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Abstract: The root system plays an irreplaceable role in plant growth. Its improvement can increase 

crop productivity. However, such system is still mysterious for us. The underlying mechanism has 

not been fully uncovered. The investigation on proteins related to the root system is an important 

means to complete this task. In the previous time, lack of root-related proteins makes it impossible 

to adopt machine learning methods for designing efficient models for the discovery of novel root-

related proteins. Recently, a public database on root-related proteins was set up and machine 

learning methods can be applied in this field. In this study, we proposed a machine learning based 

model, named Graph-Root, for identification of root-related proteins. The features derived from 

protein sequences and one network were extracted, where the former features were processed by 

graph convolutional neural network and multi-head attention, and the later features abstracted the 

linkage between proteins. These features were fed into the fully connected layer to make prediction. 

The 5-fold cross-validation and independent tests suggested its good performance. It also 

outperformed the only one previous model, SVM-Root. Furthermore, the importance of each feature 

type and component in the proposed model was investigated. 

Keywords: root-related proteins; deep learning; graph convolutional network; multi-head attention; 

network embedding 

 

1. Introduction 

The root system is a crucial component of plants. Root hairs in this system are tube-like 

extensions formed by some epidermal cells, which play important roles in plant growth and 

development. They increase the contact area between the root system and soil, facilitating the uptake 

of water and nutrients [1] and enhancing plant anchoring and interaction with microorganisms [2]. 

Root system architecture (RSA) refers to the spatial arrangement of roots in soil, which is an essential 

factor in plant growth and development [3]. Research on root and RSA is a hot area in plant biology 

[4] as it has important applications in agricultural production and ecological environments [5].  

It is known that RSA is regulated by genes during growth and development [6]. The 

investigation on genes or proteins related to RSA is an important way to explore root traits. 

Discovering root-related genes can help us to understand root system, thereby designing proper 

scheme to enhance their resistance to stress and increase crop survival [7]. Such investigations are 

helpful to improve crop production with low input costs [4,8]. However, identification of genes or 

proteins related to root traits is challenging at present, which is still in an early stage [9].  

In the past, research on RSA was less prevalent than above-ground studies. However, in recent 

years, with the development of gene identification techniques, work on root-related genes has been 

paid more attentions. The Arabidopsis root hairs have provided significant support in this regard [2]. 

Some techniques have been designed and used to identify root-related genes. Genome-wide 

association studies (GWAS) [10] have been utilized to identify genes associated with different plant 

root properties. For example, Xu et al. identified 27 genes related to root development of wheat using 
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GWAS [11]. Kirschner et al. determined that ENHANCED GRAVITROPISM2 (EGT2) provided 

contributions to the root growth angle of wheat and barley [12]. Karnatam et al. screened out MQTLs 

associated with root traits through GWAS and discovered several root-related genes of maize [13]. 

Ma et al. adopted a similar scheme on the root system in wheat [14]. Fizames et al. identified a large 

number of Arabidopsis root-related genes using serial analysis of gene expression (SAGE) [15]. With 

the accumulation on root-related genes in these years, an online database, RGPDB [16], was set up 

recently, which collected root-related genes in maize, sorghum and soybean. It provided a strong 

data support for further investigating root-related genes.  

In recent years, machine learning methods have wide applications in investigating gene and 

protein related problems. These methods always need lots of data. The root-related genes provided 

in RGPDB made it possible to investigate such genes using machine learning methods. In view of 

this, Kumar et al. developed an SVM-based root-related protein prediction method, named SVM-

Root [17]. They extracted protein features from its sequence and employed several classic 

classification algorithms to build the model. To our knowledge, this was the first attempt to set up 

models for predicting root-related proteins using machine learning methods. Thus, the model has a 

great space for improvement. For example, this model adopted the protein sequence features, which 

cannot reflect all aspects of proteins. 

In this study, a novel model, named Graph-Root, was proposed to identify root-related proteins 

in maize, sorghum and soybean. The validated root-related proteins (positive samples) were 

retrieved from RGPDB and other proteins under Viridi plantae were picked up as negative samples. 

