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Abstract: Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a 

complex and debilitating disease with a significant global prevalence of over 65 million individuals. 

It affects various systems, including the immune, neurological, gastrointestinal, and circulatory 

systems. Studies have shown abnormalities in immune cell types, increased inflammatory 

cytokines, and brain abnormalities. Further research is needed to identify consistent biomarkers and 

develop targeted therapies. A multidisciplinary approach is essential for diagnosing, treating, and 

managing this complex disease. The current study aims at employing explainable artificial 

intelligence (XAI) and machine learning (ML) techniques to identify discriminative metabolites for 

ME/CFS. Material and Methods: The present study used a metabolomics dataset of CFS patients 

and healthy controls, including 26 healthy controls and 26 ME/CFS patients aged 22-72. The dataset 

encapsulated 768 metabolites, classified into nine metabolic super-pathways: amino acids, 

carbohydrates, cofactors, vitamins, energy, lipids, nucleotides, peptides, and xenobiotics. Random 

forest-based feature selection and Bayesian Approach based-hyperparameter optimization were 

implemented on the target data. Four different ML algorithms [Gaussian Naive Bayes (GNB), 

Gradient Boosting Classifier (GBC), Logistic regression (LR) and Random Forest Classifier (RFC)] 

were used to classify individuals as ME/CFS patients and healthy individuals. XAI approaches were 

applied to clinically explain the prediction decisions of the optimum model. Performance evaluation 

was performed using the indices of accuracy, precision, recall, F1 score, Brier score, and AUC. 

Results: The metabolomics of C-glycosyltryptophan, oleoylcholine, cortisone, and 3-

hydroxydecanoate were determined to be crucial for ME/CFS diagnosis. The RFC learning model 

outperformed GNB, GBC, and LR in ME/CFS prediction using the 1000 iteration bootstrapping 

method, achieving 98% accuracy, precision, recall, F1 score, 0.01 Brier score, and 99% AUC. 

Conclusion: RFC model proposed in this study correctly classified and evaluated ME/CFS patients 

through the selected biomarker candidate metabolites. The methodology combining ML and XAI 

can provide a clear interpretation of risk estimation for ME/CFS, helping physicians intuitively 

understand the impact of key metabolomics features in the model. 
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1. Introduction 

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating 

disease. It may come by broad heterogeneity and common symptoms, including severe fatigue, post-

exertional malaise (PEM), restless sleep, cognitive impairment, and orthostatic intolerance [1]. The 

prevalence of ME/CFS is significant, with more than 65 million suffering individuals worldwide, 

indicating the significant impact of the disease on a global scale [2]. In addition, the true prevalence 

of the disease is difficult to determine due to factors such as underdiagnoses and misdiagnoses [3]. 

Although ME/CFS has been observed to be diagnosed more frequently in women, it is not a female-

specific condition and approximately 35-40% of patients with ME/CFS are male [4]. The reasons 

behind the higher prevalence in women are not fully understood [4,5] and may be influenced by a 

variety of factors such as hormonal differences, genetic predisposition, and social and cultural factors. 

Dysfunctions of various systems, including the immune, neurological, gastrointestinal, and 

circulatory systems, have been reported in individuals with ME/CFS [6–9]. Studies focusing on the 

immune system have revealed abnormalities in various immune cell types among ME/CFS patients, 

suggesting that the disease is an immune disorder [6,7]. Increased levels of inflammatory cytokines 

were also observed in the plasma of ME/CFS patients compared with healthy controls, indicating an 

increased inflammatory response [10]. 

Neuroimaging studies have identified abnormalities in the brains of ME/CFS patients, including 

changes in brain structure and function. These findings add to the understanding of cognitive 

impairment and other neurological symptoms experienced by individuals with ME/CFS [11]. 

Digestive problems are common among ME/CFS patients, with a significant proportion reporting 

symptoms consistent with irritable bowel syndrome (IBS). This suggests that the gastrointestinal tract 

plays a potential role in the pathophysiology of the disease [12,13]. 

The circulatory system plays a very important role in providing essential compounds and 

removing metabolic wastes from various organs [14]. Several studies have been conducted to 

characterize the blood metabolome of ME/CFS patients to gain insight into the underlying causes of 

the disease and to establish diagnostic strategies [14]. These studies have highlighted differences in 

amino acids, lipids, and imbalances in energy and redox metabolisms. However, it is important to 

note that no consistently altered metabolites were identified in all studies, which poses a challenge 

to a full understanding of the disease. 

The surprising nature of ME/CFS, in which multiple organ systems are affected [6–14], 

underlines the complexity of the disease and the need for further research. ME/CFS is a 

heterogeneous condition, and individual variations in symptoms and underlying mechanisms may 

contribute to the difficulty in identifying consistent biomarkers or metabolic changes. More 

comprehensive and collaborative research efforts are required to uncover the underlying 

mechanisms for ME/CFS, identify reliable biomarkers, and develop targeted therapies. The 

involvement of multiple organ systems highlights the importance of a multidisciplinary approach in 

the diagnosis, treatment, and management of this complex disease. In this study, we 

comprehensively analyzed the metabolites of ME/CFS patients compared to normal controls to 

identify patterns of metabolites that could potentially serve as biomarkers for the disease. What 

makes our analysis comprehensive is that we examined metabolites belonging to nine different super 

pathways, aiming to address the heterogeneous nature of the disease and understand its mechanisms 

of development and progression. To achieve this, we employed a combination of explainable artificial 

intelligence (XAI) methodology combined with machine learning (ML). This methodology enabled 

us to identify discriminative metabolites for ME/CFS. 
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2. Materials and Methods 

ME/CFS Metabolomics Dataset 

The metabolomics data of CFS patients and healthy controls were utilized to perform the 

experiments in the study [2]. All of the participants were female and consisted of 26 healthy controls 

and 26 ME/CFS patients aged 22 to 72 years and with similar body mass index (BMI). Data for 768 

different metabolites identified were obtained from the plasma sample used in the global 

metabolomics panel. According to the standards set by Metabolon®, the detected substances are 

further classified into nine different metabolic super-pathways. The distribution of identified 

compounds is as follows: amino acids 196, carbohydrates 25, cofactors and vitamins 29, energy 10, 

lipids 259, nucleotides 33, partially defined molecules 2, peptides 33, and xenobiotics 181 

(Supplementary File 1 and 2). 

Experimental Setup and Proposed Framework 

The Python programming language was used to perform the research experiments. The 

experiments were conducted in an environment containing a graphics processing unit (GPU) 

backend with 16GB of RAM and 90GB of disk space. An architectural representation of the proposed 

methodology is depicted in Figure 1. Diagnosis and biomarker discovery of patients suffering from 

ME/CFS and healthy controls form the basis of the proposed study. Below is a step-by-step 

description of the proposed methodology: 

• The first step involves obtaining metabolomics data to be used in experiments. Metabolomics 

data are based on results from a study of 26 healthy controls and 26 ME/CFS patients aged 22 to 

72 years with similar body mass index (BMI). 

• In the second step, artificial intelligence-based random forest (RF) feature selection is applied to 

identify biomarker candidate metabolites and to eliminate the high dimensionality problem in 

omic data. Because the metabolomics data has a large number of feature dimensions, the 

performance scores of the predicted models may be lower. Therefore, the twenty most important 

metabolites contributing to improved performance scores in ME/CFS prediction were identified. 

• In the third step, 80%-20% split, 5-fold cross-validation (CV), and 1000 replicates Bootstrap 

approaches were used to validate the prediction models to be generated using the selected 

biomarker candidate metabolites, and the results were compared. 

• In the fourth step, Bayesian hyper-parameter optimization was used to determine the optimal 

parameters. 

• In the fifth step, predictive models were built to diagnose ME/CFS patients. For this purpose, 

Gaussian Naive Bayes (GNB), Gradient Boosting Classifier (GBC), Logistic regression (LR), and 

Random Forest Classifier (RFC) algorithms were constructed. Performance of the models was 

evaluated via area under (AUC) Receiver operating characteristic (ROC) Curve, Brier score, 

accuracy, precision, recall, and F1-score. While the primary purpose of the methodology is 

biomarker discovery and diagnosis of ME/CFS, an important secondary purpose is to provide 

users with indicative probability scores. Therefore, we evaluated the quality of the probabilities 

via a calibration curve and by calculating the Brier score. 

• Finally, XAI approaches were applied to the proposed model to provide transparency and 

interpretability to the model and to explain the decisions made by the model. Through the use 

of XAI, we can grasp both the rationale and the process behind a particular decision made by 

the proposed model. 
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Figure 1. The proposed methodology architecture analysis for detecting healthy individuals and 

ME/CFS patients. 

Feature selection 

For feature selection and dimensional reduction from the utilized metabolomics data, the RF 

method, which is based on artificial intelligence, has been applied in this study. The mean decrease 

impurity (MDI) method is commonly utilized to carry out the process of choosing features that are 

included in the random forest model. The impurity of the decision trees in the forest is used as a 

factor in the calculation of the important score for each feature. This score is based on the average 

amount that each feature reduces the impurity of the decision trees. The feature importance score has 

been normalized in such a way that the total of all features important values is equal to 1. After that, 

the most important features with the highest scores are chosen to be used for training the models that 

are being applied. The RF method of feature selection can be mathematically represented as follows: 

 
Where: 

ntrees is the number of decision trees in the random forest. 

vi is the feature used for the split at node i of the t-th tree. 

f is the feature being evaluated for importance. 

Ivi = f is an indicator function that equals 1 if vi = f and 0 otherwise. 

Nt is the number of samples in the t-th tree that reaches node i. 

N is the total number of samples in the training set. 

impurityparent is the impurity of the set of samples at the parent node i. 

impuritychildren is the weighted impurity of the two sets of samples after the split based on 

feature f. 

Validation Methods 

To evaluate the distinctive performance and calibration quality of our ML methodology on 

metabolomics ME/CFS data, in addition to the two classical approaches, hold-out, and k-fold cross-

validation, we also used the bootstrap sampling described by Steyerberg et al [15]. 
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Hold-out Validation: It is the most basic validation method used for ML algorithms and is used 

to divide the dataset into two as training and test datasets. The training dataset, the training test 

dataset of the ML model, is used to evaluate the predictive performance of the model [16]. 

k-fold Cross-validation: A statistical method for evaluating and comparing learning algorithms, 

in k-fold cross-validation, the data is first divided into k folds, each of which has a size that is equal 

to or very close to being equal to the others. Following this, k iterations of training and validation are 

carried out in such a way that, within each iteration, a different fold of the data is hold-out for 

validation while the remaining k minus one folds are used for learning [17]. 

Bootstrap Validation: The Bootstrap resampling method is a way to predict the fit of a model to 

a hypothetical test set when an explicit test set is not available. It helps to avoid overfitting and 

improves the stability of ML algorithms. In this validation method, a set of artificial new datasets is 

"bootstrapped" by random sampling, replacing the original dataset. Each ML model was then trained 

on the sampled dataset and evaluated on the original dataset. This process was repeated 1000 times 

[18]. 

The Bayesian Approach for hyper-parameter optimization 

The effectiveness of every ML model is determined by the hyper-parameters associated with 

that model. They have influence over the learning process or the structure of the statistical model that 

lies beneath the surface. On the other hand, there is no standard approach to selecting hyper-

parameters in real experiments. As a substitute, practitioners frequently set hyper-parameters 

through a process of trial and error or occasionally allow them to remain at their default settings, 

both of which result in inadequate generalization. By recasting it as an optimization problem, hyper-

parameter optimization gives a methodical approach to solving this issue. According to this line of 

thinking, a good set of hyper-parameters should (at the very least) minimize a validation error. When 

compared to the vast majority of other optimization problems that can arise in machine learning, 

hyper-parameter optimization is a nested problem. This means that at each iteration, an ML model 

needs to be trained and validated.  Many approaches have been developed to discover the optimal 

combination of ML model hyper-parameters. Grid search and random search are two optimization 

approaches that are often employed for this purpose. These strategies, however, have a few 

drawbacks. Grid searching is a time-consuming and inefficient strategy for the central processing 

unit (CPU) and graphics processing unit (GPU). The grid search strategy outperforms random search; 

nevertheless, the exact answer is more likely to be ignored. In comparison to these two strategies, 

Bayesian optimization is the best choice for searching for hyper-parameters. First, because the 

Gaussian process is involved, the Bayesian optimization technique may consider prior results. To put 

it another way, each step computation may be retrieved to assist in determining a better set of hyper-

parameters. Second, compared to other methodologies (for example, grid search), Bayesian 

optimization takes fewer iterations and has a quicker processing time. Finally, even when working 

with non-convex issues, Bayesian optimization may be trusted [19–22]. 

Classification models 

To identify patients into two categories, namely ME/CFS and healthy individuals, we made use 

of a variety of AI-based classification algorithms in this work. These included Gaussian Naive Bayes 

(GNB), Gradient Boosting Classifier (GBC), Logistic regression (LR), and Random Forest Classifier 

(RFC). 

GNB: The GNB algorithm is a well-known classification method that is frequently utilized in 

the field of biomedical research to categorize various patient groups. GNB can be used to properly 

diagnose patients based on specific physiological traits or biomarkers in the case of healthy 

individuals as well as patients with ME/CFS. The Bayes theorem, which asserts that the probability 

of a hypothesis may be computed based on the probability of observing specific evidence, serves as 

the foundation for GNB's mathematical operation. This theorem underpins how GNB works. When 

using GNB, it is assumed that the conditional probability of each feature given the class is Gaussian, 

which indicates that the features are regularly distributed within each class. This is done to comply 
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with the requirements of the GNB algorithm. This assumption makes the computation of the 

posterior probability much easier, which in turn enables classification that is both more efficient and 

more accurate. The GNB method works by first determining the posterior probability of each class 

for a certain set of features, and then designating the class that has the highest probability as the class 

that will be predicted [23,24]. The following mathematical notations can be used to express GNB: 

 
Where: 

P(y|x) is the posterior probability of class y given input vector x. 

P(x|y) is the likelihood of the input vector x given class y, modeled as a multivariate Gaussian 

distribution. 

P(y) is the prior probability of class y, estimated as the relative frequency of y in the training set. 

P(x) is the evidence or marginal likelihood of the input vector x, calculated as the sum of the 

joint probabilities of x and all possible classes y. 

GBC: The GBC is a powerful ML algorithm that has shown great potential in the classification 

of healthy individuals and patients with ME/CFS. GBC operates by iteratively constructing an 

ensemble of weak prediction models, typically decision trees, and combining their outputs to make 

accurate predictions. During the training phase, GBC builds the ensemble by initially fitting a weak 

model to the training data. Subsequent models are then constructed in a way that each new model 

focuses on the instances that were previously misclassified by the ensemble [25,26]. The mathematical 

notations for the GBC model for classification are as follows: 

 
Where: 

represents the predicted value for the i-th instance. 

M denotes the number of weak classifiers (decision trees) used in the GBC. 

refers to the m-th weak classifier's prediction for the i-th instance. 

LR: For binary classification problems such as disease categorization using patient data, LR is a 

common machine learning model. Given input data including patient demographics, symptoms, and 

laboratory test results, the LR model calculates the likelihood of a positive class. To maximize the 

likelihood of the positive class, the model learns the ideal set of weights or coefficients by minimizing 

the logistic loss function. To produce a probability between 0 and 1, the logistic function uses a linear 

combination of input features and their weights. Afterward, a threshold (such as 0.5) is used to the 

anticipated probability to determine the expected class; if the predicted probability is greater than the 

threshold, the positive class is predicted, and vice versa [27,28]. Here are some mathematical symbols 

for the LR model of binary classification: 

 

Where: 

p(y=1|x,θ) is the predicted probability of the positive class given the input feature vector x and 

the model parameters θ. 

e is the base of the natural logarithm (approximately 2.718). 

θ0 is the intercept or bias term. 

θx1, θx2, ..., θx0 are the coefficients or weights of the input features x1, x2, ..., xp 

x = [x1, x2, ..., xp] is the input feature vector 

RFC: The RFC, is a well-known technique for machine learning that is used for classification 

tasks, such as the classification of diseases based on patient data. Building an ensemble of decision 

trees that have been trained on random subsets of the input features and data samples is how RFC 
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goes about doing its work. Each decision tree in the ensemble makes a prediction based on a subset 

of the input features, and the final prediction is generated by aggregating the predictions of all of the 

trees in the ensemble. RFC can handle high-dimensional data with a large number of features and 

can also capture nonlinear correlations between the input features and the output classes [29–31]. The 

RFC equation can also be written as follows in its mathematical notation: 

 
Where: 

X is an input data matrix with n samples and p features, where X = [x1, x2, ..., xn], and each xi is 

a vector of p features. 

y is a vector of predicted class labels, where y = [y_1, y_2, ..., y_n]. 

f(X) is the function that maps the input data X to the predicted class labels y using a random 

forest model. 

Performance Evaluation and Model Calibration 

Performance Evaluation 
Accuracy: Accuracy refers to the correct classification rate of a classification model. The accuracy 

score is calculated as the ratio of correctly guessed samples to the total number of samples. However, 

in the case of unbalanced classes or misclassification costs, the accuracy score alone may be 

insufficient and should be evaluated in conjunction with other metrics [32]. 

Precision: The precision score expresses how many of the positively predicted samples are 

actually positive. The precision score is calculated as the ratio of the number of false positives (False 

Positive) to the total number of positive predictions (True Positive + False Positive). The higher the 

precision score, the better the positive predictions of the model are [32]. 

Recall: The recall score expresses how many of the true positives (True Positive) are correctly 

estimated. The recall score is calculated as the ratio of the number of false negatives (False Negative) 

to the total number of true positives (True Positive + False Negative). The higher the recall score, the 

better the model captures true positives [32]. 

F1 score: The F1 score is calculated by taking the harmonic mean of the precision and recall 

scores. It is preferred to the harmonic mean because it provides the balance between precision and 

recall scores. The higher the F1 score, the higher the model classifies with both high precision and 

high recall [32]. 

ROC Curve and AUC: Evaluation of diagnostic tests is a topic of interest in contemporary 

medicine, and this is true not only for determining whether or not a disease is present in a patient but 

also for determining whether or not healthy people have the disease. The conventional method of 

diagnostic test evaluation employs sensitivity and specificity as measures of accuracy of the test in 

comparison with gold standard status. This method is used in diagnostic tests that have a binary 

outcome, such as positive or negative results from the test. In a scenario in which the test results are 

recorded on an ordinal scale (for example, a five-point ordinal scale: "definitely normal," "probably 

normal," "uncertain," "probably abnormal," and "definitely abnormal"), or in a scenario in which the 

test results are reported on a continuous scale, the sensitivity and specificity can be computed across 

all of the possible threshold values. Therefore, the sensitivity and specificity change throughout the 

different thresholds, and there is an inverse relationship between sensitivity and specificity. Then, 

the receiver operating characteristic (ROC) curve is called the plot of sensitivity versus 1-Specifity, 

and the area under the curve (AUC), as a reliable indicator of accuracy has been considered with 

relevant interpretations. ROC curves are plotted as sensitivity versus 1-Specifity. This curve is 

extremely important when determining how well a test can differentiate between different types of 

people and their actual conditions. A ROC curve is formed when the sensitivity vs specificity is 

plotted against each other across a range of cutoffs. This plot forms a curve in the unit square. In 

"ROC space," the ROC curves that correspond to diagnostic tests with progressively stronger 

discriminant capacity are situated gradually closer to the upper lefthand corner. The area under the 

curve is a statistic that provides a comprehensive overview of the ROC curve rather than focusing on 
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a single point of operation. AUC represents the area under the ROC curve and takes a value between 

0 and 1. The AUC value measures the discrimination ability of the classification model. A high AUC 

value means that the model can discriminate well and has a high sensitivity and low false positive 

rate. The closer the AUC value is to 1, the better the model's performance [33–35]. 

Model Calibration 

A well-calibrated model is one in which the estimated probability matches the true incidence of 

the outcome. For example, approximately 90% of patients with an estimated risk of ME/CFS of 0.9 

would be classified as ME/CFS. This is critical for prediction models because clinical decision-makers 

need to know how confident the model is in making a particular prediction. Therefore, we calibrate 

the trained model to get the correctly predicted probability. In this article, we use the Brier score and 

Calibration curve for model calibration [36,37]. 

Brier Score: The Brier score is a metric used to evaluate the quality of probability estimates. It is 

especially used for probabilistic classification models. The Brier score provides a measure of the mean 

squared errors between the actual labels and the estimated probabilities. The lower the Brier score, 

the closer the predictions are to reality [36,37]. 

Calibration Curve: A calibration curve is a tool used to evaluate how close a classification 

model's estimates are to the true probabilities. This curve shows the accuracy of the probabilities 

predicted by the model. The calibration curve is important to determine the confidence level of the 

model and to evaluate the reliability of the predictions. A well-calibrated model means that high-

probability predictions are more likely to happen, while low-probability predictions should be less 

likely to happen. It is verified that the probabilities predicted by a well-calibrated model are 

consistent with the realization rates [36,37]. 

XAI Approach 

Interpretability is absolutely essential when using a complex ML model in a real-world 

environment such as the medical field. XAI is an emerging research area that aims to increase the 

interpretability and transparency of applied ML models. XAI ensures that decisions made by applied 

models are understood and trusted, especially in critical applications such as healthcare. XAI 

techniques can help users understand, validate, and trust the decisions made by these models in real-

world applications [38,39]. In this research, Shapley values and the Treemap approach were used to 

interpret the estimation decision of the optimal ML model. 

Shapley Additive Explanations (SHAP): It is an approach used to understand the contribution 

of each feature to the prediction to explain the predictions of SHAP ML models. This approach also 

takes into account the complexity of the ML model and the interactions between features that go into 

the model. It also measures the contribution of a feature to the prediction using Shapley values and 

thus produces graphical results for understanding the model's decisions [39]. 

TreeMap: TreeMap provides an intuitive description for tree-based ML models, showing the 

name of the property used for each decision level and the split value for the condition. If an instance 

satisfies the condition, it goes to the left branch of the tree, otherwise, it goes to the right branch. 

When purity is high in TreeMap, the knuckle/leaf has a darker color. The samples row at each node 

shows the number of samples examined at that node [40,41]. 

3. Results 

In this section, firstly, the results of biomarker candidate metabolites are given and the 

performance results of the applied predictive artificial intelligence algorithms are evaluated using 

various evaluation metrics. Predictive models were constructed based on both the original data and 

the metabolites identified as biomarker candidates, and the results were compared. The model 

showing the final performance was used for ME/CFS estimation and the decision-making function of 

the model was tried to be explained using XAI approaches. 
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Feature Selection Results 

Figure 2 depicts the features that were selected together with their respective relevance ratings, 

which were determined using a random forest method based on machine learning. The results reveal 

that the metabolomics of C-glycosyltryptophan, oleoylcholine, cortisone, and 3-hydroxydecanoate 

are extremely relevant for the diagnosis of ME/CFS patients. 

 
Figure 2. The histogram-based feature importance plot of selected features using the RF model. 

Hyper-parameters Optimization Results 
Table 1, optimal hyper-parameters of ML models according to the Bayesian optimization are 

given. 

Table 1. The hyper-parameter tuning analysis of applied methods. 

Technique Optimized Parameter Value 

GNB var_smoothing=1e-9. 

GBC n_estimators=3, learning_rate=1.0, max_depth=1, random_state=0. 

LR random_state=0, max_iter=30, solver='liblinear'. 

RFC max_depth=26, min_samples_leaf=5, min_samples_split=3, n_estimators= 12. 

The Model Performance Results 

In this section, we show how selecting metabolic traits associated with ME/CFS can help learning 

models improve their performance. After training using all input features and a subset of them 

(significant features), the results of all used models (GNB, GBC, LR, RFC) are presented in Table 2. 

We also performed three experiments for model validation, in the first experiment the dataset was 

split into 80% and 20% to train and validate the learning models. For the second experiment, we used 

the cross-validation method during the training and validation of learning models. Finally, we used 

the 1000 iteration Bootstrap method in our last experiment. Bootstrap is a resampling method in 

which parts are changed at each iteration of the sampling process. This creates a randomly selected 

collection of samples from the set of input samples. This procedure can be performed k times. Models 

were trained on the sampled dataset and evaluated on the original dataset. In all experiments, we 

calculated the performance of all learning models with and without a feature selection step. After the 

three experiments outlined in this section, the results of each learning model were accuracy (A), 

precision (P), recall (R), F1-Score (F1), Brier Score (B), and AUC.  

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

oleoylcholine
3-hydroxydecanoate

dimethyl sulfone
gamma-glutamylvaline
phenylacetylglutamine

phenylalanylglycine
phenyllactate (PLA)

p-cresol glucuronide*
valylleucine

piperine
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According to Table 2, in models using the original features in the dataset, it was determined that 

the GBC model achieved the lowest performance scores (accuracy: 36%; AUC: 33%; Brier score: 0.63) 

by dividing the data by 80-20. As a result of Bootstrap with the original features, the LR model had 

the best performance (accuracy: 96%; AUC: 95%; Brier score: 0.04). All results for models using 

biomarker candidate metabolites showed improved prediction performance when compared to 

models using the original features. The results of the investigation show that the performance metrics 

scores of all of the used machine learning approaches for diagnosing healthy controls and ME/CFS 

patients were much improved by applying selected biomarker metabolites. The interpretation was 

also more likely for these models, which took into account fewer risk factors. The Bootstrap validation 

method gave superior results compared to the first two experiments (80-20 split and 5-fold CV) both 

in experiments using the original metabolomics variables and in models using twenty biomarker 

candidate metabolites. It was determined that the RFC learning model outperformed the other three 

models (GNB, GBC, and LR) with the 1000 iteration bootstrapping method for ME/CFS prediction 

based on a few metabolite markers. The RFC learning model achieved 98% accuracy, 98% precision, 

98% recall, 98% F1 Score, 0.01 Brier score, and 99% AUC. 

Table 2. The comparative performance analysis of the applied artificial intelligence techniques with 

different approaches. 

Attained performance using all input features 
Attained performance using feature 

selection 

Technique 

A 

(%) 

P 

(%) 

R 

(%) 
F1 (%) B 

AUC 

(%) 

A 

(%) 

P 

(%) 
R (%) 

F1 

(%) 
B 

AUC 

(%) 

80%-20% split validation 80%-20% split validation 

GNB 73 72 73 72 0.27 67 73 72 73 72 0.27 67 

GBC 36 39 36 37 0.63 33 73 75 73 73 0.27 73 

LR 64 64 64 64 0.36 60 73 72 73 72 0.27 67 

RFC 45 56 45 44 0.54 51 82 86 82 80 0.18 75 

Results with 5-folds cross validation Results with 5-folds cross validation 

GNB 52 36 94 62 0.26 59 82 77 92 84 0.15 91 

GBC 48 47 35 37 0.34 52 95 94 99 95 0.05 98 

LR 58 46 71 54 0.45 46 95 95 96 96 0.03 98 

RFC 56 68 38 56 0.28 64 97 96 97 98 0.04 99 

Results with 1000 repetition bootstrap Results with 1000 repetition bootstrap 

GNB 63 70 63 60 0.36 63 83 84 83 83 0.17 91 

GBC 92 92 92 92 0.07 92 96 96 96 96 0.03 92 

LR 96 96 96 96 0.04 95 96 96 96 96 0.04 99 

RFC 90 90 90 90 0.09 90 98 98 98 98 0.01 99 

GNB: Gaussian Nave Bayes; GBC: Gradient Boosting Classifier; LR: Logistic Regression; RFC: 

Random Forest Classifier; A: accuracy; P: precision; R: recall; B: Brier score; AUC: Area under the ROC 

Curve. 

The ROC area reached by each learning model after training on the selected biomarkers is shown 

in Figure 3. The better the performance of the prediction model, as measured by the ROC curve, the 

closer the value of the AUC is to one. As can be seen in Figure 3, the RFC model reached its highest 

AUC value of 99%. 
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Figure 3. The attained AUC of all ML models after being trained/validated using the biomarker 

metabolites. 

It is prevalent in classification to seek out both a prediction of the class label and the probability 

of that label. By examining these possibilities, the diagnostic decision of the learning model can be 

more relied upon. Therefore, we have drawn the RFC model's calibration curve, as depicted in Figure 

4, to guarantee its accuracy. To calibrate the accuracy of predictions, the calibration process compares 

the actual label frequency to the expected label probability. A closer alignment of dots along the major 

diagonal of the plot indicates a more accurate calibration or more trustworthy prediction. 

 
Figure 4. The calibration curve analysis of outperformed RFC model. 

XAI Results 

The SHAP was used to identify metabolomics biomarkers according to their importance or 

contribution to the prediction of ME/CFS and to explain the prediction decisions of the model. The 

RFC-trained model was subjected to SHAP annotation and identified the most important trait 

metabolites responsible for the prediction of ME/CFS. The results pointed to a list of metabolites with 

importance scores. Metabolite biomarkers are arranged in decreasing order of importance. 

Oleoylcholine, phenylactate (PLA), octanoylcarnitine (CB), hydroxyasparagine**, and piperine are 

among the most prominent metabolite biomarkers important in the diagnosis of ME/CFS. Figure 5 

also visualizes the relationships between the relative value of biomarker candidate metabolites and 

the SHAP values for these metabolites. In each row of the graph, each patient is marked as a dot. The 

horizontal position of the dot reflects the SHAP values, and the color of the dot encodes the relative 

value of the metabolites and their mean in the dataset. For example, low values (relatively blue) of 
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Oleoylcholine and phenylactate (PLA) metabolites contribute positively to ME/CFS, thus increasing 

disease risk (Figure 5). 

 

Figure 5. The explainable impact of the proposed RFC model output on biomarker metabolite 

features. 

In addition to that, to gain an understanding of how the RFC model behaves, we have employed 

a method that is known as Treemap analysis. Figure 6 is an illustration of the Treemap that is included 

in the RFC. The analysis explains how the proposed model came to its conclusion about the 

classification of patients as healthy controls and those with ME/CFS. 
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Figure 6. The treemap space analysis of the proposed RFC model. 

4. Discussion 

Fatigue is a common occurrence in human beings and serves as an indicator of disrupted 

homeostasis within the body, resulting from either excessive physical and mental exertion or illness 

[42]. In addition to being one of the most significant social concerns, chronic fatigue additionally 

constitutes the most significant economic losses [43]. Pain, cognitive dysfunction, autonomic 

dysfunction, sleep disturbance, and neuroendocrine and immune symptoms are just some of the 

many symptoms associated with ME/CFS [44]. A patient must have a symptom from neurological 

impairments, an immune/gastrointestinal/genitourinary impairment, and an energy 

metabolism/transport impairment to be diagnosed with ME/CFS and meet the criteria for post-

exertional neuroimmune exhaustion. However, the strength and severity of such symptoms in a 

patient vary and are heterogeneous, from moderate to severe, with some patients even becoming 

bed-bound [44]. Because it is challenging to identify the typical abnormal elements for this disorder 

utilizing general and conventional medical examination, artificially intelligent-based automated 

methods may aid in improving the diagnosis of ME/CFS. In recent years, a growing number of 

research have explained the pathology of ME/CFS and have established biomarkers for the same by 

employing a metabolome analysis technique [45–47]. This has allowed for the development of a 

variety of diagnostic studies [48]. 

The present investigation of the effectiveness of methodology combining ML and XAI 

techniques to investigate biomarkers of ME/CFS and develop an interpretable predictive model for 

disease diagnosis. Metabolomics data from patients diagnosed with ME/CFS and healthy controls 

were used. The classification algorithms employed include GNB, GBC, LR, and RFC. The classifiers' 

performance has been evaluated both with and without the implementation of the feature selection 

algorithm (RF). In addition to classical hold-out validation, cross-validation, and bootstrap 

approaches were also used to evaluate the performance of classification learning algorithms in the 

validation stage, and the effectiveness of these three validation approaches was also examined. 

Shapely values, an explainable AI system, have been utilized to interpret the classification models' 

predictions and decisions. After being trained and validated on the significant selected features using 

the Bootstrapping method, the RFC model is found to be superior to the other four models (GNB, 

GBC, and LR). Accuracy, precision, recall, F1 Score, and the AUC were all at or above 98% for the 

RFC model. The higher the values that attain for precision and sensitivity, the higher the proportion 

of correct diagnoses, also known as True Positives (TP), and the lower the value of false negatives 

(FN). Errors both positive and negative, known as false positives (FP) and FN, are widespread in 

comparative biology research. In addition, we demonstrated that our method was capable of 

demonstrating the main features as well as the interpretations of ML findings by utilizing SHAPley 

values and SHAP plots. The SHAP method's findings indicated that oleoylcholine, phenyllactate, 
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octanoylcarnitine, hydrooxyasparagine, piperine, p-cresol glucuronide, and palmitoylcholine are all 

chemicals associated with ME/CFS and crucial to the model's final decision. The use of the SHAP 

technique revealed that the indolelactate, which has low Shapley values, is the least significant of all 

the features. On the other hand, the feature with the highest Shapley value is the oleoylcholine, which 

is also the one that contributes the most significant information for the diagnosis of ME/CFS. 

Oleoylcholine is a member of the class of chemical compounds known as acyl cholines. Germain et 

al. [2] researched the metabolic pathways that influence the diagnosis of ME/CFS patients by 

performing statistical analysis in conjunction with pathway enrichment analysis. They found that 

acyl cholines, which are part of the sub-pathway of lipid metabolism known as fatty acid metabolism, 

are consistently reduced in two different patient cohorts that suffer from ME/CFS. Nagy-Szakal et al. 

[49] have gained insights into ME/CFS phenotypes through comprehensive metabolomics. Biomarker 

identification and topological analysis of plasma metabolomics data were performed on a sample 

group consisting of fifty ME/CFS patients and fifty healthy controls. They have demonstrated that 

patients with ME/CFS have higher plasma levels of ceramide and observed that there is a variation 

in the level of carnitine, choline, and complex lipid metabolites. The study of plasma metabolomics 

data attained a more accurate prediction model of ME/CFS (AUC = 0.836). 

A comprehensive metabolomics was conducted by Naviaux et al. [49] to better understand the 

biology of CFS. They have investigated 612 plasma metabolites across 63 different metabolic 

pathways. Twenty metabolic pathways were revealed to be abnormal in patients with Chronic 

Fatigue Syndrome. Sphingolipid, phospholipid, purine, cholesterol, microbiota, pyrroline-5-

carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial pathways were all 

disrupted. Diagnostic accuracies of 94% were found using AUC characteristic curve analysis. In our 

experiment utilizing the ML-based model, we were able to achieve a greater level of accuracy (98%) 

for our proposed prediction model, the RFC model. Petrick, and Shomron [50] has been discussed 

how well the ML-based model performs. They highlighted how AI and ML have permitted important 

breakthroughs in untargeted metabolomics workflows and key findings in the fields of disease 

diagnosis. In conclusion, the proposed model (RFC) was successful in correctly diagnosing ME/FCS 

patients. The findings indicate that ML, when paired with the Shapely analysis, is able to explain the 

ME/FCS classification model and offer physicians a basic knowledge of the main metabolic chemicals 

that influence the model decision.  Clinicians can get benefit from individual explanations of the 

important metabolic compounds in order to gain a better grasp of why the model yields certain 

diagnoses for individuals with ME/CFS. 

5. Conclusions 

Although research into the causes and mechanisms of ME/CFS continues, the exact underlying 

factors are not yet fully understood. It has been reported to result from a complex interaction of 

biological, genetic, environmental, and psychological factors. Advances in research are crucial to 

better understanding the disease, improving diagnosis and treatment options, and ultimately finding 

a cure. Based on this information, the RFC model proposed in this study correctly classified and 

evaluated ME/CFS patients through the selected biomarker candidate metabolites. The methodology 

combining ML and XAI can provide a clear interpretation of risk estimation for ME/CFS, helping 

physicians intuitively understand the impact of key metabolomics features in the model. 

6. Limitations and future works 

This study lacked a third-party verification by an independent biologist, which may have 

provided more explanation of the collected results, vital metabolic chemicals, and their significance 

to the diagnosis of patients with ME/FCS.  It is vital to broaden the present investigation further by 

incorporating multicenter experiments in subsequent research or to make use of the associated data 

from multiple locations for external validation. The size of the metabolomics dataset might be 

increased by collecting additional samples from patients. This would be an improvement for this line 

of investigation. The performance of patient diagnosis will be improved by the development of 

advanced transfer learning-based methodologies. 
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