Preprint
Article

Functional Deutsch Uncertainty Principle

Altmetrics

Downloads

115

Views

118

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

14 July 2023

Posted:

17 July 2023

You are already at the latest version

Alerts
Abstract
Let $\{f_j\}_{j=1}^n$ and $\{g_k\}_{k=1}^m$ be Parseval p-frames for a finite dimensional Banach space $\mathcal{X}$. Then we show that \begin{align}\label{UE} \log (nm)\geq S_f (x)+S_g (x)\geq -p \log \left(\displaystyle\sup_{y \in \mathcal{X}_f\cap \mathcal{X}_g, \|y\|=1}\left(\max_{1\leq j\leq n, 1\leq k\leq m}|f_j(y)g_k(y)|\right)\right), \quad \forall x \in \mathcal{X}_f\cap \mathcal{X}_g, \end{align} where \begin{align*} &\mathcal{X}_f\coloneqq \{z\in \mathcal{X}: f_j(z)\neq 0, 1\leq j \leq n\}, \quad \mathcal{X}_g\coloneqq \{w\in \mathcal{X}: g_k(w)\neq 0, 1\leq k \leq m\},\\ &S_f (x)\coloneqq -\sum_{j=1}^{n}\left|f_j\left(\frac{x}{\|x\|}\right)\right|^p\log \left|f_j\left(\frac{x}{\|x\|}\right)\right|^p, \quad S_g (x)\coloneqq -\sum_{k=1}^{m}\left|g_k\left(\frac{x}{\|x\|}\right)\right|^p\log \left|g_k\left(\frac{x}{\|x\|}\right)\right|^p, \quad \forall x \in \mathcal{X}_g. \end{align*} We call Inequality (1) as \textbf{Functional Deutsch Uncertainty Principle}. For Hilbert spaces, we show that Inequality (1) reduces to the uncertainty principle obtained by Deutsch \textit{[Phys. Rev. Lett., 1983]}. We also derive a dual of Inequality (1).
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis

MSC:  42C15

1. Introduction

Let d N and ^ : L 2 ( R d ) L 2 ( R d ) be the unitary Fourier transform obtained by extending uniquely the bounded linear operator
^ : L 1 ( R d ) L 2 ( R d ) f f ^ C 0 ( R d ) ; f ^ : R d ξ f ^ ( ξ ) R d f ( x ) e 2 π i x , ξ d x C .
The Shannon entropy at a function f L 2 ( R d ) { 0 } is defined as
S ( f ) R d f ( x ) f 2 log f ( x ) f 2 d x
(with the convention 0 log 0 = 0 ) [1]. In 1957, Hirschman proved the following result [2].
Theorem 1.1.
[2] (Hirschman Inequality) For all f L 2 ( R d ) { 0 } ,
S ( f ) + S ( f ^ ) 0 .
In the same paper [2] Hirschman conjectured that Inequality (2) can be improved to
S ( f ) + S ( f ^ ) d ( 1 log 2 ) , f L 2 ( R d ) { 0 } .
Inequality (3) was proved independently in 1975 by Beckner [3] and Bialynicki-Birula and Mycielski [4].
Theorem 1.2.
[3,4] (Hirschman-Beckner-Bialynicki-Birula-Mycielski Uncertainty Principle) For all f L 2 ( R d ) { 0 } ,
S ( f ) + S ( f ^ ) d ( 1 log 2 ) .
Now one naturally asks whether there is a finite dimensional version of Shannon entropy and uncertainty principle. Let H be a finite dimensional Hilbert space. Given an orthonormal basis { τ j } j = 1 n for H , the (finite) Shannon entropy at a point h H τ is defined as
S τ ( h ) j = 1 n h h , τ j 2 log h h , τ j 2 0 ,
where H τ { h H : h , τ j 0 , 1 j n } [5]. In 1983, Deutsch derived following uncertainty principle for Shannon entropy which is fundamental to several developments in Mathematics and Physics [5].
Theorem 1.3.
[5] (Deutsch Uncertainty Principle) Let { τ j } j = 1 n , { ω j } j = 1 n be two orthonormal bases for a finite dimensional Hilbert space H . Then
2 log n S τ ( h ) + S ω ( h ) 2 log 1 + max 1 j , k n | τ j , ω k | 2 0 , h H τ .
Recently, author derived Banach space versions of Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani uncertainty principle [6], Donoho-Stark approximate support uncertainty principle [7] and Ghobber-Jaming uncertainty principle [8]. We then naturally ask what is the Banach space version of Inequality (4)? In this paper, we are going to answer this question.

