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Abstract: A mathematical model is proposed to analyze the spreading dynamics of COVID-19. By
using the parameters of the model, namely the basic reproduction number (R0) and the attenuation
constant (k), the daily number of infections (DNI) and the cumulative number of infections (CNI)
are deduced and shown to be in good agreement with experimental data. This model effectively
addresses three key issues: explaining the waveform pattern of DNI, predicting the occurrence of
the second wave of infection, and understanding the competitive spread of two viruses in a region.
The findings demonstrate that these significant challenges can be comprehensively tackled using a
simple mathematical framework. The theoretical insights derived from this model hold potential in
guiding the estimation of the severity of an infection wave and formulating effective strategies for
the control and mitigation of epidemic outbreaks.
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1. Introduction

The ongoing COVID-19 pandemic has posed several unresolved questions. Firstly, our aim is to
understand the reason behind the waveform pattern observed in the Daily Number of Infections
(DNI) and to predict the scale and duration of an infection wave, including the Cumulative Number
of Infections (CNI) and the time for infection ending. Secondly, we investigate why the second wave
of infection typically follows the first wave and how to predict its occurrence. Lastly, we explore how
virus spreading in a region is influenced by the emergence of new strains and develop methods to
control their spread. Existing epidemic models have limitations in addressing these problems
comprehensively. Firstly, since the 1920s the differential equations were used to model the
population distribution of disease spread, including susceptible, infected, and recovered/dead pools
[1,2]. Such models could not examine important social and behavioural factors, such as the
behavioural responses of individuals to policy measures, and the effect of heterogeneous social
contacts on diffusion patterns. Secondly, since the 1990s agent-based simulations were proposed that
include some important sources of population heterogeneity and explore the structure and dynamics
of transmission networks. However, none of the agent-based models are based on explicit
empirical/theoretical assumptions of individual behaviour, social transmission mechanisms and
social structure constraints [3-5]. Recently, several network models simulating the spread of
epidemics in the population were proposed, such as the Susceptible-Infectious-Susceptible model on
random networks [6], and the epidemic spreading on modular networks [7]. Although these specific
models have solved some aspects of the complexity of infectious diseases and obtained meaningful
results, they still fail to comprehensively answer the aforementioned unresolved questions.

As the Chinese idiom goes, "The greatest truths are the simplest". Starting from the principle of
natural selection - the interaction and compromise between the virus and its host (human) - we
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propose a mathematical model based on insights from experimental data. The model is based on two
fundamental assumptions. First, each viral strain has a basic reproduction number (Ro), which
represents the average number of infections caused by an initial infectious person in a completely
susceptible population [8]. Ro is a measure of the transmission potential of a particular infectious
disease. Second, virus infections undergo a series of events in m steps that weaken with each step,
described by an attenuation constant k (k<1). The parameter k is influenced by social contacts and
policy measures, where looser contacts and measures result in higher values of k. Based on two
parameters Ro and k we can deduce the general formula for the Daily Number of Infections (DNI)
and the Cumulative Number of Infections (CNI) over m steps. The CNI is denoted by F(Ro,k;m). These
formulas are in good agreement with experiments and provide a generalized framework to simulate
single and multiple virus infections. By introducing F1 and F> we can also study the competitive
spread of two viruses in a region, including scenarios with the introduction of a new virus strain. It
is worth noting that the loosening of public health measures and/or the emergence of new viruses
can lead to subsequent waves of virus transmission.

2. Materials and Methods

The data of daily virus infections of COVID-19 are taken from WHO
(https://covid19.who.int/data) for the UK and from the public database
(https://ourworldindata.org/coronavirus) for Hong Kong. Since Gauss discovered the least square
method and successfully applied it to astronomical observation, the ordinary Least Square is
recognized as one of the best methods for curvilinear regression. In the present study, we use the
Least Square simulation of observational data of the virus infection to determine the parameters in
each COVID-19 pandemic. The goodness of the nonlinear Least Square fitting (NLLSF) is tested by
R2 i.e.