Two types of features were extracted for each protein. The first type contained features extracted 

from protein sequences. Different from those used in SVM-Root [17], these features were derived 

from the raw features of amino acids, which can reflect the properties of proteins at amino acid level 

not at the sequence level. And the raw features were first refined by a graph convolutional network 

(GCN) [18] and then processed by a multi-head attention module [19] to access more powerful and 

unified features for protein sequences with different lengths. The second type reflected the linkage 

information between proteins, which were accessed by the well-known network embedding 

algorithm, Node2vec [20]. Features of two types were combined and fed into the fully connected 

layer (FCL) for making prediction. The cross-validation and independent tests suggested that Graph-

Root had good performance and was superior to SVM-Root. The effectiveness of each feature type 

and all components in Graph-Root was also tested. 

2. Materials and Methods 

In this study, a binary classifier, named Graph-Root, was set up to identify root-related proteins. 

Several advanced computational methods were adopted. The entire procedures are illustrated in 

Figure 1. This section gave a description on the used materials and methods. 
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Figure 1. The framework of Graph-Root. Protein features are derived from its sequence and a protein 

network. The sequence features are obtained from the raw features of amino acids that are further 

processed by graph convolutional network and multi-head attention modules, whereas the network 

features are extracted from a protein network via Node2vec. The sequence and network features are 

fed into fully connected layer to generate prediction. 

2.1. Dataset 

Our study sourced the original information of root-related genes from RGPDB 

(http://sysbio.unl.edu/RGPDB/) [16], an online database containing more than 1200 candidate root-

related genes, along with their corresponding promoter sequences. 576 genes for maize (zea maize), 

355 for sorghum (sorghum bicolor), and 328 for soybean (glycine max) were obtained. To further 

access root-related proteins, we used gene IDs provided in RGPDB and searched for corresponding 

proteins in other publicly available databases. Specifically, root-related proteins for maize and 

soybean were retrieved from STRING (https://cn.string-db.org/, version 11.5) [21] and those for 

sorghum were obtained from Ensembl Genomes (https://www.ensemblgenomes.org) [22] by using 

its sub-module, EnsemblPlants. As a result, a total of 1259 root-related proteins were accessed. 

Furthermore, their sequences were also downloaded from above two databases. These protein 

sequences were termed as positive samples and we attempted to build a binary classification model 

for identifying root-related proteins. 

When building binary classification models, negative samples are necessary. To this end, the 

reviewed proteins classified under Viridi plantae were extracted from the UniProt 

(https://www.uniprot.org/) [23], resulting in 41,538 protein sequences. These protein sequences and 

those of root-related proteins were combined to constitute the raw dataset. Then, this dataset was 

refined as follows: (1) protein sequences with length longer than 1000 were removed; (2) the well-

known tool, CD-HIT [24] (cutoff = 0.4), was employed to remove homologous proteins. Accordingly, 

the result dataset contained 525 root-related proteins (positive samples) and 9260 other proteins 

(negative samples). The identity of any two proteins in such dataset was less than 0.4. To fully test 

the models, all positive and negative samples were equally and randomly divided into one training 

dataset (90%) and one test dataset (10%).  

2.2. Protein sequence features 

Protein sequence P is composed of several amino acids, which can be formulated by 𝑃 = 𝑅1𝑅2 ⋯ 𝑅𝑘−1𝑅𝑘𝑅𝑘+1 ⋯ 𝑅𝐿 (1) 
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where L is the length of the sequence. Features extracted from protein sequence are widely used to 

investigate protein-related problems. In this study, we also extracted protein features from its 

sequence. First, the raw features of amino acids were extracted. Then, these features were refined by 

a GCN module. Finally, to access informative protein features with unified size, a multi-head 

attention module was adopted.  

2.2.1. Raw features of amino acids 

Two feature types of amino acids were used in this study. The first type was derived from the 

BLOSUM62 matrix [25], which is a 20 × 20 substitution matrix. It is widely used in bioinformatics 

for scoring protein residues. Each component in this matrix indicates the correlation between two 

amino acids. By collecting such correlations on all 20 amino acids for one amino acid, a 20-dimension 

feature representation can be accessed for this amino acid.  

