Preprint
Review

Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease – Pathophysiology and Translational Therapeutic Approaches

Altmetrics

Downloads

165

Views

62

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 July 2023

Posted:

17 July 2023

You are already at the latest version

Alerts
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote proinflammatory pathways also contributing to procoagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing molecular and clinical effects of inflammatory processes on the micro- and microvas-culature with a focus on peripheral artery disease.
Keywords: 
Subject: Medicine and Pharmacology  -   Internal Medicine

1. Introduction

Cardiovascular disease (CVD) is the leading cause of mortality world-wide and accounts for millions of deaths globally [1]. CVD is associated with a significant impairment of quality of life and the prevalence of main manifestations, such as coronary artery disease (CAD), cerebrovascular disease and peripheral artery disease (PAD) has been increasing steadily over the last two decades [1,2].
Atherosclerosis is considered the major driver of CVD. Formerly, atherosclerosis was thought of as a process primarily related to dyslipidaemia and the deposition of triglycerides and cholesterol [3]. However, besides lipid accumulation, more recent insights into the pathogenesis of atherosclerosis increasingly emphasise the role of inflammation and endothelial dysfunction as major drivers of atherogenesis [3,4,5,6,7,8]. Moreover, the mentioned pathomechanisms depend on each other and amplify their response. Indeed, a central element initiating prothrombotic processes and herein atherogenesis remains glycocalyx destruction due to inflammatory processes [9]. In PAD, inflammation is also triggered by ischaemia-reperfusion (I/R) injury promoting increased production of reactive oxygen species (ROS) [10], which contribute to endothelial dysfunction and microvascular pathology [11].
Chronic autoimmune diseases, which are associated with significantly elevated levels of systemic inflammation, e.g., rheumatoid arthritis, systemic lupus erythematosus, anti-phospholipid syndrome and antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), are associated with markedly increased prevalence of CVD [12,13,14]. Conversely, there is accumulating evidence that some agents with anti-inflammatory characteristics reduce cardiovascular risk significantly [15,16]. Canakinumab, a monoclonal antibody targeting interleukin (IL)-1β [15], and colchicine, which attenuates leukocyte responsiveness by inhibition of tubulin polymerisation [16,17] have been shown to improve outcome in CAD in randomized controlled trials [15,16]. While not yet implemented in regular clinical practice, there is increasing awareness for anti-inflammatory therapy in secondary prevention of CVD in the current guidelines [18].
The single most effective prevention of CVD, smoking cessation, lowers levels of systemic inflammation as assessed utilising biomarkers of inflammation and oxidative damage [19,20]. Statins, which are the most widely established agents for lipid control, also have been shown to exert significant immuno-modulatory influence by inhibiting the nuclear factor kappa B (NF-ĸB) pathway and decreasing the expression of toll-like receptors (TLR) [21]. Smoking cessation and statins are both recommended in all patients with CVD [22].
Formation of aneurysms is also discussed to be linked to atherosclerosis. Recently, the role of leukocytes and especially neutrophils for development of aneurysms has been revisited [23,24]. Activation of matrix metalloproteinases (MMP), degradation of extracellular matrix (ECM), smooth muscle apoptosis and oxidative stress all contribute to aneurysm formation and are mediated by cytokines secreted by leukocytes [23,25]. Interestingly, atherosclerosis and aneurysm formation do not always occur at the same locations. While the abdominal aorta, an area of predilection for aneurysm formation, is also prone to atherosclerosis, the external iliac artery, a common location for significant atherosclerosis, is very seldomly involved in the formation of aneurysms. Which cellular and non-cellular processes discern these two locations is currently unclear, however, the different embryologic origin of these vessels may be responsible for varying susceptibility to atherosclerosis and aneurysm formation, respectively [24].
This review aims to describe inflammatory pathomechanisms implicated in atherosclerotic processes of the macro- and microvasculature, their determinants and implications for interactions with the endothelium, leukocytes and non-cellular components involved in vascular homeostasis. In addition, therapeutic applications of anti-inflammatory concepts for the management of PAD are discussed.

2. Pathophysiology

2.1. Inflammation and endothelial dysfunction

Endothelial and vessel homeostasis is to a wide extent ensured by an intact glycocalyx coverage [26]. The endothelial glycocalyx is located at the luminal side of the cells and consists of membrane-bound proteoglycans and, together with adsorbed proteins, forms the endothelial surface layer [27]. Its components exert significant influence on the interactions between the blood and the endothelium, including rolling and diapedesis of leukocytes [28], platelet adhesion and activation [29], interaction with pro-coagulatory proteins [27], endothelial permeability [30], and the regulation of vascular tone [31].
Dysfunction and degradation of the endothelial glycocalyx allows low-density lipoprotein (LDL) to accumulate in the endothelial wall [32]. Following aggregation, LDL is oxidised (oxLDL) and subsequently phagocytosed by macrophages, which transform into foam cells and thereby initiate the progressive process of atherogenesis [32]. In turn, the integrity of the endothelial glycocalyx is disturbed by vascular inflammation, therefore creating a vicious cycle of endothelial dysfunction, inflammation and progression of atherosclerosis [33].
The components of the glycocalyx also play a major role in the modulation of thromboinflammatory pathways [9,34]. Importantly, the glycocalyx barrier does not only cover endothelial cells, but functions as a protective barrier exhibiting steric and charge hindrance on blood components such as macrophages, erythrocytes, microspheres, tumour cells, and microbes [35,36]. Similarly, neutrophils have been demonstrated to express syndecan-1 and syndecan-4, hyaluronan, serglycin and cluster of differentiation (CD) 44 in their surface layer [37]. These molecules are essential components of both the endothelial as well as the neutrophil surface layer and are thought to regulate neutrophil rolling and recruitment [37]. Modifications to the neutrophil surface layer, including shedding of the glycocalyx and formation of microvilli, are though to regulate leukocyte behaviour by exposing receptor proteins and promoting leukocyte activation [36,38]. However, the exact interactions of the endothelial and the neutrophil surface layers remain to be completely elucidated [37].
Macrophage activation after phagocytosis may lead to macrophage extracellular trap (MET) formation, but the process might be dependent on the recognized pathogen [39,40]. On the other hand, inflammation triggers leukocyte activation, promoting neutrophil- and monocyte- platelet aggregate formation [41,42]. The process is perpetuated by ETosis and enhanced oxidative stress [43,44,45].
Moreover, activated platelets lead to a thrombin burst, and further platelet activation through alternative signalling pathways [9]. The latter also include damage-associated signalling through TLRs [34].
Some risk factors commonly associated with atherosclerosis and thromboembolic events are also thought to impair the integrity of the glycocalyx [33]. Chronic diseases, such as diabetes mellitus (DM) and chronic kidney disease, are often linked to inflammatory processes, and promote glycocalyx disturbance [33,46,47,48,49,50,51,52].
Several pathophysiologic properties link atherosclerosis and DM [53]. First, DM-associated dyslipidaemia leads to increased triglyceride-rich lipoproteins (TLP) in serum [53]. Under physiologic circumstances, insulin regulates hepatic lipoprotein and triglyceride production, however, in DM, these regulatory properties are diminished due to hepatic insulin resistance [53]. It has been demonstrated that not only the prevalence of lipoproteins, but also their modifications can be considered essential for atherogenesis [54]. In a murine model of DM, the injection of LDL from diabetic patients resulted in a fourfold increase in arterial wall LDL retention compared to injected LDL from clinically healthy, non-diabetic control subjects [54].
Advanced glycation end-products (AGEs) are formed in patients with prolonged hyperglycaemia by non-enzymatic post-translational modification of proteins, lipids and nucleic acids [55]. AGEs promote inflammation by facilitating the activation of the endothelium, increasing cytokine release from macrophages, and ultimately enhancing ROS production [10]. The latter are also key in I/R injury in PAD and contribute to inflammatory processes and endothelial dysfunction [10]. During I/R injury NO bioavailability is decreased and ROS activate the nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes, promote mitochondrial fission and endothelial microvesicle release as well as change connexin/pannexin signalling [56]. As a result of the oxidative stress, I/R impairs capillary perfusion [56].
CVD including PAD is further linked to a reduced endothelial progenitor cell (EPC) number [57]. The inflammatory processes induced by uncontrolled oxidative stress also modify EPC function and thus impair endothelial regenerative potential [58]. EPCs have been shown to express gene transcripts coding for TLR 1-6, including the TLR-4 co-receptor CD14, TLR 8-10 and the TLR adaptor molecule myeloid differentiation factor 88 (MyD88) [59]. Hence, during inflammation, EPCs might also be modulated by TLR signalling pathways such as TLR-4 mediated caspase 3 signalling promoting EPC apoptosis [58,60]. In addition, ROS formation triggers extracellular trap formation by different cells of the immune system such as neutrophils, eosinophiles, macrophages and mast cells, hereby influencing coagulability and vascular perfusion [34,61].
Corona virus disease 2019 (COVID-19), which increases the risk of thromboembolic events during and after the infection [62], is also thought to impair the regular functioning of the glycocalyx [9,63,64]. The degeneration of the glycocalyx is mediated by a complex interaction of cellular and non-cellular factors, but is mainly driven by infection of endothelial cells by severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) [65]. Subsequent endothelial inflammation and damage leads to disintegration of the glycocalyx, collagen exposure and, thereupon, activation of leukocytes and platelets [66]. These processes are thought to lead to an environment of thromboinflammation, which may ultimately trigger atherogenic processes and promote organ dysfunction [9,64].

2.2. Microparticles

Microparticles (MP) are cell-membrane derived vesicles which are shed by, among others, endothelial cells, leukocytes, monocytes and platelets [67] at an increased rate upon cell activation due to oxidative injury, shear stress and apoptosis [68]. MPs can carry a plethora of cell-specific proteins and molecules such as receptors, lipids and both mitochondrial desoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) [67]. MPs are thought to contribute to cell-cell communication as their surface is representative of the originator cell [67,69,70]. Novel diagnostic and therapeutic applications are currently under investigation and first results seem promising [71]. MP composition has been demonstrated to be altered in inflammatory conditions, where endothelial cells stimulated with tumour necrosis factor (TNF)-α secrete MPs rich in pro-inflammatory cytokines and chemokines [72] Intercellular signalling via MPs is therefore considered to exert a significant regulatory role in vascular homeostasis [73,74].
Under physiologic conditions, endothelial nitric oxide (NO) synthetase maintains vascular homeostasis by regulation of vascular tone and inhibition of platelet function through NO [75]. In conditions associated with CVD e.g., hypertension, tobacco abuse and dyslipidaemia, the endothelial production of NO is drastically reduced leading to increased platelet activation and leukocyte diapedesis [75,76,77].
As described above, endothelial dysfunction is generally considered the earliest stage of atherogenesis [78]. ROS are associated with inflammatory conditions [79] and are considered one of the most significant causes of endothelial dysfunction [80]. MPs aggravate ROS production [81,82], but ROS in turn stimulate MP formation [83], potentially creating a vicious cycle of self-sustained pro-atherogenic stimuli. Importantly, MPs can not only induce the release of pro-inflammatory cytokines and ROS, but in fact act as a vehicle of transfer between donor and recipient cells thus potentiating pro-inflammatory effects [84].
Especially MPs derived from endothelial cells (EMP) and platelets (PMP) disrupt endothelial function and impair endothelium-induced vasodilation [81,82]. Formation of EMPs has been shown to correlate with carotid artery atherosclerotic plaque size in patients recovering from stroke [85] and promote inflammation [86]. Via regulation of macrophage function, adipose tissue derived MPs facilitate foam cell formation, herein being central in the progression of atherosclerosis [87].

2.3. Neutrophil extracellular traps

Neutrophil extracellular traps (NETs) - web-like structures consisting of cell-free DNA - are extruded from neutrophils upon activation during inflammatory processes and consist of chromatin, histones and neutrophil granule proteins [88,89]. Previously, NETosis, which describes the process of neutrophils releasing NETs, was primarily regarded as a mechanism of the innate immune system to engulf and neutralise a wide range of extracellular pathogens including bacteria [88], viruses [90] and fungi [90]. However, NETosis is suggested to play a crucial role in inflammatory diseases including vasculitis [91], atherosclerosis and thrombosis [92].
There is increasing evidence that NETs contribute to endothelial dysfunction [93,94], glycocalyx degradation [9] and atherosclerosis [92] by generation of ROS and concomitant release of neutrophil granule proteins associated with atherogenesis including neutrophil elastase and myeloperoxidase [95,96]. Vice versa, both enzymes also play a crucial role in the induction of NETosis [97,98]. Moreover, ROS stimulate the formation of pro-inflammatory MPs [83], Figure 1.
In atherosclerosis, oxLDL is also a potent stimulus for NET formation. Awasthi et al. have shown that incubation of neutrophils with oxLDL leads to NETosis in a time- and concentration-dependent manner [99] oxLDL is likely to induce NETosis via TLR-2 and TLR-6 as their blockade resulted in significantly reduced NETosis [99]. Furthermore, the recognition of NETs promotes the production of an IL-1β precursor in macrophages and the subsequent release of mature IL-1β upon phagocytosis of oxLDL [100]. This in turn causes IL-17 production from T-cells [100]; IL-17 is a potent chemokine perpetuating the pro-atherogenic inflammatory environment [100]. In addition, oxidative stress induced by NET-associated enzymes including myeloperoxidase and NO synthetase is considered to promote oxidation of high-density lipoprotein (HDL), therefore rendering this inherently anti-atherosclerotic protein dysfunctional [101].
From a clinical perspective, NETs also offer relevant insight into the mechanisms of atherothrombosis [102,103]. Activated neutrophils and NETs were detected in about 90% of thrombi from patients with acute myocardial infarction and NET load correlated with infarct size and resolution of ST-segment elevation [103].

2.4. The role of inflammation in aneurysm formation

The most common location of aortic aneurysms is the infrarenal segment of the abdominal aorta [104]. While often asymptomatic, abdominal aortic aneurysms (AAA) are associated with significant mortality. In the UK, ruptured AAAs account for 7.5 and 3.7 deaths per 100.000 for men and women, respectively, while in the Mediterranean, these numbers are closer to 1.0 – 2.8 per 100.000 per year [105].
The presence of leukocytes [106,107], enzymes degrading ECM in the aortic wall [108,109] and excessive levels of inflammatory parameters [25] have been reported hallmarks of aneurysm formation. The risk factors associated with aneurysm formation are similar to those for atherosclerosis, namely, among others, male sex, dyslipidaemia and tobacco use [110,111].
While DM is a common risk factor for atherogenesis [22], it is associated with a reduction of morbidity due to AAA by almost a third [112]. DM enhances atherosclerosis progression and vascular calcification [113,114]. The latter accounts for a higher cardiovascular risk and higher mortality in diabetic patients and those with chronic kidney disease [115,116].
The observed survival benefit in diabetic patients with AAA is not yet fully elucidated and may be attributed towards DM itself or concomitant metformin therapy [117] as randomised placebo-controlled trials investigating metformin-repurposing for the prevention of AAA formation and enlargement are still ongoing [118,119,120]. Furthermore, increased vascular calcification is linked to aortic aneurysmal wall stabilization and slower AAA progression [121].
The estimated rate of comorbidity of atherosclerosis and aneurysm formation is about 27% - 53% [122,123]. Atherosclerosis and aneurysm formation are both increasingly regarded as inflammatory diseases, as leukocyte and platelet activation is a key factor for the pathogenesis of both disease entities [124,125,126]. AAA pathogenesis is characterised by infiltration of the aortic wall by neutrophils, macrophages and lymphocytes [127]. Subsequently, secreted enzymes, proteases and cytokines lead to ECM degradation, e.g., of collagen and elastin fibres, and an increased rate of apoptosis of smooth muscle cells promoting destruction and dilation of the vessel wall [128].
Macrophages are thought to play a decisive role in AAA formation [126]. Accumulation of macrophages during aneurysm formation can be observed in all three layers of the vessel wall, but is particularly pronounced in the adventitia and the intraluminal thrombus (ILT) [129,130]. While the role of different subsets of macrophages in the stages of AAA development is not yet fully elucidated, it is hypothesised that bone-marrow derived macrophages extravasate into the aortic wall and contribute to inflammatory processes and early stages of AAA formation [126].
The recruitment of monocytes into the aortic wall has been shown to be largely dependent on monocyte chemotactic protein 1 (MCP-1) and IL-6 produced by aortic adventitial fibroblasts [131]. Tieu et al. have shown that recruited monocytes locally mature into macrophages, which in turn stimulate the activation of adjacent fibroblasts and the release of further pro-inflammatory cytokines, forming a vicious circle of macrophage-fibroblast activation [131,132].
The pathways involved in AAA monocyte recruitment are also thought to play a decisive role in atherogenesis [133]. The infusion of angiotensin 2 in an apolipoprotein-E-deficient mouse model prone to atherosclerosis was not only shown to increase the severity of atherosclerotic lesions, but also promote AAA formation [134]. Upon stimulation by angiotensin 2, aortic adventitial fibroblasts release MCP-1 and IL-6, which cause monocyte recruitment, differentiation, and cytokine release [131,132].
The chemokine receptor 2 (CCR-2) signal, which is induced by MCP-1, plays a central role in various inflammatory diseases including cancer and CVD [135]. Tieu et al. have demonstrated that the knock-out of CCR-2 resulted in significantly reduced adventitial fibroblast proliferation in a murine model of AAA formation [131]. Conversely, the transfer of CCR-2 positive monocytes resulted in restored proliferation and restored AAA formation [131]. The MCP-1/CCR-2 axis is thought to be crucial to the initiation of atherogenesis by promoting monocyte accumulation in atherosclerotic lesions [131,132]. In addition, levels of MCP-1/CCR-2 expression are associated with plaque vulnerability [136].
The activation of TLR-2 and TLR-4 and their downstream signalling pathways including among others MyD88, NF-ĸB, and mitogen-activated protein kinase is also considered a relevant driver of both, aneurysm formation and atherosclerosis [34,137,138]. As a consequence, inhibition of the TLR-4/MyD88/NF-ĸB pathway by statins conveys anti-inflammatory and anti-atherosclerotic properties [21].
Neutrophils are considered to be both regulators and effector cells of inflammation [139]. In the context of AAA formation, activated neutrophils contribute to chronic inflammation mainly by releasing ROS, NETs, histones and neutrophil granule proteins [140,141,142].
The formation of an ILT is frequently observed in progressive AAA and a risk factor for AAA rupture [143,144]. An ILT with concomitant platelet activation contributes to inflammation, vessel remodelling, and ECM degradation [145]. Platelets activated in the context of ILT formation secrete pro-inflammatory cytokines and chemokines, which in turn stimulate leukocyte recruitment, activation and, ultimately, AAA progression [144,145,146,147].
Klopf et al. have reviewed various parameters including neutrophil-derived markers of inflammation, e.g., gelatinase-associated lipocalin [148,149], neutrophil elastase [150], myeloperoxidase [151,152], MMP [153] and NETs [154] as potential biomarkers for prognosis in AAA [25]. While the exact mechanisms, which lead to aortic wall inflammation and leukocyte recruitment are not yet fully elucidated, these findings illustrate the involved processes and may help establish a better understanding of both factors determining prognosis and potential new therapeutic targets in AAA [25].
Importantly, inflammatory processes evoked by different infections, e.g., those with Porphyromonas gingivalis, Epstein-Barr virus, cytomegalovirus or papillomavirus are also being discussed as potential promoter of local inflammation and risk factor for aneurysm formation [155,156]. In fact, the presence of periodontal disease, with mainly Porphyromonas gingivalis [157], and the occurrence of periodontal bacteria in the bloodstream or in the vascular lesion is associated with AAA formation [158,159,160]. In patients with AAA, cytomegalovirus was detected about five times as often as in healthy volunteers and was associated with increased levels of pro-inflammatory TNF-α and higher rates of arterial hypertension and CAD [156,161].
In addition to inflammatory conditions, aneurysms may also occur on the basis of pathogenic gene variants [162]. The variants best established generally concern structural proteins, e.g., procollagen type III α1, transforming growth factor β and fibrillin 1 as seen in Marfan syndrome [162].