2. Functional Deutsch Uncertainty Principle

In the paper, K denotes C or R and X denotes a finite dimensional Banach space over K . Dual of X is denoted by X * . We need the notion of Parseval p-frames for Banach spaces.
Definition 2.1.
[9,10] Let X be a finite dimensional Banach space over K . A collection { f j } j = 1 n in X * is said to be a Parseval p-frame( 1 p < ) for X if
x p = j = 1 n | f j ( x ) | p , x X .
Note that (5) says that f j 1 for all 1 j n . Given a Parseval p-frame { f j } j = 1 n for X , we define the (finite) p-Shannon entropy at a point x X f as
S f ( x ) j = 1 n f j x x p log f j x x p 0 ,
where X f { x X : f j ( x ) 0 , 1 j n } . Following is the fundamental result of this paper.
Theorem 2.2
(Functional Deutsch Uncertainty Principle) Let { f j } j = 1 n and { g k } k = 1 m be Parseval p-frames for a finite dimensional Banach space X . Then
1 ( n m ) 1 p sup y X , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) |
and
log ( n m ) S f ( x ) + S g ( x ) p log sup y X f X g , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) | > 0 , x X f X g .
Proof. 
Let z X be such that z = 1 . Then
1 = j = 1 n | f j ( z ) | p k = 1 m | g k ( z ) | p = j = 1 n k = 1 m | f j ( z ) g k ( z ) | p j = 1 n k = 1 m sup y X , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) | p = sup y X , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) | p m n
which gives
1 m n sup y X , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) | p .
Since 1 = j = 1 n f j x x p for all x X { 0 } , 1 = k = 1 m g k x x p for all x X { 0 } and log function is concave, using Jensen’s inequality (see [11]) we get
S f ( x ) + S g ( x ) = j = 1 n f j x x p log 1 f j x x p + k = 1 m g k x x p log 1 g k x x p log j = 1 n f j x x p 1 f j x x p + log k = 1 m g k x x p 1 g k x x p = log n + log m = log ( n m ) , x X f X g .
Let x X f X g . Then
S f ( x ) + S g ( x ) = j = 1 n k = 1 m f j x x p g k x x p log f j x x p + log g k x x p = j = 1 n k = 1 m f j x x p g k x x p log f j x x g k x x p = p j = 1 n k = 1 m f j x x p g k x x p log f j x x g k x x p j = 1 n k = 1 m f j x x p g k x x p log sup y X f X g , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) | = p log sup y X f X g , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) | j = 1 n k = 1 m f j x x p g k x x p = p log sup y X f X g , y = 1 max 1 j n , 1 k m | f j ( y ) g k ( y ) | .
Corollary 2.3.
Theorem 1.3 follows from Theorem 2.2.
Proof. 
Let { τ j } j = 1 n , { ω j } j = 1 n be two orthonormal bases for a finite dimensional Hilbert space H . Define
f j : H h h , τ j K ; g j : H h h , ω j K , 1 j n .
Now by using Buzano inequality (see [12,13]) we get
sup h H , h = 1 max 1 j , k n | f j ( h ) g k ( h ) | = sup h H , h = 1 max 1 j , k n | h , τ j | | h , ω k | sup h H , h = 1 max 1 j , k n h 2 τ j ω k + | τ j , ω k | 2 = 1 + max 1 j , k n | τ j , ω k | 2 .
Theorem 2.2 brings the following question.
Question 2.4.
Given p, m, n and a Banach space X , for which pairs of Parseval p-frames { f j } j = 1 n and { g k } k = 1 m for X , we have equality in Inequality (6)?
Next we derive a dual inequality of (6). For this we need dual of Definition 2.1.
Definition 2.5.
[14,15,16] Let X be a finite dimensional Banach space over K . A collection { τ j } j = 1 n in X is said to be a Parseval p-frame ( 1 p < ) for X * if
f p = j = 1 n | f ( τ j ) | p , f X * .
Note that (7) says that
τ j = sup f X * , f = 1 | f ( τ j ) | sup f X * , f = 1 j = 1 n | f ( τ j ) | p 1 p = sup f X * , f = 1 f = 1 , 1 j n .
Given a Parseval p-frame { τ j } j = 1 n for X * , we define the (finite) p-Shannon entropy at a point f X τ * as
S τ ( f ) j = 1 n f ( τ j ) f p log f ( τ j ) f p 0 ,
where X τ * { f X * : f ( τ j ) 0 , 1 j n } . We now have the following dual to Theorem 2.2.
Theorem 2.6.
(Functional Deutsch Uncertainty Principle) Let { τ j } j = 1 n and { ω k } k = 1 m be two Parseval p-frames for the dual X * of a finite dimensional Banach space X . Then
1 ( n m ) 1 p sup g X * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) |
and
log ( n m ) S τ ( f ) + S ω ( f ) p log sup g X τ * X ω * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) | > 0 , f X τ * X ω * .
Proof. 
Let h X * be such that h = 1 . Then
1 = j = 1 n | h ( τ j ) | p k = 1 m | h ( ω k ) | p = j = 1 n k = 1 m | h ( τ j ) h ( ω k ) | p j = 1 n k = 1 m sup g X * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) | p = sup g X * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) | p m n
which gives
1 m n sup g X * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) | p .
Since 1 = j = 1 n f ( τ j ) f p for all f X * { 0 } , 1 = k = 1 m f ( ω k ) f p for all f X * { 0 } and log function is concave, using Jensen’s inequality we get
S τ ( f ) + S ω ( f ) = j = 1 n f ( τ j ) f p log 1 f ( τ j ) f p + k = 1 m f ( ω k ) f p log 1 f ( ω k ) f p log j = 1 n f ( τ j ) f p 1 f ( τ j ) f p + log k = 1 m f ( ω k ) f p 1 f ( ω k ) f p = log n + log m = log ( n m ) , f X τ * X ω * .
Let f X τ * X ω * . Then
S τ ( f ) + S ω ( f ) = j = 1 n k = 1 m f ( τ j ) f p f ( ω k ) f p log f ( τ j ) f p + log f ( ω k ) f p = j = 1 n k = 1 m f ( τ j ) f p f ( ω k ) f p log f ( τ j ) f f ( ω k ) f p = p j = 1 n k = 1 m f ( τ j ) f p f ( ω k ) f p log f ( τ j ) f f ( ω k ) f p j = 1 n k = 1 m f ( τ j ) f p f ( ω k ) f p log sup g X * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) | = p log sup g X τ * X ω * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) | j = 1 n k = 1 m f ( τ j ) f p f ( ω k ) f p = p log sup g X τ * X ω * , g = 1 max 1 j n , 1 k m | g ( τ j ) g ( ω k ) | .
Theorem 2.6 again gives the following question.
Question 2.7.
Given p, m, n and a Banach space X , for which pairs of Parseval p-frames { τ j } j = 1 n and { ω k } k = 1 m for X * , we have equality in Inequality (8)?
Author is aware of the improvement of Theorem 1.3 by Maassen and Uffink [17] (cf. [18]) (motivated from a conjecture of Kraus [19]) but unable to derive Maassen-Uffink uncertainty principle from Theorem 2.2.

