

i.e., in CUM, the eicheon radius in the units of rg increases when the eicheon mass m rises.

3. Vacuum polarization around of eicheon

Considering the vacuum polarization for an arbitrary curved space-time background is a highly

complex problem. Instead, one could consider the scalar perturbations of CUM:

ds2 = (1 + Φ(η, x))2

(

dη2 −
((

1 +
1

3

3

∑
m=1

∂2
mF(η, x)

)

δij − ∂i∂jF(η, x)

)

dxidxj

)

(28)

and calculate a spatially nonuniform energy density and pressure arising due to vacuum polarization

in the eikonal approximation [28].

As was shown [28], the energy density and pressure of vacuum polarization corresponding to

the F-type of metric perturbations (28) have the radiation equation of state δpF = 1
3 δρF. That gives a

possibility to use a hypothetical “dark radiation” in some heuristic nonlinear models, such as the TOV

equation. For a radiation substance alone, a singular solution of the TOV equation exists that is devoid

of physical meaning [37]. However, the situation changes cardinally in CUM in the presence of the

nonsingular eicheon. This gives a possibility to set a boundary condition for a radiation fluid at r = 0

and obtain a nonsingular solution, including the dark radiation. In the Schwarzschild type metric (4),

the boundary condition is set at the radial coordinate of an inner shell R = Ri, which corresponds to

the point r = 0 in CUM (see Figure 1) .

The system of equations (see Appendix A ) in the metric (4), implies three substances: the eicheon

of the constant density ρ1, the dark radiation density ρ2, and the density ρ3 of baryonic matter of the

galactic disk and bulge:





























p′1 = − 3(p1+ρ1)(M+4πR3(p1+
ρ2
3 ))

2R(2πR−3M)
, M′ = 4πR2(ρ1 + ρ2),

ρ′2 = − 6ρ2(M+4πR3(p1+
ρ2
3 ))

R(2πR−3M)
,

Ri < R < R f ,

ρ′2 = − 6ρ2(M+4πR3 ρ2
3 )

R(2πR−3M)
, M′ = 4πR2(ρ2 + ρ3), R > R f .

(29)

where the baryonic matter ρ3 is considered as some external matter density. According to (29), there are

two equations for the pressure and "dark radiation" density inside the eicheon and a single equation

for “dark radiation” density outside the eicheon.

As is shown in the upper panel of Figure 3, the eicheon without galactic disk and bulge contributes

at a small distance, and the dark radiation contributes at large distances. The density of dark radiation

depends on the eicheon structure, which was considered in the previous section. It is convenient

to introduce a universal quantity of a dark radiation density for the Milky Way at the radius of a

photon sphere R = 3/2, which almost does not depend on eicheon structure, namely ρ∗2 ≡ ρ2(3/2) =

9.3 × 10−32 = 2.1 × 10−25 kg/m3. Moreover, it remains a single parameter because the eicheon mass in

the dimensionless units equals M = 2π/3. Thus, a DM tail is reproduced by virtue of the universal

equations

ρ′2 = −3ρ2

(

M+ 4πR3 ρ2
3

)

πR
(

R − 3M
2π

) , M′(R) = 4πR2ρ2, M(3/2) = 2π/3, ρ2(3/2) = ρ∗2 , R > 3/2. (30)
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Figure 3. (Upper panel). The calculated rotational curve of the Milky Way from Ref. [28], which

includes contributions of the eicheon and dark radiation. (Lower panel) Rotational curve taking into

account the baryonic matter by (33)-(35). The result of observations with the error bars are taken from

Ref. [22].

That is a spherically symmetric model where the amount of dark radiation is adjusted to fit the

observations. The rotation velocity is calculated according to [28]

vrot =

√

R

2B

dB

dR
=

√

− R

p2 + ρ2

dp2

dR
=

1

2

√

− R

ρ2

dρ2

dR
, (31)

where the last equality of (31) says that the dark radiation ρ2 serves a “reference fluid” because satisfies

continuity equation (23) rewritten in the form of

dρ2

dR
+

2

B

dB

dR
ρ2 = 0. (32)

To consider the baryonic matter, one could smear a baryonic galactic disk on a sphere and view

the resulting mass density as some external non-dynamical density in the TOV equations for the

eicheon and dark radiation. This external density creates an additional gravitational potential.

Let us consider the surface density of matter in a galactic disk:

℘ =
MD

2πR2
D

e−R/RD , (33)

and write the mass dM corresponding to the radial distance dR

dM =
MD

R2
D

e−R/RD RdR =
MD

R2
DR

e−R/RD R2dR. (34)
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According to (34), the smeared 3-dimensional density has the form:

ρ3 =
MD

4πR2
DR

e−R/RD . (35)

The result of the calculations for the Milky Way rotational curve is shown in the lower panel of

Figure 3. As one can see, the simple model with smeared disk describes the baryonic matter roughly,

but the observed rotational curve has a more complicated structure.

4. Andromeda

Andromeda galaxy (M31) is nearest to the Milky Way and is situated at a distance ∼ 800 kpc.