2.5. Vasculitis

Vasculitides are a group of rare diseases characterised by auto-immune inflammation of blood vessels of various sizes [163]. The introduction of targeted immuno-modulatory agents has improved prognosis and reduced mortality due to exacerbated vasculitis or infection drastically [164]. In patients with vasculitis, CVD is now the most common cause of death [165,166]. In addition, a chronic inflammatory state is independently associated with long-term mortality in patients with Raynaud's phenomenon [167].
Surrogate markers of endothelial dysfunction, e.g., endothelium-dependent dilation of the brachial artery or pulse-wave velocity, are increased in the context of AAV [168].
An acceleration of atherogenesis in patients with predominantly AAV has been previously demonstrated [169]. One study evaluated atherosclerotic plaque burden by means of ultrasound and found that, compared to a healthy control cohort, AAV patients had a significantly higher plaque burden in the abdominal aorta and the carotid and the femoral arteries [169]. It may be hypothesised that a continuous sub-clinical inflammatory state contributes to the acceleration of atherogenesis in these patients [170]. The shedding of the endothelial glycocalyx, endothelial dysfunction [171] with enhanced expression of leukocyte adhesion factors and leukocyte-diapedesis into the vessel wall promotes a pro-inflammatory and pro-coagulatory state [172,173]. Furthermore, risk factors commonly associated with atherosclerosis are more prevalent in patients with AAV [171,174].
Despite advances in immune-modulatory therapy, glucocorticoids, which are frequently used for induction therapy, are also associated with significant toxicity. Traditional risk factors for atherosclerosis, i.e., hypertension, hyperglycaemia and dyslipidaemia, are exacerbated in patients with frequent glucocorticoid intake [175]. Risk factor management for the prevention of cardiovascular events in these high-risk patients has been shown to be insufficient in many patients [14,176].
However, it must be noted that solid evidence of accelerated atherosclerosis has thus far only been established for Kawasaki’s disease, Takayasu’s arteritis, and, most prominently, AAV [170].

3. Current and novel therapeutic targets and strategies

Current guidelines in PAD emphasise on metabolic risk management including reduction of LDL levels, antiplatelet therapy, management of hypertension, glycaemic control, smoking cessation, and physical activity [177,178,179,180,181]. While some of these interventions also exert a positive influence on systemic and local levels of inflammation [20,182,183], therapeutic strategies, which directly intercept pro-inflammatory signalling pathways may be promising and are only beginning to be established [18]. In the following, we highlight some of the anti-inflammatory drugs and concepts.

3.1. Statins

The management of dyslipidaemia and specifically reduction of elevated levels of LDL has been a cornerstone of preventive cardiovascular medicine for many years. Statins, which inhibit the hepatic 3-hydroxy-3-methylglutaryl-coenzyme-A reductase and therefore impair cholesterol synthesis [184], are first line agents in treatment of CVD [18,177].
However, there is accumulating evidence that the positive effects of statins on atherosclerosis go beyond LDL reduction [185]. In fact, statin therapy has been demonstrated to result in increased endothelial biosynthesis of NO with a positive effect on the vascular tone and platelet aggregation, and even plaque stabilisation or regression [185]. It has been suggested that statins also interfere with various endothelial adhesion molecules and therefore reduce leukocyte transmigration [186]. In patients with AAA, anti-inflammatory properties of simvastatin treatment were shown by reduced TNF-α as well as cyclosporine A levels and decreased amount of phosphorylated extracellular-signal regulated kinases (ERK) 1/2 [187,188]. Furthermore, a significant difference in the concentration of MMPs and their inhibitors was observed in aneurysmal wall tissue and ILT [189]. In addition, simvastatin reduced monocyte tissue factor expression in response to LPS treatment in healthy volunteers [190].
Anti-inflammatory effects of statins also include the reduction c-reactive protein (CRP) concentration regardless of LDL levels.[191] Utilising fluorodeoxyglucose-positron emission tomography and computed tomography imaging, Tawakol et al. demonstrated a dose dependent anti-inflammatory effect of atorvastatin in patients with suspected or proven atherosclerosis [192]. In a recent meta-analysis of three randomised controlled trials in patients receiving statins, inflammation as assessed by CRP was a stronger predictor than LDL for cardiovascular events and death [193].
Beyond CVD, anti-inflammatory effects of statin therapy have also been demonstrated in other diseases. In chronic kidney disease, statins have resulted in levels of CRP [194] and in asthma, statins reduced both symptoms and biomarkers of inflammation [195].

3.2. Colchicine

Colchicine has been used for centuries for the treatment of inflammatory diseases including gout and familial Mediterranean fever [17]. The pharmacodynamics of colchicine are complex and they exert multiple effects on cellular signal transduction [17]. Colchicine has been demonstrated to reduce neutrophil chemotaxis by inhibition of the polymerisation of tubulin [196], reduced the expression of TNF-α [17,197], and attenuated the exocytosis of neutrophil granules [17,198]. Though less well elucidated, inhibitory effects of colchicine on the NLRP3 inflammasome have been observed and may inhibit the proliferation of smooth muscle cells as seen in the context of atherosclerosis [199].
The discovery of colchicine’s pleiotropic effects on inflammation and atherosclerosis [200,201] have led to the initiation of the phase III randomised placebo-controlled Colchicine Cardiovascular Outcomes Trial (COLCOT) trial [202]. Therein, 4745 patients who have suffered from myocardial infarction within the previous 30 months were randomised to receive either 0.5mg of colchicine or placebo. The risk for the primary end-point of cardiovascular death and serious cardiovascular events was reduced significantly in the colchicine group with a hazard ratio (HR) of 0.77 [202].
Based on these findings, the 2021 guidelines on CVD prevention by the European Society of Cardiology have now included a class IIb, level A recommendation to consider low-dose colchicine in secondary prevention of CVD [18].
In the future, colchicine may also be applied in the context of acute myocardial infarction. A recent study by Wang et al. showed that an infusion of colchicine-loaded nanoparticles subsequent to myocardial infarction reduced inflammation and myocardial infarct size by 45% on average [203]. These findings highlight the potential of colchicine as a promising anti-inflammatory agent in CVD, both in the acute as well as the chronic setting [204].

3.3. Eicosapentaenoic acid ethyl ester

Eicosapentaenoic acid ethyl ester and its purified prescription form icosapent ethyl (IPE) is an omega-3 fatty acid and has demonstrated several anti-inflammatory and anti-atherosclerotic properties [205]. In a large randomised placebo-controlled trial in patients with established CVD or several risk factors for the development of CVD and elevated triglyceride levels, the addition of IPE to standard statin treatment resulted in a highly significant risk reduction (HR 0.75) for ischaemic events and cardiovascular death when compared to placebo [206]. Furthermore, Budoff et al. documented a significant reduction in plaque size in patients with established CAD who received IPE when compared to a control group [207].
The exact mechanisms leading to these results remain to be established, especially as allocation to the IPE cohort in the Reduction of Cardiovascular Events with EPA - Intervention Trial (REDUCE-IT) trial did not result in a relevant reduction of inflammatory parameters [206]. In other trials, however, a high-sensitivity CRP and lipoprotein-associated phospholipase A2 lowering effect has been documented [205].
It is hypothesised that protective effects with regard to CVD may be attributed to the production of the bioactive IPE metabolites thromboxane A3 and prostacyclin, which exert antithrombotic influence on platelets and promote endothelial vasodilation [208]. In addition, IPE integration in cellular membranes also seems to have a biophysical anti-atherogenic effect [208].
The reduction in TLP, which is observed under large doses of IPE is also considered to have protective effects in CVD [209]. As these predominantly transport saturated fatty acids, which are thought to promote activation of the NLRP3 inflammasome, the reduction of TLP levels may also attenuate atherogenesis [208,210].

3.4. Canakinumab and anakinra

The NLRP3 inflammasome is a pro-inflammatory signalling complex with pleotropic effects on cytokine release and cleavage of pro-interleukins [211]. Its activation is mediated by pathogen- and damage associated molecular patterns including, among others, TLR-2 and TLR-4 and results in activation of the IL-1 pathway [211]. In the context of atherogenesis, the NLRP3 inflammasome is activated by the recognition of oxLDL and cholesterol crystals via various receptors in macrophages. The subsequent release and formation of, among others, IL-1β results in activation of endothelial cells, promotes the expression of adhesion molecules and the proliferation of smooth muscle cells, and increases the production of MCP-1 [211].
The monoclonal antibody canakinumab, which targets IL-1β, and anakinra, an IL-1β receptor antagonist, are applied in various immune-mediated disorders [212], and were also considered potential therapeutics in atherosclerosis [213,214,215,216]. The pivotal Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease (CANTOS) trial has demonstrated a dose-dependent effect of canakinumab on systemic levels of inflammation in patients with previous myocardial infarction [15]. In this trial, 150mg of canakinumab every three months reduced the risk of adverse cardiovascular events (HR: 0.85) compared to placebo independently of lipid level lowering [15].

3.5. Glucocorticoids

Glucocorticoids are analogues of endogenous cortisone and constitute a cornerstone of the treatment of various chronic inflammatory conditions [217]. Glucocorticoids exert their pleiotropic effects by binding to intracellular steroid-receptor proteins and regulate gene expression and cellular signalling [218].
However, long-term glucocorticoid excess is also associated with significant undesirable effects including hyperglycaemia [219], arterial hypertension [220], obesity [221], dyslipidaemia [222], and dysregulation of the coagulation cascade [223], all of which are considered well-established risk factors for atherogenesis and adverse cardiovascular events [218]. In patients diagnosed with Cushing’s disease, which is characterised by endogenous overproduction of cortisone, a thickened intimal-medial layer and a lower systolic carotid artery lumen diameter [224] have been observed [225]. Furthermore, the ankle-brachial pressure index is elevated in Cushing’s disease [226]. In large register studies, glucocorticoid prescription has been associated with significant and dose-dependent increases in the risk for CVD [225,227,228,229].

3.6. Antidiabetic drugs

Several antidiabetic drugs have been proposed to promote anti-inflammatory pathways or inhibit pathways associated with inflammation [230].
Sodium-glucose cotransporter 2 (SGLT-2) inhibitors and Glucagon-like peptide 1 (GLP-1) receptor agonists have originally been developed for the control of hyperglycaemia in patients with DM type 2. However, recent studies have proposed potential concomitant anti-inflammatory effects of these substances [230].
SGLT-2 inhibitors prevent glucose reabsorption in the proximal tubule and cause glucosuria, therefore lowering glucose levels in serum [231]. Large-scale clinical trials have demonstrated that SGLT-2 inhibitors significantly reduce the risk for hospitalisation and cardiovascular death in patients with heart failure [232,233,234,235]. Today, SGLT-2 inhibitors constitute an integral component of heart failure therapy and are recommended in the most recent heart failure guidelines [236].
In addition to pleiotropic metabolic and cardiovascular effects of SGLT-2 inhibitors, which have been described in detail by Hou et al., anti-inflammatory and anti-atherogenic properties going beyond metabolic risk reduction were observed [237,238]. In murine models, SGLT-2 inhibitors were demonstrated to reduce the expression of MCP-1 and IL-1β [239,240,241]. A reduction of inflammasome activation and the subsequent release of IL-1β was also found in patients with DM [242]. Furthermore, macrophage behaviour seems to be influenced by SGLT-2 inhibitors as increased autophagy and cholesterol efflux were observed in a murine model. Therein, the modulation of an adenosine-monophosphate-kinase (AMP-K)-dependent pathway resulted in attenuated atherosclerosis [243].
Among a plethora of metabolic effects, GLP-1 receptor agonists were also found to exert a robust anti-inflammatory effect by lowering the levels of ROS generation and reducing NF-ĸB activation as well as expression of mRNA coding for, among others, TNF-α, IL-1β, TLR-2 and TLR-4 [244,245]. In apolipoprotein E and LDL receptor deficient mice, the application of liraglutide or semaglutide resulted in decreased aortic intima thickening, and inhibited plaque progression compared to a control group [246]. Semaglutide was also demonstrated to alter the expression of genes associated with inflammation and atherogenesis including IL-6, chemokine ligand 2, MMPs and proteins relevant for cholesterol metabolism [246]. In-vitro, GLP-1 receptor agonists have been shown to modulate macrophage behaviour and reduce the secretion of pro-inflammatory cytokines (e.g., interferon γ, TNF-β, IL-1β, IL-2, IL-6), and promote the release of anti-inflammatory IL-10 [247].
Clinical trials in patients with DM type 2 showed a consistent reduction in CRP, TNF-α and malondialdehyde [248]. Cardiovascular outcome was also improved in patients with DM type 2 receiving GLP-1 receptor agonists treatment in some, but not all clinical trials [249].
Metformin used to be considered the established first-line therapy for patients with DM type 2 for decades [250]. In recent years, the attention has been increasingly focused on the effects of metformin beyond control of hyperglycaemia [251].
Though the exact pharmacodynamic properties of metformin have yet to be fully elucidated, there is some mechanistic evidence that metformin may attenuate atherogenesis [252,253]. In vitro studies have demonstrated that metformin attenuates foam cell formation and phagocytosis of oxLDL [254]. On a molecular level, metformin administration resulted in reduced expression of the macrophage scavenger receptor A and CD36, both of which are involved oxLDL uptake [254,255,256]. The expression of inflammatory markers, including IL-1β, IL-18, cysteinyl aspartate specific proteinase-1, NLRP3 and ROS was reduced in macrophages treated with metformin [254]. In a rabbit model of atherosclerosis, treatment with metformin resulted in significantly decreased burden of atherosclerotic lesions with lower macrophage content [257]. In addition to reducing plasma levels of MCP-1, CRP and TNF-α, metformin also reduced the expression of mRNA coding for vascular adhesion molecule 1 and intercellular adhesion molecule 1, therefore ameliorating adhesion of monocytes to endothelial cells [257]. Furthermore, the activation of AMP-K, the inhibition of NF-ĸB expression, and NET formation are also considered potentially anti-atherogenic properties of metformin [252,258,259].
Though there is some evidence that metformin therapy has a positive effect on cardiovascular outcomes in patients with DM type 2 [252,253,260], data is hitherto contradictory for non-diabetic patients [261,262,263,264]. The ongoing Glucose Lowering in Non-diabetic hyperglycaemia trial (GLINT) [265,266] may help to determine the role of metformin in prevention of CVD in these patients [264].
Dipeptidyl peptidase 4 (DPP4) inhibitors or gliptins are established second-line anti-diabetic agents, which exert their effect by inhibition of proteolysis of endogenous GLP-1 and glucose-dependent insulinotropic polypeptide [267,268].
DPP4 is involved in the cleavage of chemokines and cytokines, therefore potentially exhibiting a role in cell-cell communication [269]. Furthermore, it is suggested that DPP4 induces endothelial dysfunction, promotes the expression of TLR-2 and TLR-4 and subsequent activation of inflammatory pathways [269,270,271]. The inhibition of DPP4 is therefore considered to attenuate inflammation and improve endothelial function, potentially by stimulation of NO synthesis and reduction of endothelin 1 expression [269,272,273,274]. Gliptins have also been demonstrated to reduce the expression of vascular adhesion molecules and MCP-1, TNF-α, IL-1β, and IL-6, as well as LDL- or lipopolysaccharide-induced foam cell formation, most likely due to attenuation of NF-ĸB and c-Jun N-terminal kinase signalling and AMP-K phosphorylation [269,272]. There is evidence that DPP4 inhibitors can increase the number of circulating EPC [274,275,276] and repress the activation of the NLRP3 inflammasome [274,277]. On a systemic level, reduced hepatic production of TLP [278] and an accelerated postprandial lipid metabolism [279] have been observed under DPP4 therapy [269].
While pre-clinical data may look promising and gliptins have demonstrated to reduce established risk factors for CVD in patients with DM type 2 including dyslipidaemia and hypertension [269], randomised controlled trials have thus far failed to demonstrate a beneficial effect beyond glycaemic control with regard to cardiovascular outcomes [268,280,281,282,283].
Table 1. Potential novel applications of established therapeutic agents.
Table 1. Potential novel applications of established therapeutic agents.
Standard Application Proposed mechanism Clinical effect Selected evidence
Statins LDL reduction
secondary prevention of CVD
NO synthesis ↑
leukocyte adhesion ↓
cardiovascular events & death ↓ Tawakol et al. [192]
Ridker et al. [193]
Colchicine gout
familial Mediterranean fever
leukocyte chemotaxis ↓
TNF-α ↓
exocytosis of neutrophil granules ↓
NLRP3 activation ↓
cardiovascular events and death following MI ↓ Tardif et al. [202]
Chen et al. [204]
Icosapent ethyl no previous application active metabolites (thromboxane A3, prostacyclin) ↑
biophysical effect on cell membranes
TLP ↓
cardiovascular events & death in established CVD or risk for CVD & hypertriglyceridemia
plaque progression ↓
Bhatt et al. [206]
Budoff et al. [207]
Glucocorticoids various inflammatory conditions modulation of gene transcription risk of CVD including CAD, PAD ↑ Pujades-Rodriguez et al. [229]
Macleod et al. [225]
IL-1β antagonists cryopyrin-associated periodic syndromes
gout
familial Mediterranean fever
macrophage activation syndrome
recurrent pericarditis
rheumatoid arthritis
systemic juvenile idiopathic arthritis
endothelial activation ↓
adhesion molecule expression ↓ smooth muscle cell proliferation ↓ MCP-1 ↓
cardiovascular events and death in patients with elevated CRP and MI Ridker et al. [15]
SGLT-2 inhibitors DM type 2 NLRP3/IL-1β/MCP-1 pathway ↓
AMP-K pathway ↑
cholesterol efflux and autophagy in macrophages ↑
hospitalization and cardiovascular death in heart failure McMurray et al. [232]
Solomon et al. [284]
Packer et al. [285]
Anker et al. [235]
GLP-1 receptor agonists DM type 2 ROS generation ↓
NF-ĸB activation ↓
INF-γ, MMP, TNF-β, IL-1β, IL-2, IL-6 from macrophages↓
IL-10 ↑
CRP, TNF-α ↓
Trials inconclusive
Bethel et al. [249]
Metformin DM type 2 oxLDL phagocytosis ↓
scavenger receptor A, CD36 ↓
NLRP3, ROS, MCP-1, CRP, TNF-α
NET formation ↓
NF-ĸB activation ↓
AMP-K pathway ↑
all-cause death in DM type 2 & atherothrombosis↓
Roussel et al. [260]
GLINT (ongoing) [265,266]
DDP4 inhibitors DM type 2 NO synthesis ↑
endothelin 1 ↓
MCP-1, TNF-α, IL-1β, IL-6 ↓
NF-ĸB activation ↓
AMP-K & c-Jun N-terminal kinase pathway ↑
NLRP3 activation ↓
TLP ↓
dyslipidaemia & hypertension in patients with DM type 2 ↓
cardiovascular death, MI, stroke in patients with DM type 2 ~
Rosenstock et al. [280]
Green et al. [281]
Scirica et al. [282]
White et al. [283]
Abbreviations: AMP-K, adenosine-monophosphate-kinase; CAD, coronary artery disease; CD, cluster of differentiation; CRP, c-reactive protein; CVD, cardiovascular disease; IL, interleukin; INF, interferon; LDL, low-density lipoprotein; MCP-1, monocyte chemotactic protein 1; MI, myocardial infarction; NF-ĸB, nuclear factor kappa B; NLRP3, nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3; NO, nitric oxide; oxLDL, oxidised low-density lipoprotein; PAD, peripheral artery disease; ROS, reactive oxygen species; TLP, triglyceride-rich lipoprotein; TNF, tumour necrosis factor.

