
Article

Not peer-reviewed version

A Hybrid Physical-Virtual

Educational Robotic Arm

Fernando Garcia Gonzalez 

*

Posted Date: 18 July 2023

doi: 10.20944/preprints202307.1168.v1

Keywords: robotics; education; virtual arm; industrial arm; simulation; joint programming; robotics

education; educational software; robotics lab

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/243798


 

Article 

A Hybrid Physical-Virtual Educational Robotic Arm 

Fernando Gonzalez 

Florida Gulf Coast University, Department of Computing and Software Engineering; fgonzalez@fgcu.edu; 

Tel.: (239) 590-7823 

Abstract: In the field of robotics education, introductory courses would ideally utilize heavy 

industrial arms for hands-on learning. This would provide students with valuable experience in 

joint programming, which involves direct control of each joint motor in the arm to accomplish 

desired path planning and differential movements. This practice requires consideration of the 

physical dynamics of the arm. However, the use of heavy industrial arms has several drawbacks. 

They are large and expensive, require specialized maintenance, can pose safety risks, and they 

typically do not allow for direct control of the joint motors. One solution is to use a small, 

lightweight, toy-like arm. While these are cost-effective and provide direct access to the joint motors 

without posing safety risks, their lightweight construction means they exhibit minimal dynamic 

behavior, which limits their educational value. Another solution involves a robotic arm simulator 

that uses a virtual arm. However, a virtual arm doesn't offer the same level of hands-on engagement 

and excitement as a physical arm. We propose a hybrid solution that combines a small physical arm 

with a virtual arm. This approach provides students with the experience of working with an 

industrial arm, but without the associated difficulties. We demonstrate how this approach 

successfully improved the completion rate of joint programming assignments, offering a promising 

solution for practical robotics education. 

Keywords: robotics; education; virtual arm; industrial arm; simulation; joint programming 

 

1. Introduction 

This work is a feature that was added to an existing education robotics software tool. The tool is 

presented in [1-4]. The work presented only adds the integration of a physical arm to motivate the 

students to complete their assignments. The tool simulates a virtual arm that can be set up to model 

an arm’s dynamics that the students can use to develop and test their programs. This virtual arm 

allows the students to move the arm by programming the movements of each of its joint motors. In 

this activity, called Joint Programming and described in [3], the students move the arm along a 

specified trajectory by directly controlling the instantaneous velocity of each or the arm’s joint 

motors. Differential movements, described in [4], is a type of joint programming where the arm is 

moved with a specified constant velocity along a specified path. It is used in painting, welding and 

application requiring precise velocities. Both of these types of movements require the consideration 

of the arm’s dynamic behaviors. For example, a heavier arm must take more time to accelerate and 

must begin to reduce its velocity earlier in the path to avoid overshooting the target.  
The educational software tool has been designed to allow users to input the specifications of the 

robotic arm, including its dynamic properties. The user can provide the Denavit and Hartenberg 

(DH) parameters for each link to specify the arm's kinematic characteristics. The same input interface 

allows the user to input the maximum acceleration for each joint motor in both increasing and 

decreasing velocity scenarios, as well as the maximum speed. These values define the quickest rate 

at which a joint motor can alter its velocity and its highest attainable speed.  

Currently, the virtual arm is represented using a stick figure format because it must adapt to 

various kinematic configurations, as defined by the user-provided DH parameters. However, the 

graphical representation of the virtual arm could stand to benefit from enhancements. 
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Joint programming is a technique used to maneuver a robotic arm along a predetermined path, 

with the goal of positioning its end-effector to a specific location and orientation while avoiding 

obstacles. This programming task entails calculating velocity polynomials for each joint motor such 

that the collective set of polynomials governs the arm's trajectory. If a joint motor is unable to adhere 

to its prescribed velocity schedule, the end-effector's velocity and trajectory will be altered, 

potentially putting the arm at risk of colliding with obstacles. Thus, it is essential that the velocity 

schedule for each joint motor is achievable. Failing to consider, or inadequately accounting for, the 

robotic arm's dynamics can lead to unattainable velocity schedules. For instance, a joint of the arm 

might not be able to accelerate as rapidly as the schedule demands. 

Each velocity polynomial is computed by solving a set of simultaneous equations to determine 

all the polynomial's unknowns. These equations are formulated based on constraints such as the 

initial and final angle and velocity the joint should have, along with a maximum acceleration limit. 

The number of constraints determines the order of the polynomial. A common approach involves 

using blended polynomials that have an acceleration period, a cruising period, and a deceleration 

period, much akin to driving a car. Each blend is a separate polynomial that needs to be computed. 

If the arm's dynamics are not considered, the blends may be overlooked, simplifying the problem to 

a trivial state. For example, consider driving a car a distance of 2 miles in exactly 2 minutes. One 

cannot simply travel at one mile per minute (60 MPH) because the time taken by the car to accelerate 

to cruising speed and the time needed to decelerate to a stop must be factored in. Therefore, the car 

must actually cruise at a higher speed to compensate. However, if one disregards dynamics and 

assumes the car can instantaneously accelerate from 0 to 60 MPH, the problem becomes trivial: just 

cruise at 60 MPH. 

Small toy robotic arms, while cost-effective and generally work well, are lightweight and thus 

exhibit minimal dynamic behaviors. Their rapid acceleration capabilities mean that their dynamics 

can often be overlooked while still achieving a satisfactory trajectory. However, this can present a 

problem if a student, trained in joint programming using a small toy arm, then attempts to program 

an industrial arm; their methods might not be applicable. The ideal solution is to make the small toy 

arm emulate the behavior of a large, heavy industrial arm, thereby necessitating proper consideration 

of dynamics to successfully maneuver the arm. 

This paper presents a solution involving the integration of a small physical arm, namely the 

DOBOT, with an educational tool, to provide the experience of programming a heavy industrial arm. 

The tool was also integrated with an arm that utilizes Hitec servo motors, [5], commonly used in 

small educational arms or robotic kits. 

1.1. Literature Review 

The work presented in this paper presents the integration of a physical but small robotic arm to 

our existing robotics educational tool that uses a virtual robotic arm. The existing tool is designed to 

support teaching and learning concepts that are typically found in introductory robotics courses. The 

textbook titled “Introduction to Robotics,” [6] was used as a guide in the development of this tool. 

The tool supports topics including the DH parameter and frame placement convention, forward and 

inverse kinematics, trajectory planning and differential movements, both part of a general topic of 

joint programming, and robotic vision. The tool offers the flexibility to model any robotic arm that 

can be specified by its DH parameters. The virtual arm is created by entering its DH parameters, its 

range of movement, the types of joints either prismatic or revolute and the limits on acceleration. The 

limits on acceleration is used to model the dynamics of the arm.  

The purpose of this tool is to offer a way for students to learn the course material without the 

need for a large and expensive physical robotic arm, see [1,2,7]. It gives the student a learning support 

platform that relies on modeling and simulating a virtual robotic arm or a small toy arm with the 

addition presented in this paper.  

Introduction to Robotics is a course designed to give the student the fundamental knowledge of 

robotics. This knowledge is needed to advance robotics education further and includes low level 

control of the joint motors of the arm. There are many robotic simulators such as [8-12] that are both 
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commercial and free. These can be used for educational purposes however their arms are controlled 

through higher level commands that do not lend themselves to joint programming. Our tool is 

specifically designed for this introductory robotics course and the activities that it can support are 

aligned with the course’s textbook.  

There are software tools that support the integration of physical arms however they are 

generally focused on K-12 and do not support learning advanced concepts. In [13] they present the 

IRobotQ3D robot simulator where student use the Lego Mindstorms kits to build the robot first then 

program the steps that will make it move. In [14] they present a tool that uses a physical and virtual 

robot combination. However, the design of the arm is not by its DH parameters but rather by adding 

wheels and other physical parts and the programming is not at the joint motor level but higher. Their 

tool is aimed at the K-12 group. In [15,16] they use small inexpensive educational robots but their 

implementation is also aimed at K-12 and does not allow for joint level programming. In [17] they 

present a small robotic arm that can be controlled remotely via a web server however it also does not 

allow for joint level programming. In addition, a reliable and high-speed internet connection must be 

available to the students. 

There are also tools aimed at higher education but they are generally not considered to be a full 

integrated development environment (IDE) as is the tool describes in this paper. In [18] they focus on 

the DH parameters and robot kinematics. It allows the student to specify the DH parameters and the 

web-based application draws the corresponding arm. This tool does not support joint programming. 

In [19] they developed a MATLAB Tool box for Robotics made freely available. This library is popular 

but is not an IDE. It requires the student to write programs in MATLAB. The library supports the 

implementation of a virtual arm but the students need to link the virtual arm into their program. 

While this tool is well suited for students pursuing an education in a robotics discipline, it is not well 

suited for a student taking a simple intro to robotics course as an elective. The learning curve to learn 

MATLAB and implement their virtual arm is much higher than what is needed for the presented tool. 

This tool like others also perform much of the work that the students should be implementing instead. 

For example, Corke’s tool has functions to compute a trajectory whereas in the presented tool the 

student must implement a program to compute the trajectory.  

Small light weight arms are also commonly used although they tend to be used in K-12 settings. 

In [20] they present one such implementation that uses standard LEGO Mindstorm Kits. 

Large physical arms are not designed for educational purposes and generally come with a 

controller that performs all of the joint programming. They generally do not allow the student to 

bypass the controller to gain direct access to the joint motors due to liability and safety reasons. 

However, one industrial arm does allow for joint programming, the Franka Emika robot [21] the 

controller does not perform the joint programming but does supervise the movements to assure 

safety. While this may seam like the perfect solution, being a large industrial arm, it comes with a 

high initial and maintenance cost, requires dedicated lab space, and poses dangers to humans who 

get in the way of the arm. Furthermore, while they support trajectory planning, they do not support 

differential movements which is also part of joint programming. To be useful in education, 

differential movements must leave evidence of correct movement that cannot be observed by simply 

looking at the movement. For example, the presented tool can paint on a virtual canvas and leave 

evidence of correct movement by looking at the resulting painted canvas. This can be performed 

while a physical arm is tracking the movements of the virtual arm. The canvas will still be virtual.  

2. Materials and Methods 

We choose the DOBOT robotic arm, [22], for this application since its small and inexpensive yet 

it’s of high quality having good accuracy, repeatability, durability, and reliability. Our educational 

software tool however can integrate with many small robotic arms. Some customization may require 

some new code to be added to the software tool as was the case using the DOBOT.  

The solution is to simply have the physical arm track the movements of the virtual arm. The 

simulation engine that models the virtual arm runs in a cycle. In each cycle the virtual arm sends 

messages to the physical arm updating its current location. Depending on the arm and its controller, 
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the location update may consist of a set of updated joint angles or an updated location for the end-

effector. Figure 1, Figure 2, and Figure 3 show examples of the DOBOT arm tracking the virtual arm 

for different angles. 

 

 

a b 

Figure 1. Example of the DOBOT tracking the virtual arm. (a) the virtual arm. (b) the DOBOT arm. 

The current positions for both arms are 𝜃ଵ = 0° , 𝜃ଶ = 0°, 𝜃ଷ = 0°. 

 

 

a b 

Figure 2. Example of the DOBOT tracking the virtual arm. (a) the virtual arm. (b) the DOBOT arm. 

The current positions for both arms are 𝜃ଵ = 0° , 𝜃ଶ = 17°, 𝜃ଷ = 60°. 
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a b 

Figure 3. Example of the DOBOT tracking the virtual arm. (a) the virtual arm. (b) the DOBOT arm. 

The current positions for both arms are 𝜃ଵ = 0° , 𝜃ଶ = 60°, 𝜃ଷ = 25°. 

The simulation engine determines the location of the virtual arm at every cycle. The cycle 

executes 10 times per second. In each cycle the simulation engine determines the new location of each 

joint in the arm and renders the arm in its new location. It then communicates with the physical arm 

and provides the updated arm location. Figure 4 shows the algorithm that is executed in every 

simulation cycle and Figure 5 shows the computation of the velocity and position considering the 

modeled dynamics of the arm. 

Update the current time, TNOW, to be TNOW + 0.01 seconds. 

for each joint 

Compute the desired instantaneous velocity by evaluating the velocity 

polynomial at time TNOW. 

Compute the actual instantaneous velocity by considering the desired 

instantaneous velocity and the joint’s dynamics.  

Update the joint angle based on the new instantaneous velocity. 

Render the arm using the newly computed joint angles. 

Pass the new joint angles or the new location of the end-effector to the 

physical arm. 

Figure 4. Algorithm to update the location of the end-effector. Its executed every 10th of a second. 

Acceleration = (DesiredVelocity - Velocity) / DeltaTime; 

 

     if (Acceleration > MaxAccelaration) 

          Acceleration = MaxAccelaration; 

     else if (Acceleration < -MaxAccelaration) 

          Acceleration = -MaxAccelaration; 

 

 PrevVelocity = Velocity; 

 Velocity = Velocity + Acceleration * DeltaTime; 

 Position = Position + ((Velocity + PrevVelocity) / 2) * DeltaTime; 

Figure 5. Algorithm to compute the position of a joint considering its maximum acceleration. 

DeltaTime is 0.01 seconds since the algorithm executes 10 times per second. 

If the physical arm can be controlled at the joint level, the simulation engine will send it the set 

of newly computed joint angles. The physical arm can then move its joint motors using these angles. 

However, if the physical arm has a controller that does not allow direct access to its joint motors, then 

the location of the end-effector is given to the controller. The controller then computes all of its joint 
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angles using its inverse kinematic equations and moves the arm accordingly. This works behind the 

scenes and is transparent to student’s view. The student programs each joint individually using joint 

programming and the physical as well as the virtual arm moves according to their program.  

2.1. The DOBOT Arm 

In our application we used the DOBOT Magician robotic arm, see Figure 6, because it is small 

and inexpensive yet relatively strong and precise. The arm is made of steel and its joint motors are 

implemented using relatively large stepper motors. It appears to be of high quality will endure the 

use in the lab. It is designed mostly for educational purposes. 

 

Figure 6. The DOBOT Magician robotic arm. 

The kit includes a gripper and a suction cup for its end-effector. In our application the gripper 

was chosen since it can open and close as well as rotate see Figure 7. The basic arm has 3 degrees of 

freedom (DOF), a rotating base, a rear arm and a fore arm. The rotating gripper is considered a 4th 

DOF if its installed and since it opens and closes that adds half more resulting in a 4.5 DOF in the 

configuration used in our application.  
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Figure 7. The gripper. The top black box is a Hitec servomotor that rotates the gripper and the bottom 

silver box is the air cylinder that opens and closes the gripper. 

The DOBOT comes with a controller that is implemented using an Arduino microcontroller that 

can get connected to a personal computer (PC) via a USB cable. It includes an Application 

Programming Interface (API) that runs on the PC and contains function calls to pass commands to 

the controller. The commands are generally used to move the arm.   

The process of integrating the DOBOT arm is first to model the arm. That is, determine its DH 

parameters, the direction of rotation for each joint, and any characteristic that does not follow the DH 

convention. Then in the second step the communications between the virtual and the DOBOT arm is 

established.  

2.1.1. The first step; modeling the DOBOT 

The first step in integrating the DOBOT arm to the software tool is to determine its DH 

parameters so we can create the virtual model. The three joints of the DOBOT are shown in Figure 8. 

The direction of rotation is shown in Figure 9 and the origin of its coordinate system is shown in 

Figure 10. Note the origin is not at the base of the arm but rather at the intersection of the axis or 

rotation of joints one and two. The floor the arm is resting on is at a negative Z position.  

 

Figure 8. The joint coordinate system of the DOBOT. 

 

Figure 9. The direction of the joints. 
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Figure 10. The origin of the coordinate system. 

The DOBOT arm has two mechanically moving joints. The rear arm rotates the fore arm in such 

a way that rotations of the rear arm does not change the orientation the fore arm has with respect to 

the world frame. The fore arm also has its own joint motor and can rotate independently. The 

resulting orientation of the fore arm is a function of its own joint angle and that of the rear arm. The 

wrist is also mechanically linked to the fore arm in such a way that the wrist is always horizontal. It 

does not have a separate joint like the fore arm so rotating it to change its pitch is not possible. Figure 

11 shows how the fore arm rotates with rotations of the rear arm such as to stay horizontal. Without 

considering the mechanically linked joint, the DH convention will place the fore arm rotating by the 

same angle as the rear arm since its orientation with respect to the rear arm will stay the same.   

 
 

a B 

Figure 11. (a), the fore arm is horizontal. (b), the rear arm is rotated and the fore arm rotates to 

maintain its horizontal orientation with the horizon. 

To accommodate the mechanical links to conform to the DH parameter convention, the fore arm 

joint is represented by two joints, one controllable and the other uncontrollable. Imagine that the fore 

arm’s joint motor is not mounted to the rear arm directly but rather to a plate. This plate is 

mechanically linked to the rear arm and rotates with rotations of the rear arm. The wrist is modeled 

as a joint that is not controllable but rather rotates with rotations of the fore arm.  The DH parameters 

determined are represented in Table 1 below.  

Table 1. DH parameters for the DOBOT Magician arm. Units are in mm and degrees. 

Link name Theta d a Alpha 

Base Theta 1 0 0 90 

Rear arm 90 + Theta 2 0 135 0 

Fore Arm Mech  0 0 0 

Fore arm -90 + Theta 3 0 147 0 

Wrist Mech  0 59 90 
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Gripper Theta 4 110 0 0 

The 90°  added to theta 2 is to make the home position, Figure 11 left, the position with all thetas 

equal to zero, point up as opposed to straight out horizontal. The −90° added to Theta 3 is to position 

the fore arm horizontal as opposed to straight up in the home position. The DH convention using the 

DH parameters shown in Table 1 will have the rear arm and fore arm rotating in the opposite 

direction as the DOBOT so their angles must be negated. The software tool allows the user to enter 

the following information to model an arm, see Figure 12: 

1. The joint name 

2. The joint type either revolute or prismatic 

3. The direction or movement 

4. Whether its controllable or uncontrollable 

5. The four DH parameters 

6. The range of motion for the joint 

7. The maximum acceleration the joint can have and 

8. The home position of the arm. 

The DOBOT arm was added to the list of predefined arms so students only need to select the 

proper arm. Note the DOBOT is modeled as having 6 degrees of freedom as opposed to 4 since two 

uncontrollable mechanical joints were added to represent the mechanical linkages between some 

joints.  

 

Figure 12. The user input screen used to specify the kinematics and dynamics of the arm. 

The only software enhancement required to model the DOBOT was the inclusion of a function 

to manage the uncontrollable joints. This function, executed in each simulation cycle, calculates the 

values of the uncontrollable joints based on the values of all the controllable joints. In the case of the 

DOBOT, it simply assigns the value of the controllable rear arm to the uncontrollable rear arm, and 

the value of the controllable fore arm to the uncontrollable fore arm. 

2.1.2. The second step, establishing the communication protocol with the physical arm 

The next stage of integrating the robotic arm into the software tool involved researching the 

various methods the controller can use to manipulate the arm. The arm comes with a built-in 

controller and an Application Programming Interface (API) that can be linked into the software tool. 

Control of the arm is achieved through API function calls. Three API functions were utilized for this 

purpose: Jog, Point-to-Point (PTP), and Continuous Path (CP). The API has a command queue, which 

ensures that existing commands are completed before new ones are initiated. Function calls are 

available to clear this queue. Three types of movement function calls were explored, each one 

implemented into the tool and made to track the virtual arm. 

Jog: This function allows direct control of each joint, even allowing the user to input the desired 

velocity for the joint. However, only one joint can be controlled at a time by the user. Given that the 

real-world movement of an arm involves several joints moving at once, this method isn't effective as 

it stands. An attempt was made to make the joints move in sequence, albeit one at a time, with each 
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clock cycle instructing a different joint motor to move. However, this resulted in a very jerky 

movement, accompanied by loud noise and significant vibrations. This is not how actual industrial 

arms operate, and such movement could cause damage to the arm over time. This method was 

therefore ruled out. 

Point-to-Point (PTP): This method allows all joints to move concurrently and lets the user specify 

movements at the joint level. This method enables selection between the Cartesian space and joint 

space, with the latter being more suitable for this application. The input here is the desired new 

location, rather than the desired velocity. Every time a PTP movement is requested, the DOBOT’s 

controller creates a 2-1-2 type blend path, starting and ending with a velocity of zero and cruising at 

the specified velocity. However, the jerkiness issue persisted with the PTP method due to the 

requirement for each path to start and end with zero velocity and our tool operating in a cycle 

executed 10 times per second. Various remedies were tried, such as flushing the queue with every 

new PTP movement, and providing new movement commands before the completion of the last one. 

However, these fixes only resulted in intermittent improvements and the arm still had periods of 

sudden stops and starts. 

Continuous Path (CP): Similar to the PTP method, this is designed for longer continuous 

movements. The API doesn't stop the arm when a movement is completed unless the command 

queue is empty. This resolves many issues the PTP method had, but it required movements to be 

specified in Cartesian space rather than joint space. Using the forward kinematic equations, the 

desired location of the end-effector in Cartesian space is computed and given to the API. This was 

the method used in our tool. For smooth arm movement, the velocity had to be greater than 100 

degrees per second. Movement at a lower speed resulted in jerky motion, and movement at a higher 

speed made it hard for the API to keep up and the DOBOT would lag in movement. The main 

limitation was the USB communication that had to occur 10 times per second. However, in the 

comfortable range of 100 to 200 degrees per second, the DOBOT arm moved with smooth trajectories 

and was able to track the virtual arm effectively. 

2.2. The Hitec servomotors 

In [1] we used a robotic kit from Pitsco, [23], called the Tetrix Prime [24] in a similar fashion. The 

students in this summer camp were of middle school age and they programmed the arm using a 

higher-level robotic language that does not involve joint programming. However joint programming 

can be used with these arms. In this application the students design and built their own arm. They 

measured the DH parameters and created the virtual arm that corresponds. Then they programmed 

the virtual arm using a dedicated robot language and their physical arm moved tracking the 

movements of the virtual arm.  

In order for this integration to function effectively, a dedicated microcontroller was required. 

This microcontroller received information regarding the desired position of each joint and generated 

electrical signals to the Hitec servomotors. For this task, we employed an XPlained board by Atmel, 

which utilizes the Atmel XMEGA-A3BU microcontroller. However, microcontrollers used in 

Arduino or Raspberry Pi could be more suitable choices. The Arduino, for instance, also employs an 

Atmel microcontroller, albeit a smaller one, and is complemented by an operating system and 

programming environment that is generally easier for users to learn. 

Many small robotic arms used for educational purpose and toys use the Hitec servomotors. They 

are cheap and can be easily controlled. The Hitec servomotor has three wires, a positive input voltage 

of 5V, a ground and the control signal. The control wire takes a pulse width modulated (PWM) wave 

as input where the duty cycle tells the angle the motor is to turn to. The PWM signal must be between 

3 to 5 volts and cycle at 50 Hz. The motors we used has a 180° range, (−90° to 90°). The duty cycle 

range is from 4.5% to −90° to 10.5% for +90°. Figure 13 shows an example of the input PWM wave 

needed to move the servomotor to 35°. The duty cycle must be 8.67% in this case or 1.73 ms high and 

18.27 ms low. Note a frequency of 50 Hz corresponds to a period of 20 ms,  1/50 𝐻𝑧 = 20𝑚𝑠. 
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Figure 13. (a) the PWM signal used to move the servomotor's position to 35 degrees, (b) the calculation 

for computing the required duty cycle for a 35-degree angle. 

3. Results 

The primary objective of this project is not merely to provide a platform for students to execute 

their joint programming projects, but rather to motivate them to complete these assignments. The 

educational software tool's virtual arm already serves as an adequate platform for students to 

develop and test their programs, effectively simulating a real arm, including large ones where 

dynamics must be considered. The integration with the DOBOT physical arm serves primarily to 

encourage students to complete their assignments - a goal it successfully fulfilled. 

The course, CAP 4662 Introduction to Robotics, was offered in the Fall semesters of 2021 and 

2022. In Fall 2021, the added feature of the DOBOT arm was not yet implemented, so students could 

only utilize the virtual arm. However, in Fall 2022, the new feature was added, integrating the 

DOBOT robotic arm into the tool. This allowed students to use the DOBOT arm in conjunction with 

this tool for their assignments. Homework 4 focused on joint programming, and homework 5 dealt 

with differential movements, both of which required the use of the DOBOT robotic arm. The 

remaining assignments did not involve programming or the use of the DOBOT arm. As shown in 

Table 2, the completion rates for both Homework 4 and 5 increased by about 21% after the integration. 

Table 2. The homework grades for the Fall 2021 and the Fall 2022 in Introduction to Robotics. 

Semester HW 1 HW 2 HW 3 HW 4 HW 5 HW 6 HW 7 
Average All 

other HW 

Average 

HW 4 & 5 

Fall 2021 92.59 88.46 80.77 55.77 58.27 79.81 65.38 81.40 57.02 

Fall 2022 81.25 81.25 81.25 75.00 81.25 81.25 81.25 81.25 78.13 

Some noteworthy points: 

• The grading for Homework 4 and 5 is based on participation. If a student makes a reasonable 

effort, they will receive the full grade. Consequently, the grades indicated for Homework 4 and 

5 in Table 2 represent the percentage of students who completed the assignments 

• The average completion rate for Homework 4 and 5 increased from 57.02% to 78.13%. This 

signifies an improvement of over 21%. 

• The average completion rate for the other assignments, excluding Homework 4 and 5, remained 

relatively unchanged from Fall 2021 to Fall 2022. This consistency suggests that the student 

cohort, environment, and other variables were similar across these two semesters. Therefore, the 

increased participation in Homework 4 and 5 can likely be attributed to the incorporation of the 

DOBOT. 

• Five DOBOT arms were made accessible to students in a supervised, open lab. Students were 

required to bring their own laptops equipped with the installed software tool and connect the 

DOBOT via a USB cable. The software's connection to the DOBOT is straightforward and 

reliable. To establish a connection, the student simply needs to switch on the DOBOT and click 

the 'Connect' button on the connection screen. Upon initiating the simulation of the virtual arm, 

it synchronizes with the DOBOT, which subsequently mirrors the movements of the virtual arm. 

4. Discussion 

The application of a robotic arm simulator that manifests a virtual arm possesses numerous 

benefits. These include providing a learning platform without the expenses and complications 

1.73 ms 

18.27 ms 
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associated with operating a large industrial arm. The employment of industrial arms is often not 

feasible, as they typically prohibit direct manipulation of their joint motors, thus rendering joint 

programming infeasible. Small, cost-effective arms, while accessible, do not capture the dynamics of 

an industrial arm. Their lack of significant dynamics renders them ill-suited for joint programming 

exercises. However, using a physical arm, whether industrial or smaller educational models, delivers 

an authentic experience that can engage students, motivating them to complete assignments and 

enriching their overall course experience. 

This paper introduces a hybrid solution where a small, inexpensive educational robotic arm is 

incorporated into our simulation-based educational tool, replicating the behavior of a heavy 

industrial arm. This offers the tangible experience of programming a real physical arm, bypassing 

the difficulties tied to utilizing a heavier industrial counterpart. This feat was achieved by 

synchronizing the small arm with the virtual arm, creating an illusion of the student programming 

the physical arm directly. The virtual arm simulates the dynamics and thereby imposes those hefty 

arm characteristics onto the smaller physical counterpart. 

The Introduction to Robotics class was conducted in Fall 2021 using only the virtual arm, and 

later in Fall 2022 with the integrated physical arm. We noted that the class using the physical arm 

showed a completion rate of 78.13% on two joint programming assignments, which is a significant 

21% increase from the 57.02% completion rate observed in the class that used only the virtual arm. 

No other assignment registered an increased completion rate, suggesting a comparable cohort of 

students. 

Our future objectives include adapting the DOBOT's controller to support direct joint 

programming, which is anticipated to enhance the tracking process. Furthermore, we intend to 

improve the visualization of the virtual arm. The ultimate aim is to enable the virtual arm to emulate 

the physical arm with high fidelity, moving beyond its current simplistic representation 
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