Tis, i-p)?
R =1 -Sromn
where yi are the observation values, ¥ their average and f; the predictions of the model. The
goodness R? and the p-value of Prob(F-statistic) are calculated for each simulation. Define F-statistic
as
G 0= -3, i) )/ (k=1)
L, - m)?/(n=k) ’

F — statistic =

(n —number of samples, v - number of parameters) that can be calculated from the experimental data.
The p-value is decided by the percentile of the Fisher’s F-distribution Fv-1,.+(z), namely,

p — value = the probability of F,,_; ,,_, (z > F — statistic).

The goodness R?, the p-value and the root mean squared error (RMSE) for each simulation are
given in the figures.

3. Results

3.1. Derivation of formulas for Cumulative Number of Infections (CNI) and Daily Number of Infections
(DNI)

The potential for infection of a given virus strain is determined by the basic reproduction
number known as Ro. For the virus to spread, it must continually re-infect the host population.
However, countermeasures by humans must aim to limit these subsequent infections. Essentially,
this implies that the interaction and compromise between the virus and host (humans) necessitates
the j-th reproduction number R; to be smaller than the (j-1)-th reproduction Rj1, as expressed in the
equation
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The attenuation constant 'k' in this scenario is influenced by social contact rates and policy measures.
After m-1 rounds of infection spread, the total number of infections in a specific area can be
represented as

F(Ro,k;m) = Ry + RyRy + -+ RyRyRy - Ryy_y = Ry + kR2 + -+ + k™M=D/2Rm (1)

This function F(Ro,k;m) describes the Cumulative Number of Infections (CNI), which is an increasing
function of m. Assuming the total infected individuals as N, solving the equation F(Ro,k;m)=N will
produce 'm', the transmission number of the virus strain. The parameter m grows with time t.
Assuming each transmission takes place every g days, we have

m=(t+ty)/q, )

where to is a time shift parameter linked to the start of infection (the time of m=1). Inserting (2) into
(1) we obtain a formula of CNI vs f represented by four parameters Ro, k, g and to that can be used to
simulate the change of a cumulative number of infections with time in a region. As seen in Figure 1,
our simulations of the UK-alpha strain (November 2020 to April 2021) and the Hong Kong-
delta/omicron strain (February 2022 to April 2022) spreading are well fitted to the data obtained from
COVID-19 pandemic updates.

-
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Figure 1. COVID-19 pandemics in the UK (A) and Hong Kong (B).

Applying Equations (1) and (2), the Daily Number of Infections (DNI) is derived:

dF/dt = (dF /dm)/q
{dF/dm = fm(m-1/2pm’ ®)

From Eq (3), it is easy to understand why DNI first rises then falls, considering that Ro>1 (for most
infectious viruses) and k<1. Zero DNI is arrived when dF/dm =0, which requires m to be large enough
such that

kMm=D/2R, <1 or Ry < (1/k)Mm-1/2, (4)

This is a condition for the end of an infection wave.

3.2. Insights from typical figures of CNI vs m

Utilizing Eq (1), we plotted the change of CNIs with variables k and m for the given Ro (Figure
2). Figures 2A-E show typical cases that help in understanding the development and termination of
an infection wave.

From Figure 2, one can observe that the curve of F(Ro,k;m) increases with m and approaches a
stable value when m>ms: for each k<km. We denote F(Ro ki;mst) as Nm. Calculating for mst =15 in Figure
2A to 2E, we obtained the threshold ku and the corresponding CNI, Nu, for each given Ro (each virus
strain). On the other hand, CNI attaining a stable value means DNI approaching zero. By defining
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Exm = (1/kg,)™st™Y/2 Eq (4) can be written as Ro<Exm. The threshold ki, the corresponding CNI N
and the parameter Exm are listed in Table 1. We found the relation Ro<Exm to hold well across all data.
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Figure 2. CNI functions F(Rok;m) for several typical Ro values. Panel A: Ro=18.6 (for Omicron BA .4,
BA.5 in South Africa, 2022-1), panel B: Ro=9.5 (for Omicron B.1.1.529 in many countries, 2021-11), panel
C: Ro=6.5 (for Delta in India, R0=5-8, 2020-10), panel D: Ro=4.5 (for Alpha in the UK, 2020-9, Beta in
South Africa, 2020-5, Gamma in Brazil, 2020-11, Ro=4-5), and panel E: Ro=2 (for SARS-CoV 2003, Ro=2-

3).

Table 1. Parameters related to virus infection dying out.

Ro km(ms=15) Exm=(1/kn)” N ker(Nmax=107)
18.6 0.613 30.7 105 0.722
9.5 0.722 9.78 ~105 0.8

6.5 0.75 7.49 ~104 0.85

4.5 0.8 4.77 ~103 0.9

2 0.9 2.09 ~102 >0.95

The daily increasing number dF/dm=0 means the virus infection dies out. The above result shows
the higher the basic reproduction number Ro, the more strict public health measure is required to
increase Exm to satisfy Eq (4) and terminate the wave of virus infection effectively. From Table 1 we
found the cumulative infection numbers Nu of many virus strains (except Omicron with Ro=18.6) are
lower than 105 if appropriate k (lower than ku) is introduced.
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For the virus strain of given Ro, if F(Ro,k;m) (for all m) exceeds a threshold Nmax, then the spread
of this strain would lead to a wave of COVID-19 pandemic in a region with population larger than
Nmax. In order to end this spread, the necessary condition would be

F(Ry, k;m) < Ny (forall m). (5)

Equation (5) provides a constraint on k for strains with Ro. The critical value of k is denoted as
ker. Taking Nmax= 107 the values of ke are also listed in Table 1. Note that the parameter ku is the
threshold value of k required for ending the spread in 15% generation, but the parameter ke is that
value for ending the spread in arbitrary generation. The latter constraint is looser than the former.
Therefore, ke is larger than k.

Virus strains with low Ro values have higher ke and ku values. As a result, they can spread in
regions with smaller populations under looser public health measures. This theoretical prediction
can explain why strains like SARS-CoV in 2003 only spread in restricted regions and soon
disappeared globally. On the contrary, virus strains with high Ro values, such as Omicron, have lower
ker and ki values. To satisfy Equations (4) and (5), the parameter k needs to meet very strict constraints.
In cases where social management measures are not stringent enough, the number of infected
individuals will quickly surpass the Nmax limit, triggering a global pandemic wave, possibly
culminating in a type of coexistence between viruses and humans.

In summary, the termination of an infection wave is determined by the condition dF/dm =0 on
the CNI diagram (Figure 2), which requires a sufficiently large m and the condition in Equation (4)
satisfied, i.e. Ro<Exm=(1/kw)’. Additionally, the necessary condition for a pandemic to die out in a
population of Nmax is expressed by Equation (5), imposing a limitation on k, namely k<ker.

3.3. Prediction on the second wave of pandemics

Early models based on previous pandemics such as SARS, MERS, and the 2009 HIN1 outbreak
can effectively predict the occurrence of the first wave of a disease. However, their predictive power
decreases when it comes to anticipating the possibility of a second wave [9]. This raises the question:
Why does the second wave of COVID-19 infections often follow the first wave? The present model
aims to address this issue.

As shown in Figure 2, there are multiple curves (F versus m) for a given Ro value. These curves
differ from each other by the parameter k. When the number of daily new infections (DNI) approaches
zero, any fluctuation in k significantly influences the spread of the virus. Therefore, changes in public
health measures can induce variations in virus spread along different curves. Generally, as public
health measures are relaxed, the parameter k increases, causing the virus to transition from one curve
of F to another steeper curve. This signifies the onset of a new wave of virus spread. For instance, in
Figure 2A, the spread of the Omicron variant (with an Ro of 18.6) is plotted. Assuming the initial
spread is along the curve with k equal to 0.613, a stable state is reached at m=15. At this point, the k
value increases to 0.722. In response to this change, the virus begins spreading along a new curve
with k=0.722, starting from m=4, as the value of F(18.6, 0.722; m=4) is equal to the original CNI value,
F(18.6, 0.613; m=15). This example explains how the second wave of virus infection occurs. However,
in cases where the parameter k decreases when DNI approaches zero, the curve of F will transition to
a flatter one. This indicates that the first wave of viral infection will end soon and no second wave
will occur.

By examining Figure 2A to Figure 2E, we can analyze how the occurrence of a second wave
depends on the Ro value of the virus. For instance, as k changes from 0.85 to 0.9, the CNI (at m=15) for
high Ro viruses increases hundreds of times, whereas it only increases tens of times for low Ro viruses.
Therefore, our model predicts that multi-wave infections are more likely to occur with viruses that
have high Ro values.

In the aforementioned discussions, we have assumed that no virus mutation occurs and that
only one type of virus is spreading. In reality, changes in public health measures may be accompanied
by virus mutations. In this case, the change in public health measures would cause the jump of F not
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only between different curves with a given Ro but also between different Ro values, providing more
opportunities for the occurrence of a second wave during virus spread.

Another crucial point to consider is that the change in k can simultaneously induce a change in
g, as the eigen-time (inherent time) m depends on g (Equation (2)). In the case of a single wave, the
parameter m can be used to represent time dependence, and g can be simply set to 1 (known as
normalization). However, when studying two continuous waves, the dependence on g should be
clearly indicated due to the different eigen-times m. We have mentioned that the dependence of F on
the change in k results in a jump from one curve to another. Meanwhile, the dependence of F on the
change in g only affects the lengthening or shortening of the abscissa of the graph without altering
the shape of the curve. When the public health measures change and a jump between curves occurs,
the abscissa of the graph of the second wave simultaneously lengthens or shortens.

The occurrence of the second wave of infection is more likely when public health measures are
relaxed. This change in the second wave is accompanied by a change in the g value. These predictions
align with experimental data. For example, in the UK from May to September 2021, public health
measures were relaxed, and a second wave of infection followed the first wave (Figure 1A). Similarly,
in Hong Kong several months after May 2022, the looser public health measures led to a second wave
occurring after the first wave (Figure 1B). (The data on the change of public health measures can be
found at https://www.bsg.ox.ac.uk/research/covid-19-government-response-tracker)

In summary, the dependence of CNI on k (given a specific Ro) is determined by the jump between
different curves on the graph F(Ro,k;m) versus m, referred to as k-transformation. The dependence of
CNI on the duration of m is obtained by stretching the abscissa m on the graph, known as g-
transformation. The k-transformation and g-transformation, occurring when the first wave is nearing
its end, are the causes of a continuous second wave. The change in k is attributed to the modification
of public health measures, while the modification of g is due to the change in physical time within a
unit of m. The changes in k and g provide an explanation for the experimental data on continuous
multi-wave infections.

3.4. Cross-spread of two viruses: Discriminant function

Viral infections often involve the simultaneous presence of two or more viruses. To accurately
simulate the cross-spread of two viruses, it is necessary to consider the differences in eigen-times (11
and m2) between these viruses and their relationship with the physical time t. Consequently,
additional parameters g and to (as given in Eq (2)) must be taken into account. By utilizing the four
parameters Ro, k, g and to, the CNI F(Ro,k;m) can be expressed as:

F(Ry, k;m(t)) =F(t;a,b,c,d),(a=Ry,b=k,c=gq,d=t). (6)
When the CNIs of two virus strains Fi(t;a1,b1,c1,d1) and Fa(t;a2,b2,¢2,d2) intersect at ter,
Fi(ters a1, by, €1,dy) = Fa(ters @z, by, €3, d3), )
and

{F1 (t;aq,by,¢1,d1) > Fo(t; a3,b5,¢2,d3) (<)
Fi(t; a4, by, ¢1,dy) < Fy(t;ap,by,¢5,d3)  (E> ter)

This represents a transition in the population of virus strains from Fi to F2. As it is challenging to
directly solve the intersection equation (Eq (7)), we introduce a function:

D,y =log[(dF,/dt)/(dF;/dt)], (8)
which satisfies:

{021 >0 as dF,/dt > dF,/dt .
Dy, <0 as dF,/dt < dF,/dt ©)

By utilizing Eqs (2)(3)(6) and (8) D21 can be formulated as a simple quadratic function of time
Dy = at’+ Bt +y, (10)
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where
o = logb,/(2¢3) — logb, /(2¢f)
B = (2d; — cz)logb,/(2c5) — (2d; — ¢;)logb,/(2¢%) + loga,/c, — loga; /¢,
y =d,(d; — Cz)IOgbz/(ZC%) - d;(d; - C1)10gb1/(ch) + d,loga, /c; — dylogay /¢y + log(ci/c;)
In order to determine if a real root of D21 exists, we define:
A= B? — 4ay. (11)

The value of A determines the existence of the real root in the quadratic form Da21. This form, known
as the discriminant function, serves as a tool to identify the occurrence of t« and the domain of its
existence. The prediction rules can be summarized as follows:

Rule 1: When A>0, the quadratic form intersects with ¢ axis at ts and fm (tm>ts),

—B—VA —B+VA

(for a > 0) (for a > 0)
ty= Za\/_ , tm = 2(1\/_ .
% (for a < 0) _'B;; 2 (for a < 0)

These values partition the time into three distinct domains: <fs in the first domain, t<t<tm in the
second domain and #>fm in the third domain.

Rule 2: In the first domain, t==gmo-to is defined as the initial time where mo>>1, indicating
m2=(t+d12)/c12>>1. If D21>0, there will be no intersection of Fi(t) and F2(f) in the domain between t. and
ts when the initial values of F at ta satisfy Fi(ta)<F2(ta), but there may be one t« (the number of te is
either 1 or 0) in the domain when Fi(ta)>F2(ta). If D21<0, there will be no intersection of Fi(t) and Fa(t)
in the domain when the initial values satisfy Fi(ta)>F2(ta), but there may be one fo (the number of te is
either 1 or 0) when Fi(ta)<Fz(ta).

Rule 3: In the second domain, if D21>0 there will be no intersection of Fi(t) and Fz(¢) in the domain
when the F-values at t=ts satisfy Fi(ts)<F2(ts), but there may be one t« (the number of t« is either 1 or 0)
when Fi(ts)>Fa(ts). If D21<0 there will be no intersection of Fi(t) and F2(f) in the domain when the F-
values at t=ts satisfy Fi(ts)>Fz(ts), but there may be one fo (i.e. the number of f« is either 1 or 0) when
Fi(ts)<Fx(ts). The F-values at t=ts are determined by Fi(f) and Fz(t) in the first domain.

Rule 4: In the third domain, if D21>0 there will be no intersection of Fi(t) and F(t) in the domain when
the F-values at t=tm satisfy Fi(tm)<F2(tm), but there may be one fcr (the number of t« is either 1 or 0)
when Fi(tm)>F2(tm). If D21<0 there will be no intersection of Fi(t) and F2(f) in the domain when the F-
values at t=tm satisfy Fi(tm)>F2(tm), but there may be one ter (i.e. the number of te is either 1 or 0) when
Fi(tm)<F2(tm). The F-values at t=tm are determined by Fi(t) and F(f) in the second domain.

Rule 5: There can be at most one tcr in a given domain because the symbol of D21 is definite in any
domain. The magnitude of the domain is an important factor to predict the occurrence of a te. For
example, in the second domain the magnitude is tm-t==A12/(21 1), and the necessary condition for the
occurrence of t« is a large enough (fm-ts) or A.

Rule 6: When A < 0, the quadratic form D21 does not intersect with ¢ axis. In this case, there is only
one domain and the rule is the same as that in the first domain given by Rule 2.

Figure 3 presents examples of cross-spread of two virus strains, 1 and 2. The left panel shows
the discriminant function, and the right panel displays the cross-spread of the two strains. The
influence of the change in parameters (as an example, we only assume the Ro value of strain 1
changes) on the intersection of two strains is shown in the figure. In Figure 3A, there is no intersection.
In Figure 3B and 3C, there are two intersections in the second and third domain, respectively. In


https://doi.org/10.20944/preprints202307.0965.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2023 d0i:10.20944/preprints202307.0965.v1

Figure 3D, there is one intersection in the second domain. These intersection occurrences are in
agreement with aforementioned prediction rules.
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Figure 3. Discriminant Function and intersection occurrence.

In the first domain we have introduced t. =gmo-to as the initial time. To study the cross spread in
the time interval between m=1 and ta where dF/dt in D21 is difficult to be defined one should use F(f)-
ladder method as follows:

The step size of CNIs of the first few steps in two ladders 1 and 2 are given by a,, b,a?, bia3,

6 4 10,5 15 6 21,7 28 .8 36 ,9 2 13,3 6 4 10,5 15 6 21,7 28 .8
brai, bi"ai, bi’as, bi*ai, bi“ai, bi®aj, etc, and a,, bya3, byaz, bjaz, by a3, by a;, b3ta;, by as,
b3%a3, etc., respectively (Eq (1)). Strain 1 spreads from the 1¢t step a1 at t=c1-d1 on ladder 1 and strain 2
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spreads from the 1st step a2 at t=c>-d> on ladder 2. The CNI and arrival time t of the two strains on their
respective ladders are listed in Table 2. For example, let’s take c1=7, di=15, c2=5, d>=10. The earlier
arrival times, in turn, are t= ci-d1 =-8, c2-dz2 =-5, 2c1-d1 =-1, 2c2-d2 =0, 3c2-d2 =5, 3c1-d1 =6, etc. By using
Table 2, one can easily calculate the CNI at each arrival time as the parameters a1, b1, a2, b2 are given,
compare the CNI values on two ladders and obtain the information on the cross spread of two strains.

Table 2. CNI and arrival time t of two strains on F(t)-ladder.

t CNI

ci-di ! ai

2ci-di artbia?

3ci-di atbiai+ bdad

4ci-di atbiai?+ bdas+ bifa#

5ci-di atbiai+ b3ad+ bfat+ bil%asd

6ci-di abiai+ b3ad+ bfar+ bilas+ bildab

17=1, 2 refer to two strains respectively, to save space only six steps of the F(t)-ladder are listed.

3.5. Examples of the cross-spread of two viruses

The epidemics that occurred in the UK from November 2020 to February 2022 provide a clear
demonstration of the cross-spread phenomenon involving multiple viruses. This process can be
divided into five stages, namely: (A) the alpha epidemic, (B) the delta invasion and cross-spread of
two strains, (C) the delta dominant stage, (D) the omicron invasion and cross-spread of delta and
omicron, and (E) the omicron dominant stage. In this section, we will specifically focus on studying
the cross-spread of two strains during stage B and D.

Firstly, let us examine the cross-spread between the alpha strain (designated as strain 1) and the
delta strain (designated as strain 2) during stage B. The spread of the alpha strain during stage A has
been represented in Figure 1A, where we obtained the parameter a1=Ro)=3.9. The spread of the delta
strain during stage C has been illustrated in Figure 4A, and we derived the parameter a2=Ro®=5.1
based on this data. By using Ro® and Ro®@ as inputs, we simulated the cross-spread of the two strains,
as depicted in Figure 4B. Furthermore, utilizing all the parameters a;, b;, ci, di (i=1,2) obtained from
Figures 1A, 4A, and 4B, we constructed the discriminant function of the cross-spread and plotted the
intersection of the two strains during stage B in Figure 4C. Interestingly, we discovered that one f
occurs at =71 in the region where t>fm (tm=44.5), which is consistent with the prediction outlined in
Rule 4.

Similarly, we investigated the cross-spread between the delta strain (strain 1) and the omicron
strain (strain 2) during stage D. The results of this analysis are shown in Figures 5A, 5B, and 5C. From
Figure 5C, we observed that a to appears at t=42 in the region where t>tm (tm=28.5), which is in
agreement with the prediction made by Rule 4.

In both simulations, we assumed April 1 as the initial time for stage B, and November 11 as the
initial time for stage D. Due to the uncertainty surrounding the exact timing of the delta invasion in
stage B and the omicron invasion in stage D, we shifted the initial times  of stages B and D by several
days. Remarkably, we found that the same values of ki, k2, q1, g2, to® were obtained, and only f®
varied while still maintaining the invariant t+ to@.
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From 1 Aug 2021 to 11 Nov 2021 in the UK B From 1 Apr 2021 to 1 Aug 2021 in the UK
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Figure 4. CNI simulation in the UK from November 2020 to November 2021. Panel A: CNI simulation
of delta spread in stage C, panel B: CNI simulation of alpha/delta spread in stage B, and panel C:
discriminant function and intersection of alpha/delta spread in stage B (left panel gives discriminant
function and right panel the cross-spread of two strains). Note: CNI simulation of alpha spread in
stage A from November 2020 to April 2021 has been plotted in Figure 1A.
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Figure 5. CNI simulation in the UK from November 2021 to February 2022. Panel A: CNI simulation
of omicron spread in stage E (only the data of first omicron peak is used.); panel B: CNI simulation of
delta/omicron spread in stage D; and panel C: Discriminant function and intersection of delta/omicron
spread in stage D (left panel gives discriminant function and right panel the cross-spread of two
strains).

4. Discussion

4.1. On the simulation of COVID-19 cases

The traditional SIR-type epidemic models depict the exponential growth of the number of
infected individuals. However, empirical data has demonstrated that COVID-19 outbreaks do not
exhibit exponential growth, but rather follow a three-parameter Gompertz growth function [10,11].
A new compartment model, known as the broken link model, has been proposed in the literature to
explain the mechanism of Gompertz growth [12]. In our proposed model, we suggest that the spread
of the virus depends on four parameters: Ro, k, g and to. Ro describes the inherent infectious ability of
the virus, k represents the strictness of social management, g represents the time needed for one step
of infection, and to is an additional parameter that aligns with the starting date of the experimental
data. By incorporating these four parameters, our four-parameter simulation accurately fits all
COVID-19 epidemic data involving a single strain of the virus. Consequently, the mechanism of
Gompertz growth has been elucidated by our model and contributes to the prediction of future
outbreaks.

4.2. On the mutation of the SARS-CoV-2 virus

The SARS-CoV-2 virus continuously undergoes mutations, giving rise to new strains. This
ongoing mutation process is the reason why the pandemic has persisted for more than three years.
As a result of natural selection, these new mutant strains possess higher infectious ability but lower
lethality rates. Although the lethality rate of the new strains may be lower, it still results in a
significant number of deaths. Therefore, since mutation occurrence is inevitable and costly, the key
focus should be on reducing the epidemic probability of mutants. While humans cannot prevent the
virus from mutating, they can hinder the mutant strains from dominating the competition. According
to six prediction rules on cross-spread of two strains, it is highly unlikely for the intersection point t«
to manifest under the following conditions: 1. when A>0, there are three domains and in this case
there will be no occurrence of te within a domain if the period of this domain is short enough (i.e. ts-
ta small, A small, or tm large) or if the symbol of D21 within a domain does not align with the symbol
of Fi-F2 at the initial time of this domain; 2. when A<0, there is only one domain and in this case there
will be no fe if the period of virus spread is short enough or if the symbol of D21 does not align with
the symbol of Fi-F2 at the initial time.

An example to highlight the phenomenon of no occurrence of f is the winter epidemic in China
in 2022. Among tens of millions of SARS-CoV-2 cases in one city, no new mutant strain emerged or
triumphed over the competition, with the exception of the original omicron strand. This suggests that
the pandemic was effectively terminated within a short period, lasting only one month.

In conclusion, the strategies proposed by our model to control an epidemic have two main
aspects. First, it is critical to prevent the occurrence of a second wave. Second, one should aim to
avoid competition among mutant strains. In the latter scenario, minimizing the duration of virus
spread is an efficient approach.

4.3. Dependence of virus infection potential on temperature and humidity

The conformational equilibrium between the open and closed conformations of the receptor
binding domain (RBD) of the spike (S) protein can be analyzed using first-principle techniques for a
susceptible individual. The RBD can exist in either the open or closed position, known as the up or
down conformation, respectively. The population of conformational states can be determined based
on the free energy change during conformational transitions of the S protein. Let us denote the closed
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conformation as state A and the open conformation as state B. The Gibbs free energies of states A and
B are represented by GA and GB, respectively. Generally, if GA is lower than GB, the RBD will
primarily assume the inactive conformation A. Conversely, in order to initiate the infectious process,
the equilibrium should shift towards the open conformation, implying that GB should be lower than
GA [13]. The free energy G in a given conformation is related to the partition function Z, which can
be expressed as follows:

G =—kgTInZ, Z = Y,e P (f =—). (12)
B

Here E: represents the energy level of a given conformation,
(En)ap = Vap + (n+1/2)hwpp, (13)

Vap represents two minima of conformational potential respectively and (n+1/2)hiwas the
corresponding vibrational energy around the minimum of conformational potential. By the
summation of Boltzmann factor over vibration states one has

1 1
sBhwp __ —5Bhwp
Z 2 - 2
ZA e_B(VA_VB)YA/B’ Yag = ¢ i
ZB

(14)

1 1 .
ethwA—e_EBth

Let Tc represent the phase transition temperature, which can be determined by AG=Gs-Ga=0.
From Eqgs (12) and (14) we obtain a simplified equation for Tc

2(Vg—Va) _ hwa WA—WB
h(wa-wp) coth 2kpTc (as | wa | « 1, (15)

and AG>0 for T>Tc, AG<0 for T<Tc. Therefore, if the environmental temperature decreases to T<Tc,
the conformational transition from the closed conformation to the open conformation occurs rapidly.
This explains why the virus has higher transmission rates during the winter and the entrance to host
cells is prioritized. Conversely, the summer season provides the most favorable conditions for virus
elimination. In addition to temperature, the conformational equilibrium is influenced by humidity.
The virus can be modeled as a charged sphere, and through the application of electrostatics principles
to salty solutions, one can derive an expression for the potential at the surface of the charged sphere,
where the dielectric constant ¢ is incorporated [14]. This implies that the elastic frequency w? should
be replaced by w?/e. Considering water has a dielectric constant of ¢=80, the frequency parameter
takes a reduced value of w/9 in the presence of a fully salty solution rather than w in a vacuum.
Consequently, this provides a quantitative estimation of the virus's infection potential, which is
strongly dependent on humidity.

The above discussions on the susceptible individual can be extended to the population level,
providing evidence that Ro is influenced by temperature and humidity.
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