References

  1. Shannon, C.E. A mathematical theory of communication. Bell System Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
  2. Hirschman, I.I., Jr. A note on entropy. Amer. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
  3. Beckner, W. Inequalities in Fourier analysis. Ann. of Math. (2) 1975, 102, 159–182. [Google Scholar] [CrossRef]
  4. Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Comm. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
  5. Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
  6. Krishna, K.M. Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle. arXiv 2023, arXiv:2304.03324v1. [Google Scholar]
  7. Krishna, K.M. Functional Donoho-Stark Approximate-Support Uncertainty Principle. arXiv arXiv:2307.01215v1.
  8. Krishna, K.M. Functional Ghobber-Jaming Uncertainty Principle. arXiv 2023, arXiv:2306.01014v1. [Google Scholar] [CrossRef]
  9. Aldroubi, A.; Sun, Q.; Tang, W.S. p-frames and shift invariant subspaces of Lp. J. Fourier Anal. Appl. 2001, 7, 1–21. [Google Scholar] [CrossRef]
  10. Christensen, O.; Stoeva, D.T. p-frames in separable Banach spaces. Adv. Comput. Math. 2003, 18, 117–126. [Google Scholar] [CrossRef]
  11. Steele, J.M. The Cauchy-Schwarz master class : An introduction to the art of mathematical inequalities; AMS/MAA Problem Books Series; Mathematical Association of America: Washington, DC; Cambridge University Press: Cambridge, 2004; p. x+306. [Google Scholar] [CrossRef]
  12. Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Sem. Mat. Univ. e Politec. Torino 1971/73, 31, 405–409. [Google Scholar]
  13. Fujii, M.; Kubo, F. Buzano’s inequality and bounds for roots of algebraic equations. Proc. Amer. Math. Soc. 1993, 117, 359–361. [Google Scholar] [CrossRef]
  14. Terekhin, P.A. Frames in a Banach space. Funktsional. Anal. i Prilozhen. 2010, 44, 50–62. [Google Scholar] [CrossRef]
  15. Casazza, P.; Christensen, O.; Stoeva, D.T. Frame expansions in separable Banach spaces. J. Math. Anal. Appl. 2005, 307, 710–723. [Google Scholar] [CrossRef]
  16. Terekhin, P.A. Representation systems and projections of bases. Mat. Zametki 2004, 75, 944–947. [Google Scholar] [CrossRef]
  17. Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef] [PubMed]
  18. Dembo, A.; Cover, T.M.; Thomas, J.A. Information-theoretic inequalities. IEEE Trans. Inform. Theory 1991, 37, 1501–1518. [Google Scholar] [CrossRef]
  19. Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D (3) 1987, 35, 3070–3075. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated