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Abstract: Superconductivity in highly-pressurized hydrides became primary direction for the 

exploration of fundamental upper limit for the superconducting transition temperature, 𝑇𝑐, after 

Drozdov et al (Nature 2015, 525, 73) discovered superconducting state with 𝑇𝑐 = 203 𝐾 in highly-

compressed sulphur hydride. To date several dozens of high-temperature superconducting 

polyhydrides have been discovered. In addition, recently, it was reported that highly-compressed 

titanium and scandium exhibit record-high 𝑇𝑐 (up to 36 K), which is by manifold exceeded 𝑇𝑐 =9.2 𝐾 of niobium, which is the record high-𝑇𝑐 ambient pressure metallic superconductor. Here we 

analysed experimental data on for recently discovered high-pressure superconductors (which 

exhibit high transition temperatures within their classes): elemental titanium (Zhang et al, Nature 

Communications 2022; Liu et al, Phys. Rev. B 2022), 𝑇𝑎𝐻3 (He et al, Chinese Phys. Lett. 2023), 𝐿𝑎𝐵𝑒𝐻8 

(Song et al, Phys. Rev. Lett. 2023), and black (Li et al, Proc. Natl. Acad. Sci. 2018) and violet (Wu et al, 

arXiv 2023) phosphorous, to reveal the nonadiabaticity strength constant, 
𝑇𝜃𝑇𝐹  (where 𝑇𝜃  is the 

Debye temperature, and 𝑇𝐹 the Fermi temperature) in these superconductors. The analysis showed 

that 𝛿-phase of titanium and black phosphorous exhibit the 
𝑇𝜃𝑇𝐹 which are nearly identical to ones 

associated in A15 superconductors, while studied hydrides and violet phosphorous exhibit the 

constants in the same ballpark with 𝐻3𝑆 and 𝐿𝑎𝐻10.  

Keywords: hydrogen-rich superconductors; highly-compressed superconductors; electron-phonon 

coupling constant; Debye temperature; nonadiabaticity.  

 

1. Introduction 

The discovery of near-room temperature superconductivity in highly compressed sulphur 

hydride by Drozdov et al [1] manifested a new era in superconductivity. This research field represents 

one of the most fascinating scientific and technological exploration in modern condensed matter 

physics where advanced first principles calculations [2–11] are essential part of the experimental 

quest for the discovery of new hydrides phases [12–21], and both of these directions drive the 

development of new experimental techniques to study highly-pressurized materials [22–31].  

From 2015 till now, several dozens of high-temperature superconducting polyhydride phases 

have been discovered and studied [1,12–21,24,32–43]. At the same time, high-pressure studies of the 

superconductivity in non-hydrides are also progressed recently [44–53], including observation of 𝑇𝑐 > 26 𝐾 in highly-compressed elemental titanium [54,55] and scandium [56,57], and 𝑇𝑐𝑜𝑛𝑠𝑒𝑡 ≅ 78 𝐾 

in 𝐿𝑎3𝑁𝑖2𝑂7 [58].  

First principles calculations [12–21,59–68] are essential tool in the quest for room-temperature 

superconductivity (which was used [65] to explain experimental result [69] for one of the most 

difficult to explain hydride case, 𝐴𝑙𝐻3), and primary calculated parameter in these calculations is the 
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transition temperature, 𝑇𝑐. As, the confirmation of the predicted 𝑇𝑐, as the determination of other 

fundamental ground state parameters, for instance, the upper critical field, 𝐵𝑐2(0) [5,24,33,39], the 

lower critical field, 𝐵𝑐1(0)  [12,22], the self-field critical current density, 𝐽𝑐(𝑠𝑓, 𝑇)  [24,70–72], the 

London penetration depth, 𝜆(0)  [22,23,73,74], the superconducting energy gap amplitude, Δ(0) 
[75–77], and gap symmetry [78,79], etc., are the task for experiment and data analysis  

Another complication in understanding of the superconductivity in highly-pressurized 

materials is the phenomenon of nonadiabaticity, which originates from a fact that Migdal-Eliashberg 

theory of the electron-phonon mediated superconductivity [80,81] is based on primary 

assumption/postulate that the superconductor obeys the inequality:  𝑇𝜃 ≪ 𝑇𝐹, (1) 

where, 𝑇𝜃 is the Debye temperature, and 𝑇𝐹 is the Fermi temperature. In other words, Eq. 1 implies 

that the superconductor exhibits fast electric charge carriers and slow ions. This assumption 

simplifies theoretical model of the electron-phonon mediated superconductivity, however, Eq. 1 is 

not satisfied for many unconventional superconductors [82–90] (which was first pointed out by 

Pietronero and co-workers [91–94]) and many highly-compressed superconductors [79,89,95–97].  

While theoretical aspects of the non-adiabatic effects can be found elsewhere [11,82,88,91–95], in 

practice, the strength of the nonadiabatic effects can be quantified by the 
𝑇𝜃𝑇𝐹 ratio [89,90] for which in 

Ref. [89] three characteristic ranges were proposed:  

{   
         𝑇𝜃𝑇𝐹 < 0.025 → 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑠𝑢𝑝𝑒𝑟𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟;                   0.025 ≲ 𝑇𝜃𝑇𝐹 ≲ 0.4 → 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑙𝑦 𝑠𝑡𝑟𝑜𝑛𝑔 𝑛𝑜𝑛𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑠𝑢𝑝𝑒𝑟𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟;  0.4 < 𝑇𝜃𝑇𝐹 →  𝑛𝑜𝑛𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑠𝑢𝑝𝑒𝑟𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟.                         (2) 

It was found in Ref. [89], and confirmed in Ref. [79], that superconductors with 𝑇𝑐 > 10 𝐾 (from 

a dataset of 46 superconductors from all major superconductors families) exhibit the 
𝑇𝜃𝑇𝐹 ratio in the 

range 0.025 ≲ 𝑇𝜃𝑇𝐹 ≲ 0.4.  

This is interesting and theoretically unexplained empirical observation.  

In this study we further extended empirical 
𝑇𝜃𝑇𝐹  database by deriving several fundamental 

parameters:  

(1) the Debye temperature, 𝑇𝜃;  

(2) the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ;  

(3) the ground state coherence length, 𝜉(0); 
(4) the Fermi temperature 𝑇𝐹;  

(5) the nonadiabaticity strength constant, 
𝑇𝜃𝑇𝐹;  

(6) and the ratio 
𝑇𝑐𝑇𝐹;  

for five recently discovered highly-compressed superconductors for which reported raw 

experimental data are enough to deduce mentioned above parameters, and which represent materials 

with high or record high 𝑇𝑐 in their families:  

(1) elemental titanium, 𝛿 − 𝑇𝑖 [54,55];  

(2) 𝑇𝑎𝐻3 [21];  

(3) 𝐿𝑎𝐵𝑒𝐻8 [98]; 

(4) black phosphorous [99–101];  

(5) violet phosphorous [53].  

In the result, we derived the nonadiabaticity strength constant, 
𝑇𝜃𝑇𝐹, for these superconductors 

and confirmed previously reported empirical observation [79,89] that superconductors with 𝑇𝑐 >10 𝐾 obey the condition 0.025 ≲ 𝑇𝜃𝑇𝐹 ≲ 0.4.  
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2. Utilized models and data analysis tools  

2.1. Debye temperature 

Debye temperature, 𝑇𝜃 , is one of fundamental parameters which determines the 

superconducting transition temperature, 𝑇𝑐, within electron-phonon phenomenology [81,102–106]. 

This parameter can be deduced as a free-fitting parameter from a fit of temperature dependent 

resistance, 𝑅(𝑇), to the saturated resistance model within the Bloch-Grüneisen (BG) equation [107–
110]:  𝑅(𝑇) = 11𝑅𝑠𝑎𝑡+ 1𝑅0+𝐴( 𝑇𝑇𝜃)5 ∫ 𝑥5(𝑒𝑥−1)(1−𝑒−𝑥)𝑇𝜃𝑇0 𝑑𝑥

, 
(3) 

where 𝑅𝑠𝑎𝑡, 𝑅0, 𝑇𝜃 and 𝐴 are free fitting parameters.  

2.2. The electron-phonon coupling constant  

From the deduced 𝑇𝜃 and measured 𝑇𝑐, which we defined by as strict as possible resistance 

criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 → 0, where 𝑅𝑛𝑜𝑟𝑚  is the sample resistance at the onset of the superconducting 

transition, the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ, can be calculated as the root of advanced 

McMillan equation [103–106]:  

𝑇𝑐 = ( 11.45) × 𝑇𝜃 × 𝑒−( 1.04(1+𝜆𝑒−𝑝ℎ)𝜆𝑒−𝑝ℎ−𝜇∗(1+0.62𝜆𝑒−𝑝ℎ)) × 𝑓1 × 𝑓2∗, (4) 

where  

𝑓1 = (1 + ( 𝜆𝑒−𝑝ℎ2.46(1+3.8𝜇∗))3 2⁄ )1 3⁄
, (5) 

𝑓2∗ = 1 + (0.0241 − 0.0735 × 𝜇∗) × 𝜆𝑒−𝑝ℎ2 , (6) 

where 𝜇∗ is the Coulomb pseudopotential parameter, which we assumed to be 𝜇∗ = 0.13 (which is 

typical value utilized in the first principles calculation for many electron-phonon mediated 

superconductors [54,111]).  

2.3. Ground state coherence length  

To deduce the ground state coherence length, 𝜉(0), we fitted the upper critical field datatset, 𝐵𝑐2(𝑇), to analytical approximant of the Werthamer-Helfand-Hohenberg model [112,113], which was 

proposed by Baumgartner et al [114]:  𝐵𝑐2(𝑇) = 10.693 × 𝜙02𝜋𝜉2(0)× ((1 − 𝑇𝑇𝑐) − 0.153 × (1 − 𝑇𝑇𝑐)2 − 0.152 × (1 − 𝑇𝑇𝑐)4), (7) 

where 𝜙0 = ℎ2𝑒 is the superconducting flux quantum, ℎ = 6.626 × 10−34 𝐽 ⋅ 𝑠 is Planck constant, 𝑒 =1.602 × 10−19 𝐶, and 𝜉(0) and 𝑇𝑐 ≡ 𝑇𝑐(𝐵 = 0) are free fitting parameters.  

2.4. The Fermi temperature  

Simplistic approach to calculate the Fermi temperature, 𝑇𝐹 , is to use the expression of free-

electron model [115,116]:  

𝑇𝐹 = 𝜀𝐹𝑘𝐵 = (3𝜋2𝑛ℏ3)322𝑚𝑒(1+𝜆𝑒−𝑝ℎ)𝑘𝐵, (8) 

where 𝑚𝑒 = 9.109 × 10−31 𝑘𝑔  is bare electron mass, ℏ = 1.055 × 10−34 𝐽 ⋅ 𝑠  is reduced Planck 

constant, 𝑘𝐵 = 1.381 × 10−23 𝑚2 ⋅ 𝑘𝑔 ⋅ 𝑠−2 ⋅ 𝐾−1 is Boltzmann constant, and 𝑛 is the charge carrier 
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density per volume (𝑚−3). Equation 8 can be used, if the Hall resistance measurements were analysed 

to estimate the charge carrier density, 𝑛.  

If Hall resistance measurements were not performed, then to calculate the Fermi temperature, 

we utilized the equation [58,59]:  𝑇𝐹 = 𝜋2𝑚𝑒8𝑘𝐵 × (1 + 𝜆𝑒−𝑝ℎ) × 𝜉2(0) × (𝛼𝑘𝐵𝑇𝑐ℏ )2, (9) 

where 𝛼 = 2Δ(0)𝑘𝐵∙𝑇𝑐  is the gap-to-transition temperature ratio and this is the only unknown parameter 

in Eq. 6.  

2.5. The gap-to-transition temperature ratio  

To calculate the Fermi temperature by Eq. 9 there is a need to know 𝛼 = 2Δ(0)𝑘𝐵∙𝑇𝑐 . In this study, to 

determine 𝛼 = 2Δ(0)𝑘𝐵∙𝑇𝑐 we utilized the following approach. Carbotte [111] collected various parameters 

for 32 electron-phonon mediated superconductors, which exhibit 0.43 ≤ 𝜆𝑒−𝑝ℎ ≤ 3.0 and 3.53 ≤2Δ(0)𝑘𝐵∙𝑇𝑐 ≤ 5.19. In Figure 1 we presented the dataset reported by Carbotte in his Table IV [111]. The 

dependence 
2Δ(0)𝑘𝐵∙𝑇𝑐 vs 𝜆𝑒−𝑝ℎ can be approximate by linear function (Figure 1) [117]:  2𝛥(0)𝑘𝐵𝑇𝑐 = 𝐶 + 𝐷 × 𝜆𝑒−𝑝ℎ, (10) 

where 𝐶 = 3.26 ± 0.06, and 𝐷 = 0.74 ± 0.04.  

 

Figure 1. The gap-to-transition temperature ratio, 
2⋅Δ(0)𝑘𝐵⋅𝑇𝑐 , vs the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ, dataset reported by Carbotte in the Table IV of Ref. [111]. Linear fit is shown by pink line. 

Positions for some representative superconductors and superconductors studied in this report (where 

bP stands for black phosphorus and vP stands for violet phosphorus) are shown. 95% confidence 

bands for the linear fit are shown by pink shadow area. 

As far as one can determine 𝜆𝑒−𝑝ℎ by utilized Equations (3)-(6), the 
2Δ(0)𝑘𝐵∙𝑇𝑐  ratio can be estimated 

from the Eq. (10).  
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3. Results 

3.1. Highly-compressed titanium  

Zhang et al [54] and Liu et al [55] reported on record high 𝑇𝑐 in 𝛿 − 𝑇𝑖 phase compressed at 

megabar pressures. In Figure 2 we showed the fit of the 𝑅(𝑇) dataset measured by Zhang et al [54] 

for the 𝜔 − 𝑇𝑖 phase compressed at 𝑃 = 18 𝐺𝑃𝑎 to Equation 3.  

 

Figure 2. Temperature dependent resistance data, R(T), for compressed titanium (𝜔 − 𝑇𝑖-phase at P = 

18 GPa) and data fit to Eq. 3 (raw data reported by Zhang et al [54]). Green balls indicate the bounds 

for which R(T) data was used for the fit to Eq. 3. (a) Fit to Debye model: 𝑝 = 5 (𝑓𝑖𝑥𝑒𝑑), 𝑇𝜃 = 361 ±1 𝐾, 𝑇𝑐,0.25 = 2.1 𝐾, 𝜆𝑒−𝑝ℎ = 0.49, fit quality is 0.99988. (b) Fit to Eq. 3: 𝑝 = 3.15 ± 0.03, 𝑇𝜔 = 421 ±2 𝐾, 𝑇𝑐,0.25 = 2.1 𝐾, fit quality is 0.99995. 95% confidence bands are shown. 

Deduced Debye temperature (Figure 2,a) for 𝜔 − 𝑇𝑖 -phase (𝑃 = 18 𝐺𝑃𝑎 ) is 𝑇𝜃 = 361 ± 1 𝐾 

which is in ballpark value with 𝑇𝜃(298 𝐾) = 380 𝐾  for uncompressed pure elemental titanium, 

which exhibits 𝛼 − 𝑇𝑖 phase [118].  

To calculate the electron-phonon coupling strength constant, 𝜆𝑒−𝑝ℎ , by Equations 4-6, we 

defined the superconducting transition temperature, 𝑇𝑐 = 2.1 𝐾, by the use of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.25 criterion, 

which was chosen based on the lowest temperature, at which experimental 𝑅(𝑇) data measured at 𝑃 = 18 𝐺𝑃𝑎  was reported by Zhang et al [54]. Deduced 𝜆𝑒−𝑝ℎ = 0.49, which is very close to the 𝜆𝑒−𝑝ℎ = 0.43 of pure elemental aluminium (Figure 1, and Ref. [111]).  

We also confirmed the power-law exponent 𝑛 = 3.1  (reported by Zhang et al [54]) for the 

temperature dependent 𝑅(𝑇), which was extracted by Zhang et al [54] from the simple power-law fit 

of 𝑅(𝑇) at temperature range of 3 𝐾 ≤ 𝑇 ≤ 70 𝐾:  𝑅(𝑇) = 𝑅0 + 𝑋 × 𝑇𝑛, (11) 

where 𝑅0, 𝑋 and 𝑛 are free fitting parameters. As we showed earlier [119], Eq. 10 does not always 

return correct 𝑛-values, and 𝑅(𝑇) data fit to Eq. 3, where 𝑝 is free-fitting parameter, is the reliable 

approach to derive the power-law exponent. However, for the given case, our fit to Eq. 3 (Figure 2,b) 

returns the same power-law exponent, 𝑝 = 3.15 ± 0.03, to the one reported by Zhang et al [54].  

In Figure 3 we showed 𝑅(𝑇) data measured by Zhang et al [54] and Liu et al [55] and data fits to 

Equations 3-7 for the 𝛿 − 𝑇𝑖 phase compressed at 𝑃 = 154 𝐺𝑃𝑎 (Figure 3,a), 𝑃 = 180 𝐺𝑃𝑎 (Figure 

3,b), 𝑃 = 183 𝐺𝑃𝑎 (Figure 3,c), and 𝑃 = 245 𝐺𝑃𝑎 (Figure 3,d).  
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Figure 3. Temperature dependent resistance data, R(T), for compressed titanium (𝛿 − 𝑇𝑖-phase) and 

data fit to the Debye model (Eq. 3, 𝑝 = 5 (𝑓𝑖𝑥𝑒𝑑)). Raw data reported by Zhang et al [54] (Panels a,b,d) 

and Liu et al [55] (Panel c). Green balls indicate the bounds for which R(T) data was used for the fit to 

Eq. 3. Deduced parameters are (a) 𝑇𝜃 = 337 ± 1 𝐾 , 𝑇𝑐,0.02 = 22.1 𝐾 , 𝜆𝑒−𝑝ℎ = 1.14 , fit quality is 

0.99992. (b) 𝑇𝜃 = 347 ± 2 𝐾, 𝑇𝑐,0.02 = 21.4 𝐾, 𝜆𝑒−𝑝ℎ = 1.10, fit quality is 0.9998. (c) 𝑇𝜃 = 496 ± 3 𝐾, 𝑇𝑐,0.07 = 21.7 𝐾 , 𝜆𝑒−𝑝ℎ = 0.91 , fit quality is 0.9996. (d) 𝑇𝜃 = 455 ± 5 𝐾 , 𝑇𝑐,0.01 = 22.4 𝐾 , 𝜆𝑒−𝑝ℎ =0.967, fit quality is 0.9997.  95% confidence bands are shown. 

While Liu et al [55] reported first principles calculation result for 𝜆𝑒−𝑝ℎ  and logarithmic 

frequency 𝜔𝑙𝑜𝑔 for highly compressed titanium over wide range of applied pressure, in Figure 4 we 

presented a comparison of the deduced 𝜆𝑒−𝑝ℎ and 𝑇𝜃 values from experiment and calculated ones 

[55].  To compare 𝜔𝑙𝑜𝑔  (calculated by first principles calculations) and 𝑇𝜃  deduced from 

experiment, we used theoretical expression proposed by Semenok [120]:  10.827 × ℏ𝑘𝐵 × 𝜔𝑙𝑜𝑔 ≅ 𝑇𝜃. (12) 
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Figure 4. Evolution of (a) the electron-phonon coupling constant 𝜆𝑒−𝑝ℎ ; (b) characteristic phonon 

temperatures 𝑇𝜃  and 
ℏ𝑘𝐵𝜔𝑙𝑜𝑔 ; and (c) Fermi temperature, 𝑇𝐹 , calculated by Eq. 8 and the used of 

carrier density reported by Zhang et al [54] and deduced 𝜆𝑒−𝑝ℎ (in Panel (a)) and the nonadiabaticity 

strength constant, 
𝑇𝜃𝑇𝐹 , for highly compressed titanium. 

In Figure 4,c we also show 𝑇𝐹 values calculated by Eq. 8, where we used derived 𝜆𝑒−𝑝ℎ and 

bulk density of charge carriers in compressed titanium, 𝑛, measured by Zhang et al [54]. Due to 

Zhang et al [54] reported the 𝑅(𝑇) and 𝑛 measured at different pressures, for 𝑇𝐹 calculations we 

assumed the following approximations: 𝑛(𝑃 = 18 𝐺𝑃𝑎) = 𝑛(𝑃 = 31 𝐺𝑃𝑎) = 1.72 × 1028 𝑚−3; 𝑛(𝑃 =154 𝐺𝑃𝑎) = 2.39 × 1028 𝑚−3 ; 𝑛(𝑃 = 180 𝐺𝑃𝑎) = 𝑛(𝑃 = 183 𝐺𝑃𝑎) = 𝑛(𝑃 = 177 𝐺𝑃𝑎) = 1.70 ×1028 𝑚−3.  

The evolution of the adiabaticity strength constant 
𝑇𝜃𝑇𝐹 vs pressure is also showed in Figure 4,c.  

It can be seen (Figure 4) that there is a very good agreement between calculated by first principles 

calculations and extracted from experiment 𝜆𝑒−𝑝ℎ and characteristic phonon temperatures, 𝑇𝜃 and 10.827 × ℏ𝑘𝐵 × 𝜔𝑙𝑜𝑔, at low and high applied pressures. More experimental data is required to perform 

more detailed comparison between calculated and experimental values.  

Derived values for highly-compressed titanium are in Figures 5 to 7, which are widely used 

representation of main superconducting families (while other global scaling laws are utilized 

different variables [71,121–127]).  

0.0

0.4

0.8

1.2

1.6

2.0

2.4

0

100

200

300

400

500

0 50 100 150 200 250 300
0.0

5.0k

10.0k

15.0k

20.0k

 e-ph first principles calculated 

 e-ph deduced from experimente
le

c
tr

o
n
-p

h
o
n
o
n
 c

o
u
p
lin

g
 c

o
n
s
ta

n
t

Titanuim
a

 first principles calculated (h/kB)log/0.827

 T deduced from experimentp
h
o
n
o
n
-r

e
la

te
d
 t

e
m

p
e
ra

tu
re

 (
K

) b

TF

F
e
rm

i 
te

m
p
e
ra

tu
re

 (
K

)

pressure (GPa)

c

0.01

0.1

1

 T/TF

T
/

T
F

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints202307.1101.v2

https://doi.org/10.20944/preprints202307.1101.v2


 8 

 

It is interesting to note, that 𝛿 − 𝑇𝑖 is located in close proximity to A15 superconductors in all 

of these plots (Figures 5 to 7). It is more likely, that this is a reflection that the highest performance of 

the electron-phonon mediated superconductivity in metals and alloys is achieved for these materials.  

 

Figure 5. Uemura plot, where highly-compressed 𝑇𝑖 , 𝑇𝑎𝐻3 , 𝐿𝑎𝐵𝑒𝐻8 , and black and violet 

phosphorous (BP and VP, respectively) are shown together with several families of superconductors: 

metals, iron-based superconductors, diborides, cuprates, Laves phases, hydrides, and others. 

References on original data can be found in Refs. [79,89,128,129]. 
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Figure 6. The nonadiabaticity strength constant 
𝑇𝜃𝑇𝐹  vs 𝜆𝑒−𝑝ℎ  where several families of 

superconductors and highly-compressed 𝑇𝑖 , 𝑇𝑎𝐻3 , 𝐿𝑎𝐵𝑒𝐻8 , black and violet phosphorous are 

shown. References on original data can be found in Refs. [79,89,128,129]. 

 

Figure 7. The nonadiabaticity strength constant 
𝑇𝜃𝑇𝐹  vs 𝑇𝑐 for several families of superconductors and 

highly-compressed 𝑇𝑖 , 𝑇𝑎𝐻3 , 𝐿𝑎𝐵𝑒𝐻8 , black and violet phosphorous are shown. References on 

original data can be found in Refs. [79,89,128,129]. 

3.2. Highly-compressed I-43d-phase of TaH3  

Recently, He et al [21] reported on the observation of high-temperature superconductivity in 

highly-compressed I-43d-phase of TaH3. In Figure 8 we showed the fit of the 𝑅(𝑇) dataset measured 

by He et al [21] for the tantalum hydride compressed at 𝑃 = 197 𝐺𝑃𝑎.  

 

Figure 8. Analyzed experimental data for I-43d-phase of TaH3 at P = 197 GPa (raw data reported by 

He et al [21]). (a) Temperature dependent resistance data, R(T), and data fit to Eq. 3. Green balls 

indicate the bounds for which R(T) data was used for the fit to Eq. 3. Deduced 𝑇𝜃 = 263.7 ± 0.3 𝐾, 𝑇𝑐,𝑧𝑒𝑟𝑜 = 25.6 𝐾, 𝜆𝑒−𝑝ℎ = 1.53, fit quality is 0.99998. (b) The upper critical field data, Bc2(T), and data 

fit to Eq. 7. Definition Bc2(T) criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.02 was used. Deduced parameters are: 𝜉(0) =
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2.33 ± 0.02 𝑛𝑚, 𝑇𝑐 = 21.8 ± 0.2 𝐾. Fit quality is 0.9943. 95% confidence bands are shown by pink 

shadow areas in both panels. 

By utilizing Eqs. 4-6, we deduced 𝜆𝑒−𝑝ℎ = 1.53 (Figure 8), which is within ballpark value for 

other highly compressed hydride superconductors [3,106].  

Because He et al [21] did not report result of Hall coefficient measurements, we deduced the 

Fermi temperature by the use of Eq. 9, and this we deduced 𝐵𝑐2(𝑇) dataset from R(T,B) curves 

reported by He et al [21] in their Figure 2,a [21], for which we utilized the criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.02. 

Obtained 𝐵𝑐2(𝑇) data and data fit are shown in Figure 8(b). Deduced 𝜉(0) = 5.45 ± 0.10 𝑛𝑚.  

To calculate the Fermi temperature in I-43d-phase of TaH3 at P = 197 GPa, we substituted derived 𝜆𝑒−𝑝ℎ = 1.53  and 𝜉(0) = 5.45 𝑛𝑚  in Eq. 9, where 𝛼 = 2Δ(0)𝑘𝐵∙𝑇𝑐 = 4.39  was obtained by substituting 𝜆𝑒−𝑝ℎ = 1.53 in Eq. 10 (Figure 1).  

In the result of our analysis the following fundamental parameters of the I-43d-phase of TaH3 

(𝑃 = 197 𝐺𝑃𝑎) have been extracted:  

(1) the Debye temperature, 𝑇𝜃 = 263 𝐾;  

(2) the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ = 1.53 ± 0.13;  

(3) the ground state coherence length, 𝜉(0) = 1.53 ± 0.13; 

(4) the Fermi temperature, 𝑇𝐹 = 1324 ± 74 𝐾;  

(5) 
𝑇𝑐𝑇𝐹 = 0.019 ± 0.01, which implies that the this phase falls in unconventional superconductors 

band in the Uemura plot;  

(6) the nonadiabaticity strength constant, 
𝑇𝜃𝑇𝐹 = 0.20 ± 0.01.  

In Figures 5-7 one can see the position of the I-43d-phase of TaH3 at P = 197 GPa (within other 

representative materials from main families of superconductors), from which can be concluded that 

TaH3 are typical superhydride exhibited similar strength of nonadiabatic effects to its near room 

temperature counterparts, i.e. H3S and LaH10.  

3.3. Highly-compressed Fm-3m-phase of LaBeH8  

Recently, Song et al [98] reported on the observation of high-temperature superconductivity with 

in highly-compressed LaBeH8. Crystalline structure of this superhydride at 𝑃 = 120 𝐺𝑃𝑎  was 

identified as 𝐹𝑚3̅𝑚, which was predicted (as one of several possibilities) by Zhang et al [130]. In 

Figure 9(a) we showed the fit of the 𝑅(𝑇)  dataset measured by Song et al [98] in the LaBeH8 

compressed at 𝑃 = 120 𝐺𝑃𝑎.  

 

Figure 9. Analyzed experimental data for 𝐹𝑚3̅𝑚-phase of LaBeH8 at P = 120 GPa (raw data reported 

by Song et al [98]). (a) Temperature dependent resistance data, R(T), and data fit to Eq. 3. Green balls 

indicate the bounds for which R(T) data was used for the fit to Eq. 3. Deduced 𝑇𝜃 = 752 ± 6 𝐾 , 𝑇𝑐,0.02 = 269 𝐾, 𝜆𝑒−𝑝ℎ = 1.46, fit quality is 0.9990. (b) The upper critical field data, Bc2(T), and data fit 

to Eq. 7. Definition Bc2(T) criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.25 was used. Deduced parameters are: 𝜉(0) = 2.8 𝑛𝑚, 
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𝑇𝑐 = 68.8 𝐾. Fit quality is 0.9995. 95% confidence bands are shown by pink shadow areas in both 

panels. 𝐵𝑐2(𝑇) dataset was extracted from R(T,B) curves reported Song et al [98] in their Figure 3,a [98]. 

For 𝐵𝑐2(𝑇) definition we utilized the criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.25. Obtained 𝐵𝑐2(𝑇) data and data fit are 

shown in Figure 9(b). Deduced 𝜉(0) = 2.8 𝑛𝑚.  

Data analysis by the same routine described in previous Section 3.2 showed that 𝐹𝑚3̅𝑚-phase 

of LaBeH8 at P = 120 GPa exhibits the following parammeters:  

(1) the Debye temperature, 𝑇𝜃 = 752 ± 6 𝐾;  

(2) the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ = 1.46;  

(3) the ground state coherence length, 𝜉(0) = 2.80 ± 0.02 𝑛𝑚; 

(4) the Fermi temperature, 𝑇𝐹 = 2413 𝐾;  

(5) 
𝑇𝑐𝑇𝐹 = 0.029, which implies that this phase falls in unconventional superconductors band in 

the Uemura plot;  

(6) the nonadiabaticity strength constant, 
𝑇𝜃𝑇𝐹 = 0.31 ± 0.01.  

3.4. Highly-compressed black phosphorous  

Impact of high pressure on the superconducting parameters of black phosphorous has studied 

over several decades [99–101]. Recent detailed studies in this field have reported by Guo et al [100] 

and Li et al [99].  

To show the reliability of high-pressure studies of superconductors (which was recently 

questioned by non-experts in the field [131,132]) in Figure 10 we showed raw 𝑅(𝑇)  datasets 

measured at 𝑃 = 15 𝐺𝑃𝑎 by two independent groups, by Shirotani et al [101] and Li et al [99], whose 

reports have been published within a time frame of 24 years.  

 

Figure 10. Analysis of experimental 𝜌(𝑇) datasets for black phosphorus compressed at P = 15 GPa 

reported by (a) Shirotani et al [101] and by (b) Li et al [99]. Green balls indicate the bounds for which 𝜌(𝑇) data were used for the fit to Eq. 3. Deduced parameters are: (a) 𝑇𝜃 = 563 ± 16 𝐾, 𝑇𝑐,𝑧𝑒𝑟𝑝 = 5.3 𝐾, 𝜆𝑒−𝑝ℎ = 0.546, fit quality is 0.9983; (b) (a) 𝑇𝜃 = 611 ± 2 𝐾, 𝑇𝑐,𝑧𝑒𝑟𝑝 = 5.9 𝐾, 𝜆𝑒−𝑝ℎ = 0.549, fit quality is 

0.9998. 95% confidence bands are shown by pink shadow areas in both panels. 

The agreement between deduced 𝜆𝑒−𝑝ℎ (Figure 10) from two datasets [99,101] is remarkable. It 

should be noted that the approach, used for this analysis (Figure 10), has been developed to analyze 

data measured in highly-compressed near-room temperature superconductors [106], which 

particularly implies that concerns expressed by non-experts in the field [131–134] in regard of highly-

compressed near-room temperature hydride superconductors do not have any scientific background.  

In Figure 11 we showed 𝐵𝑐2(𝑇) datasets extracted from raw 𝑅(𝑇, 𝐵) datasets measured at very 

close pressure, 𝑃 = 15.9 𝐺𝑃𝑎  [100] and 𝑃 = 15 𝐺𝑃𝑎  [99], which were also reported by two 
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independent groups. For the 𝐵𝑐2(𝑇) definition we utilized the same strict criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.01 

for both 𝑅(𝑇, 𝐵) datasets in Figure 11.  

 

Figure 11. Analysis of experimental 𝐵𝑐2(𝑇) datasets for black phosphorus compressed at (a) P = 15 

GPa reported by Li et al [99], and (b) P = 15.9 GPa reported by Guo et al [100]. Deduced parameters 

are: (a) 𝜉(0) = 67 ± 1 𝐾 , 𝑇𝑐 = 5.5 ± 0.1 𝐾 , fit quality is 0.9965; (b) (a) 𝜉(0) = 86 ± 1 𝐾 , 𝑇𝑐 = 5.5 ±0.1 𝐾, fit quality is 0.9981. 95% confidence bands are shown by pink shadow areas in both panels. 

Average deduced parameters for black phosphorus 𝑃 = 15 𝐺𝑃𝑎 , which we derived from 

experimental data analysis reported by three different groups and which were used to position the 

black phosphorus in Figures 1,5-7 are:  

(1) the Debye temperature, 𝑇𝜃 = 587 𝐾;  

(2) the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ = 0.548;  

(3) the ground state coherence length, 𝜉(0) = 77 𝑛𝑚; 

(4) the Fermi temperature, 𝑇𝐹 = 5200 𝐾;  

(5) 
𝑇𝑐𝑇𝐹 = 0.001, which implies that black phosphorus falls in conventional superconductors band 

in the Uemura plot;  

(6) the nonadiabaticity strength constant, 
𝑇𝜃𝑇𝐹 = 0.11.  

Deduced parameters show that the black phosphorus compressed at 𝑃 = 15 𝐺𝑃𝑎 exhibits low 

strength of nonadiabatic effects.  

3.5. Highly-compressed violet phosphorous  

Recently, Wu et al [53] reported on the observation of the superconducting state in violet 

phosphorus (vP) with 𝑇𝑐 > 5 𝐾  when the material is subjected to high pressure in the range of 3.6 𝐺𝑃𝑎 ≤ 𝑃 ≤ 40.2 𝐺𝑃𝑎. In Figure 12(a) we showed the 𝑅(𝑇) dataset, and data fit to Eq. 3, measured 

by Wu et al [53] in the violet phosphorus compressed at 𝑃 = 40.2 𝐺𝑃𝑎.  

 

0 1 2 3 4 5 6 7

0.00

0.02

0.04

0.06

0.08

0.10

0 1 2 3 4 5 6 7

0.00

0.02

0.04

0.06

0.08
a

black phosphorus (P = 15 GPa)

 raw Bc2(T) data

  fit

m
a

g
n

e
ti
c
 f

lu
x
 d

e
n

s
it
y
 (

T
)

temperature (K)

(0) = 67 ± 1 nm

Tc = 5.5 ± 0.1 K

b
black phosphorus (P = 15.9 GPa)

 raw Bc2(T) data

  fit

m
a

g
n

e
ti
c
 f

lu
x
 d

e
n

s
it
y
 (

T
)

temperature (K)

(0) = 86 ± 1 nm

Tc = 5.5 ± 0.1 K

0 40 80 120 160 200
0.0

0.3

0.6

0.9

1.2

1.5

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 raw R(T)

  fit

 fitted R(T) range

 Tc,zero = 9.4 K

re
s
is

ta
n

c
e

 (
m


)

temperature (K)

violet  phosphorus (P = 40.2 GPa)

e-ph = 0.607

T = 655 ± 4 K

Rsat → ∞

a b violet  phosphorus (P = 34.8 GPa)

 raw Bc2(T) data

  fit

m
a

g
n

e
ti
c
 f

lu
x
 d

e
n

s
it
y
 (

T
)

temperature (K)

(0)total = 36 ± 1 nm

Tc,band1 = 9.0 ± 0.2 K

Tc,band2 = 4.0 ± 0.1 K

(0)band1 = 50 ± 1 nm

(0)band2 = 53 ± 2 nm

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints202307.1101.v2

https://doi.org/10.20944/preprints202307.1101.v2


 13 

 

Figure 12. Analysis of experimental data for violet phosphorus compressed at (a) 𝑃 = 40.2 𝐺𝑃𝑎 and 

(b) 𝑃 = 34.8 𝐺𝑃𝑎. Raw data reported Wu et al [53]. (a) Temperature dependent resistance data, R(T), 

and data fit to Eq. 3. Green balls indicate the bounds for which R(T) data was used for the fit to Eq. 3. 

Deduced 𝑇𝜃 = 655 ± 4 𝐾, 𝑇𝑐,0.01 = 9.4 𝐾, 𝜆𝑒−𝑝ℎ = 0.607, fit quality is 0.9991. (b) The upper critical 

field data, Bc2(T), and data fit to Eq. 13. Definition Bc2(T) criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.14 was used. Deduced 

parameters are: 𝜉(0)𝑏𝑎𝑛𝑑1 = 50 ±  1 𝑛𝑚, 𝑇𝑐,𝑏𝑎𝑛𝑑1 = 9.0 ± 0.2 𝐾, 𝜉(0)𝑏𝑎𝑛𝑑1 = 53 ±  2 𝑛𝑚, 𝑇𝑐,𝑏𝑎𝑛𝑑2 =4.0 ± 0.1 𝐾. Fit quality is 0.9977. 95% confidence bands are shown by pink shadow areas in both 

panels. 𝐵𝑐2(𝑇) dataset was extracted from the only R(T,B) dataset reported by Wu et al [53] for material 

compressed at Wu et al [53]. For 𝐵𝑐2(𝑇) definition we utilized the criterion of 
𝑅(𝑇)𝑅𝑛𝑜𝑟𝑚 = 0.14. Deduced 𝐵𝑐2(𝑇) dataset is shown in Figure 12(b). The fit to Equation 7 (which is single band model) has low 

quality, because 𝐵𝑐2(𝑇) has an upturn at 𝑇 ≲ 4 𝐾. We interpreted this upturn as an evidence for the 

second band opening at 𝑇 ≲ 4 𝐾, and, thus, we fitted data used two-band model [128,135]:  𝐵𝑐2,𝑡𝑜𝑡𝑎𝑙(𝑇) = 𝐵𝑐2,𝑏𝑎𝑛𝑑1(𝑇) + 𝐵𝑐2,𝑏𝑎𝑛𝑑2(𝑇), (13) 

where 𝐵𝑐2,𝑏𝑎𝑛𝑑1(𝑇)  and 𝐵𝑐2,𝑏𝑎𝑛𝑑2(𝑇)  exhibit their independent transition temperature and the 

coherence length. Deduced values are listed in the Figure Caption to Figure 12. However for further 

analysis we used 𝑇𝑐 = 𝑇𝑐,𝑏𝑎𝑛𝑑1 = 9.0 𝐾 and 𝜉(0)𝑡𝑜𝑡𝑎𝑙 = 36± 1 𝑛𝑚.  

Processing data by the same approach described in previous Sections, we derived the following 

parameters for violet phosphorus compressed at 𝑃~40 𝐺𝑃𝑎:  

(1) the Debye temperature, 𝑇𝜃 = 665 ± 4 𝐾;  

(2) the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ = 0.607;  

(3) the ground state coherence length, 𝜉(0) = 36 ± 1 𝑛𝑚; 

(4) the Fermi temperature, 𝑇𝐹 = 3240 𝐾;  

(5) 
𝑇𝑐𝑇𝐹 = 0.003 , which implies that this phase falls in close proximity to conventional 

superconductors band in the Uemura plot;  

(6) the nonadiabaticity strength constant, 
𝑇𝜃𝑇𝐹 = 0.21.  

Derived parameters imply that the violet phosphorus compressed at 𝑃~40 𝐺𝑃𝑎  exhibit 

moderate level of nonadiabatic effects similar to the ones in highly-compressed hydrogen-rich near-

room temperature superconductors 𝐻3𝑆 and 𝐿𝑎𝐻10.  

4. Discussion  

As it was mentioned above superconductors can be classified by the ratio of maximum phonon 

energy, ℏ𝜔𝐷 (where 𝜔𝐷 is Debye frequency) to the charge carrier energy at the Fermi level, 
ℏ𝜔𝐷𝑘𝐵𝑇𝐹. 

For practical use, it is more convenient to replace ℏ𝜔𝐷  term by 𝑘𝐵𝑇𝜃 , where 𝑇𝜃  is the Debye 

temperature, which can be deduced from experimental measurements.  

Thus, in so-called adiabatic regime, 
ℏ𝜔𝐷𝑘𝐵𝑇𝐹 = 𝑇𝜃𝑇𝐹 ≲ 10−3, superconductors exhibit very fast charge 

carriers and relatively slow phonons. This condition is satisfied for pure metals and some 

superconducting alloys (Figures 5-7).  

However, as it can be seen in Figures 6,7, more than ¾ of superconductors (including important 

for practical use Nb3Sn, MgB2, pnictides, cuprates and record high-Tc near-room temperature 

superconducting hydrides) have the ratio in a different range [79,89]:  0.025 ≤ ℏ𝜔𝐷𝑘𝐵𝑇𝐹 ≤ 0.4, (14) 

Our experimental data search [79,89] revealed that only six superconductors exhibit (Figures 

6,6):  ℏ𝜔𝐷𝑘𝐵𝑇𝐹 > 0.4. (15) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints202307.1101.v2

https://doi.org/10.20944/preprints202307.1101.v2


 14 

 

These materials are [79,89]: Nb0.75Mo0.25B2, Nb0.5Os0.5, highly compressed metalized oxygen, 

magic-angle twisted bilayer graphene, SrTiO3, and highly compressed metalized ionic salt CsI. It 

should be stressed that all these superconductors exhibit low transition temperature, 𝑇𝑐 < 8 𝐾.  

In this regard, studied in this report five recently discovered superconductors (Sections 3.1-3.5) 

confirmed the validity of Equation 14. And, thus, perhaps a deep physical origin related to the 

strength of the nonadiabaticity 
ℏ𝜔𝐷𝑘𝐵𝑇𝐹 = 𝑇𝜃𝑇𝐹 within a range indicated in Equation 14 can be revealed   

4. Conclusions 

In this work, we analyzed experimental data reported for five recently discovered highly-

compressed superconductors: 𝛿 − 𝑇𝑖 [54,55], 𝑇𝑎𝐻3 [21], 𝐿𝑎𝐵𝑒𝐻8 [98], black phosphorous [99–101], 

and violet phosphorous [53], for which we established several superconducting parameters, 

including the strength of nonadiabaticity, 
ℏ𝜔𝐷𝑘𝐵𝑇𝐹 = 𝑇𝜃𝑇𝐹.  
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