Pre prints.org

Article Not peer-reviewed version

Artificial Intelligence Prediction of
Gestational Age of Fetal in Brain
Magnetic Resonance Imaging
versus ultrasound Using three
different Biometric Measurements

Farzan Vahedifard ~ , Xuchu Liu, Kranthi K. Marathu , Mehmet Kocak , H. Asher Ai, Mark P. Supanich ,
Seth Adler, Shehbaz M. Ansari, Melih Akyuz , Jubril O. Adepoju , Sharon Byrd

Posted Date: 31 July 2023
doi: 10.20944/preprints202307.2052.v1

Keywords: Artificial Intelligence; Gestational Age; Fetal Brain; MRI

T E Preprints.org is a free multidiscipline platform providing preprint service that
; is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of
E . Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2166860
https://sciprofiles.com/profile/3051726
https://sciprofiles.com/profile/3046923
https://sciprofiles.com/profile/3004551
https://sciprofiles.com/profile/3043651
https://sciprofiles.com/profile/3045016
https://sciprofiles.com/profile/3043645
https://sciprofiles.com/profile/3004641

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2023 do0i:10.20944/preprints202307.2052.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Artificial Intelligence Prediction of Gestational Age
of Fetal in Brain Magnetic Resonance Imaging Versus
ultrasound Using Three Different Biometric
Measurements

Farzan Vahedifard +*, Xuchu Liu 2, Kranthi K Marathu 3, Mehmet Kocak 4, H. Asher Ai 5,
Mark Supanich ¢, , Seth Adler 7, Shehbaz Ansari 8, Melih Aykuz ?, Jubril O Adepoju 1
and Sharon Byrd 11*

1 Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Rush
Medical College.

2 Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Rush
Medical College. Email: xuchu_liu@rush.edu

3 Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Rush
Medical College. Email: kranthi_k_marathu@rush.edu

* Associate Professor, Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical
Center, Rush Medical College. Email: mehmet_kocak@rush.edu

5 Division for Diagnostic Medical Physics, Department of Radiology and Nuclear Medicine, Rush University
Medical Center, Rush Medical College. Email: hua_a_ai@rush.edu

¢ Division for Diagnostic Medical Physics, Department of Radiology and Nuclear Medicine, , Rush
University Medical Center, Rush Medical College, Email: mark_supanich@rush.edu

7 Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Rush
Medical College. Email: seth_adler@rush.edu

8 Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Rush
Medical College. Email: shehbaz_m_ansari@rush.edu

° Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Rush
Medical College. Email: melih_akyuz@rush.edu

10 Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Rush
Medical College. Email: jubril_o_adepoju@rush.edu

11 Professor and Chairperson, Department of Diagnostic Radiology and Nuclear Medicine, Rush University

Medical Center, Rush Medical College.

Correspondence: farzan_vahedifard@rush.edu (F.V.); sharon_byrd@rush.edu (S.B.)

Abstract: Accurately predicting a fetus's gestational age (GA) is of utmost importance in prenatal care. This
study aimed to develop an artificial intelligence (AI) model that can automatically predict GA using biometric
measurements derived from fetal brain magnetic resonance imaging (MRI). Additionally, we aimed to assess
the significance of considering different references when interpreting GA predictions. To achieve this, we
obtained measurements such as Biparietal Diameter (BPD), Frontooccipital Diameter (FOD), and Head
Circumference (HC) from a dataset comprising 52 normal fetal MRI cases with T2 Haste sequences from Rush
University. Both manual and Al-based methods were utilized to acquire these measurements. We also
employed three reference papers (Garel, Freq, and Bio) for comparison purposes. The results demonstrated a
strong correlation between manual and AI measurements, indicating consistency between the two methods.
The Al-based measurement of HC exhibited a higher correlation with actual values compared to BPD, FOD,
and correct-ed BPD (BPDC). When comparing these measurements with GA in the Picture Archiving and
Communication System (PACS), the differences varied depending on the reference used. Specifically, the
differences ranged from 0.47 to 2.17 weeks for BPD, 0.46 to 2.26 weeks for FOD, and 0.75 to 1.74 weeks for HC.
Furthermore, the Pearson correlation coefficient analysis revealed that all correlation coefficients between
PACS records and GA pre-dictions using different references were greater than 0.97. In conclusion, the Al
model based on fetal brain MRI accurately predicts GA by utilizing BPD, FOD, and HC measurements. The Al
approach, which involves combining line segments to calculate fetal head circumference, offers improved
accuracy and convenience compared to manual estimation. This study underscores the potential of Al models
in accurately estimating gestational age and highlights their utility in prenatal care. By integrating Al as a
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valuable tool in prenatal care, we can enhance the accuracy, efficiency, and decision-making involved in
assessing fetal development and monitoring pregnancies using MRI measurements.

Keywords: artificial intelligence; gestational age; fetal brain; MRI

1. Introduction:

While sonography is the primary method for evaluating fetal anomalies, it has limitations
regarding specificity and visualization. MRI can be a valuable adjunct to sonography, particularly
when sonographic findings are inconclusive, as it can provide additional diagnostic information and
help improve the accuracy of prenatal diagnoses (1).

Accurately predicting gestational age (GA) has several applications, including pregnancy dating,
assessing fetal growth and development, determining the timing of delivery and interventions (such
as administering of steroids), detecting fetal growth restriction, preterm labor, and other
complications. It is essential to make appropriate obstetrical management decisions and ensure
optimal maternal and fetal outcomes (2).

Accurate GA assessment is vital for proper obstetrical management decisions, scheduling and
interpreting prenatal tests, and evaluating fetal growth. Knowing the gestational age helps prevent
preterm and post-term births, which can harm both the mother and baby (3). Additionally, it enables
healthcare professionals to distinguish between normal and abnormal findings. GA is also crucial
when interpreting test results, such as the maternal triple-screen blood test, which is normally
conducted and interpreted between the 15t and 18" week of pregnancy (4).

GA can be determined using the first day of the mother's last menstrual period (LMP) or
ultrasound (US) measurements (5) . While US is generally more accurate, measurement errors and
biological variability can also affect its accuracy. The accuracy of gestational age dating decreases
with time since conception. In the first trimester, the error range is within 1 week, increasing to 1-2
weeks in the second trimester and up to 1 month in the third trimester (6). When using menstrual
dating alone to determine GA, estimations were inaccurate in 11% to 42% of cases . However, data
still supports the use of US dating, despite its own sources of inaccuracy (2). The American College
of Obstetricians and Gynecologists (ACOG), the American Institute of Ultrasound in Medicine
(AIUM), and the Society for Maternal-Fetal Medicine (SMFM) specifically recommend using US
dating to determine GA if LMP is unknown or inconsistent with US dates.

Ultrasound parameters used to determine gestation age differ based on the trimester, and
include crown-rump length (CRL), biparietal diameter (BPD), corrected biparietal diameter (BPDC),
and femur length. The MSD is used in the early part of the first trimester, up to 6 weeks. The CRL is
used in the later part of the first trimester, up 12 weeks. The BPD, cBPD, and femur length are all
used for gestational age dating during the second and third trimesters. The BPD measures the
diameter of a transverse section of the fetal skull at the level of the parietal eminences. The BPDC is
calculated as,

BPDC = ,/(BPD = FOD)/1.265

The occipitofrontal diameter, measured as the length from the nose to the occipital bone, is also
an important biometric parameter for gestational age dating.

Compared to ultrasound, fetal MRI offers several advantages for GA prediction. MRI provides
better image resolution and tissue contrast, enabling more accurate fetal anatomy and development
measurements. Additionally, MRI can provide more comprehensive information about fetal brain
development, which is crucial for detecting abnormalities and planning interventions. Fetal MRI is
also less dependent on the operator's skill, which can lead to greater consistency and accuracy in GA
prediction. These advantages make fetal MRI a promising GA prediction and prenatal care tool.
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While ultrasound is the primary modality for determining gestational age due to its widespread
availability and accuracy, MRI can provide additional information in certain clinical situations. Here
are some roles of MRI in determining gestational age:

1. Evaluation of Fetal Anomalies: MRI is particularly useful in assessing fetal anomalies and
structural abnormalities that may impact GA determination. It can provide detailed images of
the fetus and surrounding structures, allowing for a comprehensive evaluation of fetal
development and identification of any abnormalities.

2. Confirmation of Ultrasound Findings: In cases where ultrasound findings are inconclusive or
unclear, MRI can serve as a complementary imaging modality to confirm or further evaluate the
findings. It can provide additional anatomical information and help clarify any GA uncertainties.

3. Assessment of Fetal Brain Development: MRI offers excellent soft tissue contrast and detailed
visualization of the fetal brain. It can be valuable in evaluating brain development and detecting
abnormalities impacting GA determination.

4.  Evaluation of Placental Function: MRI can provide information about the placental function and
blood flow, which can be important in assessing gestational age and overall fetal well-being.

5. Assessment of Fetal Growth: While ultrasound is the primary method for assessing fetal growth,
MRI can be used in cases where ultrasound measurements are limited or difficult to obtain
accurately. MRI can provide volumetric measurements and estimations of fetal weight, which
can contribute to assessing gestational age and fetal growth.

Al has been utilized in processing anatomic fetal brain MRI to automatically predict landmarks
and perform segmentation. Various Al models, including Convolutional Neural Network and U-Net,
have been employed and achieved accuracy levels of 95% and higher. AI has shown potential in
aiding the preprocessing (7) and post-processing (8)of fetal images, as well as in image reconstruction.
Additionally, Al can be applied to tasks such as gestational age prediction with an accuracy of one
week (9), fetal brain extraction (10, 11), fetal brain segmentation (12), and placenta detection.
Furthermore, certain linear measurements of the fetal brain, such as Cerebral and Bone Biparietal
Diameter, have been proposed as potential applications of Al in this field.

Deep learning techniques have shown great potential in accurately predicting GA in fetuses
using magnetic resonance imaging (MRI). Artificial neural networks (ANNs) and convolutional
neural networks (CNNS5s) are two types of deep learning computing paradigms that have been utilized
for medical image recognition tasks (13). CNNs have demonstrated high accuracy in predicting the
chronological age of adults using brain MRI scans (14). By applying these techniques to fetal MRI
scans, researchers can accurately determine the gestational age of fetuses, which is essential for
appropriate obstetrical management decisions and optimal maternal and fetal outcomes.

The application of artificial intelligence techniques, especially segmentation techniques, to
extract fetal brain structures has revolutionized the field of prenatal imaging analysis. DynUNet
(Dynamic U-Net) is a deep-learning network architecture for image segmentation tasks. It has great
potential in various image segmentation tasks and has been widely used in computer vision. Based
on this framework, we automatically combine OpenCV (Open Source Computer Vision) edge
detection, convex hull extraction, minimum circumscribed matrix, and other algorithms to obtain key
data such as BPD, FOD, and HC for GA prediction.

This study aims to apply deep learning techniques to fetal MRI subjects to determine GA
accurately. For this purpose, we used three trusted variables: BPD, FOD, and HC. We measured them
manually (by a radiologist) as well as by using an Al tool. Finally, we compared the accuracy of GA
prediction in both variables, in GA-BPD, GA-FOD, GA-HC, and average GA.

2. Method:

2.3. Dataset and measurement

The measurements of Biparietal Diameter (BPD), Fronto-occipital Diameter (FOD), and Head
Circumference (HC) were obtained from 52 fetal MRI studies included in this study. Manual
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measurements were performed by an expert radiologist using PACS imaging software. BPD was
measured as the maximum distance between the inner edges of the parietal bones, while FOD was
measured as the maximum distance between the inner edges of the frontal and occipital bones. For
HC, the measurement was calculated using a specific formula.

HC = 3.14 x (FOD + BPD) /2

Al model for measurement:

1 Fetal Brain Extraction: For automatic measurements using Al models, fetal brains were first
extracted by the Dynamic UNet tool, a deep learning pipeline based on the nnU-Net adaptive
framework for U-Net-based medical image segmentation. We used a Pytorch-based MONAIfbs
(MONAI Fetal Brain Segmentation) toolkit for automatic fetal brain segmentation on HASTE-
like MR images.

2 Defining the length and width of Brain: After getting the Mask, we can use OpenCV to measure
the perimeter of the Mask (HC) and the smallest rectangle that wraps the Mask, where the length
is FOD and the width is BPD. (Figl-a)

3 Choosing the median of all Axial series: Usually, the same patient will have several sets of
sequences such as Axial, Sagittal, and Coronal. Fig-b and Fig-c are the 15_AX_BrainT2_HASTE
series and 32_AX_BrainT2_HASTE series of the same patient (exam_000001), AI chooses the
median of all axial series as the final automatic measurement result.

(It is worth mentioning that the BPD and FOD measured by the clinic come from other Coronal
and Sagittal sequences, respectively, but the final results show a high degree of correlation.)

Figure 1 illustrates the automatic measurement process of Biparietal Diameter (BPD), Fronto-
occipital Diameter (FOD), and Head Circumference (HC) on T2 fetal MRI. The yellow box represents

BPD and FOD, while the red circle indicates HC measurement.

0 100 200 300 400 500 100 200 300 400 500

exam_000001 49 AX BrainT2_HA exam_ 060001 15 AX BrainT2_HA exam_ 000001 32 AX BrainT2_ HA
STE FOD=59.8 BPD=50.0 STE FOD=58.3 BPD=51.6 STE FOD=55.2 BPD=50.3
HC=176.8 HC=174.8 HC=167.9

Figure 1. Automatic Measurement of BPD, FOD, and HC on T2 Fetal MRI.
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(a) Al Processed Mask: The Al model directly processes the mask to obtain measurement data,
as shown by the yellow box representing the Biparietal Diameter (BPD) and the length indicating the
Fronto-occipital Diameter (FOD). The red circle depicts the measurement of Head Circumference
(HO).

(b) Overlay on Original MRI: The mask from (a) is superimposed onto the original MRI image;
visually representing the measurements

(c) Measurements on Other Series: Further showcasing the versatility of the Al model,
measurements on other series of the same patient demonstrate its consistent performance across
different image series.

2.4. Prediction of Fetal Age

To predict the age of the fetus, we used the measurements of BPD, FOD, and HC obtained both
manually and automatically (by the Al model). We then compared the predicted age by the Al model
versus the predicted age by the manual measurements, in different criteria: BPD FOD, HC, and
corrected BPD.

To establish a reliable basis for comparison, the predicted age was determined by applying
standard fetal growth charts based on Biparietal Diameter (BPD) and Fronto-occipital Diameter (FOD)
measurements from established clinical references commonly used in prenatal care:

1. MRI of the Fetal Brain Normal Development and Cerebral Pathologies, 1st ed. 2004 Edition, by C. Garel
(15). (We mentioned this reference as Garel in the paper). Supplement Tables S1 and S2.

2. Also, we used another trusted reference, mainly for ultrasound (From Hadlock FP, Deter RL,
Harrist RB, et al.: Fetal biparietal diameter: A critical reevaluation of the relation to menstrual age by
means of real-time ultrasound. | Ultrasound Med 1982 (16). We mention that as Freq reference in our
paper, (Supplement Tables S3 and S4 is derived from the reference table in Hadlock et al. book)

3. We also used another reference for ultrasound measurement: Snijders R], Nicolaides KH. Fetal
biometry at 14-40 weeks gestation. Ultrasound Obstet Gynecol. 1994 (17)(We mentioned that as Bio
reference in our paper.) Supplement Table S5, Supplement Table S5, and Supplement Table
S7.

2.5. Statistical Analysis:

Statistical analysis was conducted using IBM SPSS Statistics software. Paired t-tests were
employed to analyze the differences between the predicted age by the Al model and the manual
measurements. A significance level of p < 0.05 was used to determine statistical significance.
Additionally, Pearson's correlation coefficient was calculated to assess the correlation between the
predicted age by the Al model and the manual measurements.

2.6. Ethical Considerations:

This study received approval from our institutional IRB, and a waiver of informed consent was
granted, given the study's retrospective nature. All patient data were anonymized and handled with
utmost confidentiality throughout the entire duration of the study.
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3. Result:

The provided data includes comparisons between GA measurements obtained from different
methods (manual and Al) and different biometric parameters (BPD, FOD, BPDC, HC). All the outputs
of our measurement are in Table 8:

Table 8. Name of Outputs of our Measurements.

FOD_manual Manual measurement of FOD by the radiologist
FOD_GA_manual GA predicted according to FOD by the radiologist
BPD_manual Manual measurement of BPD by the radiologist
BPD_GA_manual GA predicted according to BPD by the radiologist
FOD_AI Automatic measurement of FOD by Al
FOD_err Difference between FOD measurement (Al versus
Manual)
FOD_GA_AI Automatic GA predicted according to FOD by Al
FOD_GA_err Difference between GA predicted according to FOD
(Al versus Manual)
BPD_AI Automatic measurement of BPD by Al
BPD_err Difference between BPD measurement (Al versus
Manual)
BPD_GA_AI Automatic GA predicted according to BPD by Al
BPD_GA _err Difference between GA predicted according to BPD
(Al versus Manual)

We compared the manual measurements performed by a radiologist with the measurements
obtained through an Al model; we will present the result in three main parts:
e  Part 1: Result with Biometric Measurement (BPD, FOD, HC)
e  Part 2: Compare between references.
e  Part 3: Compare measurements by manual versus AL

Part 1: Result with Biometric Measurement (BPD, FOD, HC)

1- BPD (Biparietal Diameter):

a. when BPD was used as an index for GA predictions, the differences between GA predictions
in manual and Al measurements were as follows,:
- Garel references: 0.66 weeks
- Freq reference: 0.67 weeks
- Bio References: 0.58 weeks
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a. When comparing BPD measurements with GA in the PACS (Picture Archiving and
Communication System), the differences were as follows:

- Garel's reference:
GA in PACS vs. manual BPD measurements: 1.92 weeks
GA in PACS vs. AI BPD measurements: 2.17 weeks

- Freq reference:
GA in PACS vs. manual BPD measurements: 1.90 weeks
GA in PACS vs. AI BPD measurements: 2.17 weeks

- Bio reference:
GA in PACS vs. manual BPD measurements: 1.41 weeks
GA in PACS vs: AI BPD measurements: 1.24 weeks

2- BPD-corrected:
In the Freq reference, a corrected BPD measurement was also suggested.
Difference between GA predictions manual and Al measurements was: 0.47 weeks.

a. When comparing the corrected BPD measurements with GA in the PACS, the differences were as
follows:

GA in PACS vs. manual BPD-corrected measurements: 1.30 weeks
GA in PACS vs Al BPD-corrected measurements: 1.24 weeks

3. FOD (Fronto-occipital Diameter):

e  When FOD was used as an index for GA predictions, the differences between GA-predicted
manual and Al measurements were as follows:
- Garel references: 0.59 weeks
- Bio References: 0.46 weeks

e When comparing FOD measurements with GA in the PACS (Picture Archiving and
Communication System), the differences were as follows:

- Garel's reference:
- GA in PACS vs. manual FOD measurements: 1.89 weeks
- GA in PACS vs. AI FOD measurements: 1.77 weeks

Bio reference:
- GA in PACS vs. manual FOD measurements: 2.26 weeks
- GA in PACS vs. AI FOD measurements: 2.26 weeks

(FOD measurements were not available in the Freq reference.)
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4. HC (Head Circumference):

- When HC was used as an index for GA predictions, the differences between GA prediction
in manual and Al measurements were as follows:
- Freq reference: 0.75 weeks
- Bio References: 0.77 weeks

- When comparing HC measurements with GA in the PACS (Picture Archiving and
Communication System), the differences were as follows:
- Freq reference:
- GA in PACS vs. manual HC measurements: 1.40 weeks
- GA in PACS vs. Al HC measurements: 1.05 weeks

- Bio reference:
- GA in PACS vs. manual HC measurements: 1.74 weeks
- GA in PACS vs. AI HC measurements: 1.26 weeks

(HC measurements were not available in the Garel references.)

Part 2 of Results: Comparison of Predictions Among References

In this section, we compared the measurements obtained from the Al model and the manual
method for three variables: Biparietal Diameter (BPD), Fronto-occipital Diameter (FOD), and Head
Circumference (HC). The objective was to determine which reference yielded stronger correlations
between the measurements.

2.1. References Compare of BPD

The following figure and tables present the correlation of the gestational age (GA) predictions
based on Biparietal Diameter (BPD) measurements in three different references, along with the
correlation with the Picture Archiving and Communication System (PACS).

4 GAofPACS
40 1 —— GA by BPD manual - garel

- GA by BPD manual - freq /
—— GA by BPD manual - bio /s

354

301

GA (weeks)

254

204

15

# GAofPACS S
—— GA by BPD Al - garel P
401 —— GA by BPD Al - freq /
—— GA by BPD Al - bio

15 4

T T T T T T
40 50 60 70 80 20
BPD by manually

T T T T T
40 50 60 70 80 20 100

BPD by Al

Figure 2. Correlation of BPD in three references.

Table 9. Difference of GA predication according to BPD measurement.

GA_PACS vs GA_BPD_garel_manual: 1.92 weeks
GA_PACS vs GA_BPD_freq_manual: 1.90 weeks
GA_PACS vs GA_BPD_bio_manual: 1.41 weeks

GA_PACS vs GA_BPD_garel_Al: 2.17 weeks
GA_PACS vs GA_BPD_freq_AI: 2.17 weeks
GA_PACS vs GA_BPD_bio_AI: 1.24 weeks
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Table 10. Pearson correlation coefficient Score of correlation with measurements.

GA_P GA_BPD GA_BPD GA_BPD GA_BPD GA_BPD GA_BPD
ACS _garel_ _garel_ _freq_ _freq_ _bio_ _bio_
manually Al manually Al manually Al
GA_PACS 1.0000 0.972165 0.970168 0.972574 0.970744 0.976040 0.973907
00
GA_BPD 1.000000 0.997013 0.999944 0.997077 0.999306 0.996566
_garel_
manually
GA_BPD 1.000000 0.996924 0.999954 0.996011 0.999359
_garel_
Al
GA_BPD 1.000000 0.997013 0.999382 0.996568
_freq_
manually
GA_BPD 1.000000 0.996212 0.999481
_freq_
Al
GA_BPD 1.000000 0.996819
_bio_
Al
GA_BPD 1.000000
_bio_
Al

2.2. References Compare FOD

The figures and tables presented below illustrate the correlation of GA predictions based on
Biparietal Diameter measurements using three different references and the correlation with the
Picture Archiving and Communication System.

4 GAof PACS
—— GA by FOD manual - garel 40 4
- GA by FOD manual - bio

4 GAofPACS
—— GA by FOD Al - garel
- GA by FOD Al - bio

40

35 35

GA (weeks)
w
8
L
GA (weeks)
W
o
!

N
o
L
)
V)
L

20 20

15 = T T T T T T T 154 T T y T T
50 60 70 80 20 100 110 50 60 70 80 20
FOD by manually FOD by Al

T T
100 110

Figure 3. Correlation of FOD in three references.

Table 11. Difference of GA predication according to FOD measurement.

GA_PACS vs GA_FOD_garel_manual: 1.89 weeks
GA_PACS vs GA_FOD_bio_manual: 2.26 weeks

GA_PACS vs GA_FOD_garel_AI: 1.77 weeks
GA_PACS vs GA_FOD_bio_AI: 2.26 weeks

Table 12. Pearson correlation coefficient Score of correlation with measurements.

GA_PACS GA_FOD GA_FOD GA_FOD GA_FOD
_garel _ _garel_ _bio_ _bio_
manually Al manually Al
GA_PACS 1.000000 0.973610 0.970596 0.977314 0.975004
GA_FOD 1.000000 0.989438 0.998531 0.989284
_garel_
manually
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GA_FOD 1.000000 0.988759 0.998707
_garel_
Al

GA_FOD 1.000000 0.991186
_bio_

manually

GA_FOD 1.000000

_bio_
Al

2.3. References Compare of HC and BPDC

The below figure and tables show correlation of the GA-predicated according to the HC and
BPDC in three references, as well as with PACS.

40

4 GAof PACS 401 @ GAof PACS
—— GA by BPDC manual - freq —— GA by BPDC Al - freq
—— GA by HC manual - freq /‘ —— GA by HC Al - freq ,,"
351 — GA by HC manual - bio AP 7 35 { — GA by HC Al - bio
),

w
=]

|
GA (weeks)
w

(=]

L

GA (weeks)
N
5]

N
w
L

20 20

15 T T T T T T T T 15— T T T T T r T
125 150 175 200 225 250 275 300 325 150 175 200 225 250 275 300 325
HC by manually HC by Al

Figure 4. Correlation of HC and BPDC in three references.

Table 13. Difference of GA predication according to HC and BPDC measurement.

GA_PACS vs GA_BPDC_freq_manual: 1.30 weeks GA_PACS vs GA_BPDC_freq_AI: 1.24 weeks
GA_PACS vs GA_HC_freq_manual: 1.40 weeks GA_PACS vs GA_HC_freq_AI: 1.05 weeks
GA_PACS vs GA_HC_bio_manual: 1.74 weeks GA_PACS vs GA_HC_bio_AI: 1.26 weeks

Table 14. Pearson correlation coefficient score of correlation with measurements.

GA_PAC | GA_BPDC | GA_BPDC GA_HC GA_HC GA_HC GA_HC
S _freq_ _freq_ _freq_ _freq_ _bio_ _bio_
manually Al manually Al manually Al
GA_PACS 1.000000 0.980418 0.978139 0.981462 0.979677 0.981587 0.980043
GA_BPDC 1.000000 0.996551 0.999851 0.996652 0.999732 0.996508
freq_
manually
GA_BPDC 1.000000 0.996446 0.999011 0.996315 0.998772
Sfreq_
Al
GA_HC 1.000000 0.997054 0.999946 0.996994
_freq_
manually
GA_HC 1.000000 0.997040 0.999942
_freq_
Al
GA_HC 1.000000 0.997043
_bio_
Al
GA_HC 1.000000
_bio_
Al
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Part 3 of results: Compare measurements by manual versus Al

In this part, we compared the manual measurement of indexes (BPD- FOD-HC), between
manual (radiologist) versus Al measurement.

We utilized statistical measures, including Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE), to assess the accuracy of our predictions. Lower scores in these measures indicate
higher prediction accuracy. Additionally, we employed the Pearson correlation coefficient (r) to
evaluate the linear correlation between the Al and manual measurements. The close-to-1 values of
the correlation coefficient signify a strong positive correlation, indicating that the Al predictions align
well with the manual measurements.

BPD
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40

T T T T T T
40 50 60 70 80 90
manually measured BPD {(mm)

Figure 5. correlation of Al versus manually measured BPD: MAE: 1.6442L RMSE: 1.9790; Pearson
correlation coefficient (r): 0.9963
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Figure 6. correlation of Al versus manually measured FOD:. MAE: 1.5481; RMSE: 2.2378; Pearson
correlation coefficient (r): 0.9932
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Figure 7. correlation of Al versus manually measured BPDC:. MAE: 1.1759; RMSE: 1.4460; Pearson
correlation coefficient (r): 0.9970
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Figure 8. correlation of Al versus manually measured HC:.; MAE: 7.2755; RMSE: 8.1365; Pearson
correlation coefficient (r): 0.9973

The MAE (mean absolute error) is 7.2755 and represents the mean absolute difference between
the actual (HC_sorted_m) and predicted (HC_a) values. It shows that, on average, the predicted value
differs from the actual value by 7.2755 mm.

RMSE (Root Mean Squared Error) is 8.1365, which means the square root of the average squared
difference between the actual and predicted values. It measures the typical difference between actual
and predicted values in the same units as the data (in this case millimeters).

The Pearson correlation coefficient (r) is 0.9973, indicating a strong positive linear relationship
between HC_sorted_m and HC_a. This means that when the value of HC_sorted_m increases, HC_a
also tends to increase, and vice versa. The closer the r value is to 1, the stronger the correlation
between the two variables. In this case, a strong correlation indicates that the predicted value (HC_a)
is closer to the actual value (HC_sorted_m).

4. Discussion:

In this study, we aimed to evaluate the performance of an Al model in predicting the gestational
age (GA) of fetuses using three variables measured in fetal brain MRI: Biparietal Diameter (BPD),
Fronto-occipital Diameter (FOD), and Head Circumference (HC). The study used a dataset of 52
normal fetal MRI cases from Rush University, which included T2 Haste sequences. BPD, FOD, and
HC measurements were obtained manually by a radiologist and by an Al model using a Dynamic
UNet model to extract the fetal brain and then measure BPD and FOD automatically.

The differences between manual and AI GA measurements vary depending on the specific
biometric parameter used. However, the different measurements have a high correlation, indicating
a consistent relationship between the methods. The analysis also suggests that Al-based
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measurements of HC show a stronger correlation with the actual values compared to BPD, FOD, and
BPDC. We provided discussion for results in three sections:

Discussion for Part 1 of Result with Biometric Measurement (BPD, FOD, HC)

The analysis of the data provides insights into the accuracy of predicting gestational age (GA)
using different biometric measurements, namely Biparietal Diameter (BPD), Fronto-occipital
Diameter (FOD), and Head Circumference (HC). The key findings are discussed below:

BPD:

The BPD is one of the most measured parameters in the fetus. Campbell was the first investigator
to link fetal BPD to gestational age (18); however, since this original report, numerous publications
on this subject have appeared in the literature (19-21).

The BPD may be rapidly and reproducibly measured by ultrasound examination from 12 weeks'
gestation until the end of pregnancy. The BPD is imaged in the transaxially plane of the fetal head at
a level depicting thalamus in the midline, equidistant from the temporoparietal bones and usually
the cavum septum pellucidum anteriorly(22). Although several methods have been used to measure
BPD, the most accepted method is measurement from leading edge to leading edge (outer-to-inner)

According to the similar studies: The accuracy of estimating gestational age using BPD depends
on the stage of pregnancy (23). Between 12 and 26 weeks of gestation, the BPD measurement can
provide an estimation accurate to within #10 to 11 days. As the pregnancy progresses beyond 26
weeks, the accuracy of BPD measurement decreases, and it can have an error of up to +3 weeks near
term (24).

Several factors can affect the accuracy of BPD measurements. Biological factors such as
differences in maternal age, parity (number of previous pregnancies), pregnancy weight, geographic
location, and specific population characteristics can contribute to variations in BPD measurements.
Technical factors like measurement techniques, interobserver error, and the use of single or multiple
measurements can also influence the accuracy of BPD in estimating gestational age (20, 25).

Although most dating curves show a general relationship between BPD and gestational age,
there can be significant differences in estimating gestational age based on a particular BPD
measurement. Additionally, the accuracy of BPD measurements is highest when the shape of the fetal
head is appropriately ovoid. If the head shape is unusually rounded or elongated, BPD measurements
may overestimate or underestimate gestational age, respectively.

- BPD results in our study: the differences between manual and Al measurements of BPD were
relatively small across the different references, indicating good agreement. According to the
Garel references, the difference in GA predictions was 0.66 weeks, demonstrating a close
alignment between the two methods. Similar differences were observed when considering the
Freq and Bio references. However, larger differences were observed when comparing BPD
measurements with GA in the PACS, ranging from 1.24 to 2.17 weeks. These differences varied
depending on the specific reference used, emphasizing the influence of reference selection on
the accuracy of GA predictions.

FOD:

To assess the appropriateness of head shape, the BPD can be compared with the FOD (26), and
the ratio of these diameters is called the cephalic index (CI). The normal range for CI is between 0.70
and 0.86 (+2 standard deviations). In cases where the fetus has an abnormal cephalic index (which is
rare, noted in less than 2% of fetuses before 26 weeks' gestation), gestational age estimates may be
more accurately determined using other fetal parameters such as head circumference.

Similar to the BPD measurements, the differences between manual and AI measurements of
FOD were also relatively small. According to the Garel references, the difference in GA predictions
was 0.59 weeks, indicating a strong agreement between the two measurement approaches. The
difference was slightly smaller when considering the Bio reference. However, larger differences were
observed when comparing FOD measurements with GA in the PACS, ranging from 1.77 to 2.26 weeks.
As with BPD, these differences varied based on the specific reference used.
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HC:

Head circumference (HC) measurement can be utilized to estimate gestational age similarly to
the biparietal diameter (BPD) measurement. While tracing the outer perimeter of the head using a
trackball on ultrasound equipment or a digitizer is the most reliable method for measuring HC, there
is also a formula that involves using the BPD and fronto-occipital diameters to calculate HC, with a
maximum error of 6% (27).

The accuracy of estimating gestational age through HC measurement is comparable to that of
BPD measurement (28). However, in cases where the fetus has an abnormal head shape, such as
brachycephaly or dolichocephaly, HC may be a more precise indicator of fetal age compared to BPD
(27).

- HCin our study: The differences between manual and Al measurements of HC were comparable
to those observed for BPD and FOD. According to the Freq reference, the difference in GA
predictions was 0.75 weeks, indicating a reasonably close alignment between the two
measurement methods. The difference was slightly larger when considering the Bio reference.
When comparing HC measurements with GA in the PACS, differences ranging from 1.05 to 1.74
weeks were observed. As with BPD and FOD, these differences varied based on the specific
reference used.

The findings suggest that the AI model demonstrates good agreement with manual
measurements across all three biometric measurements (BPD, FOD, HC). The differences observed
in GA predictions between the manual and Al measurements highlight the importance of reference
selection when interpreting the accuracy of the predictions. These results emphasize the need for
further validation and testing of the Al model in diverse clinical scenarios to ensure its reliable
performance for estimating gestational age using biometric measurements derived from fetal brain
MRI.

The use of multiple fetal growth parameters, including BPD, HC, AC, and FL measurements,
can improve the accuracy of gestational age assessment (24) . To enhance the precision of determining
gestational age, Hadlock and colleagues employed a combination of multiple measurements (29, 30).
When multiple parameters predict the same end point, combining their mean gestational ages
increases the probability of correctly predicting that end point. This approach enhances accuracy
compared to relying on a single parameter alone. However, if the estimates from different parameters
are significantly different, averaging multiple parameters may decrease the accuracy of the best
predictor(s). It is important to avoid averaging fetal growth parameters in certain conditions, such as
fetal macrosomia, intrauterine growth retardation, and congenital anomalies, as it may not provide
accurate results.

Discussion for Part 2 of Result: Compare predictions between references:

The provided data includes correlation coefficients between different references and
measurements for predicting gestational age using biometric parameters. The interpretation of the
correlation analysis is as follows:

The Pearson correlation coefficients indicate a strong positive correlation between the Al system
and manual measurements, suggesting the Al system's accuracy in predicting the indices. The
coefficients are close to 1 for all three indices, indicating a high level of agreement between the Al
and manual measurements.

However, the root mean square error (RMSE) and mean absolute error (MAE) values are higher
for HC compared to BPD and FOD, indicating a higher error rate in the predictions of HC. This
suggests that the Al's predictions for HC may be less reliable or more variable than its predictions for
BPD and FOD. Considering the clinical significance of these measurements, the higher error rates for
HC should be carefully evaluated and considered.

Nevertheless, the overall high correlation coefficients across all measurements suggest that the
Al system's predictions align well with the manual measurements. This indicates that the Al system
could be a valuable tool to assist with these measurements. However, further validation and testing
in a broader range of clinical scenarios are necessary to ensure its performance in various settings.
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Compared with the previous findings, it is evident that the MAE/RMSE errors measured by
manual HC and Al measurements are relatively larger. This discrepancy arises because manual HC
is derived from equations involving BPD and FOD. In contrast, Al directly extracts HC from the
original MRI image by accumulating each small polyline segment. The Al-based measurement of HC
aligns better with the actual fetal values and exhibits a stronger Pearson correlation coefficient
compared to BPD, FOD, and corrected BPD (BPDC). Thus, it can be considered a more recommended
HC measurement method.

Discussion for Part 3 of results: Compare Measurements by Manual versus Al:

In the provided results, we have the Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Pearson correlation coefficients (r) for different measurements obtained from manual
and Al methods. Here is the interpretation:

1. BPD:

- The MAE is 1.6442, indicating the average absolute difference between the actual BPD values
and the predicted values obtained from either manual or Al measurements.

- The RMSE is 1.9790, representing the square root of the average squared difference between the
actual and predicted BPD values. It gives an idea of the typical difference between the actual
and predicted values.

-The Pearson correlation coefficient (r) is 0.9963, indicating a strong positive linear relationship
between the manually measured BPD and the Al-predicted BPD. A value close to 1 indicates a
strong correlation.

2. FOD:

- The MAE is 1.5481, which is the average absolute difference between the actual FOD values and
the predicted values obtained from either manual or Al measurements.

- The RMSE is 2.2378, representing the square root of the average squared difference between the
actual and predicted FOD values.

- The Pearson correlation coefficient (r) is 0.9932, indicating a strong positive linear relationship
between the manually measured FOD and the Al-predicted FOD.

3. BPDC:

- The MAE is 1.1759, representing the average absolute difference between the actual BPDC
values and the predicted values obtained from either manual or AI measurements.

- The RMSE is 1.4460, indicating the square root of the average squared difference between the
actual and predicted BPDC values.

- The Pearson correlation coefficient (r) is 0.9970, indicating a strong positive linear relationship
between the manually measured BPDC and the Al predicted BPDC.

4. HC:

- The MAE is 7.2755, representing the average absolute difference between the actual HC values
and the predicted values obtained from either manual or Al measurements.

- The RMSE is 8.1365, indicating the square root of the average squared difference between the
actual and predicted HC values.

- The Pearson correlation coefficient (r) is 0.9973, indicating a strong positive linear relationship
between the manually measured HC and the Al-predicted HC
The findings indicate that Head Circumference (HC) has larger Mean Absolute Error (MAE) and

Root Mean Square Error (RMSE) values compared to other measurements such as Biparietal Diameter

(BPD), Fronto-occipital Diameter (FOD), and corrected BPD (BPDC), suggesting a higher average

difference between the actual and predicted values. Despite this, the HC measurement still

demonstrates a strong correlation (r=0.9973) with the Al-predicted values. These larger MAE and

RMSE values in HC may be attributed to normal variations, while the Al-based HC measurement

offers improved accuracy compared to manual measurements for predicting gestational age.

The study described has several advantages over similar studies:

1-  Comprehensive evaluation: The study assesses the Al model's performance in predicting
gestational age using multiple biometric measurements, providing a comprehensive analysis.
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2-  Comparison with different references: The study compares Al predictions with multiple
references and assesses their correlation with the Picture Archiving and Communication System
(PACS).

3- Statistical evaluation: The study uses statistical measures like MAE, RMSE, and Pearson
correlation coefficients to evaluate the accuracy and correlation of the Al model's predictions.

4- Inclusion of manual measurements: Manual measurements are included as a reference for
comparison, allowing assessment of the agreement between Al and human experts.

5-  Focus on Al versus manual measurements: The study compares Al and manual measurements,
evaluating their accuracy and correlation for each biometric parameter.

6- Discussion of clinical implications: The study discusses the clinical significance of the findings,
highlighting the importance of reference selection and the potential benefits of integrating Al
models in prenatal care.

Overall, this study provides a comprehensive evaluation of an AI model's performance in
predicting gestational age using fetal brain MRI measurements, offering valuable insights for
researchers and practitioners in prenatal care.

In similar study, Shi et al. (31) evaluated the ability of various biometric measurements derived
from MRI in accurately determining GA of fetuses in the second half of gestation. The study utilized
MRI scans of 637 fetuses and evaluated 9 standard fetal biometric parameters. Regression models
were constructed to predict GA based on these measurements, and a polynomial regression model
was found to be the best descriptor. The study concluded that MRI biometry measurements offer a
potential estimation model of fetal gestational age in the second half of gestation. Both studies of us
and Shi et al. contribute to the understanding of utilizing MRI-based biometric measurements for
estimating gestational age. Also, our study provides additional insights into the potential of Al
models in enhancing accuracy and efficiency in prenatal care.

Also, in another study Burgos-Artizzu et al. (32) aimed to assess the performance of an Al
method for estimating GA in second and third trimester fetuses by analyzing fetal brain morphology
on standard cranial ultrasound sections. The Al method was compared to existing formulas based on
standard fetal biometry. The study used routine fetal ultrasound scans and analyzed trans thalamic
axial plane images from 1394 patients. The Al method, either alone or in combination with fetal
biometric parameters, showed a 95% confidence interval error of 14.2 days and 11.0 days, respectively,
compared to 12.9 days for the best method using standard biometrics alone. In the third trimester,
the AI method combined with biometric parameters had a lower error of 14.3 days compared to 17
days for fetal biometrics, while in the second trimester, the errors were 6.7 and 7 days, respectively.
The Al method performed particularly well in estimating GA for small-for-gestational-age fetuses.
Compared to our study, both studies demonstrate the effectiveness of Al in estimating GA using
different imaging modalities. While the Artizzu et al. study focuses on ultrasound-based analysis of
fetal brain morphology, our project utilizes fetal brain MRI and biometric measurements. Both
approaches show promise in improving the accuracy of GA estimation and have the potential to
enhance prenatal care practices.

In similar study, Kojita et al. (11) evaluate the performance of a deep learning model for
predicting gestational age using fetal brain MRI acquired after the first trimester. The model was
compared to the traditional method of estimating gestational age using BPD measurement. A total of
184 T2-weighted MRI scans from fetuses were included in the study. The deep learning model was
trained on a subset of cases and validated on another subset, while the remaining cases were used as
test data. The model's prediction of gestational age showed a substantial correlation with the
reference standard (oc = 0.964), outperforming the BPD prediction (oc = 0.920). Both the model and
BPD predictions had larger differences from the reference standard as gestational age increased.
However, the upper limit of the model's prediction was significantly shorter than that of BPD. The
study, similar to our studym concludes that deep learning can accurately predict gestational age from
fetal brain MRI acquired after the first trimester, providing potential benefits for prenatal care in cases
where early ultrasound measurements are lacking.
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5. Conclusion:

In this study, we aimed to evaluate the performance of an Al model in predicting the gestational
age (GA) of fetuses using biometric measurements obtained from fetal brain MRI, specifically
Biparietal Diameter (BPD), Fronto-occipital Diameter (FOD), and Head Circumference (HC). In
addition to manual measurements, we developed an Al model based on the Dynamic UNet
architecture to extract fetal brain and calculate these variables automatically.

Our dataset included 52 normal fetal MRI cases with T2 Haste sequences from Rush University.
This study's results demonstrate the Al model's high accuracy and potential in predicting GA. The
Al-based BPD, FOD, and HC measurements showed strong correlations with manual measurements.
Notably, the Al-based HC measurement exhibited a stronger correlation with actual values
compared to BPD, FOD, and corrected BPD (BPDC), suggesting its reliability as a recommended
method for accurately predicting gestational age.

Comparisons between manual and Al measurements revealed small differences in BPD and
FOD across different references. However, when comparing measurements with GA in the Picture
Archiving and Communication System (PACS), differences varied based on the reference used,
highlighting the importance of reference selection.

BPD measurements are commonly used to estimate gestational age during pregnancy. However,
their accuracy depends on factors such as gestational age, biological and technical variations, and the
shape of the fetal head. Other fetal parameters may be used in cases where the head shape is abnormal
to improve the accuracy of gestational age estimation.

Integrating Al models in prenatal care offers several advantages, including improved accuracy,
automation, and time efficiency. The Al-based measurements demonstrated consistent correlations
with manual measurements, supporting their reliability in assessing fetal development and
monitoring pregnancies. The developed AI model provides an accurate and efficient prediction of
gestational age, which can aid in clinical management, evaluation of fetal growth, and timely
interventions. By reducing human error and variability associated with manual measurements, the
Al model has the potential to enhance the precision and effectiveness of prenatal care.

In summary, this study underscores the potential of Al models in accurately predicting
gestational age using biometric measurements derived from fetal brain MRI. The strong correlations
between manual and AI measurements validate the accuracy of the Al model, particularly in HC
predictions. The findings support the integration of Al as a valuable tool in prenatal care,
empowering clinicians with automated and reliable GA prediction and contributing to improved
decision-making and patient care.
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