For M31, there are no small distances data ∼ 0.01 kpc, allowing us to identify a compact object in the

center explicitly. Indeed, the situation is more complicated because cluster B023-G078 of M31 hosts one

more black hole ∼ 105 M⊙ [38,39]. For the correct description, we need to apply a solution with two

eicheons. This problem seems complicated, and we leave it for the future, considering only one central

eicheon with the mass 108 M⊙ [38,39]. We again used (33) for a disk surface density distribution and

smeared it over a sphere.

The results of modeling are shown in Figure 4. The dimensionless parameter equaled the

dark radiation density in the units of M2
p r−2

g at a photon sphere radius is ρ2(3/2) = 6.2 × 10−28 =

2.3 × 10−24 kg/m3. This value is greater than that for the Milky Way, i.e. these suggest the greater

mass of central eicheon and the greater dark radiation density at a radius of the eicheon photon sphere.

After introducing the baryonic matter as in the previous section, we have the curve shown in a lower

panel of Figure 4.

0.1 1 10 100 1000
R, kpc0

50

100

150

200

250

300

350

vrot, km/s

0.1 1 10 100 1000
R, kpc0

50

100

150

200

250

300

350

vrot, km/s

Figure 4. (Upper panel). Andromeda rotational curve, which includes contributions of the eicheon

and dark radiation only. (Lower panel) Rotational curve taking into account the baryonic matter by

(33)-(35). The result of observations with the deviations bars are taken from Ref. [40].
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5. Discussion and conclusion

We have shown that the F-type vacuum polarization could explain DM, which mimics a sort

of “dark radiation.” Namely the presence of ECO, or eicheon, in the center of the galaxy provides a

nonsingular solution for dark radiation. The eicheon resembles a black hole for an external observer

but has no horizon. Our model is spherically symmetric. However, the appropriate approximation of

the distribution of baryonic matter in a galaxy by the disk smearing over a sphere allows for obtaining

the qualitative agreement of the rotational curves with the observed ones.

Still, possibly, in the spreading of a galactic disk, we overestimated a baryonic matter. Usually, it

is supposed that DM begins to play a role from a few kpc, but according to the above consideration,

the contribution of dark radiation becomes considerable only at tens kpc. For M31, we are not able to

obtain an amount of DM needed in the region of 10 − 100 kpc. We conjecture that, if there is not only a

central eicheon in the galaxy but a number of eicheons, one could glue dark radiation tails to every

eicheons and create a needed amount.

Let us remind the principles of calculation. We have considered the vacuum polarization of F-type

in CUM (28) and find that it has a radiation-like equation of state. Then, we solve the TOV equation for

incompressible fluid and dark radiation and obtain a nonsingular solution. To consider the baryonic

matter, we smear a galactic disk and use the resulting density as some external density. Interestingly,

each galaxy’s dark radiation tail can be described by a single parameter: density of dark radiation at

the radius of a photon sphere of the eicheon. The numerical value of this density for the Milky Way is

2.1 × 10−25 kg/m3, and for Andromeda it is 2.3 × 10−24 kg/m3.

These values could be compared with the spatially uniform residual energy density of vacuum

fluctuations, which remain after compensation of its main part by the constant in the Friedman

equation [41]. It is of the order of critical density ∼ ×10−26 kg/m3. Certainly, we use the amount of

the dark radiation at a photon radius of the eicheon R = 3/2rg. Still, this amount rapidly decreases

at R > 3/2rg and increases at R < 3/2rg. In this light, it is interesting to obtain a general picture

of matter structure formation in the universe by the solution of the system of the equations for the

perturbations of the metric and the matter, including vacuum polarisation of both types [28].

Appendix A. TOV equation for a mixture of ordinary and dark fluids

Each of the fluids obeys the equation of the hydro-static equilibrium [37]:

B′

B
= − 2p′1

ρ1 + p1
, (A1)

whereas the equations for gravitational field give [37]

(

R

A

)′
= 1 − 8πGρR2, (A2)

−1 +
R

2A

(

− A′

A
+

B′

B

)

+
1

A
= −4πG(ρ − p)R2, (A3)

where p = p1 + p2, and ρ = ρ1 + ρ2. Solution of the equation (A2) is written formally as

A =
1

1 − 2GM/R
, (A4)

where M is given by (6) Expressing B′/B from (A1), A, A′ from (A4), (A3) and substituting them into

(A2) gives

p′1 = −(p1 + ρ1)
G
(

M+ 4πR3 p
)

R(R − 2GM)
. (A5)

The analogous equation holds for the second fluid.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 August 2023                   doi:10.20944/preprints202307.0793.v2

https://doi.org/10.20944/preprints202307.0793.v2


10 of 11

References

1. Gillessen, S.; Eisenhauer, F.; Trippe, S.; others. Monitoring stellar orbits around the Massive Black Hole in

the Galactic Center. Astrophys. J. 2009, 692, 1075–1109. doi:10.1088/0004-637x/692/2/1075.

2. Nampalliwar, S.; Kumar, S.; Jusufi, K.; Wu, Q.; Jamil, M.; Salucci, P. Modeling the Sgr A∗ Black Hole

Immersed in a Dark Matter Spike. Astrophys. J. 2021, 916, 116. doi:10.3847/1538-4357/ac05cc.

3. Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.; Adya, V.; Affeldt, C.;

Agarwal, D.; others. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the

Second Part of the Third Observing Run, 2021, [arXiv:gr-qc/2111.03606].

4. Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.;
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