3.7. Antiplatelet therapy

Current antiplatelet regimes interfere with thromboinflammatory pathways; however, platelet reactivity is to a wide extent also determined by alternative platelet activation pathways despite adequate guideline-driven platelet inhibition [178,286,287,288,289]. Platelet activation and the formation of platelet-leukocyte aggregates is a hallmark of inflammatory atherosclerotic processes [290].
Recently, there is increasing evidence, that platelet-to-lymphocyte ratio (PLR) - a simple marker calculated from the blood count - is related to platelet activation and ischemic events in CVD [290,291,292,293]. Moreover, a high PLR is also related to target vessel restenosis after revascularization in PAD [294].
Platelet reactivity can be modulated by various conditions such as age [295], sex [296], HDL levels [297,298], cytochrome P450 2C9/2C19 polymorphism [299,300], but also anaemia [301,302]. The latter is often associated with chronic inflammation and implicated in both, thrombotic and bleeding events [303,304]. Moreover, iron deficiency is associated with major adverse cardiovascular and leg events in PAD, suggesting anemia as possible therapeutic target [305].
Another aspect relevant for pain management of PAD patients with critical ischaemia is the drug interaction of morphine or fentanyl, as a decrease in plasma levels and/or antiplatelet effects of P2Y12 inhibitors can occur [306,307,308,309,310]. In contrast, morphine did not exert a significant effect on aspirin-mediated platelet inhibition [311].
Platelet activation has furthermore a high impact on platelet metabolism and redox balance [312], hence attenuation of platelet reactivity may have beneficial effects on redox processes.

3.8. Attenuation of ischaemia-reperfusion injury

The counter regulation of the decrease in NO bioavailability due to I/R injury is one possible therapeutic approach to minimize endothelial dysfunction. Herein, dietary supplementation of NO donors, enhancers of NO availability, NO synthase inducers and antioxidants has been studied [313,314].
Interestingly, pleiotropic effects of statins include the increase in endothelial NO synthase expression and function [315]. In patients with AAAs, simvastatin reduced lipid peroxidation level as demonstrated by lower 4-hydroxy-trans-2-nonenal concentration [316].
Moreover, simvastatin has been shown to induce heme oxygenase 1 (HO-1), an enzyme with antiinflammatory, antioxidant, antithrombotic, pro-angiogenetic and antiapoptotic properties [317,318,319,320]. Induction of HO-1 can also be achieved by heme arginate infusion, which improves reperfusion patterns during I/R injury [321,322,323].
Further concepts to ameliorate I/R injury include a plethora of therapies such as blocking of intercellular adhesion molecule 1, administration of polymerised albumin, colchicine, tocilizumab, anakinra, and revacept as well as pre-, per- and postconditioning [324,325,326,327,328,329]. Another important cornerstone in the therapy of risk factors in PAD patients are angiotensin converting enzyme inhibitors, which ameliorate (micro-)vessel perfusion by increasing nitrite production [330]. In addition, ROS formation is amongst others reduced by SGLT-2 inhibitors and GLP-1 receptor agonists [331,332,333].

3.9. Physical exercise

Regular physical exercise is a cornerstone in the prevention of CVD [18]. Besides improving endothelial function by increasing circulating EPC numbers [334], low intensity aerobic training also increases capillary density in skeletal muscle [335]. Furthermore, significant positive effects on established cardiovascular risk factors, e.g., hyperglycaemia [336], hypertension [337], and dyslipidaemia [335] have been demonstrated and a reduction in systemic markers of inflammation can be observed with physical exercise [338]. These include, among others, TNF-α and CRP as well as the expression of vascular adhesion molecules; all of which are considered to be of crucial importance in the pathogenesis of atherosclerosis [338]. In addition, protective effects of previous physical activity may also improve outcome following cardiovascular events [339,340].

4. Discussion

PAD is increasingly regarded as an inflammatory process affecting not only the macro- but also the microvasculature [10,178,181]. Herein, modification of glycocalyx conformation, charges and density leads to endothelial dysfunction [341]. Thromboinflammatory processes involving leukocyte and platelet activation as well as ETosis are central pathomechanisms in plaque formation [44,342].
Altered flow conditions due to plaque formation promote further disease progression by modulation of endothelial cell metabolism [343]. Upregulated 6-phosphofructokinase/2,6-bisphosphatase 3 (PFKFB3), which is a key enzyme in endothelial glycolysis, gives an impulse for angiogenesis with immature vessel formation, thus enhancing plaque vulnerability [343,344,345]. Moreover, rupture of the atheroma followed by atherothrombosis may also be triggered by (N)ETosis, as neutrophil, macrophage and mast cell activation play a critical role in atherosclerotic lesions [342,346,347].
In addition, NETs were shown to contribute to fibrous vascular occlusion [102]. This may also contribute to systemic microvessel rarefication, which was observed in PAD and other CVD [348,349,350,351].
NET release promoting subsequent microvascular thrombosis is regarded as hallmark of atherosclerotic processes. The interplay of platelet activation, platelet- leukocyte aggregate formation, ETosis and ROS formation perpetuates thromboinflammation, resulting in altered microvascular fluid filtration, microthrombosis and finally tissue necrosis (compare Fig. 1) [9,352].
Capillary perfusion is also impaired by ROS formation during I/R injury, as it occurs during ischemic vascular diseases [352]. I/R injury also contributes to postischemic capillary no-reflow after successful arterial recanalization [353]. Attenuation of I/R injury to preserve microvascular hemodynamics [354] will be of importance for refinement of interventional PAD treatment.
In the context of the recent SARS-CoV-2 pandemic and the long-term consequences it should be noted, that viral persistence promoting (subclinical) inflammation will have an impact on the vasculature and atherosclerosis [9,355,356,357].
Despite all pharmacotherapeutic progress modulation of the fragile glycocalyx and in consequence preservation of endothelial cell function is demanding. Concepts to reduce endothelial dysfunction by interference with redox processes could hitherto only marginally been integrated into clinical practice [358]. However, different pharmacotherapies such as statins, angiotensin converting enzyme inhibitors, GLP-1 receptor agonists or SGLT-2 inhibitors may ameliorate inflammatory pathways [185,238,245,359]. The reduction of fibrosis and arterial stiffness may directly influence long-term pathogenesis [360].
In addition to pharmacotherapy, exercise training should remain a cornerstone in patients with stable PAD [18]. In particular aerobic exercise training has been shown to upregulate microvessel perfusion [361]. Moreover, the number of circulating EPCs increases in patients with regular endurance training being associated with improved endothelial function [334,362]. Therefore, future concepts should emphasize on preventive strategies [18] including governmental- promoted exercise training and programs to raise awareness for cardiovascular risk factors.  

5. Conclusions

Inflammatory pathways have a critical role in the development, disease perpetuation and complications of atherosclerosis. Novel research results regarding disease pathophysiology imply the need for a paradigm shift in the therapeutic approach to atherosclerotic diseases. In the future, the attenuation of (subclinical) inflammatory processes will become equally important to other risk factor management in the therapy of PAD. However, further studies regarding long- lasting outcome of PAD patients are warranted.

Author Contributions

Conceptualization: P.P.W.; Writing—Original Draft Preparation: M.P. and P.P.W; Writing—Review and Editing: C.N, C.W.K., O.S., T.G., A.J., M.E.G., R.K.; Supervision: P.P.W.; All authors have contributed substantially to the work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Conflicts of Interest

Patricia P. Wadowski has received congress funding from Boehringer-Ingelheim. The other authors declare no conflict of interest directly related to this work.