The second feature type was obtained from position-specific scoring matrix (PSSM). This matrix 

reflects the frequency of amino acids at each position in a sequence alignment and also widely used 

to tackle various protein-related problems. Here, the PSI-BLAST [26] with Swissprot [27] database 

was used to generate the PSSM profiles for each protein sequence. It was performed with e-value of 

0.001, 3 iterations, and default settings for other parameters. A 20-dimension feature representation 

was obtained for each amino acid in the protein sequences. 

As mentioned above, each amino acid can be represented by 20 BLOSUM62 features and 20 

PSSM features. For a protein sequence with length L, a 𝐿 × 𝑑  (𝑑 = 40 in this study) feature matrix 

was constructed. Such matrix was denoted by X and would be refined in the following procedures. 

The distribution of raw features of amino acids is listed in Table 1.  

Table 1. Two feature types of amino acids and their dimensions. 

Feature type Dimension 

BLOSUM62 20 

PSSM 20 

2.2.2. Protein contact map prediction 

In above section, the raw feature representation of amino acids were obtained. Of course, the 

collection of these features for all amino acids in one protein sequence (i.e., X) can be used to represent 

the protein sequence. However, such representation was too ordinary, which can be refined by some 

advanced computational methods. This study selected GCN to refine these features. To execute GCN, 

a network with amino acids in the protein sequence as nodes must be constructed. We adopted SPOT-

Contact-LM [28] to construct such network. 

SPOT-Contact-LM is a neural network-based contact map prediction method that performs well 

in critical assessment of protein structure prediction experiments. This method utilizes the ESM-1b 

attention map as input features, integrates one-dimensional sequence features and one-hot encoding, 

and generates a contact map through the ResNet network. Given a protein sequence of length 𝐿, 

SPOT-Contact-LM generates a contact probability matrix 𝐶 ∈ 𝑅𝐿×𝐿 , where 𝐶𝑖𝑗  represents the 

probability that the 𝑖-th amino acid contacts the 𝑗-th amino acid. To extract reliable contacts between 

amino acids, the probabilities in the matrix were ranked from high to low and the top 𝑛 pairs of 

amino acids with highest probabilities were selected as the actual contacts. As the number of contacts 

in a protein is proportional to its length, 𝑛 was set to 𝜌𝐿, where 𝜌 is a positive integer between 1 

and 10. The original probability matrix is converted into an adjacent matrix 𝐴 ∈ 𝑅𝐿×𝐿, where 𝐴𝑖𝑗 = 1 

if the i-th and j-th amino acids were the actual contacts; otherwise, it was set to zero. This adjacency 

matrix can indicate the structural features of the protein, which can be combined with raw features 

of amino acids to access more informative features of proteins. 
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2.2.3. GCN module   

For each protein sequence with length L, a feature matrix 𝑋 ∈ 𝑅𝐿×𝑑  was constructed, which 

contained the BLOSUM62 and PSSM features of all amino acids in the sequence. On the other hand, 

an adjacent matrix 𝐴 ∈ 𝑅𝐿×𝐿  was built using SPOT-Contact-LM, which indicated the contacts of 

amino acids in the sequence. GCN is a powerful tool, which can perfectly combine X and A, thereby 

generating a refined feature matrix for an input protein sequence. Generally, GCN contains several 

layers. Set 𝑋0 = 𝑋 as the input of the first layer of GCN and the output of the 𝑙-th layer is denoted 

as 𝑋𝑙+1. GCN updates 𝑋𝑙+1 using the following equation: 𝑋𝑙+1 = 𝜎(𝐴′𝑋𝑙𝑊𝑙) (2) 

where 𝐴′ is the sum of A and the identity matrix I (i.e., 𝐴′ = 𝐴 + 𝐼), 𝑋𝑙 ∈ 𝑅𝐿×𝑘 is the input feature 

matrix of the 𝑙-th layer, 𝑊𝑙 ∈ 𝑅𝑘×𝑘′ denotes the weight matrix that can be trained, 𝜎 is the activation 

function, which was set to LeakyReLU.  LeakyReLU has a fixed negative slope for negative values, 

making it more effective than the standard ReLU function. Prior to passing through the LeakyReLU 

activation function, each layer of the GCN module undergoes normalization to enhance the 

embedding effect. Finally, the output feature matrix, denoted by 𝐺 ∈ 𝑅𝐿×𝑓 , is obtained, where 𝑓 

represents the output dimension of each amino acid. 

2.2.4. Multi-head attention module   

The output feature matrix 𝐺 ∈ 𝑅𝐿×𝑓 was further refined by a multi-head attention module [19]. 

Its function included two aspects: (1) learn the importance of input features and focus on important 

features, and (2) make the feature dimension independent of protein length. The attention matrix 𝑀 ∈ 𝑅𝑟×𝐿 can be produced using the following equation: 𝑀 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊1tanh (𝑊2𝐺𝑇)) (3) 

where 𝑊1 ∈ 𝑅𝑟×𝑘 and 𝑊2 ∈ 𝑅𝑘×𝑓 are the attention weight matrices. The Softmax function is used to 

normalize the feature vectors learned by the attention mechanism in different dimensions. We then 

multiply the learned attention matrix 𝑀 with the output 𝐺 of the GCN module as the final feature 

matrix of the protein derived from its sequence. As we selected FCL to make prediction, a flattening 

operation was performed on 𝑀𝐺 to obtain a feature vector 𝑌 ∈ 𝑅𝑟𝑓of a fixed length for any protein 

sequence, i.e., 𝑌 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑀𝐺) (4) 

2.3. Protein network features 

The features derived from protein sequences can only reflect the properties of protein itself. 

Recently, the linkage of proteins were deemed as a different source for accessing protein features. 

Such features are always derived from one or multiple protein networks [29–32]. Here, we first 

constructed a protein network and then extract protein features from such network.  

Given that proteins from multiple species were used in this study, we used the similarity of 

protein sequences to organize the network. In detail, BLASTP [26] was employed to compute the 

similarity between any two proteins. For protein p1 and p2, the similarity score yielded by BLASTP 

was denoted by 𝑆(𝑝1, 𝑝2). The protein network first defined all proteins under Viridi plantae as nodes. 

The edge was determined according to the similarity score between corresponding proteins. If the 

score was larger than zero, then the edge existed. After excluding isolated nodes (proteins), the final 

network contained 38,114 nodes and 4,353,907 edges. To express the different strengths of edges, each 

edge was assigned a weight, which was defined as the similarity score between corresponding 

proteins.  

Above-constructed network contained abundant protein linkage information. The features 

derived from this network was helpful to identify protein functions. Several network embedding 

algorithms, such as DeepWalk [33], Mashup [34], and LINE [35], have been proposed, which can 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2023                   doi:10.20944/preprints202307.0848.v1

https://doi.org/10.20944/preprints202307.0848.v1


 6 

 

extract node embedding features from one or more networks. In this study, we adopted another well-

known network embedding algorithm, Node2vec [20], to extract protein features from the network. 

This algorithm is an extended version of Word2vec [36], which can deal with network. Several paths 

are sampled from a given network in this algorithm following a predefined scheme. Then, the node 

sequence of each path is deemed as a sentence, whereas nodes are considered as words. This 

information is fed into Word2vec to extract node features.  

This study used the Node2vec program sourced from https://github.com/aditya-

grover/node2vec. It was applied on the constructed protein network with default parameters. The 

dimension of output features was set to 512. Accordingly, the protein network features were 

obtained, denoted by 𝑁 ∈ 𝑅ℎ, where h=512. 

2.4. Fully connected layer 

Two feature types (sequence and network features) can be obtained for each protein in above 

procedures. Evidently, they reflected protein essential properties from different aspects. The 

combination of sequence and network features can contain more information of proteins, thereby 

improving the prediction quality. Thus, the sequence feature vector Y and network feature vector N 

were concatenated to comprise the final protein feature vector Φ, that is, 𝛷 = 𝑌 ⊕ 𝑁 (5) 

where ⊕ is the concatenation operation. 

Subsequently, the final vector was fed into two FCLs with weight matrices 𝑊3 ∈ 𝑅𝑚×(𝑟𝑓+ℎ) and 𝑊4 ∈ 𝑅𝑚 to make prediction. Finally, a Sigmoid function was employed to calculate the probability 

of an input protein being a root-related protein, which ranges from 0 to 1, formulated by  𝑃 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊4𝑊3𝛷𝑇) (6) 

If the probability was higher than the threshold 0.5, the input protein was predicted to be root-related 

(positive); otherwise, it was predicted to non-root-related (negative).  

2.5. Loss function and optimization 

There were some parameters, such as 𝑊𝑙 in GCN module, 𝑊1 and 𝑊2 in multi-head attention 

module, 𝑊3 and 𝑊4 in two FCLs. These parameters can be optimized in terms of the loss function 

of binary cross entropy, which is defined as  L = − ∑(ylogp(x) + (1 − y) log(1 − p(x))) (7) 

where p(x) is the output of the model and y is the true label. The Adam optimizer [37] was deployed 

for optimizing above parameters.  

2.6. Performance evaluation 

As previously mentioned, all investigated proteins were divided into one training dataset and 

one testing dataset. The training dataset contained 473 positive samples and 8,334 negative samples, 

whereas the testing dataset contained 52 positive samples and 926 negative samples. Clearly, the 

negative samples were much more than positive samples in the training dataset. The model based on 

such dataset may produce bias. Thus, we randomly sampled the same number of negative samples 

as the positive samples in the training dataset, resulting in a dataset with balanced size. On the 

balanced training dataset, we conducted 5-fold cross-validation to evaluate the performance of the 

model. As different negative samples may yield different predicted results, we conducted 50 

repetitions of 5-fold cross-validation. In each repetition, the negative samples were resampled. The 

average performance under 50 rounds of 5-fold cross-validations was used to evaluate the model's 

performance. As for the test dataset, the model built on the training dataset was applied on it. Also, 
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such test was executed 50 times with different negative samples in the training dataset. The average 

performance was picked up to assess the model’s performance on the test dataset. 
For a binary classification problem, there exist many measurements to evaluate the performance 

of models. This study adopted the following measurements: sensitivity, specificity, accuracy, 

precision, F-score, Matthews correlation coefficient (MCC), and AUC [38–40]. To calculate these 

measurements, four entries should be counted in advance, including true positive (TP), false positive 

(FP), true negative (TN) and false negative (FN). Then, above measurements except AUC can be 

calculated by 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (11) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑇𝑃2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (12) 

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) (13) 

Evidently, sensitivity measures the prediction accuracy of positive samples, whereas specificity 

measures the prediction accuracy of negative samples. Accuracy considers both types of samples. 

Precision represents the proportion of true positive predictions among all positive predictions, while 

F-score measures the balance between precision and recall (same as sensitivity). MCC provides a 

balanced assessment of the model's performance even if the sizes of classes are of great difference. 

These measurements evaluate the performance of models under a fixed threshold. AUC is different 

from them, which means the area under the receiver operating characteristic (ROC) curve. To draw 

this curve, several thresholds should be taken. Under each threshold, count the sensitivity and 1-

specificity. After a group of sensitivity and 1-specificity are obtained, the ROC curve is plotted in a 

coordinate system with sensitivity as Y-axis and 1-specificity as X-axis. The area under such curve 

(i.e., AUC) is an important indicator to evaluate the performance of models. Generally, the larger the 

AUC, the higher the performance.  

3. Results and Discussion 

3.1. Hyperparameter adjustment 

There were several hypreparameters in Graph-Root. We tested several combinations of different 

hyperparameters and selected the optimal combination through the 50 rounds of 5-fold cross-

validation.  

From the output of SPOT-Contact-LM, we refined an adjacent matrix for each protein sequence. 

The hypreparameter 𝜌 is a key factor determining the number of contacts between amino acids. 

Several values between 1 and 10 were tried and we found that 𝜌 = 3 yielded the best performance.  

In the GCN module, the number of GCN layers and their sizes were two key hypreparameters. 

For the number of layers, several studies have reported that if the number of GCN layers is too high, 

nodes will be embed too much neighbor information, leading to the overall feature becoming overly 

consistent and reducing the model's prediction ability. Generally, two layers are a proper setting, 

which was adopted in most studies. We also used a two-layer GCN module. For the layer sizes, a 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2023                   doi:10.20944/preprints202307.0848.v1

https://doi.org/10.20944/preprints202307.0848.v1


 8 

 

grid search was adopted to find out the best sizes. As a result, we found that the sizes were set to 256 

for the former layer and 64 for the later layer can produce the best performance.  

For the multi-head attention module, the number of attention heads was an important 

hypreparameter. It determined the contribution of each amino acid for reflecting the properties of 

proteins related to root. After experimental verification, we found that using 64 heads yielded good 

performance. 

For the network features, the dimension was also a key hypreparameter, which determine how 

many informative features can participate in the construction of the model. If the dimension is too 

small, some key information cannot be included; whereas an excessively large dimension can lead to 

overfitting and low efficiency. Through validation, it was found that 512 was a proper choice and the 

model under this setting gave good performance. 

Finally, for the two FCLs, the first layer was responsible for further fusing the features, while the 

second layer maps the feature dimension to the classification size. Our experimental results 

demonstrated that the size of the first FCL of 2048 effectively enhances the model's performance. 

3.2. Performance of Graph-Root on the training dataset 

The Graph-Root adopted the hyperparemeters mentioned in Section 3.1. On the training dataset, 

5-five cross-validation was performed 50 rounds to evaluate the performance of Graph-Root. In each 

round, the negative samples were resampled, that is, negative samples were not same in each round. 

The average performance was counted to assess the final performance of Graph-Root. The 

measurements mentioned in Section 2.7 of Graph-Root are listed in Table 2. The accuracy, precision, 

sensitivity, specificity, F-score and MCC were 0.7578, 0.7411, 0.7958, 0.7197, 0.7668 and 0.5180, 

respectively. On the other hand, AUROC was 0.8130. Such results indicated good performance of 

Graph-Root.  

Table 2. Performance of Graph-Root on the training dataset under 50 rounds of 5-fold cross-

validation. 

Measurement Value 

Accuracy 0.7578 

Precision 0.7411 

Sensitivity 0.7958 

Specificity 0.7197 

F-score 0.7668 

MCC 0.5180 

AUC 0.8130 

3.3. Ablation tests   

There were several components in Graph-Root. To represent proteins, two types of features were 

constructed, including sequence features and network features, where sequence features further 

consisted of BLOSUM62 and PSSM features. On the other hand, there were several steps in Graph-

Root, such as GCN module, multi-head attention module and FCL. To indicate that each feature type 

and step provided positive contributions for Graph-Root, several ablation tests were conducted.  

For protein feature, the BLOSUM62, PSSM and network features were singled out one by one 

from the Graph-Root. The model without one of above feature types was also evaluated by 5-fold 

cross-validation. The prediction quality is provided in Table 3, including accuracy, precision, 

sensitivity, specificity, F-score and MCC. Furthermore, the ROC curves and their AUC values are 

illustrated in Figure 2. For easy comparisons, the performance of Graph-Root is also provided in 

Table 3 and Figure 2. From Table 3, we can see that when all feature types were used, the model (i.e., 

Graph-Root) provided best performance on all measurements except specificity, on which Graph-

Root obtained the second place. As for AUC (Figure 2), Graph-Root also yielded the highest AUC. 

All these results suggested that all used features provided positive contributions to build the Graph-
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Root as the exclusion of each feature type reduced the performance of the model. However, their 

contributions were not same. It can be observed from Table 3 and Figure 2 that when BLOSUM62 

feature was excluded, the performance of the model decreased most, followed by PSSM feature and 

network feature. It was implied that BLOSUM62 feature was relatively more important than PSSM 

and network features.  

Table 3. Results of ablation tests for features. 

Excluded feature Accuracy Precision Sensitivity Specificity F-score MCC 

BLOSUM62 feature 0.6743 0.6590 0.7272 0.6213 0.6906 0.3514 

PSSM feature 0.7317 0.7239 0.7525 0.7108 0.7372 0.4647 

Network feature 0.7489 0.7373 0.7768 0.7211 0.7558 0.4995 

No excluded feature 

(Graph-Root) 
0.7578 0.7411 0.7958 0.7197 0.7668 0.5180 

 

Figure 2. ROC curves of Graph-Root and the model excluding one feature type. Evidently, when all 

features are used, the model (i.e., Graph-Root) yields the best performance. 

For the structure of Graph-Root, GCN and FCL were evidently important. To confirm this fact, 

we first remove GCN module from Graph-Root. In this model, BLOSUM62 and PSSM features were 

directly fed into the multi-head attention module. Such model was called Graph-Root without GCN. 

On the other hand, the FCL was also removed from Graph-Root. Different from Graph-Root without 

GCN, we only removed the first FCL as FCL was in charge of making prediction, that is, this model 

used a one FCL to make prediction. For convenience, such model was called Graph-Root without 

FCL. Above two models were also evaluated by 5-fold cross-validation. The evaluation results are 

available in Table 4 and Figure 3. Likewise, the performance of Graph-Root is also provided. 

Evidently, Graph-Root generally provided the best performance on almost all measurements, 

suggesting that GCN and FCL gave important contributions for improving the performance of 

Graph-Root. Furthermore, the removal of FCL gave a greater influence than the removal of GCN, 

implying FCL provided more contributions than GCN module.  
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Table 4. Results of ablation tests for model architectures. 

Model Accuracy Precision Sensitivity Specificity F-score MCC 

Graph-Root without fully 

connected layer 
0.7202 0.7246 0.7141 0.7262 0.7185 0.4414 

Graph-Root without GCN 

module 
0.7509 0.7382 0.7804 0.7213 0.7582 0.5033 

Graph-Root 0.7578 0.7411 0.7958 0.7197 0.7668 0.5180 

 

Figure 3. ROC curves of Graph-Root and the models without GCN or FCL. Clearly, when GCN or 

FCL is removed, the model’s performance decreased. 

3.4. Comparison with the models using traditional machine learning algorithms  

The Graph-Root was constructed using some recently proposed machine learning methods, such 

as GCN and multi-head attention. As there were limited models for identifying root-related proteins 

using traditional machine learning algorithms, this section set up some models using such 

algorithms, thereby proving that the usage of new machine learning algorithms can improve the 

model.  

We selected PSSM or network features to set up models. As PSSM matrix is of different sizes for 

proteins with different lengths, the PSSM Bigram method [41] was employed to process the original 

PSSM matrix for any protein. After such operation, the original PSSM matrix was converted into a 20 × 20 matrix, thereby accessing a 400-dimension feature vector for any protein. Such obtained 

PSSM features or network features or the combination of PSSM and network features were fed into 

four widely used classic classification algorithms [42–47]: multilayer perceptron (MLP), decision tree 

(DT), support vector machine (SVM), random forest (RF), to set up the models. For convenience, we 

directly used the corresponding packages of these algorithms in scikit-learn [48]. The MLP had three 

hidden layers with sizes of 2048, 1024 and 256. The default setting was used for other parameters. All 

models were also evaluated by 5-fold cross-validation. The predicted results are listed in Table 5. For 

easy comparisons, the performance of Graph-Root is also listed in this table.  
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Table 5. Comparisons of different models. 

Feature 
Classification 

algorithm 
Accuracy Precision Sensitivity Specificity F-score MCC AUC 

PSSM 

feature 

Multilayer 

perceptron 
0.7039 0.6940 0.7329 0.6747 0.7117 0.4098 0.7499 

Decision tree 0.5828 0.5842 0.5804 0.5853 0.5813 0.1662 0.5829 

Support 

vector 

machine 

0.6373 0.6432 0.6209 0.6535 0.6309 0.2754 0.6372 

Random forest 0.6609 0.6678 0.6437 0.6781 0.6546 0.3228 0.6609 

Network 

feature 

Multilayer 

perceptron 
0.6259  0.6196  0.6647  0.5869  0.6381  0.2554 0.6375 

Decision tree 0.5479  0.5482  0.5482  0.5476  0.5473  0.0962 0.5479 

Support 

vector 

machine 

0.5857  0.5761  0.6505  0.5207  0.6102  0.1734 0.5856 

Random forest 0.6173  0.6314  0.5685  0.6660  0.5975  0.2363 0.6173 

PSSM and 

network 

feature 

Multilayer 

perceptron 
0.7115 0.6965 0.7546 0.6684 0.7229 0.4265 0.7600 

Decision tree 0.5786 0.5788 0.5802 0.5769 0.5788 0.1576 0.5786 

Support 

vector 

machine 

0.6320 0.6343 0.6269 0.6370 0.6298 0.2645 0.6319 

Random forest 0.6684 0.6830 0.6322 0.7045 0.6558 0.3384 0.6684 

Graph-Root 0.7578 0.7411 0.7958 0.7197 0.7668 0.5180 0.8130 

It can be observed from Table 5 that Graph-Root was better than other models despite which 

measurements were adopted. It was suggested that the employment of the deep learning techniques 

(GCN and multi-head attention) can really improve the model. Among the four classification 

algorithms, the model with MLP was generally better than other models, following by the model 

with RF; whereas the model with DT yielded the lowest performance. Furthermore, the models using 

network features were generally inferior to those using PSSM features. Such results were coincident 

with the results in ablation tests, that is, PSSM features were more important than network features. 

3.5. Performance of Graph-Root on the test dataset 

To fully test Graph-Root, an independent test was conducted on the test dataset. Such test was 

also performed 50 rounds with different negative samples in the training dataset. The predicted 

results were counted as accuracy of 0.7449, sensitivity of 0.7745, specificity of 0.7152 and AUC of 

0.8225. Such performance was quite similar to the cross-validation results of Graph-Root on the 

training datasets, suggesting the good generalization of the Graph-Root.  

3.6. Comparison with SVM-Root 

To our knowledge, SVM-Root [17] is the only model for identifying root-related proteins. It 

adopted the protein features derived from its sequence and the classic classification algorithm, SVM, 

was adopted as the prediction engine. Its performance was also evaluated on the training dataset and 

further examined on a test dataset. The accuracy, sensitivity and specificity of SVM-Root on the 

training and datasets are illustrated in Figure 4. The performance, evaluated by same measurements, 

of Graph-Root is also shown in this figure. It can be observed that the accuracy and sensitivity of 

Graph-Root were clearly higher than those of SVM-Root, whereas the specificity of Graph-Root was 

slightly lower than that of SVM-Root. In general, Graph-Root was better than SVM-Root. Our model 

employed more essential information of proteins (sequence and network features) and adopted more 
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efficient machine learning algorithms, which was the reason why our model was superior to SVM-

Root. 

 

Figure 4. A bar chart to compare Graph-Root and SVM-ROOT. Graph-Root generally outperforms 

SVM-Root. 

4. Conclusions 

In this study, we designed a machine learning based model for predicting root-related proteins 

in maize, sorghum and soybean. To access a full representation of each protein, several advanced 

machine learning methods were applied to protein sequences and network, thereby generating two 

feature types. This model was superior to the previous mode. All used features as well as the 

components in the model provided positive contributions for building the model. It is hopeful that 

this model can be a useful tool to identify novel root-related proteins and this study may attract more 

investigators' attention to investigate root-related problems in plants. The codes for Graph-Root are 

available at https://github.com/ken0414/Graph-Root. 
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