References

  1. Roth, G. A.; Mensah, G. A.; Johnson, C. O.; Addolorato, G.; Ammirati, E.; Baddour, L. M.; Barengo, N. C.; Beaton, A.; Benjamin, E. J.; Benziger, C. P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol, 2020, 76 (25), 2982–3021. [CrossRef]
  2. Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular Disease in Europe: Epidemiological Update 2016. Eur Heart J, 2016, 37 (42), 3232–3245. [CrossRef]
  3. Woolf, N. The Pathology of Atherosclerosis with Particular Reference to the Effects of Hyperlipidaemia. Eur Heart J, 1987, 8 Suppl E (SUPPL. E), 3–14. [CrossRef]
  4. Hedin, U.; Matic, L. P. Recent Advances in Therapeutic Targeting of Inflammation in Atherosclerosis. J Vasc Surg, 2019, 69 (3), 944–951. [CrossRef]
  5. Raggi, P.; Genest, J.; Giles, J. T.; Rayner, K. J.; Dwivedi, G.; Beanlands, R. S.; Gupta, M. Role of Inflammation in the Pathogenesis of Atherosclerosis and Therapeutic Interventions. Atherosclerosis, 2018, 276, 98–108. [CrossRef]
  6. Geovanini, G. R.; Libby, P. Atherosclerosis and Inflammation: Overview and Updates. Clin Sci (Lond), 2018, 132 (12), 1243–1252. [CrossRef]
  7. Kong, P.; Cui, Z. Y.; Huang, X. F.; Zhang, D. D.; Guo, R. J.; Han, M. Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduct Target Ther, 2022, 7 (1), 131. [CrossRef]
  8. Soehnlein, O.; Libby, P. Targeting Inflammation in Atherosclerosis - from Experimental Insights to the Clinic. Nat Rev Drug Discov, 2021, 20 (8), 589–610. [CrossRef]
  9. Wadowski, P. P.; Panzer, B.; Józkowicz, A.; Kopp, C. W.; Gremmel, T.; Panzer, S.; Koppensteiner, R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int J Mol Sci, 2023, 24 (3), 2492. [CrossRef]
  10. Steven, S.; Daiber, A.; Dopheide, J. F.; Münzel, T.; Espinola-Klein, C. Peripheral Artery Disease, Redox Signaling, Oxidative Stress - Basic and Clinical Aspects. Redox Biol, 2017, 12, 787–797. [CrossRef]
  11. Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
  12. Mason, J. C.; Libby, P. Cardiovascular Disease in Patients with Chronic Inflammation: Mechanisms Underlying Premature Cardiovascular Events in Rheumatologic Conditions. Eur Heart J, 2015, 36 (8), 482–489. [CrossRef]
  13. Arida, A.; Protogerou, A.; Kitas, G.; Sfikakis, P. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int J Mol Sci, 2018, 19 (7), 1890. [CrossRef]
  14. Poledniczek, M. H. Coronary Artery Disease in Granulomatosis with Polyangiitis: A Review. SN Comprehensive Clinical Medicine 2022 4:1, 2022, 4 (1), 1–10. [CrossRef]
  15. Ridker, P. M.; Everett, B. M.; Thuren, T.; MacFadyen, J. G.; Chang, W. H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S. D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med, 2017, 377 (12), 1119–1131. [CrossRef]
  16. Nidorf, S. M.; Fiolet, A. T. L.; Mosterd, A.; Eikelboom, J. W.; Schut, A.; Opstal, T. S. J.; The, S. H. K.; Xu, X.-F.; Ireland, M. A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. New England Journal of Medicine, 2020, 383 (19), 1838–1847. [CrossRef]
  17. Deftereos, S. G.; Beerkens, F. J.; Shah, B.; Giannopoulos, G.; Vrachatis, D. A.; Giotaki, S. G.; Siasos, G.; Nicolas, J.; Arnott, C.; Patel, S.; et al. Colchicine in Cardiovascular Disease: In-Depth Review. Circulation, 2022, 145 (1), 61–78. [CrossRef]
  18. Visseren, F. L. J.; MacH, F.; Smulders, Y. M.; Carballo, D.; Koskinas, K. C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J. M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J, 2021, 42 (34), 3227–3337. [CrossRef]
  19. Darabseh, M. Z.; Maden-Wilkinson, T. M.; Welbourne, G.; Wüst, R. C. I.; Ahmed, N.; Aushah, H.; Selfe, J.; Morse, C. I.; Degens, H. Fourteen Days of Smoking Cessation Improves Muscle Fatigue Resistance and Reverses Markers of Systemic Inflammation. Sci Rep, 2021, 11 (1), 12286. [CrossRef]
  20. McElroy, J. P.; Carmella, S. G.; Heskin, A. K.; Tang, M. K.; Murphy, S. E.; Reisinger, S. A.; Jensen, J. A.; Hatsukami, D. K.; Hecht, S. S.; Shields, P. G. Effects of Cessation of Cigarette Smoking on Eicosanoid Biomarkers of Inflammation and Oxidative Damage. PLoS One, 2019, 14 (6), e0218386. [CrossRef]
  21. Koushki, K.; Shahbaz, S. K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z. D.; Taba, M. Y.; Banach, M.; Al-Rasadi, K.; Johnston, T. P.; Sahebkar, A. Anti-Inflammatory Action of Statins in Cardiovascular Disease: The Role of Inflammasome and Toll-Like Receptor Pathways. Clin Rev Allergy Immunol, 2021, 60 (2), 175–199. [CrossRef]
  22. Aboyans, V.; Ricco, J. B.; Bartelink, M. L. E. L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J. P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in Collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J, 2018, 39 (9), 763–816. [CrossRef]
  23. Yuan, Z.; Lu, Y.; Wei, J.; Wu, J.; Yang, J.; Cai, Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front Immunol, 2020, 11, 609161. [CrossRef]
  24. Tilson, M. D. Decline of the Atherogenic Theory of the Etiology of the Abdominal Aortic Aneurysm and Rise of the Autoimmune Hypothesis. J Vasc Surg, 2016, 64 (5), 1523–1525. [CrossRef]
  25. Klopf, J.; Brostjan, C.; Neumayer, C.; Eilenberg, W. Neutrophils as Regulators and Biomarkers of Cardiovascular Inflammation in the Context of Abdominal Aortic Aneurysms. Biomedicines, 2021, 9 (9), 1236. [CrossRef]
  26. Reitsma, S.; Egbrink, M. G. A. O.; Heijnen, V. V. T.; Megens, R. T. A.; Engels, W.; Vink, H.; Slaaf, D. W.; van Zandvoort, M. A. M. J. Endothelial Glycocalyx Thickness and Platelet-Vessel Wall Interactions during Atherogenesis. Thromb Haemost, 2011, 106 (5), 939–946. [CrossRef]
  27. Reitsma, S.; Slaaf, D. W.; Vink, H.; Van Zandvoort, M. A. M. J.; Oude Egbrink, M. G. A. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflugers Arch, 2007, 454 (3), 345–359. [CrossRef]
  28. Lipowsky, H. H. Protease Activity and the Role of the Endothelial Glycocalyx in Inflammation. Drug Discov Today Dis Models, 2011, 8 (1), 57. [CrossRef]
  29. van der Poll, T.; Parker, R. I. Platelet Activation and Endothelial Cell Dysfunction. Crit Care Clin, 2020, 36 (2), 233–253. [CrossRef]
  30. Dull, R. O.; Hahn, R. G. The Glycocalyx as a Permeability Barrier: Basic Science and Clinical Evidence. Crit Care, 2022, 26 (1), 273. [CrossRef]
  31. Fels, B.; Kusche-Vihrog, K. It Takes More than Two to Tango: Mechanosignaling of the Endothelial Surface. Pflugers Arch, 2020, 472 (4), 419–433. [CrossRef]
  32. Mitra, R.; O’Neil, G. L.; Harding, I. C.; Cheng, M. J.; Mensah, S. A.; Ebong, E. E. Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target. Curr Atheroscler Rep, 2017, 19 (12), 63. [CrossRef]
  33. Qu, J.; Cheng, Y.; Wu, W.; Yuan, L.; Liu, X. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front Cell Dev Biol, 2021, 9, 730621. [CrossRef]
  34. Panzer, B.; Kopp, C. W.; Neumayer, C.; Koppensteiner, R.; Jozkowicz, A.; Poledniczek, M.; Gremmel, T.; Jilma, B.; Panzer, S.; Wadowski, P. P. Toll- like Receptors as Prothrombotic Drivers in Viral Infections. under review.
  35. Maschalidi, S.; Ravichandran, K. S. Phagocytosis: Sweet Repulsions via the Glycocalyx. Current Biology, 2021, 31 (1), R20–R22. [CrossRef]
  36. Imbert, P. R. C.; Saric, A.; Pedram, K.; Bertozzi, C. R.; Grinstein, S.; Freeman, S. A. An Acquired and Endogenous Glycocalyx Forms a Bidirectional “Don’t Eat” and “Don’t Eat Me” Barrier to Phagocytosis. Current Biology, 2021, 31 (1), 77-89.e5. [CrossRef]
  37. Marki, A.; Esko, J. D.; Pries, A. R.; Ley, K. Role of the Endothelial Surface Layer in Neutrophil Recruitment. J Leukoc Biol, 2015, 98 (4), 503–515. [CrossRef]
  38. Möckl, L. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front Cell Dev Biol, 2020, 8, 253. [CrossRef]
  39. Doster, R. S.; Rogers, L. M.; Gaddy, J. A.; Aronoff, D. M. Macrophage Extracellular Traps: A Scoping Review. J Innate Immun, 2018, 10 (1), 3–13. [CrossRef]
  40. Je, S.; Quan, H.; Yoon, Y.; Na, Y.; Kim, B. J.; Seok, S. H. Mycobacterium Massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth. PLoS One, 2016, 11 (5), e0155685. [CrossRef]
  41. Fu, G.; Deng, M.; Neal, M. D.; Billiar, T. R.; Scott, M. J. Platelet-Monocyte Aggregates: Understanding Mechanisms and Functions in Sepsis. Shock, 2021, 55 (2), 156–166. [CrossRef]
  42. Kaiser, R.; Escaig, R.; Erber, J.; Nicolai, L. Neutrophil-Platelet Interactions as Novel Treatment Targets in Cardiovascular Disease. Front Cardiovasc Med, 2022, 8, 824112. [CrossRef]
  43. Qi, H.; Yang, S.; Zhang, L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front Immunol, 2017, 8, 928. [CrossRef]
  44. Banerjee, S.; Mwangi, J. G.; Stanley, T. K.; Mitra, R.; Ebong, E. E. Regeneration and Assessment of the Endothelial Glycocalyx to Address Cardiovascular Disease. Ind Eng Chem Res, 2021, 60 (48), 17328–17347. [CrossRef]
  45. Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M. T. B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid Med Cell Longev, 2019, 2019, 7092151. [CrossRef]
  46. Katakami, N. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J Atheroscler Thromb, 2018, 25 (1), 27–39. [CrossRef]
  47. Mulivor, A. W.; Lipowsky, H. H. Inflammation- and Ischemia-Induced Shedding of Venular Glycocalyx. Am J Physiol Heart Circ Physiol, 2004, 286 (5), H1672–H1680. [CrossRef]
  48. Dogné, S.; Flamion, B.; Caron, N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol, 2018, 38 (7), 1427. [CrossRef]
  49. Lee, D. H.; Dane, M. J. C.; Van Den Berg, B. M.; Boels, M. G. S.; Van Teeffelen, J. W.; De Mutsert, R.; Heijer, M. Den; Rosendaal, F. R.; Van Der Vlag, J.; Van Zonneveld, A. J.; et al. Deeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion. PLoS One, 2014, 9 (5), e96477. [CrossRef]
  50. Rabelink, T. J.; De Zeeuw, D. The Glycocalyx--Linking Albuminuria with Renal and Cardiovascular Disease. Nat Rev Nephrol, 2015, 11 (11), 667–676. [CrossRef]
  51. Liew, H.; Roberts, M. A.; MacGinley, R.; McMahon, L. P. Endothelial Glycocalyx in Health and Kidney Disease: Rising Star or False Dawn? Nephrology (Carlton), 2017, 22 (12), 940–946. [CrossRef]
  52. Wadowski, P. P.; Kautzky-Willer, A.; Gremmel, T.; Koppensteiner, R.; Wolf, P.; Ertl, S.; Weikert, C.; Schörgenhofer, C.; Jilma, B. Sublingual Microvasculature in Diabetic Patients. Microvasc Res, 2020, 129, 103971. [CrossRef]
  53. Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb, 2018, 25 (9), 771–782. [CrossRef]
  54. Hagensen, M. K.; Mortensen, M. B.; Kjolby, M.; Palmfeldt, J.; Bentzon, J. F.; Gregersen, S. Increased Retention of LDL from Type 1 Diabetic Patients in Atherosclerosis-Prone Areas of the Murine Arterial Wall. Atherosclerosis, 2019, 286, 156–162. [CrossRef]
  55. Singh, S.; Siva, B. V.; Ravichandiran, V. Advanced Glycation End Products: Key Player of the Pathogenesis of Atherosclerosis. Glycoconj J, 2022, 39 (4), 547–563. [CrossRef]
  56. Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
  57. Steiner, S.; Schaller, G.; Puttinger, H.; Födinger, M.; Kopp, C. W.; Seidinger, D.; Grisar, J.; Hörl, W. H.; Minar, E.; Vychytil, A.; et al. History of Cardiovascular Disease Is Associated with Endothelial Progenitor Cells in Peritoneal Dialysis Patients. Am J Kidney Dis, 2005, 46 (3), 520–528. [CrossRef]
  58. Ambasta, R. K.; Kohli, H.; Kumar, P. Multiple Therapeutic Effect of Endothelial Progenitor Cell Regulated by Drugs in Diabetes and Diabetes Related Disorder. Journal of Translational Medicine 2017 15:1, 2017, 15 (1), 1–17. [CrossRef]
  59. He, J.; Xiao, Z.; Chen, X.; Chen, M.; Fang, L.; Yang, M.; Lv, Q.; Li, Y.; Li, G.; Hu, J.; et al. The Expression of Functional Toll-like Receptor 4 Is Associated with Proliferation and Maintenance of Stem Cell Phenotype in Endothelial Progenitor Cells (EPCs). J Cell Biochem, 2010, 111 (1), 179–186. [CrossRef]
  60. Matsumoto, Y.; Adams, V.; Walther, C.; Kleinecke, C.; Brugger, P.; Linke, A.; Walther, T.; Mohr, F. W.; Schuler, G. Reduced Number and Function of Endothelial Progenitor Cells in Patients with Aortic Valve Stenosis: A Novel Concept for Valvular Endothelial Cell Repair. Eur Heart J, 2009, 30 (3), 346–355. [CrossRef]
  61. Stoiber, W.; Obermayer, A.; Steinbacher, P.; Krautgartner, W. D. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans. Biomolecules 2015, Vol. 5, Pages 702-723, 2015, 5 (2), 702–723. [CrossRef]
  62. Ali, M. A. M.; Spinler, S. A. COVID-19 and Thrombosis: From Bench to Bedside. Trends Cardiovasc Med, 2021, 31 (3), 143–160. [CrossRef]
  63. Wadowski, P. P.; Jilma, B.; Kopp, C. W.; Ertl, S.; Gremmel, T.; Koppensteiner, R. Glycocalyx as Possible Limiting Factor in COVID-19. Front Immunol, 2021, 12, 607306. [CrossRef]
  64. Borrmann, M.; Brandes, F.; Kirchner, B.; Klein, M.; Billaud, J. N.; Reithmair, M.; Rehm, M.; Schelling, G.; Pfaffl, M. W.; Meidert, A. S. Extensive Blood Transcriptome Analysis Reveals Cellular Signaling Networks Activated by Circulating Glycocalyx Components Reflecting Vascular Injury in COVID-19. Front Immunol, 2023, 14, 1129766. [CrossRef]
  65. Varga, Z.; Flammer, A. J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A. S.; Mehra, M. R.; Schuepbach, R. A.; Ruschitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet, 2020, 395 (10234), 1417–1418. [CrossRef]
  66. Xu, S. W.; Ilyas, I.; Weng, J. P. Endothelial Dysfunction in COVID-19: An Overview of Evidence, Biomarkers, Mechanisms and Potential Therapies. Acta Pharmacol Sin, 2023, 44 (4), 695–709. [CrossRef]
  67. Ratajczak, J.; Wysoczynski, M.; Hayek, F.; Janowska-Wieczorek, A.; Ratajczak, M. Z. Membrane-Derived Microvesicles: Important and Underappreciated Mediators of Cell-to-Cell Communication. Leukemia, 2006, 20 (9), 1487–1495. [CrossRef]
  68. Chen, Y. T.; Yuan, H. X.; Ou, Z. J.; Ou, J. S. Microparticles (Exosomes) and Atherosclerosis. Curr Atheroscler Rep, 2020, 22 (6), 23. [CrossRef]
  69. Loyer, X.; Vion, A. C.; Tedgui, A.; Boulanger, C. M. Microvesicles as Cell-Cell Messengers in Cardiovascular Diseases. Circ Res, 2014, 114 (2), 345–353. [CrossRef]
  70. Février, B.; Raposo, G. Exosomes: Endosomal-Derived Vesicles Shipping Extracellular Messages. Curr Opin Cell Biol, 2004, 16 (4), 415–421. [CrossRef]
  71. Kalluri, R.; LeBleu, V. S. The Biology, Function, and Biomedical Applications of Exosomes. Science, 2020, 367 (6478), eaau6977. [CrossRef]
  72. Hosseinkhani, B.; Kuypers, S.; van den Akker, N. M. S.; Molin, D. G. M.; Michiels, L. Extracellular Vesicles Work as a Functional Inflammatory Mediator Between Vascular Endothelial Cells and Immune Cells. Front Immunol, 2018, 9, 1789. [CrossRef]
  73. Wendt, S.; Goetzenich, A.; Goettsch, C.; Stoppe, C.; Bleilevens, C.; Kraemer, S.; Benstoem, C. Evaluation of the Cardioprotective Potential of Extracellular Vesicles - a Systematic Review and Meta-Analysis. Sci Rep, 2018, 8 (1), 15702. [CrossRef]
  74. George, M.; Ganesh, M. R.; Sridhar, A.; Jena, A.; Rajaram, M.; Shanmugam, E.; Dhandapani, V. E. Evaluation of Endothelial and Platelet Derived Microparticles in Patients with Acute Coronary Syndrome. J Clin Diagn Res, 2015, 9 (12), OC09-OC13. [CrossRef]
  75. Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The Role of Nitric Oxide on Endothelial Function. Curr Vasc Pharmacol, 2012, 10 (1), 4–18. [CrossRef]
  76. Huang, P. L.; Huang, Z.; Mashimo, H.; Bloch, K. D.; Moskowitz, M. A.; Bevan, J. A.; Fishman, M. C. Hypertension in Mice Lacking the Gene for Endothelial Nitric Oxide Synthase. Nature, 1995, 377 (6546), 239–242. [CrossRef]
  77. Gimbrone, M. A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res, 2016, 118 (4), 620–636. [CrossRef]
  78. Stary, H. C. Natural History and Histological Classification of Atherosclerotic Lesions: An Update. Arterioscler Thromb Vasc Biol, 2000, 20 (5), 1177–1178. [CrossRef]
  79. Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid Redox Signal, 2014, 20 (7), 1126–1167. [CrossRef]
  80. Incalza, M. A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascul Pharmacol, 2018, 100, 1–19. [CrossRef]
  81. Ci, H. B.; Ou, Z. J.; Chang, F. J.; Liu, D. H.; He, G. W.; Xu, Z.; Yuan, H. Y.; Wang, Z. P.; Zhang, X.; Ou, J. S. Endothelial Microparticles Increase in Mitral Valve Disease and Impair Mitral Valve Endothelial Function. Am J Physiol Endocrinol Metab, 2013, 304 (7), E695–E702. [CrossRef]
  82. Densmore, J. C.; Signorino, P. R.; Ou, J.; Hatoum, O. A.; Rowe, J. J.; Shi, Y.; Kaul, S.; Jones, D. W.; Sabina, R. E.; Pritchard, K. A.; et al. Endothelium-Derived Microparticles Induce Endothelial Dysfunction and Acute Lung Injury. Shock, 2006, 26 (5), 464–471. [CrossRef]
  83. Brodsky, S. V.; Zhang, F.; Nasjletti, A.; Goligorsky, M. S. Endothelium-Derived Microparticles Impair Endothelial Function in Vitro. Am J Physiol Heart Circ Physiol, 2004, 286 (5), H1910–H1915. [CrossRef]
  84. Mause, S. F.; Weber, C. Microparticles: Protagonists of a Novel Communication Network for Intercellular Information Exchange. Circ Res, 2010, 107 (9), 1047–1057. [CrossRef]
  85. Lukasik, M.; Rozalski, M.; Luzak, B.; Michalak, M.; Ambrosius, W.; Watala, C.; Kozubski, W. Enhanced Platelet-Derived Microparticle Formation Is Associated with Carotid Atherosclerosis in Convalescent Stroke Patients. Platelets, 2013, 24 (1), 63–70. [CrossRef]
  86. Lin, Z. B.; Ci, H. B.; Li, Y.; Cheng, T. P.; Liu, D. H.; Wang, Y. S.; Xu, J.; Yuan, H. X.; Li, H. M.; Chen, J.; et al. Endothelial Microparticles Are Increased in Congenital Heart Diseases and Contribute to Endothelial Dysfunction. J Transl Med, 2017, 15 (1), 4. [CrossRef]
  87. Xie, Z.; Wang, X.; Liu, X.; Du, H.; Sun, C.; Shao, X.; Tian, J.; Gu, X.; Wang, H.; Tian, J.; et al. Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization. J Am Heart Assoc, 2018, 7 (5), e007442. [CrossRef]
  88. Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D. S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science, 2004, 303 (5663), 1532–1535. [CrossRef]
  89. Rada, B. Neutrophil Extracellular Traps. Methods Mol Biol, 2019, 1982, 517–528. [CrossRef]
  90. Schönrich, G.; Raftery, M. J. Neutrophil Extracellular Traps Go Viral. Front Immunol, 2016, 7, 366. [CrossRef]
  91. Arneth, B.; Arneth, R. Neutrophil Extracellular Traps (NETs) and Vasculitis. Int J Med Sci, 2021, 18 (7), 1532–1540. [CrossRef]
  92. Nappi, F.; Bellomo, F.; Avtaar Singh, S. S. Worsening Thrombotic Complication of Atherosclerotic Plaques Due to Neutrophils Extracellular Traps: A Systematic Review. Biomedicines, 2023, 11 (1), 113. [CrossRef]
  93. Gupta, A. K.; Joshi, M. B.; Philippova, M.; Erne, P.; Hasler, P.; Hahn, S.; Resink, T. J. Activated Endothelial Cells Induce Neutrophil Extracellular Traps and Are Susceptible to NETosis-Mediated Cell Death. FEBS Lett, 2010, 584 (14), 3193–3197. [CrossRef]
  94. Saffarzadeh, M.; Juenemann, C.; Queisser, M. A.; Lochnit, G.; Barreto, G.; Galuska, S. P.; Lohmeyer, J.; Preissner, K. T. Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLoS One, 2012, 7 (2), e32366. [CrossRef]
  95. Nicholls, S. J.; Hazen, S. L. Myeloperoxidase, Modified Lipoproteins, and Atherogenesis. J Lipid Res, 2009, 50 Suppl (Suppl), S346–S351. [CrossRef]
  96. Alfaidi, M.; Wilson, H.; Daigneault, M.; Burnett, A.; Ridger, V.; Chamberlain, J.; Francis, S. Neutrophil Elastase Promotes Interleukin-1β Secretion from Human Coronary Endothelium. J Biol Chem, 2015, 290 (40), 24067–24078. [CrossRef]
  97. Metzler, K. D.; Fuchs, T. A.; Nauseef, W. M.; Reumaux, D.; Roesler, J.; Schulze, I.; Wahn, V.; Papayannopoulos, V.; Zychlinsky, A. Myeloperoxidase Is Required for Neutrophil Extracellular Trap Formation: Implications for Innate Immunity. Blood, 2011, 117 (3), 953–959. [CrossRef]
  98. Metzler, K. D.; Goosmann, C.; Lubojemska, A.; Zychlinsky, A.; Papayannopoulos, V. A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Rep, 2014, 8 (3), 883–896. [CrossRef]
  99. Awasthi, D.; Nagarkoti, S.; Kumar, A.; Dubey, M.; Singh, A. K.; Pathak, P.; Chandra, T.; Barthwal, M. K.; Dikshit, M. Oxidized LDL Induced Extracellular Trap Formation in Human Neutrophils via TLR-PKC-IRAK-MAPK and NADPH-Oxidase Activation. Free Radic Biol Med, 2016, 93, 190–203. [CrossRef]
  100. Warnatsch, A.; Ioannou, M.; Wang, Q.; Papayannopoulos, V. Inflammation. Neutrophil Extracellular Traps License Macrophages for Cytokine Production in Atherosclerosis. Science, 2015, 349 (6245), 316–320. [CrossRef]
  101. Smith, C. K.; Vivekanandan-Giri, A.; Tang, C.; Knight, J. S.; Mathew, A.; Padilla, R. L.; Gillespie, B. W.; Carmona-Rivera, C.; Liu, X.; Subramanian, V.; et al. Neutrophil Extracellular Trap-Derived Enzymes Oxidize High-Density Lipoprotein: An Additional Proatherogenic Mechanism in Systemic Lupus Erythematosus. Arthritis Rheumatol, 2014, 66 (9), 2532–2544. [CrossRef]
  102. Sharma, S.; Hofbauer, T. M.; Ondracek, A. S.; Chausheva, S.; Alimohammadi, A.; Artner, T.; Panzenboeck, A.; Rinderer, J.; Shafran, I.; Mangold, A.; et al. Neutrophil Extracellular Traps Promote Fibrous Vascular Occlusions in Chronic Thrombosis. Blood, 2021, 137 (8), 1104–1116. [CrossRef]
  103. Mangold, A.; Alias, S.; Scherz, T.; Hofbauer, T.; Jakowitsch, J.; Panzenböck, A.; Simon, D.; Laimer, D.; Bangert, C.; Kammerlander, A.; et al. Coronary Neutrophil Extracellular Trap Burden and Deoxyribonuclease Activity in ST-Elevation Acute Coronary Syndrome Are Predictors of ST-Segment Resolution and Infarct Size. Circ Res, 2015, 116 (7), 1182–1192. [CrossRef]
  104. Gillum, R. F. Epidemiology of Aortic Aneurysm in the United States. J Clin Epidemiol, 1995, 48 (11), 1289–1298. [CrossRef]
  105. Al-Balah, A.; Goodall, R.; Salciccioli, J. D.; Marshall, D. C.; Shalhoub, J. Mortality from Abdominal Aortic Aneurysm: Trends in European Union 15+ Countries from 1990 to 2017. Br J Surg, 2020, 107 (11), 1459–1467. [CrossRef]
  106. Treska, V.; Kocova, J.; Boudova, L.; Neprasova, P.; Topolcan, O.; Pecen, L.; Tonar, Z. Inflammation in the Wall of Abdominal Aortic Aneurysm and Its Role in the Symptomatology of Aneurysm. Cytokines Cell Mol Ther, 2002, 7 (3), 91–97. [CrossRef]
  107. Beckman, E. N. Plasma Cell Infiltrates in Atherosclerotic Abdominal Aortic Aneurysms. Am J Clin Pathol, 1986, 85 (1), 21–24. [CrossRef]
  108. Newmans, K. M.; Malon, A. M.; Shin, R. D.; Scholes, J. v.; Ramey, W. G.; Tilson, M. D. Matrix Metalloproteinases in Abdominal Aortic Aneurysm: Characterization, Purification, and Their Possible Sources. Connect Tissue Res, 1994, 30 (4), 265–276. [CrossRef]
  109. Reilly, J. M.; Brophy, C. M.; Tilson, M. D. Characterization of an Elastase from Aneurysmal Aorta Which Degrades Intact Aortic Elastin. Ann Vasc Surg, 1992, 6 (6), 499–502. [CrossRef]
  110. Brown, P. M.; Zelt, D. T.; Sobolev, B.; Hallett, J. W.; Sternbach, Y. The Risk of Rupture in Untreated Aneurysms: The Impact of Size, Gender, and Expansion Rate. J Vasc Surg, 2003, 37 (2), 280–284. [CrossRef]
  111. Chaikof, E. L.; Dalman, R. L.; Eskandari, M. K.; Jackson, B. M.; Lee, W. A.; Mansour, M. A.; Mastracci, T. M.; Mell, M.; Murad, M. H.; Nguyen, L. L.; et al. The Society for Vascular Surgery Practice Guidelines on the Care of Patients with an Abdominal Aortic Aneurysm. J Vasc Surg, 2018, 67 (1), 2-77.e2. [CrossRef]
  112. Brady, A. R.; Thompson, S. G.; Fowkes, F. G. R.; Greenhalgh, R. M.; Powell, J. T. Abdominal Aortic Aneurysm Expansion: Risk Factors and Time Intervals for Surveillance. Circulation, 2004, 110 (1), 16–21. [CrossRef]
  113. Kronmal, R. A.; McClelland, R. L.; Detrano, R.; Shea, S.; Lima, J. A.; Cushman, M.; Bild, D. E.; Burke, G. L. Risk Factors for the Progression of Coronary Artery Calcification in Asymptomatic Subjects. Circulation, 2007, 115 (21), 2722–2730. [CrossRef]
  114. Liabeuf, S.; Olivier, B.; Vemeer, C.; Theuwissen, E.; Magdeleyns, E.; Aubert, C. E.; Brazier, M.; Mentaverri, R.; Hartemann, A.; Massy, Z. A. Vascular Calcification in Patients with Type 2 Diabetes: The Involvement of Matrix Gla Protein. Cardiovasc Diabetol, 2014, 13 (1), 1–8. [CrossRef]
  115. Leow, K.; Szulc, P.; Schousboe, J. T.; Kiel, D. P.; Teixeira-Pinto, A.; Shaikh, H.; Sawang, M.; Sim, M.; Bondonno, N.; Hodgson, J. M.; et al. Prognostic Value of Abdominal Aortic Calcification: A Systematic Review and Meta-Analysis of Observational Studies. J Am Heart Assoc, 2021, 10 (2), 1–19. [CrossRef]
  116. Rossi, A.; Targher, G.; Zoppini, G.; Cicoira, M.; Bonapace, S.; Negri, C.; Stoico, V.; Faggiano, P.; Vassanelli, C.; Bonora, E. Aortic and Mitral Annular Calcifications Are Predictive of All-Cause and Cardiovascular Mortality in Patients with Type 2 Diabetes. Diabetes Care, 2012, 35 (8), 1781–1786. [CrossRef]
  117. Niu, W.; Shao, J.; Yu, B.; Liu, G.; Wang, R.; Dong, H.; Che, H.; Li, L. Association Between Metformin and Abdominal Aortic Aneurysm: A Meta-Analysis. Front Cardiovasc Med, 2022, 9, 908747. [CrossRef]
  118. Limiting AAA With Metformin (LIMIT) Trial - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04500756?cond=abdominal+aortic+aneurysm+metformin&draw=2&rank=3 (accessed Mar 5, 2023).
  119. Metformin for Abdominal Aortic Aneurysm Growth Inhibition - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04224051?cond=abdominal+aortic+aneurysm+metformin&draw=2&rank=2 (accessed Mar 5, 2023).
  120. Metformin Therapy in Non-diabetic AAA Patients - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03507413?cond=abdominal+aortic+aneurysm+metformin&draw=2&rank=1 (accessed Mar 5, 2023).
  121. Klopf, J.; Fuchs, L.; Schernthaner, R.; Domenig, C. M.; Gollackner, B.; Brostjan, C.; Neumayer, C.; Eilenberg, W. The Prognostic Impact of Vascular Calcification on Abdominal Aortic Aneurysm Progression. J Vasc Surg, 2022, 75 (6), 1926–1934. [CrossRef]
  122. Kent, K. C.; Zwolak, R. M.; Egorova, N. N.; Riles, T. S.; Manganaro, A.; Moskowitz, A. J.; Gelijns, A. C.; Greco, G. Analysis of Risk Factors for Abdominal Aortic Aneurysm in a Cohort of More than 3 Million Individuals. J Vasc Surg, 2010, 52 (3), 539–548. [CrossRef]
  123. Ito, S.; Akutsu, K.; Tamori, Y.; Sakamoto, S.; Yoshimuta, T.; Hashimoto, H.; Takeshita, S. Differences in Atherosclerotic Profiles Between Patients With Thoracic and Abdominal Aortic Aneurysms. Am J Cardiol, 2008, 101 (5), 696–699. [CrossRef]
  124. Sun, W.; Zheng, J.; Gao, Y. Targeting Platelet Activation in Abdominal Aortic Aneurysm: Current Knowledge and Perspectives. Biomolecules, 2022, 12 (2), 206. [CrossRef]
  125. Libby, P.; Ridker, P. M.; Maseri, A. Inflammation and Atherosclerosis. Circulation, 2002, 105 (9), 1135–1143. [CrossRef]
  126. Raffort, J.; Lareyre, F.; Clément, M.; Hassen-Khodja, R.; Chinetti, G.; Mallat, Z. Monocytes and Macrophages in Abdominal Aortic Aneurysm. Nat Rev Cardiol, 2017, 14 (8), 457–471. [CrossRef]
  127. Houard, X.; Touat, Z.; Ollivier, V.; Louedec, L.; Philippe, M.; Sebbag, U.; Meilhac, O.; Rossignol, P.; Michel, J. B. Mediators of Neutrophil Recruitment in Human Abdominal Aortic Aneurysms. Cardiovasc Res, 2009, 82 (3), 532–541. [CrossRef]
  128. Thompson, R. W.; Curci, J. A.; Ennis, T. L.; Mao, D.; Pagano, M. B.; Pham, C. T. N. Pathophysiology of Abdominal Aortic Aneurysms: Insights from the Elastase-Induced Model in Mice with Different Genetic Backgrounds. Ann N Y Acad Sci, 2006, 1085, 59–73. [CrossRef]
  129. Rao, J.; Brown, B. N.; Weinbaum, J. S.; Ofstun, E. L.; Makaroun, M. S.; Humphrey, J. D.; Vorp, D. A. Distinct Macrophage Phenotype and Collagen Organization within the Intraluminal Thrombus of Abdominal Aortic Aneurysm. J Vasc Surg, 2015, 62 (3), 585–593. [CrossRef]
  130. Dutertre, C. A.; Clement, M.; Morvan, M.; Schäkel, K.; Castier, Y.; Alsac, J. M.; Michel, J. B.; Nicoletti, A. Deciphering the Stromal and Hematopoietic Cell Network of the Adventitia from Non-Aneurysmal and Aneurysmal Human Aorta. PLoS One, 2014, 9 (2), e89983. [CrossRef]
  131. Tieu, B. C.; Ju, X.; Lee, C.; Sun, H.; Lejeune, W.; Recinos, A.; Brasier, A. R.; Tilton, R. G. Aortic Adventitial Fibroblasts Participate in Angiotensin-Induced Vascular Wall Inflammation and Remodeling. J Vasc Res, 2011, 48 (3), 261–272. [CrossRef]
  132. Tieu, B. C.; Lee, C.; Sun, H.; LeJeune, W.; Recinos, A.; Ju, X.; Spratt, H.; Guo, D. C.; Milewicz, D.; Tilton, R. G.; et al. An Adventitial IL-6/MCP1 Amplification Loop Accelerates Macrophage-Mediated Vascular Inflammation Leading to Aortic Dissection in Mice. J Clin Invest, 2009, 119 (12), 3637–3651. [CrossRef]
  133. Combadière, C.; Potteaux, S.; Rodero, M.; Simon, T.; Pezard, A.; Esposito, B.; Merval, R.; Proudfoot, A.; Tedgui, A.; Mallat, Z. Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6C(Hi) and Ly6C(Lo) Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice. Circulation, 2008, 117 (13), 1649–1657. [CrossRef]
  134. Daugherty, A.; Manning, M. W.; Cassis, L. A. Angiotensin II Promotes Atherosclerotic Lesions and Aneurysms in Apolipoprotein E-Deficient Mice. J Clin Invest, 2000, 105 (11), 1605–1612. [CrossRef]
  135. Deshmane, S. L.; Kremlev, S.; Amini, S.; Sawaya, B. E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. Journal of Interferon & Cytokine Research, 2009, 29 (6), 313–326. [CrossRef]
  136. Zhang, H.; Yang, K.; Chen, F.; Liu, Q.; Ni, J.; Cao, W.; Hua, Y.; He, F.; Liu, Z.; Li, L.; et al. Role of the CCL2-CCR2 Axis in Cardiovascular Disease: Pathogenesis and Clinical Implications. Front Immunol, 2022, 13, 975367. [CrossRef]
  137. Roshan, M. H. K.; Tambo, A.; Pace, N. P. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. Int J Inflam, 2016, 2016, 1532832. [CrossRef]
  138. Yang, M.; Chen, Q.; Mei, L.; Wen, G.; An, W.; Zhou, X.; Niu, K.; Liu, C.; Ren, M.; Sun, K.; et al. Neutrophil Elastase Promotes Neointimal Hyperplasia by Targeting Toll-like Receptor 4 (TLR4)-NF-ΚB Signalling. Br J Pharmacol, 2021, 178 (20), 4048–4068. [CrossRef]
  139. Kolaczkowska, E.; Kubes, P. Neutrophil Recruitment and Function in Health and Inflammation. Nat Rev Immunol, 2013, 13 (3), 159–175. [CrossRef]
  140. Dalli, J.; Montero-Melendez, T.; Norling, L. v.; Yin, X.; Hinds, C.; Haskard, D.; Mayr, M.; Perretti, M. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties. Mol Cell Proteomics, 2013, 12 (8), 2205–2219. [CrossRef]
  141. Mortaz, E.; Alipoor, S. D.; Adcock, I. M.; Mumby, S.; Koenderman, L. Update on Neutrophil Function in Severe Inflammation. Front Immunol, 2018, 9, 2171. [CrossRef]
  142. Klopf, J.; Brostjan, C.; Eilenberg, W.; Neumayer, C. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and Inflammatory Disease. Int J Mol Sci, 2021, 22 (2), 1–17. [CrossRef]
  143. Arbănași, E. M.; Mureșan, A. V.; Coșarcă, C. M.; Arbănași, E. M.; Niculescu, R.; Voidăzan, S. T.; Ivănescu, A. D.; Hălmaciu, I.; Filep, R. C.; Mărginean, L.; et al. Computed Tomography Angiography Markers and Intraluminal Thrombus Morphology as Predictors of Abdominal Aortic Aneurysm Rupture. Int J Environ Res Public Health, 2022, 19 (23), 15961. [CrossRef]
  144. Behr-Rasmussen, C.; Grøndal, N.; Bramsen, M. B.; Thomsen, M. D.; Lindholt, J. S. Mural Thrombus and the Progression of Abdominal Aortic Aneurysms: A Large Population-Based Prospective Cohort Study. Eur J Vasc Endovasc Surg, 2014, 48 (3), 301–307. [CrossRef]
  145. Kazi, M.; Thyberg, J.; Religa, P.; Roy, J.; Eriksson, P.; Hedin, U.; Swedenborg, J. Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall. J Vasc Surg, 2003, 38 (6), 1283–1292. [CrossRef]
  146. Schrottmaier, W. C.; Mussbacher, M.; Salzmann, M.; Assinger, A. Platelet-Leukocyte Interplay during Vascular Disease. Atherosclerosis, 2020, 307, 109–120. [CrossRef]
  147. Rubenstein, D. A.; Yin, W. Platelet-Activation Mechanisms and Vascular Remodeling. Compr Physiol, 2018, 8 (3), 1117–1156. [CrossRef]
  148. Houard, X.; Ollivier, V.; Louedec, L.; Michel, J.; Back, M. Differential Inflammatory Activity across Human Abdominal Aortic Aneurysms Reveals Neutrophil-Derived Leukotriene B4 as a Major Chemotactic Factor Released from the Intraluminal Thrombus. FASEB J, 2009, 23 (5), 1376–1383. [CrossRef]
  149. Karaolanis, G.; Moris, D.; Palla, V. V.; Karanikola, E.; Bakoyiannis, C.; Georgopoulos, S. Neutrophil Gelatinase Associated Lipocalin (NGAL) as a Biomarker. Does It Apply in Abdominal Aortic Aneurysms? A Review of Literature. Indian J Surg, 2015, 77 (Suppl 3), 1313–1317. [CrossRef]
  150. Petersen, E.; Wågberg, F.; Ängquist, K. A. Serum Concentrations of Elastin-Derived Peptides in Patients with Specific Manifestations of Atherosclerotic Disease. European Journal of Vascular and Endovascular Surgery, 2002, 24 (5), 440–444. [CrossRef]
  151. Maguire, E. M.; Pearce, S. W. A.; Xiao, R.; Oo, A. Y.; Xiao, Q. Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel), 2019, 12 (3), 118. [CrossRef]
  152. Hendy, K.; Gunnarson, R.; Golledge, J. Growth Rates of Small Abdominal Aortic Aneurysms Assessed by Computerised Tomography--a Systematic Literature Review. Atherosclerosis, 2014, 235 (1), 182–188. [CrossRef]
  153. Selders, G. S.; Fetz, A. E.; Radic, M. Z.; Bowlin, G. L. An Overview of the Role of Neutrophils in Innate Immunity, Inflammation and Host-Biomaterial Integration. Regen Biomater, 2017, 4 (1), 55–68. [CrossRef]
  154. Yan, H.; Zhou, H. F.; Akk, A.; Hu, Y.; Springer, L. E.; Ennis, T. L.; Pham, C. T. N. Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation. Arterioscler Thromb Vasc Biol, 2016, 36 (8), 1660–1669. [CrossRef]
  155. Delbosc, S.; Alsac, J. M.; Journe, C.; Louedec, L.; Castier, Y.; Bonnaure-Mallet, M.; Ruimy, R.; Rossignol, P.; Bouchard, P.; Michel, J. B.; et al. Porphyromonas Gingivalis Participates in Pathogenesis of Human Abdominal Aortic Aneurysm by Neutrophil Activation. Proof of Concept in Rats. PLoS One, 2011, 6 (4), e18679. [CrossRef]
  156. Jabłońska, A.; Zagrapan, B.; Paradowska, E.; Neumayer, C.; Eilenberg, W.; Brostjan, C.; Klinger, M.; Nanobachvili, J.; Huk, I. Abdominal Aortic Aneurysm and Virus Infection: A Potential Causative Role for Cytomegalovirus Infection? J Med Virol, 2021, 93 (8), 5017–5024. [CrossRef]
  157. Mysak, J.; Podzimek, S.; Sommerova, P.; Lyuya-Mi, Y.; Bartova, J.; Janatova, T.; Prochazkova, J.; Duskova, J. Porphyromonas Gingivalis: Major Periodontopathic Pathogen Overview. J Immunol Res, 2014, 2014, 476068. [CrossRef]
  158. Salhi, L.; Rijkschroeff, P.; Van Hede, D.; Laine, M. L.; Teughels, W.; Sakalihasan, N.; Lambert, F. Blood Biomarkers and Serologic Immunological Profiles Related to Periodontitis in Abdominal Aortic Aneurysm Patients. Front Cell Infect Microbiol, 2022, 11, 766462. [CrossRef]
  159. Salhi, L.; Sakalihasan, N.; Okroglic, A. G.; Labropoulos, N.; Seidel, L.; Albert, A.; Teughels, W.; Defraigne, J. O.; Lambert, F. Further Evidence on the Relationship between Abdominal Aortic Aneurysm and Periodontitis: A Cross-Sectional Study. J Periodontol, 2020, 91 (11), 1453–1464. [CrossRef]
  160. Salhi, L.; Rompen, E.; Sakalihasan, N.; Laleman, I.; Teughels, W.; Michel, J. B.; Lambert, F. Can Periodontitis Influence the Progression of Abdominal Aortic Aneurysm? A Systematic Review. Angiology, 2019, 70 (6), 479–491. [CrossRef]
  161. Gredmark-Russ, S.; Dzabic, M.; Rahbar, A.; Wanhainen, A.; Björck, M.; Larsson, E.; Michel, J. B.; Söderberg-Nauclér, C. Active Cytomegalovirus Infection in Aortic Smooth Muscle Cells from Patients with Abdominal Aortic Aneurysm. J Mol Med (Berl), 2009, 87 (4), 347–356. [CrossRef]
  162. Pinard, A.; Jones, G. T.; Milewicz, D. M. Genetics of Thoracic and Abdominal Aortic Diseases: Aneurysms, Dissections, and Ruptures. Circ Res, 2019, 124 (4), 588. [CrossRef]
  163. La Rocca, G.; Del Frate, G.; Delvino, P.; Di Cianni, F.; Moretti, M.; Italiano, N.; Treppo, E.; Monti, S.; Talarico, R.; Ferro, F.; et al. Systemic Vasculitis: One Year in Review 2022. Clin Exp Rheumatol, 2022, 40 (4), 673–687. [CrossRef]
  164. Phillip, R.; Luqmani, R. Mortality in Systemic Vasculitis: A Systematic Review. Clin Exp Rheumatol, 2008, 26 (5 Suppl 51), S94–S104.
  165. Wallace, Z. S.; Fu, X.; Harkness, T.; Stone, J. H.; Zhang, Y.; Choi, H. All-Cause and Cause-Specific Mortality in ANCA-Associated Vasculitis: Overall and According to ANCA Type. Rheumatology (Oxford), 2020, 59 (9), 2308–2315. [CrossRef]
  166. Hill, C. L.; Black, R. J.; Nossent, J. C.; Ruediger, C.; Nguyen, L.; Ninan, J. V.; Lester, S. Risk of Mortality in Patients with Giant Cell Arteritis: A Systematic Review and Meta-Analysis. Semin Arthritis Rheum, 2017, 46 (4), 513–519. [CrossRef]
  167. Mueller, M.; Gschwandtner, M. E.; Gamper, J.; Giurgea, G. A.; Kiener, H. P.; Perkmann, T.; Koppensteiner, R.; Schlager, O. Chronic Inflammation Predicts Long-Term Mortality in Patients with Raynaud’s Phenomenon. J Intern Med, 2018, 283 (3), 293–302. [CrossRef]
  168. Farrah, T. E.; Melville, V.; Czopek, A.; Fok, H.; Bruce, L.; Mills, N. L.; Bailey, M. A.; Webb, D. J.; Dear, J. W.; Dhaun, N. Arterial Stiffness, Endothelial Dysfunction and Impaired Fibrinolysis Are Pathogenic Mechanisms Contributing to Cardiovascular Risk in ANCA-Associated Vasculitis. Kidney Int, 2022, 102 (5), 1115–1126. [CrossRef]
  169. Chironi, G.; Pagnoux, C.; Simon, A.; Pasquinelli-Balice, M.; Del-Pino, M.; Gariepy, J.; Guillevin, L. Increased Prevalence of Subclinical Atherosclerosis in Patients with Small-Vessel Vasculitis. Heart, 2007, 93 (1), 96–99. [CrossRef]
  170. Clifford, A. H.; Cohen Tervaert, J. W. Cardiovascular Events and the Role of Accelerated Atherosclerosis in Systemic Vasculitis. Atherosclerosis, 2021, 325, 8–15. [CrossRef]
  171. Hilhorst, M.; Winckers, K.; Wilde, B.; Van Oerle, R.; Ten Cate, H.; Tervaert, J. W. C. Patients with Antineutrophil Cytoplasmic Antibodies Associated Vasculitis in Remission Are Hypercoagulable. J Rheumatol, 2013, 40 (12), 2042–2046. [CrossRef]
  172. De Leeuw, K.; Sanders, J. S.; Stegeman, C.; Smit, A.; Kallenberg, C. G.; Bijl, M. Accelerated Atherosclerosis in Patients with Wegener’s Granulomatosis. Ann Rheum Dis, 2005, 64 (5), 753–759. [CrossRef]
  173. Shirai, T.; Hilhorst, M.; Harrison, D. G.; Goronzy, J. J.; Weyand, C. M. Macrophages in Vascular Inflammation--From Atherosclerosis to Vasculitis. Autoimmunity, 2015, 48 (3), 139–151. [CrossRef]
  174. Wallace, Z. S.; Fu, X.; Liao, K.; Kallenberg, C. G. M.; Langford, C. A.; Merkel, P. A.; Monach, P.; Seo, P.; Specks, U.; Spiera, R.; et al. Disease Activity, Antineutrophil Cytoplasmic Antibody Type, and Lipid Levels in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol, 2019, 71 (11), 1879–1887. [CrossRef]
  175. Proven, A.; Gabriel, S. E.; Orces, C.; Michael O’Fallon, W.; Hunder, G. G. Glucocorticoid Therapy in Giant Cell Arteritis: Duration and Adverse Outcomes. Arthritis Rheum, 2003, 49 (5), 703–708. [CrossRef]
  176. Bramlage, C. P.; Kröplin, J.; Wallbach, M.; Minguet, J.; Smith, K. H.; Lüders, S.; Schrader, J.; Patschan, S.; Gross, O.; Deutsch, C.; et al. Management of Cardiovascular Risk Factors in Patients with ANCA-Associated Vasculitis. J Eval Clin Pract, 2017, 23 (4), 747–754. [CrossRef]
  177. Neumann, F. J.; Sechtem, U.; Banning, A. P.; Bonaros, N.; Bueno, H.; Bugiardini, R.; Chieffo, A.; Crea, F.; Czerny, M.; Delgado, V.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. Eur Heart J, 2020, 41 (3), 407–477. [CrossRef]
  178. Aboyans, V.; Bauersachs, R.; Mazzolai, L.; Brodmann, M.; Palomares, J. F. R.; Debus, S.; Collet, J. P.; Drexel, H.; Espinola-Klein, C.; Lewis, B. S.; et al. Antithrombotic Therapies in Aortic and Peripheral Arterial Diseases in 2021: A Consensus Document from the ESC Working Group on Aorta and Peripheral Vascular Diseases, the ESC Working Group on Thrombosis, and the ESC Working Group on Cardiovascular Pharmacotherapy. Eur Heart J, 2021, 42 (39), 4013–4024. [CrossRef]
  179. Gerhard-Herman, M. D.; Gornik, H. L.; Barrett, C.; Barshes, N. R.; Corriere, M. A.; Drachman, D. E.; Fleisher, L. A.; Fowkes, F. G. R.; Hamburg, N. M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2017, 135 (12), e686–e725. [CrossRef]
  180. Abramson, B. L.; Al-Omran, M.; Anand, S. S.; Albalawi, Z.; Coutinho, T.; de Mestral, C.; Dubois, L.; Gill, H. L.; Greco, E.; Guzman, R.; et al. Canadian Cardiovascular Society 2022 Guidelines for Peripheral Arterial Disease. Can J Cardiol, 2022, 38 (5), 560–587. [CrossRef]
  181. Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P. H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on Peripheral Arterial Disease. Vasa, 2019, 48 (Suppl 102), 1–80. [CrossRef]
  182. El Assar, M.; Álvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodríguez-Mañas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci, 2022, 23 (15), 8713. [CrossRef]
  183. Myette-Côté, É.; Durrer, C.; Neudorf, H.; Bammert, T. D.; Botezelli, J. D.; Johnson, J. D.; Desouza, C. A.; Little, J. P. The Effect of a Short-Term Low-Carbohydrate, High-Fat Diet with or without Postmeal Walks on Glycemic Control and Inflammation in Type 2 Diabetes: A Randomized Trial. Am J Physiol Regul Integr Comp Physiol, 2018, 315 (6), R1210–R1219. [CrossRef]
  184. Stancu, C.; Sima, A. Statins: Mechanism of Action and Effects. J Cell Mol Med, 2001, 5 (4), 378–387. [CrossRef]
  185. Almeida, S. O.; Budoff, M. Effect of Statins on Atherosclerotic Plaque. Trends Cardiovasc Med, 2019, 29 (8), 451–455. [CrossRef]
  186. Greenwood, J.; Mason, J. C. Statins and the Vascular Endothelial Inflammatory Response. Trends Immunol, 2007, 28 (2), 88–98. [CrossRef]
  187. Piechota-Polanczyk, A.; Demyanets, S.; Nykonenko, O.; Huk, I.; Mittlboeck, M.; Domenig, C. M.; Neumayer, C.; Wojta, J.; Nanobachvili, J.; Klinger, M. Decreased Tissue Levels of Cyclophilin A, a Cyclosporine a Target and Phospho-ERK1/2 in Simvastatin Patients with Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg, 2013, 45 (6), 682–688. [CrossRef]
  188. Piechota-Polanczyk, A.; Goraca, A.; Demyanets, S.; Mittlboeck, M.; Domenig, C.; Neumayer, C.; Wojta, J.; Nanobachvili, J.; Huk, I.; Klinger, M. Simvastatin Decreases Free Radicals Formation in the Human Abdominal Aortic Aneurysm Wall via NF-ΚB. Eur J Vasc Endovasc Surg, 2012, 44 (2), 133–137. [CrossRef]
  189. Piechota-Polanczyk, A.; Demyanets, S.; Mittlboeck, M.; Hofmann, M.; Domenig, C. M.; Neumayer, C.; Wojta, J.; Klinger, M.; Nanobachvili, J.; Huk, I. The Influence of Simvastatin on NGAL, Matrix Metalloproteinases and Their Tissue Inhibitors in Human Intraluminal Thrombus and Abdominal Aortic Aneurysm Tissue. Eur J Vasc Endovasc Surg, 2015, 49 (5), 549–555. [CrossRef]
  190. Steiner, S.; Speidl, W. S.; Pleiner, J.; Seidinger, D.; Zorn, G.; Kaun, C.; Wojta, J.; Huber, K.; Minar, E.; Wolzt, M.; et al. Simvastatin Blunts Endotoxin-Induced Tissue Factor in Vivo. Circulation, 2005, 111 (14), 1841–1846. [CrossRef]
  191. Ridker, P. M.; Cannon, C. P.; Morrow, D.; Rifai, N.; Rose, L. M.; McCabe, C. H.; Pfeffer, M. A.; Braunwald, E. C-Reactive Protein Levels and Outcomes after Statin Therapy. https://doi-org.ez.srv.meduniwien.ac.at/10.1056/NEJMoa042378, 2005, 8 (1), 8–9. [CrossRef]
  192. Tawakol, A.; Fayad, Z. A.; Mogg, R.; Alon, A.; Klimas, M. T.; Dansky, H.; Subramanian, S. S.; Abdelbaky, A.; Rudd, J. H. F.; Farkouh, M. E.; et al. Intensification of Statin Therapy Results in a Rapid Reduction in Atherosclerotic Inflammation: Results of a Multicenter Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography Feasibility Study. J Am Coll Cardiol, 2013, 62 (10), 909–917. [CrossRef]
  193. Ridker, P. M.; Bhatt, D. L.; Pradhan, A. D.; Glynn, R. J.; MacFadyen, J. G.; Nissen, S. E. Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. Lancet, 2023, 401 (10384), 1293–1301. [CrossRef]
  194. Wang, J.; Chen, Z.; Qiu, Y.; Wu, L.; Wang, H.; Wu, L.; Zhao, L.; Xie, D. Statins Have an Anti-Inflammation in CKD Patients: A Meta-Analysis of Randomized Trials. Biomed Res Int, 2022, 2022, 4842699. [CrossRef]
  195. Zhang, Q. X.; Zhang, H. F.; Lu, X. T.; Zhao, J.; Xu, Q. Statins Improve Asthma Symptoms by Suppressing Inflammation: A Meta-Analysis Based on RCTs. Eur Rev Med Pharmacol Sci, 2022, 26 (22), 8401–8410. [CrossRef]
  196. Valerius NH. In Vitro Effect of Colchicine on Neutrophil Granulocyte Locomotion. Assessment of the Effect of Colchicine on Chemotaxis, Chemokinesis and Spontaneous Motility, Using a Modified Reversible Boyden Chamber. Acta Pathol Microbiol Scand B, 1978, B (86), 149–154. [CrossRef]
  197. Li, Z.; Davis, G. S.; Mohr, C.; Nain, M.; Gemsa, D. Inhibition of LPS-Induced Tumor Necrosis Factor-Alpha Production by Colchicine and Other Microtubule Disrupting Drugs. Immunobiology, 1996, 195 (4–5), 624–639. [CrossRef]
  198. Wright, D. G.; Malawista, S. E. Mobilization and Extracellular Release of Granular Enzymes from Human Leukocytes during Phagocytosis: Inhibition by Colchicine and Cortisol but Not by Salicylate. Arthritis Rheum, 1973, 16 (6), 749–758. [CrossRef]
  199. Martínez, G. J.; Celermajer, D. S.; Patel, S. The NLRP3 Inflammasome and the Emerging Role of Colchicine to Inhibit Atherosclerosis-Associated Inflammation. Atherosclerosis, 2018, 269, 262–271. [CrossRef]
  200. González, L.; Bulnes, J. F.; Orellana, M. P.; Venturelli, P. M.; Rodriguez, G. M. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics, 2022, 14 (7), 1395. [CrossRef]
  201. Nidorf, S. M.; Thompson, P. L. Why Colchicine Should Be Considered for Secondary Prevention of Atherosclerosis: An Overview. Clin Ther, 2019, 41 (1), 41–48. [CrossRef]
  202. Tardif, J.-C.; Kouz, S.; Waters, D. D.; Bertrand, O. F.; Diaz, R.; Maggioni, A. P.; Pinto, F. J.; Ibrahim, R.; Gamra, H.; Kiwan, G. S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med, 2019, 381 (26), 2497–2505. [CrossRef]
  203. Wang, L.; Peng, Y.; Song, L.; Xia, D.; Li, C.; Li, Z.; Li, Q.; Yu, A.; Lu, C.; Wang, Y. Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation. Cardiovasc Drugs Ther, 2022, 36 (6), 1075–1089. [CrossRef]
  204. Chen, Y.; Zhang, H.; Chen, Y.; Li, M.; Luo, W.; Liu, Y.; Fu, Y.; Xia, H.; Xu, C.; Jiang, Y.; et al. Colchicine May Become a New Cornerstone Therapy for Coronary Artery Disease: A Meta-Analysis of Randomized Controlled Trials. Clin Rheumatol, 2022, 41 (6), 1873–1887. [CrossRef]
  205. Bays, H. E.; Ballantyne, C. M.; Braeckman, R. A.; Stirtan, W. G.; Soni, P. N. Icosapent Ethyl, a Pure Ethyl Ester of Eicosapentaenoic Acid: Effects on Circulating Markers of Inflammation from the MARINE and ANCHOR Studies. American Journal of Cardiovascular Drugs, 2013, 13 (1), 37–46. [CrossRef]
  206. Bhatt, D. L.; Steg, P. G.; Miller, M.; Brinton, E. A.; Jacobson, T. A.; Ketchum, S. B.; Doyle, R. T.; Juliano, R. A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med, 2019, 380 (1), 11–22. [CrossRef]
  207. Budoff, M. J.; Bhatt, D. L.; Kinninger, A.; Lakshmanan, S.; Muhlestein, J. B.; Le, V. T.; May, H. T.; Shaikh, K.; Shekar, C.; Roy, S. K.; et al. Effect of Icosapent Ethyl on Progression of Coronary Atherosclerosis in Patients with Elevated Triglycerides on Statin Therapy: Final Results of the EVAPORATE Trial. Eur Heart J, 2020, 41 (40), 3925–3932. [CrossRef]
  208. Mason, R. P.; Libby, P.; Bhatt, D. L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler Thromb Vasc Biol, 2020, 40 (5), 1135–1147. [CrossRef]
  209. Ballantyne, C. M.; Braeckman, R. A.; Bays, H. E.; Kastelein, J. J.; Otvos, J. D.; Stirtan, W. G.; Doyle, R. T.; Soni, P. N.; Juliano, R. A. Effects of Icosapent Ethyl on Lipoprotein Particle Concentration and Size in Statin-Treated Patients with Persistent High Triglycerides (the ANCHOR Study). J Clin Lipidol, 2015, 9 (3), 377–383. [CrossRef]
  210. Onat, U. I.; Yildirim, A. D.; Tufanli, Ö.; Çimen, I.; Kocatürk, B.; Veli, Z.; Hamid, S. M.; Shimada, K.; Chen, S.; Sin, J.; et al. Intercepting the Lipid-Induced Integrated Stress Response Reduces Atherosclerosis. J Am Coll Cardiol, 2019, 73 (10), 1149–1169. [CrossRef]
  211. Grebe, A.; Hoss, F.; Latz, E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res, 2018, 122 (12), 1722–1740. [CrossRef]
  212. Arnold, D. D.; Yalamanoglu, A.; Boyman, O. Systematic Review of Safety and Efficacy of IL-1-Targeted Biologics in Treating Immune-Mediated Disorders. Front Immunol, 2022, 13, 888392. [CrossRef]
  213. Ridker, P. M.; Thuren, T.; Zalewski, A.; Libby, P. Interleukin-1β Inhibition and the Prevention of Recurrent Cardiovascular Events: Rationale and Design of the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J, 2011, 162 (4), 597–605. [CrossRef]
  214. Ridker, P. M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ Res, 2016, 118 (1), 145–156. [CrossRef]
  215. Ku, E. J.; Kim, B. R.; Lee, J. I.; Lee, Y. K.; Oh, T. J.; Jang, H. C.; Choi, S. H. The Anti-Atherosclerosis Effect of Anakinra, a Recombinant Human Interleukin-1 Receptor Antagonist, in Apolipoprotein E Knockout Mice. Int J Mol Sci, 2022, 23 (9), 4906. [CrossRef]
  216. Ridker, P. M.; Howard, C. P.; Walter, V.; Everett, B.; Libby, P.; Hensen, J.; Thuren, T. Effects of Interleukin-1β Inhibition with Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen: A Phase IIb Randomized, Placebo-Controlled Trial. Circulation, 2012, 126 (23), 2739–2748. [CrossRef]
  217. Straub, R. H.; Cutolo, M. Glucocorticoids and Chronic Inflammation. Rheumatology (Oxford), 2016, 55 (suppl 2), ii6–ii14. [CrossRef]
  218. Cain, D. W.; Cidlowski, J. A. Immune Regulation by Glucocorticoids. Nat Rev Immunol, 2017, 17 (4), 233–247. [CrossRef]
  219. Patel, R.; Williams-Dautovich, J.; Cummins, C. L. Minireview: New Molecular Mediators of Glucocorticoid Receptor Activity in Metabolic Tissues. Molecular Endocrinology, 2014, 28 (7), 999–1011. [CrossRef]
  220. Cicala, M. V.; Mantero, F. Hypertension in Cushing’s Syndrome: From Pathogenesis to Treatment. Neuroendocrinology, 2010, 92 Suppl 1 (SUPPL. 1), 44–49. [CrossRef]
  221. Akalestou, E.; Genser, L.; Rutter, G. A. Glucocorticoid Metabolism in Obesity and Following Weight Loss. Front Endocrinol (Lausanne), 2020, 11, 59. [CrossRef]
  222. Arnaldi, G.; Scandali, V. M.; Trementino, L.; Cardinaletti, M.; Appolloni, G.; Boscaro, M. Pathophysiology of Dyslipidemia in Cushing’s Syndrome. Neuroendocrinology, 2010, 92 Suppl 1 (SUPPL. 1), 86–90. [CrossRef]
  223. Coelho, M. C. A.; Santos, C. V.; Neto, L. V.; Gadelha, M. R. Adverse Effects of Glucocorticoids: Coagulopathy. Eur J Endocrinol, 2015, 173 (4), M11–M21. [CrossRef]
  224. Faggiano, A.; Pivonello, R.; Spiezia, S.; De Martino, M. C.; Filippella, M.; Di Somma, C.; Lombardi, G.; Colao, A. Cardiovascular Risk Factors and Common Carotid Artery Caliber and Stiffness in Patients with Cushing’s Disease during Active Disease and 1 Year after Disease Remission. J Clin Endocrinol Metab, 2003, 88 (6), 2527–2533. [CrossRef]
  225. Macleod, C.; Hadoke, P. W. F.; Nixon, M. Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers? Int J Mol Sci, 2021, 22 (14), 7622. [CrossRef]
  226. Petramala, L.; Lorenzo, D.; Iannucci, G.; Concistré, A.; Zinnamosca, L.; Marinelli, C.; De Vincentis, G.; Ciardi, A.; De Toma, G.; Letizia, C. Subclinical Atherosclerosis in Patients with Cushing Syndrome: Evaluation with Carotid Intima-Media Thickness and Ankle-Brachial Index. Endocrinology and Metabolism, 2015, 30 (4), 488–493. [CrossRef]
  227. Souverein, P. C.; Berard, A.; Van Staa, T. P.; Cooper, C.; Egberts, A. C. G.; Leufkens, H. G. M.; Walker, B. R. Use of Oral Glucocorticoids and Risk of Cardiovascular and Cerebrovascular Disease in a Population Based Case-Control Study. Heart, 2004, 90 (8), 859–865. [CrossRef]
  228. Wei, L.; MacDonald, T. M.; Walker, B. R. Taking Glucocorticoids by Prescription Is Associated with Subsequent Cardiovascular Disease. Ann Intern Med, 2004, 141 (10), 764–770. [CrossRef]
  229. Pujades-Rodriguez, M.; Morgan, A. W.; Cubbon, R. M.; Wu, J. Dose-Dependent Oral Glucocorticoid Cardiovascular Risks in People with Immune-Mediated Inflammatory Diseases: A Population-Based Cohort Study. PLoS Med, 2020, 17 (12), e1003432. [CrossRef]
  230. Katsiki, N.; Ferrannini, E. Anti-Inflammatory Properties of Antidiabetic Drugs: A “Promised Land” in the COVID-19 Era? J Diabetes Complications, 2020, 34 (12), 107723. [CrossRef]
  231. Vaduganathan, M.; Docherty, K. F.; Claggett, B. L.; Jhund, P. S.; de Boer, R. A.; Hernandez, A. F.; Inzucchi, S. E.; Kosiborod, M. N.; Lam, C. S. P.; Martinez, F.; et al. SGLT-2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. Lancet, 2022, 400 (10354), 757–767. [CrossRef]
  232. McMurray, J. J. V.; Solomon, S. D.; Inzucchi, S. E.; Køber, L.; Kosiborod, M. N.; Martinez, F. A.; Ponikowski, P.; Sabatine, M. S.; Anand, I. S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 2019, 381 (21), 1995–2008. [CrossRef]
  233. Solomon, S. D.; McMurray, J. J. V.; Claggett, B.; de Boer, R. A.; DeMets, D.; Hernandez, A. F.; Inzucchi, S. E.; Kosiborod, M. N.; Lam, C. S. P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine, 2022, 387 (12), 1089–1098. [CrossRef]
  234. Packer, M.; Anker, S. D.; Butler, J.; Filippatos, G.; Pocock, S. J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine, 2020, 383 (15), 1413–1424. [CrossRef]
  235. Anker, S. D.; Butler, J.; Filippatos, G.; Ferreira, J. P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 2021, 385 (16), 1451–1461. [CrossRef]
  236. Heidenreich, P. A.; Bozkurt, B.; Aguilar, D.; Allen, L. A.; Byun, J. J.; Colvin, M. M.; Deswal, A.; Drazner, M. H.; Dunlay, S. M.; Evers, L. R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 2022, 145 (18), E895–E1032. [CrossRef]
  237. Hou, Y. C.; Zheng, C. M.; Yen, T. H.; Lu, K. C. Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. Int J Mol Sci, 2020, 21 (21), 1–25. [CrossRef]
  238. Liu, Z.; Ma, X.; Ilyas, I.; Zheng, X.; Luo, S.; Little, P. J.; Kamato, D.; Sahebkar, A.; Wu, W.; Weng, J.; et al. Impact of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors on Atherosclerosis: From Pharmacology to Pre-Clinical and Clinical Therapeutics. Theranostics, 2021, 11 (9), 4502–4515. [CrossRef]
  239. Day, E. A.; Ford, R. J.; Lu, J. H.; Lu, R.; Lundenberg, L.; Desjardins, E. M.; Green, A. E.; Lally, J. S. V.; Schertzer, J. D.; Steinberg, G. R. The SGLT2 Inhibitor Canagliflozin Suppresses Lipid Synthesis and Interleukin-1 Beta in ApoE Deficient Mice. Biochem J, 2020, 477 (12), 2347–2361. [CrossRef]
  240. Nasiri-Ansari, N.; Dimitriadis, G. K.; Agrogiannis, G.; Perrea, D.; Kostakis, I. D.; Kaltsas, G.; Papavassiliou, A. G.; Randeva, H. S.; Kassi, E. Canagliflozin Attenuates the Progression of Atherosclerosis and Inflammation Process in APOE Knockout Mice. Cardiovasc Diabetol, 2018, 17 (1), 106. [CrossRef]
  241. Mancini, S. J.; Boyd, D.; Katwan, O. J.; Strembitska, A.; Almabrouk, T. A.; Kennedy, S.; Palmer, T. M.; Salt, I. P. Canagliflozin Inhibits Interleukin-1β-Stimulated Cytokine and Chemokine Secretion in Vascular Endothelial Cells by AMP-Activated Protein Kinase-Dependent and -Independent Mechanisms. Sci Rep, 2018, 8 (1), 5276. [CrossRef]
  242. Kim, S. R.; Lee, S. G.; Kim, S. H.; Kim, J. H.; Choi, E.; Cho, W.; Rim, J. H.; Hwang, I.; Lee, C. J.; Lee, M.; et al. SGLT2 Inhibition Modulates NLRP3 Inflammasome Activity via Ketones and Insulin in Diabetes with Cardiovascular Disease. Nat Commun, 2020, 11 (1), 2127. [CrossRef]
  243. Chen, H.; Teng, D.; Xu, B.; Wang, C.; Wang, H.; Jia, W.; Gong, L.; Dong, H.; Zhong, L.; Yang, J. The SGLT2 Inhibitor Canagliflozin Reduces Atherosclerosis by Enhancing Macrophage Autophagy. J Cardiovasc Transl Res, 2023, 1–11. [CrossRef]
  244. Chaudhuri, A.; Ghanim, H.; Vora, M.; Sia, C. L.; Korzeniewski, K.; Dhindsa, S.; Makdissi, A.; Dandona, P. Exenatide Exerts a Potent Antiinflammatory Effect. J Clin Endocrinol Metab, 2012, 97 (1), 198–207. [CrossRef]
  245. Jonik, S.; Marchel, M.; Grabowski, M.; Opolski, G.; Mazurek, T. Gastrointestinal Incretins—Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease—State of the Art. Biology (Basel), 2022, 11 (2), 288. [CrossRef]
  246. Rakipovski, G.; Rolin, B.; Nøhr, J.; Klewe, I.; Frederiksen, K. S.; Augustin, R.; Hecksher-Sørensen, J.; Ingvorsen, C.; Polex-Wolf, J.; Knudsen, L. B. The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE−/− and LDLr−/− Mice by a Mechanism That Includes Inflammatory Pathways. JACC Basic Transl Sci, 2018, 3 (6), 844–857. [CrossRef]
  247. Bendotti, G.; Montefusco, L.; Lunati, M. E.; Usuelli, V.; Pastore, I.; Lazzaroni, E.; Assi, E.; Seelam, A. J.; El Essawy, B.; Jang, Y.; et al. The Anti-Inflammatory and Immunological Properties of GLP-1 Receptor Agonists. Pharmacol Res, 2022, 182, 106320. [CrossRef]
  248. Bray, J. J. H.; Foster-Davies, H.; Salem, A.; Hoole, A. L.; Obaid, D. R.; Halcox, J. P. J.; Stephens, J. W. Glucagon-like Peptide-1 Receptor Agonists Improve Biomarkers of Inflammation and Oxidative Stress: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Diabetes Obes Metab, 2021, 23 (8), 1806–1822. [CrossRef]
  249. Bethel, M. A.; Patel, R. A.; Merrill, P.; Lokhnygina, Y.; Buse, J. B.; Mentz, R. J.; Pagidipati, N. J.; Chan, J. C.; Gustavson, S. M.; Iqbal, N.; et al. Cardiovascular Outcomes with Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes: A Meta-Analysis. Lancet Diabetes Endocrinol, 2018, 6 (2), 105–113. [CrossRef]
  250. Marshall, S. M. 60 Years of Metformin Use: A Glance at the Past and a Look to the Future. Diabetologia, 2017, 60 (9), 1561–1565. [CrossRef]
  251. Campbell, J. M.; Bellman, S. M.; Stephenson, M. D.; Lisy., K. Metformin Reduces All-Cause Mortality and Diseases of Ageing Independent of Its Effect on Diabetes Control: A Systematic Review and Meta-Analysis. Ageing Res Rev, 2017, 40, 31–44. [CrossRef]
  252. Feng, X.; Chen, W.; Ni, X.; Little, P. J.; Xu, S.; Tang, L.; Weng, J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol, 2021, 12, 682853. [CrossRef]
  253. Poznyak, A. V.; Litvinova, L.; Poggio, P.; Moschetta, D.; Sukhorukov, V. N.; Orekhov, A. N. From Diabetes to Atherosclerosis: Potential of Metformin for Management of Cardiovascular Disease. Int J Mol Sci, 2022, 23 (17), 9738. [CrossRef]
  254. Zhao, Y.; Zhao, Y.; Tian, Y.; Zhou, Y. Metformin Suppresses Foam Cell Formation, Inflammation and Ferroptosis via the AMPK/ERK Signaling Pathway in Ox-LDL-induced THP-1 Monocytes. Exp Ther Med, 2022, 24 (4), 636. [CrossRef]
  255. De Winther, M. P. J.; Van Dijk, K. W.; Havekes, L. M.; Hofker, M. H. Macrophage Scavenger Receptor Class A: A Multifunctional Receptor in Atherosclerosis. Arterioscler Thromb Vasc Biol, 2000, 20 (2), 290–297. [CrossRef]
  256. Park, Y. M. CD36, a Scavenger Receptor Implicated in Atherosclerosis. Exp Mol Med, 2014, 46 (6), e99. [CrossRef]
  257. Yang, Q.; Yuan, H.; Chen, M.; Qu, J.; Wang, H.; Yu, B.; Chen, J.; Sun, S.; Tang, X.; Ren, W. Metformin Ameliorates the Progression of Atherosclerosis via Suppressing Macrophage Infiltration and Inflammatory Responses in Rabbits. Life Sci, 2018, 198, 56–64. [CrossRef]
  258. Kanigur Sultuybek, G.; Soydas, T.; Yenmis, G. NF-ΚB as the Mediator of Metformin’s Effect on Ageing and Ageing-Related Diseases. Clin Exp Pharmacol Physiol, 2019, 46 (5), 413–422. [CrossRef]
  259. Asgharzadeh, F.; Barneh, F.; Fakhraie, M.; Adel barkhordar, S. leili; Shabani, M.; Soleimani, A.; Rahmani, F.; Ariakia, F.; Mehraban, S.; Avan, A.; et al. Metformin Inhibits Polyphosphate-Induced Hyper-Permeability and Inflammation. Int Immunopharmacol, 2021, 99, 107937. [CrossRef]
  260. Roussel, R.; Travert, F.; Pasquet, B.; Wilson, P. W. F.; Smith, S. C.; Goto, S.; Ravaud, P.; Marre, M.; Porath, A.; Bhatt, D. L.; et al. Metformin Use and Mortality among Patients with Diabetes and Atherothrombosis. Arch Intern Med, 2010, 170 (21), 1892–1899. [CrossRef]
  261. Meaney, E.; Vela, A.; Samaniego, V.; Meaney, A.; Asbún, J.; Zempoalteca, J. C.; Elisa, Z. N.; Emma, M. N.; Guzman, M.; Hicks, J.; et al. Metformin, Arterial Function, Intima-Media Thickness and Nitroxidation in Metabolic Syndrome: The Mefisto Study. Clin Exp Pharmacol Physiol, 2008, 35 (8), 895–903. [CrossRef]
  262. Jadhav, S.; Ferrell, W.; Greer, I. A.; Petrie, J. R.; Cobbe, S. M.; Sattar, N. Effects of Metformin on Microvascular Function and Exercise Tolerance in Women with Angina and Normal Coronary Arteries: A Randomized, Double-Blind, Placebo-Controlled Study. J Am Coll Cardiol, 2006, 48 (5), 956–963. [CrossRef]
  263. Preiss, D.; Lloyd, S. M.; Ford, I.; McMurray, J. J.; Holman, R. R.; Welsh, P.; Fisher, M.; Packard, C. J.; Sattar, N. Metformin for Non-Diabetic Patients with Coronary Heart Disease (the CAMERA Study): A Randomised Controlled Trial. Lancet Diabetes Endocrinol, 2014, 2 (2), 116–124. [CrossRef]
  264. Luo, F.; Das, A.; Chen, J.; Wu, P.; Li, X.; Fang, Z. Metformin in Patients with and without Diabetes: A Paradigm Shift in Cardiovascular Disease Management. Cardiovasc Diabetol, 2019, 18 (1), 54. [CrossRef]
  265. Griffin, S. J.; Angelyn Bethel, M.; Holman, R. R.; Khunti, K.; Wareham, N.; Brierley, G.; Davies, M.; Dymond, A.; Eichenberger, R.; Evans, P.; et al. Metformin in Non-Diabetic Hyperglycaemia: The GLINT Feasibility RCT. Health Technol Assess, 2018, 22 (18), 1–64. [CrossRef]
  266. ISRCTN - ISRCTN34875079: The Glucose Lowering In Non-diabetic hyperglycaemia Trial (GLINT) - Glucose lowering in those at risk of diabetes https://www.isrctn.com/ISRCTN34875079 (accessed Jun 14, 2023).
  267. National Institute of Diabetes and Digestive and Kidney Diseases. Dipeptidyl Peptidase-4 Inhibitors https://pubmed.ncbi.nlm.nih.gov/31643671/ (accessed Jun 14, 2023).
  268. Cosentino, F.; Grant, P. J.; Aboyans, V.; Bailey, C. J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D. E.; Hansen, T. B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASDThe Task Force for Diabetes, Pre-Diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J, 2020, 41 (2), 255–323. [CrossRef]
  269. Liu, H.; Guo, L.; Xing, J.; Li, P.; Sang, H.; Hu, X.; Du, Y.; Zhao, L.; Song, R.; Gu, H. The Protective Role of DPP4 Inhibitors in Atherosclerosis. Eur J Pharmacol, 2020, 875, 173037. [CrossRef]
  270. Lee, D. S.; Lee, E. S.; Alam, M. M.; Jang, J. H.; Lee, H. S.; Oh, H.; Kim, Y. C.; Manzoor, Z.; Koh, Y. S.; Kang, D. G.; et al. Soluble DPP-4 up-Regulates Toll-like Receptors and Augments Inflammatory Reactions, Which Are Ameliorated by Vildagliptin or Mannose-6-Phosphate. Metabolism, 2016, 65 (2), 89–101. [CrossRef]
  271. Romacho, T.; Vallejo, S.; Villalobos, L. A.; Wronkowitz, N.; Indrakusuma, I.; Sell, H.; Eckel, J.; Sanchez-Ferrer, C. F.; Peiro, C. Soluble Dipeptidyl Peptidase-4 Induces Microvascular Endothelial Dysfunction through Proteinase-Activated Receptor-2 and Thromboxane A2 Release. J Hypertens, 2016, 34 (5), 869–876. [CrossRef]
  272. Tang, S. T.; Su, H.; Zhang, Q.; Tang, H. Q.; Wang, C. J.; Zhou, Q.; Wei, W.; Zhu, H. Q.; Wang, Y. Sitagliptin Inhibits Endothelin-1 Expression in the Aortic Endothelium of Rats with Streptozotocin-Induced Diabetes by Suppressing the Nuclear Factor-ΚB/IκBα System through the Activation of AMP-Activated Protein Kinase. Int J Mol Med, 2016, 37 (6), 1558–1566. [CrossRef]
  273. Matsubara, J.; Sugiyama, S.; Sugamura, K.; Nakamura, T.; Fujiwara, Y.; Akiyama, E.; Kurokawa, H.; Nozaki, T.; Ohba, K.; Konishi, M.; et al. A Dipeptidyl Peptidase-4 Inhibitor, Des-Fluoro-Sitagliptin, Improves Endothelial Function and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Deficient Mice. J Am Coll Cardiol, 2012, 59 (3), 265–276. [CrossRef]
  274. Liu, H.; Xiang, H.; Zhao, S.; Sang, H.; Lv, F.; Chen, R.; Shu, Z.; Chen, A. F.; Chen, S.; Lu, H. Vildagliptin Improves High Glucose-Induced Endothelial Mitochondrial Dysfunction via Inhibiting Mitochondrial Fission. J Cell Mol Med, 2019, 23 (2), 798–810. [CrossRef]
  275. Fadini, G. P.; Boscaro, E.; Albiero, M.; Menegazzo, L.; Frison, V.; De Kreutzenberg, S.; Agostini, C.; Tiengo, A.; Avogaro, A. The Oral Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Increases Circulating Endothelial Progenitor Cells in Patients with Type 2 Diabetes: Possible Role of Stromal-Derived Factor-1alpha. Diabetes Care, 2010, 33 (7), 1607–1609. [CrossRef]
  276. Fadini, G. P.; Avogaro, A. Dipeptidyl Peptidase-4 Inhibition and Vascular Repair by Mobilization of Endogenous Stem Cells in Diabetes and Beyond. Atherosclerosis, 2013, 229 (1), 23–29. [CrossRef]
  277. Dai, Y.; Dai, D.; Wang, X.; Ding, Z.; Mehta, J. L. DPP-4 Inhibitors Repress NLRP3 Inflammasome and Interleukin-1beta via GLP-1 Receptor in Macrophages through Protein Kinase C Pathway. Cardiovasc Drugs Ther, 2014, 28 (5), 425–432. [CrossRef]
  278. Cha, S. A.; Park, Y. M.; Yun, J. S.; Lim, T. S.; Song, K. H.; Yoo, K. D.; Ahn, Y. B.; Ko, S. H. A Comparison of Effects of DPP-4 Inhibitor and SGLT2 Inhibitor on Lipid Profile in Patients with Type 2 Diabetes. Lipids Health Dis, 2017, 16 (1), 1–8. [CrossRef]
  279. Boschmann, M.; Engeli, S.; Dobberstein, K.; Budziarek, P.; Strauss, A.; Boehnke, J.; Sweep, F. C. G. J.; Luft, F. C.; He, Y. L.; Foley, J. E.; et al. Dipeptidyl-Peptidase-IV Inhibition Augments Postprandial Lipid Mobilization and Oxidation in Type 2 Diabetic Patients. J Clin Endocrinol Metab, 2009, 94 (3), 846–852. [CrossRef]
  280. Rosenstock, J.; Perkovic, V.; Johansen, O. E.; Cooper, M. E.; Kahn, S. E.; Marx, N.; Alexander, J. H.; Pencina, M.; Toto, R. D.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA, 2019, 321 (1), 69–79. [CrossRef]
  281. Green, J. B.; Bethel, M. A.; Armstrong, P. W.; Buse, J. B.; Engel, S. S.; Garg, J.; Josse, R.; Kaufman, K. D.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med, 2015, 373 (3), 232–242. [CrossRef]
  282. Scirica, B. M.; Bhatt, D. L.; Braunwald, E.; Steg, P. G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S. D.; Hoffman, E. B.; et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med, 2013, 369 (14), 1317–1326. [CrossRef]
  283. White, W. B.; Cannon, C. P.; Heller, S. R.; Nissen, S. E.; Bergenstal, R. M.; Bakris, G. L.; Perez, A. T.; Fleck, P. R.; Mehta, C. R.; Kupfer, S.; et al. Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N Engl J Med, 2013, 369 (14), 1327–1335. [CrossRef]
  284. Solomon, S. D.; de Boer, R. A.; DeMets, D.; Hernandez, A. F.; Inzucchi, S. E.; Kosiborod, M. N.; Lam, C. S. P.; Martinez, F.; Shah, S. J.; Lindholm, D.; et al. Dapagliflozin in Heart Failure with Preserved and Mildly Reduced Ejection Fraction: Rationale and Design of the DELIVER Trial. Eur J Heart Fail, 2021, 23 (7), 1217–1225. [CrossRef]
  285. Packer, M.; Butler, J.; Zannad, F.; Filippatos, G.; Ferreira, J. P.; Pocock, S. J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on Worsening Heart Failure Events in Patients With Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial. Circulation, 2021, 144 (16), 1284–1294. [CrossRef]
  286. Panzer, B.; Wadowski, P. P.; Huber, K.; Panzer, S.; Gremmel, T. Protease-Activated Receptor-Mediated Platelet Aggregation in Patients with Type 2 Diabetes on Potent P2Y12 Inhibitors. Diabet Med, 2022, 39 (8), e14868. [CrossRef]
  287. Wadowski, P. P.; Weikert, C.; Pultar, J.; Lee, S.; Eichelberger, B.; Koppensteiner, R.; Lang, I. M.; Panzer, S.; Gremmel, T. Ticagrelor Inhibits Toll-Like and Protease-Activated Receptor Mediated Platelet Activation in Acute Coronary Syndromes. Cardiovasc Drugs Ther, 2020, 34 (1), 53–63. [CrossRef]
  288. Wadowski, P. P.; Eichelberger, B.; Kopp, C. W.; Pultar, J.; Seidinger, D.; Koppensteiner, R.; Lang, I. M.; Panzer, S.; Gremmel, T. Disaggregation Following Agonist-Induced Platelet Activation in Patients on Dual Antiplatelet Therapy. J Cardiovasc Transl Res, 2017, 10 (4), 359–367. [CrossRef]
  289. Pultar, J.; Wadowski, P. P.; Panzer, S.; Gremmel, T. Oral Antiplatelet Agents in Cardiovascular Disease. Vasa, 2019, 48 (4), 291–302. [CrossRef]
  290. Schrottmaier, W. C.; Mussbacher, M.; Salzmann, M.; Assinger, A. Platelet-Leukocyte Interplay during Vascular Disease. Atherosclerosis, 2020, 307, 109–120. [CrossRef]
  291. Li, W.; Liu, Q.; Tang, Y. Platelet to Lymphocyte Ratio in the Prediction of Adverse Outcomes after Acute Coronary Syndrome: A Meta-Analysis. Sci Rep, 2017, 7, 40426. [CrossRef]
  292. Azab, B.; Shah, N.; Akerman, M.; McGinn, J. T. Value of Platelet/Lymphocyte Ratio as a Predictor of All-Cause Mortality after Non-ST-Elevation Myocardial Infarction. J Thromb Thrombolysis, 2012, 34 (3), 326–334. [CrossRef]
  293. Ugur, M.; Gul, M.; Bozbay, M.; Cicek, G.; Uyarel, H.; Koroglu, B.; Uluganyan, M.; Aslan, S.; Tusun, E.; Surgit, O.; et al. The Relationship between Platelet to Lymphocyte Ratio and the Clinical Outcomes in ST Elevation Myocardial Infarction Underwent Primary Coronary Intervention. Blood Coagul Fibrinolysis, 2014, 25 (8), 806–811. [CrossRef]
  294. Lee, S.; Hoberstorfer, T.; Wadowski, P. P.; Kopp, C. W.; Panzer, S.; Gremmel, T. Platelet-to-Lymphocyte and Neutrophil-to-Lymphocyte Ratios Predict Target Vessel Restenosis after Infrainguinal Angioplasty with Stent Implantation. J Clin Med, 2020, 9 (6), 1–12. [CrossRef]
  295. Gremmel, T.; Steiner, S.; Seidinger, D.; Koppensteiner, R.; Panzer, S.; Kopp, C. W. Adenosine Diphosphate-Inducible Platelet Reactivity Shows a Pronounced Age Dependency in the Initial Phase of Antiplatelet Therapy with Clopidogrel. J Thromb Haemost, 2010, 8 (1), 37–42. [CrossRef]
  296. Gremmel, T.; Michelson, A. D.; Wadowski, P. P.; Pultar, J.; Weikert, C.; Tscharre, M.; Lee, S.; Panzer, S.; Frelinger, A. L. Sex-Specific Platelet Activation through Protease-Activated Receptor-1 in Patients Undergoing Cardiac Catheterization. Atherosclerosis, 2021, 339, 12–19. [CrossRef]
  297. Wadowski, P. P.; Lee, S.; Kopp, C. W.; Koppensteiner, R.; Panzer, S.; Gremmel, T. Low Levels of High-Density Lipoprotein Cholesterol Are Linked to Impaired Clopidogrel-Mediated Platelet Inhibition. Angiology, 2018, 69 (9), 786–794. [CrossRef]
  298. Jäger, B.; Piackova, E.; Haller, P. M.; Andric, T.; Kahl, B.; Christ, G.; Geppert, A.; Wojta, J.; Huber, K. Increased Platelet Reactivity in Dyslipidemic Patients with Coronary Artery Disease on Dual Anti-Platelet Therapy. Arch Med Sci, 2019, 15 (1), 65–71. [CrossRef]
  299. Gremmel, T.; Kopp, C. W.; Seidinger, D.; Koppensteiner, R.; Panzer, S.; Sunder-Plassmann, R.; Mannhalter, C.; Steiner, S. Differential Impact of Cytochrome 2C9 Allelic Variants on Clopidogrel-Mediated Platelet Inhibition Determined by Five Different Platelet Function Tests. Int J Cardiol, 2013, 166 (1), 126–131. [CrossRef]
  300. Gremmel, T.; Kopp, C. W.; Moertl, D.; Seidinger, D.; Koppensteiner, R.; Panzer, S.; Mannhalter, C.; Steiner, S. Influence of Cytochrome 2C19 Allelic Variants on On-Treatment Platelet Reactivity Evaluated by Five Different Platelet Function Tests. Thromb Res, 2012, 129 (5), 616–622. [CrossRef]
  301. Giustino, G.; Kirtane, A. J.; Baber, U.; Généreux, P.; Witzenbichler, B.; Neumann, F. J.; Weisz, G.; Maehara, A.; Rinaldi, M. J.; Metzger, C.; et al. Impact of Anemia on Platelet Reactivity and Ischemic and Bleeding Risk: From the Assessment of Dual Antiplatelet Therapy With Drug-Eluting Stents Study. Am J Cardiol, 2016, 117 (12), 1877–1883. [CrossRef]
  302. Wadowski, P. P.; Kopp, C. W.; Koppensteiner, R.; Lang, I. M.; Pultar, J.; Lee, S.; Weikert, C.; Panzer, S.; Gremmel, T. Decreased Platelet Inhibition by P2Y12 Receptor Blockers in Anaemia. Eur J Clin Invest, 2018, 48 (1). [CrossRef]
  303. Weiss, G.; Ganz, T.; Goodnough, L. T. Anemia of Inflammation. Blood, 2019, 133 (1), 40–50. [CrossRef]
  304. Giustino, G.; Kirtane, A. J.; Baber, U.; Généreux, P.; Witzenbichler, B.; Neumann, F. J.; Weisz, G.; Maehara, A.; Rinaldi, M. J.; Metzger, C.; et al. Impact of Anemia on Platelet Reactivity and Ischemic and Bleeding Risk: From the Assessment of Dual Antiplatelet Therapy With Drug-Eluting Stents Study. Am J Cardiol, 2016, 117 (12), 1877–1883. [CrossRef]
  305. Otaki, Y.; Watanabe, T.; Takahashi, H.; Sugai, T.; Yokoyama, M.; Tamura, H.; Kato, S.; Nishiyama, S.; Arimoto, T.; Shishido, T.; et al. Impact of Iron Deficiency on Peripheral Artery Disease After Endovascular Therapy. Circ Rep, 2019, 1 (4), 187–195. [CrossRef]
  306. McEvoy, J. W.; Ibrahim, K.; Kickler, T. S.; Clarke, W. A.; Hasan, R. K.; Czarny, M. J.; Keramati, A. R.; Goli, R. R.; Gratton, T. P.; Brinker, J. A.; et al. Effect of Intravenous Fentanyl on Ticagrelor Absorption and Platelet Inhibition Among Patients Undergoing Percutaneous Coronary Intervention: The PACIFY Randomized Clinical Trial (Platelet Aggregation With Ticagrelor Inhibition and Fentanyl). Circulation, 2018, 137 (3), 307–309. [CrossRef]
  307. Kubica, J.; Adamski, P.; Ostrowska, M.; Sikora, J.; Kubica, J. M.; Sroka, W. D.; Stankowska, K.; Buszko, K.; Navarese, E. P.; Jilma, B.; et al. Morphine Delays and Attenuates Ticagrelor Exposure and Action in Patients with Myocardial Infarction: The Randomized, Double-Blind, Placebo-Controlled IMPRESSION Trial. Eur Heart J, 2016, 37 (3), 245–252. [CrossRef]
  308. Hobl, E. L.; Reiter, B.; Schoergenhofer, C.; Schwameis, M.; Derhaschnig, U.; Lang, I. M.; Stimpfl, T.; Jilma, B. Morphine Interaction with Prasugrel: A Double-Blind, Cross-over Trial in Healthy Volunteers. Clin Res Cardiol, 2016, 105 (4), 349–355. [CrossRef]
  309. Hobl, E. L.; Reiter, B.; Schoergenhofer, C.; Schwameis, M.; Derhaschnig, U.; Kubica, J.; Stimpfl, T.; Jilma, B. Morphine Decreases Ticagrelor Concentrations but Not Its Antiplatelet Effects: A Randomized Trial in Healthy Volunteers. Eur J Clin Invest, 2016, 46 (1), 7–14. [CrossRef]
  310. Hobl, E. L.; Stimpfl, T.; Ebner, J.; Schoergenhofer, C.; Derhaschnig, U.; Sunder-Plassmann, R.; Jilma-Stohlawetz, P.; Mannhalter, C.; Posch, M.; Jilma, B. Morphine Decreases Clopidogrel Concentrations and Effects: A Randomized, Double-Blind, Placebo-Controlled Trial. J Am Coll Cardiol, 2014, 63 (7), 630–635. [CrossRef]
  311. Bartko, J.; Schoergenhofer, C.; Schwameis, M.; Wadowski, P.; Kubica, J.; Jilma, B.; Hobl, E. L. Morphine Interaction with Aspirin: A Double-Blind, Crossover Trial in Healthy Volunteers. J Pharmacol Exp Ther, 2018, 365 (2), 430–436. [CrossRef]
  312. Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci, 2020, 21 (14), 1–35. [CrossRef]
  313. Falconer, D.; Papageorgiou, N.; Salem, K.; Lim, W. Y.; Katsargyris, A.; Avgerinos, E.; Tousoulis, D. Nitric Oxide Donors for Peripheral Artery Disease. Curr Opin Pharmacol, 2018, 39, 77–85. [CrossRef]
  314. Park, S. Y.; Pekas, E. J.; Headid, R. J.; Son, W. M.; Wooden, T. K.; Song, J.; Layec, G.; Yadav, S. K.; Mishra, P. K.; Pipinos, I. I. Acute Mitochondrial Antioxidant Intake Improves Endothelial Function, Antioxidant Enzyme Activity, and Exercise Tolerance in Patients with Peripheral Artery Disease. Am J Physiol Heart Circ Physiol, 2020, 319 (2), H456–H467. [CrossRef]
  315. Gorabi, A. M.; Kiaie, N.; Hajighasemi, S.; Banach, M.; Penson, P. E.; Jamialahmadi, T.; Sahebkar, A. Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J Clin Med, 2019, 8 (12), 2051. [CrossRef]
  316. Piechota-Polanczyk, A.; Goraca, A.; Demyanets, S.; Mittlboeck, M.; Domenig, C.; Neumayer, C.; Wojta, J.; Nanobachvili, J.; Huk, I.; Klinger, M. Simvastatin Decreases Free Radicals Formation in the Human Abdominal Aortic Aneurysm Wall via NF-ΚB. Eur J Vasc Endovasc Surg, 2012, 44 (2), 133–137. [CrossRef]
  317. Durante, W. Targeting Heme Oxygenase-1 in Vascular Disease. Curr Drug Targets, 2010, 11 (12), 1504–1516. [CrossRef]
  318. Dulak, J.; Deshane, J.; Jozkowicz, A.; Agarwal, A. Heme Oxygenase-1 and Carbon Monoxide in Vascular Pathobiology: Focus on Angiogenesis. Circulation, 2008, 117 (2), 231–241. [CrossRef]
  319. Lee, T. S.; Chang, C. C.; Zhu, Y.; Shyy, J. Y. J. Simvastatin Induces Heme Oxygenase-1: A Novel Mechanism of Vessel Protection. Circulation, 2004, 110 (10), 1296–1302. [CrossRef]
  320. Piechota-Polanczyk, A.; Kopacz, A.; Kloska, D.; Zagrapan, B.; Neumayer, C.; Grochot-Przeczek, A.; Huk, I.; Brostjan, C.; Dulak, J.; Jozkowicz, A. Simvastatin Treatment Upregulates HO-1 in Patients with Abdominal Aortic Aneurysm but Independently of Nrf2. Oxid Med Cell Longev, 2018, 2018, 2028936. [CrossRef]
  321. Andreas, M.; Oeser, C.; Kainz, F. M.; Shabanian, S.; Aref, T.; Bilban, M.; Messner, B.; Heidtmann, J.; Laufer, G.; Kocher, A.; et al. Intravenous Heme Arginate Induces HO-1 (Heme Oxygenase-1) in the Human Heart. Arterioscler Thromb Vasc Biol, 2018, 38 (11), 2755–2762. [CrossRef]
  322. Doberer, D.; Haschemi, A.; Andreas, M.; Zapf, T. C.; Clive, B.; Jeitler, M.; Heinzl, H.; Wagner, O.; Wolzt, M.; Bilban, M. Haem Arginate Infusion Stimulates Haem Oxygenase-1 Expression in Healthy Subjects. Br J Pharmacol, 2010, 161 (8), 1751–1762. [CrossRef]
  323. Andreas, M.; Schmid, A. I.; Doberer, D.; Schewzow, K.; Weisshaar, S.; Heinze, G.; Bilban, M.; Moser, E.; Wolzt, M. Heme Arginate Improves Reperfusion Patterns after Ischemia: A Randomized, Placebo-Controlled Trial in Healthy Male Subjects. J Cardiovasc Magn Reson, 2012, 14 (1), 55. [CrossRef]
  324. Heusch, G. Myocardial Ischaemia-Reperfusion Injury and Cardioprotection in Perspective. Nat Rev Cardiol, 2020, 17 (12), 773–789. [CrossRef]
  325. Andreas, M.; Schmid, A. I.; Keilani, M.; Doberer, D.; Bartko, J.; Crevenna, R.; Moser, E.; Wolzt, M. Effect of Ischemic Preconditioning in Skeletal Muscle Measured by Functional Magnetic Resonance Imaging and Spectroscopy: A Randomized Crossover Trial. J Cardiovasc Magn Reson, 2011, 13 (1), 32. [CrossRef]
  326. Hentia, C.; Rizzato, A.; Camporesi, E.; Yang, Z.; Muntean, D. M.; Săndesc, D.; Bosco, G. An Overview of Protective Strategies against Ischemia/Reperfusion Injury: The Role of Hyperbaric Oxygen Preconditioning. Brain Behav, 2018, 8 (5), e00959. [CrossRef]
  327. Rout, A.; Tantry, U. S.; Novakovic, M.; Sukhi, A.; Gurbel, P. A. Targeted Pharmacotherapy for Ischemia Reperfusion Injury in Acute Myocardial Infarction. Expert Opin Pharmacother, 2020, 21 (15), 1851–1865. [CrossRef]
  328. Belcher, D. A.; Williams, A. T.; Munoz, C. J.; Muller, C. R.; Walser, C.; Palmer, A. F.; Cabrales, P. Attenuating Ischemia-Reperfusion Injury with Polymerized Albumin. J Appl Physiol (1985), 2022, 132 (2), 489–496. [CrossRef]
  329. Merchant, S. H.; Gurule, D. M.; Larson, R. S. Amelioration of Ischemia-Reperfusion Injury with Cyclic Peptide Blockade of ICAM-1. Am J Physiol Heart Circ Physiol, 2003, 284 (4), H1260–H1268. [CrossRef]
  330. Zhang, X.; Xie, Y. W.; Nasjletti, A.; Xu, X.; Wolin, M. S.; Hintze, T. H. ACE Inhibitors Promote Nitric Oxide Accumulation to Modulate Myocardial Oxygen Consumption. Circulation, 1997, 95 (1), 176–182. [CrossRef]
  331. Steven, S.; Oelze, M.; Hanf, A.; Kröller-Schön, S.; Kashani, F.; Roohani, S.; Welschof, P.; Kopp, M.; Gödtel-Armbrust, U.; Xia, N.; et al. The SGLT2 Inhibitor Empagliflozin Improves the Primary Diabetic Complications in ZDF Rats. Redox Biol, 2017, 13, 370–385. [CrossRef]
  332. Uthman, L.; Homayr, A.; Juni, R. P.; Spin, E. L.; Kerindongo, R.; Boomsma, M.; Hollmanna Benedikt Preckel, M. W.; Koolwijk, P.; Van Hinsbergh, V. W. M.; Zuurbier, C. J.; et al. Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cell Physiol Biochem, 2019, 53 (5), 865–886. [CrossRef]
  333. Chaudhuri, A.; Ghanim, H.; Vora, M.; Sia, C. L.; Korzeniewski, K.; Dhindsa, S.; Makdissi, A.; Dandona, P. Exenatide Exerts a Potent Antiinflammatory Effect. J Clin Endocrinol Metab, 2012, 97 (1), 198–207. [CrossRef]
  334. Schlager, O.; Giurgea, A.; Schuhfried, O.; Seidinger, D.; Hammer, A.; Gröger, M.; Fialka-Moser, V.; Gschwandtner, M.; Koppensteiner, R.; Steiner, S. Exercise Training Increases Endothelial Progenitor Cells and Decreases Asymmetric Dimethylarginine in Peripheral Arterial Disease: A Randomized Controlled Trial. Atherosclerosis, 2011, 217 (1), 240–248. [CrossRef]
  335. Wang, Y.; Xu, D. Effects of Aerobic Exercise on Lipids and Lipoproteins. Lipids Health Dis, 2017, 16 (1). [CrossRef]
  336. Sampath Kumar, A.; Maiya, A. G.; Shastry, B. A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and Insulin Resistance in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Ann Phys Rehabil Med, 2019, 62 (2), 98–103. [CrossRef]
  337. Sharman, J. E.; La Gerche, A.; Coombes, J. S. Exercise and Cardiovascular Risk in Patients with Hypertension. Am J Hypertens, 2015, 28 (2), 147–158. [CrossRef]
  338. Palmefors, H.; DuttaRoy, S.; Rundqvist, B.; Börjesson, M. The Effect of Physical Activity or Exercise on Key Biomarkers in Atherosclerosis--a Systematic Review. Atherosclerosis, 2014, 235 (1), 150–161. [CrossRef]
  339. Carvalho de Arruda Veiga, E.; Ferreira Levy, R.; Sales Bocalini, D.; Maria Soares Junior, J.; Chada Baracat, E.; Carvalho Cavalli, R.; dos Santos, L. Exercise Training and Experimental Myocardial Ischemia and Reperfusion: A Systematic Review and Meta-Analysis. IJC Heart & Vasculature, 2023, 46, 101214. [CrossRef]
  340. Quindry, J. C.; Franklin, B. A. Exercise Preconditioning as a Cardioprotective Phenotype. Am J Cardiol, 2021, 148, 8–15. [CrossRef]
  341. Banerjee, S.; Mwangi, J. G.; Stanley, T. K.; Mitra, R.; Ebong, E. E. Regeneration and Assessment of the Endothelial Glycocalyx to Address Cardiovascular Disease. Ind Eng Chem Res, 2021, 60 (48), 17328–17347. [CrossRef]
  342. Qi, H.; Yang, S.; Zhang, L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front Immunol, 2017, 8, 928. [CrossRef]
  343. Wong, B. W.; Marsch, E.; Treps, L.; Baes, M.; Carmeliet, P. Endothelial Cell Metabolism in Health and Disease: Impact of Hypoxia. EMBO J, 2017, 36 (15), 2187–2203. [CrossRef]
  344. De Vries, M. R.; Quax, P. H. A. Plaque Angiogenesis and Its Relation to Inflammation and Atherosclerotic Plaque Destabilization. Curr Opin Lipidol, 2016, 27 (5), 499–506. [CrossRef]
  345. Xu, Y.; An, X.; Guo, X.; Habtetsion, T. G.; Wang, Y.; Xu, X.; Kandala, S.; Li, Q.; Li, H.; Zhang, C.; et al. Endothelial PFKFB3 Plays a Critical Role in Angiogenesis. Arterioscler Thromb Vasc Biol, 2014, 34 (6), 1231–1239. [CrossRef]
  346. Lindstedt, K. A.; Mäyränpää, M. I.; Kovanen, P. T. Mast Cells in Vulnerable Atherosclerotic Plaques – a View to a Kill. J Cell Mol Med, 2007, 11 (4), 739–758. [CrossRef]
  347. Döring, Y.; Soehnlein, O.; Weber, C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res, 2017, 120 (4), 736–743. [CrossRef]
  348. Wadowski, P. P.; Steinlechner, B.; Zimpfer, D.; Schlöglhofer, T.; Schima, H.; Hülsmann, M.; Lang, I. M.; Gremmel, T.; Koppensteiner, R.; Zehetmayer, S.; et al. Functional Capillary Impairment in Patients with Ventricular Assist Devices. Sci Rep, 2019, 9 (1), 5909. [CrossRef]
  349. Wadowski, P. P.; Hülsmann, M.; Schörgenhofer, C.; Lang, I. M.; Wurm, R.; Gremmel, T.; Koppensteiner, R.; Steinlechner, B.; Schwameis, M.; Jilma, B. Sublingual Functional Capillary Rarefaction in Chronic Heart Failure. Eur J Clin Invest, 2018, 48 (2). [CrossRef]
  350. Wadowski, P. P.; Schörgenhofer, C.; Rieder, T.; Ertl, S.; Pultar, J.; Serles, W.; Sycha, T.; Mayer, F.; Koppensteiner, R.; Gremmel, T.; et al. Microvascular Rarefaction in Patients with Cerebrovascular Events. Microvasc Res, 2022, 140, 104300. [CrossRef]
  351. Pultar, J.; Ertl, S.; Weikert, C.; Gremmel, T.; Kopp, C.; Mitteregger, M.; Cenan, E.; Jilma, B.; Koppensteiner, R.; Wadowski, P. Systemic Capillary Rarefaction in Patients with Peripheral Arterial Disease. Wien Klin Wochenschr, 2022, 134, 211–227. [CrossRef]
  352. Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
  353. Yu, H.; Kalogeris, T.; Korthuis, R. J. Reactive Species-Induced Microvascular Dysfunction in Ischemia/Reperfusion. Free Radic Biol Med, 2019, 135, 182–197. [CrossRef]
  354. Belcher, D. A.; Williams, A. T.; Munoz, C. J.; Muller, C. R.; Walser, C.; Palmer, A. F.; Cabrales, P. Attenuating Ischemia-Reperfusion Injury with Polymerized Albumin. J Appl Physiol (1985), 2022, 132 (2), 489–496. [CrossRef]
  355. Zanini, G.; Selleri, V.; Roncati, L.; Coppi, F.; Nasi, M.; Farinetti, A.; Manenti, A.; Pinti, M.; Mattioli, A. V. Vascular “Long COVID”: A New Vessel Disease? Angiology, 2023. [CrossRef]
  356. Wadowski, P. P.; Piechota-Polańczyk, A.; Andreas, M.; Kopp, C. W. Cardiovascular Disease Management in the Context of Global Crisis. Int J Environ Res Public Health, 2022, 20 (1), 689. [CrossRef]
  357. Panagiotides, N. G.; Zimprich, F.; Machold, K.; Schlager, O.; Müller, M.; Ertl, S.; Löffler-Stastka, H.; Koppensteiner, R.; Wadowski, P. P. A Case of Autoimmune Small Fiber Neuropathy as Possible Post COVID Sequelae. Int J Environ Res Public Health, 2023, 20 (6), 4918. [CrossRef]
  358. Balin, M.; Kivrak, T. Effect of Repeated Remote Ischemic Preconditioning on Peripheral Arterial Disease in Patients Suffering from Intermittent Claudication. Cardiovasc Ther, 2019, 2019, 9592378. [CrossRef]
  359. Poznyak, A. V.; Bharadwaj, D.; Prasad, G.; Grechko, A. V.; Sazonova, M. A.; Orekhov, A. N. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. Int J Mol Sci, 2021, 22 (13), 6702. [CrossRef]
  360. Dardano, A.; Miccoli, R.; Bianchi, C.; Daniele, G.; Del Prato, S. Invited Review. Series: Implications of the Recent CVOTs in Type 2 Diabetes: Which Patients for GLP-1RA or SGLT-2 Inhibitor? Diabetes Res Clin Pract, 2020, 162, 108112. [CrossRef]
  361. Hurley, D. M.; Williams, E. R.; Cross, J. M.; Riedinger, B. R.; Meyer, R. A.; Abela, G. S.; Slade, J. M. Aerobic Exercise Improves Microvascular Function in Older Adults. Med Sci Sports Exerc, 2019, 51 (4), 773–781. [CrossRef]
  362. Steiner, S.; Niessner, A.; Ziegler, S.; Richter, B.; Seidinger, D.; Pleiner, J.; Penka, M.; Wolzt, M.; Huber, K.; Wojta, J.; et al. Endurance Training Increases the Number of Endothelial Progenitor Cells in Patients with Cardiovascular Risk and Coronary Artery Disease. Atherosclerosis, 2005, 181 (2), 305–310. [CrossRef]
Figure 1. Pathophysiologic consequences of inflammation on the vasculature and adjacent tissue: Inflammatory processes promotes endothelial dysfunction by glycocalyx degradation, leading to altered vascular homeostasis [9]. The pathological processes influence each other perpetuating disease progression. ETosis, extracellular trap formation; I/R, ischaemia reperfusion injury; MPs, microparticles; ROS, reactive oxygen species; TLR, toll-like receptor.
Figure 1. Pathophysiologic consequences of inflammation on the vasculature and adjacent tissue: Inflammatory processes promotes endothelial dysfunction by glycocalyx degradation, leading to altered vascular homeostasis [9]. The pathological processes influence each other perpetuating disease progression. ETosis, extracellular trap formation; I/R, ischaemia reperfusion injury; MPs, microparticles; ROS, reactive oxygen species; TLR, toll-like receptor.
Preprints 79597 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated