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Abstract: In this work we perform a comparative study of the Kantowski-Sachs (KS) and Bianchi-I

anisotropic universes with Modified Chaplygin gas (MCG) as matter source. We obtain the volume

and scale factors as solutions to the Einstein Field Equations (EFEs) for the anisotropic universes, and

check whether the initial anisotropy is washed out or not for different values of the MCG parameters

present in the solution by obtaining the anisotropy parameters for each solution. The deceleration

parameter is also obtained for each solution, the significance of which is discussed in the concluding

section. Interestingly there are a number of notable results that appear from our study which help us

to compare and contrast the two different anisotropic models along with proper understanding of

the role of MCG as matter source in these models.

Keywords: anisotropic universe; Modified Chaplygin gas; cosmological constant; deceleration

parameter

1. Introduction

The conditions of homogeneity and isotropy are observed to be satisfied for the present universe

on a large scale. The standard cosmological model expects that the observed large scale structure has

grown under gravity in the sea of dark matter and with an initial Gaussian random density fluctuation

of almost scale-invariant power spectrum. Over a period of time, the standard model and the cosmic

isotropy have been tested through the Cosmic Microwave Background (CMB) radiation and the Large

Scale Structure (LSS) data.

However, in the very early universe when the energy densities were considerably higher, it is

generally believed by cosmologists that the universe was highly anisotropic. Also, certain anomalies

such as the lack of correlations on large angular scales, a statistically significant alignment and

planarity of the CMB quadrupole and octopole modes and the observed large scale alignment in

the quasar polarization vectors imply a possible violation of the statistical isotropy and the break

down of the cosmological principle (see [1–5]). Nevertheless, there is no conclusive evidence for the

cosmological isotropic hypothesis [4]. Also, there is no consensus on the physical nature and origin of

the scale-invariance of the primordial perturbations [6]. However, it is believed that, with the growth

of cosmic time, the anisotropy may be washed out to leave the universe isotropic to a greater extent.

This imply there must have been some mechanism of washing out this initial anisotropy with time [7].

Also, it may be inferred that the initial conditions of the universe do not influence it’s present state.

A statically isotropic universe is usually modelled through an FRW metric. In order to account for

the possible anisotropy in the space time, we will be concerned with two such anisotropic frameworks,
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namely the KS [8] and Bianchi-I. There are a number of Bianchi models in cosmology ,in accordance

with the corresponding classification of 3D spaces by Bianchi [9]. Bianchi’s classification was first

applied to GR by Ellis and others [10–12]. The cosmology of Bianchi-I models have been studied

in [5,13–17] whereas KS cosmology has been investigated in [18–21].

In the present work, along with the anisotropic spatial expansion, we consider the MCG as the

source of matter field. The MCG is a generalized and modified form of the Chaplygin gas (CG) which

was first proposed as an alternative to quintessence for explaining the accelerated expansion of the

universe [22] and later on carried out work by several scientists [23–25]. The CG is a perfect fluid

having Equation of State (EOS)

p = − A

ρ
, (1)

where A is a positive constant and p and ρ denote the usual pressure and energy density respectively.

The fact that CG is connected to the d-branes appearing in String theory makes it even more

interesting. The origin of CG in the universe has been addressed in [26]. The EOS for CG can be

generalized to

p = − A

ρα
, (2)

where α can have any value between 0 and 1.

The above EOS describes an exotic fluid known as Generalized Chaplygin Gas (GCG) which

behaves like pressureless dust in the early universe and like a Cosmological constant Λ in the late

universe [23]. Even this EOS was further modified to

p = Bρ − A

ρα
, (3)

where both A and B are positive constants. This is known as the Modified Chaplygin gas [27,28].

It is to note that in the past two decades, the MCG has been used extensively in cosmology. Not

only can it be used to describe the accelerated expansion of the universe in recent times [29–31], but also

have been used to construct unified models of dark matter and dark energy [32–35] and also to explain

early universe phenomena [36,37]. MCG has also been found to be consistent with observational tests

like gravitational lensing test [38,39] and gamma ray bursts[40]. The observational constraints on MCG

have also been studied in some details [41,42].

We organize the paper as follows. In the next section we consider the solutions for KS universe

sourced by MCG followed by the solutions for Bianchi-I universe with MCG in Section 3. We conclude

with discussion on the results obtained.

2. KS Model

The line element for the KS universe is given as [8]

ds2 = −dt2 + a1(t)
2dr2 + a2(t)

2(dθ2 + sin2θdφ2). (4)

The EFE for the above line element with MCG as source can be written as (following the

geometrized unit we take 8πG = c = 1 throughout the paper)

ȧ2
2

a2
2

+ 2
ȧ1 ȧ2

a1a2
+

1

a2
2

= ρ, (5)

2
ä2

a2
+

ȧ2
2

a2
2

+
1

a2
2

=
A

ρα
− Bρ, (6)

ä1

a1
+

ä2

a2
+

ȧ1 ȧ2

a1a2
=

A

ρα
− Bρ. (7)
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Equation (7) can be rewritten as

2
ä1

a1
+ 2

ȧ1 ȧ2

a1a2
− ȧ2

2

a2
2

− 1

a2
2

=
A

ρα
− Bρ. (8)

From Eqs. (5) and (8), we get

d(VH1)

dt
=

(1 − B)

2
ρV +

AV

2ρα
, (9)

where V is the volume given by V = a1a2
2 and H1 is one of the directional Hubble parameters given as

H1 = ȧ1
a1

.

The conservation equation has the usual form

ρ̇ + 3H(p + ρ) = 0, (10)

where the Hubble parameter H is given by H = 1
3 (H1 + 2H2), H2 being the second directional

derivative H2 = ȧ2
a2

.

Equation (10) gives the solution for the energy density as

ρ = ρ0

[

As +
1 − As

V(1+B)(1+α)

]
1

1+α

, (11)

where As =
A

1+B
1

ρ
(α+1)
0

and B 6= −1. As we are considering anisotropic space-time, so we must be in

the very early epoch when the volume is such that V ≪ 1. Since, B and α both are positive, the factor

in the denomenator of the second term of RHS of Eq. (11) is much less than 1 making the second term

dominant at early times. So, we get approximate ρ from Eq. (11) of the form

ρ ≃ C

V1+B
, (12)

where C = ρ0(1 − As)
1

1+α .

Using this form of ρ, Eq. (9) can be written as

d(VH1)

dt
=

(1 − B)

2
CV−B +

A

2Cα
Vα(1+B)+1. (13)

Similarly, from Eqs. (5), (6) and (12), we get

d(VH2)

dt
=

(1 − B)

2
CV−B +

A

2Cα
Vα(1+B)+1 − a1. (14)

In the above Eqs. (13) and (14) are the EFE in terms of the volume.

From these equations, we obtain:

H1 = H − 2K

3V
, H2 = H +

K

3V
, (15)

where K =
∫

a1dt.

The third EFE in alternative form may be written using Eqs. (5), (6) and (7) as

3Ḣ + H2
1 + 2H2

2 =
3AV(1+B)α

ρα
0(1 − As)

α
1+α

− ρ0(3B + 1)(1 − As)
1

1+α V−(1+B). (16)
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From the EFE in terms of volume, we get

V̈ =
3

2
(1 − B)CV−B +

3

2

A

Cα
Vα(1+B)+1 − 2a1. (17)

This gives V̇ of the form

V̇ =

√

3CV1−B + 3
A

Cα

Vα(1+B)+2

α(1 + B) + 2
− 4

∫

a1dV. (18)

From the above expressions, it can be observed that the solutions for the volume and scale factors

depend on the MCG parameters α, A and B. However, the dependence on the B-parameter is found

to be the strongest, so we choose to vary it for obtaining different solutions to check the anisotropic

behaviour and accelerated expansion behaviour of the model. We will now consider three different

values of the parameter B to assess its effect on the exact solutions.

Case-1: B = 1.

We can write

V̇2 = 3C + 3
A

Cα

V2α+2

2α + 2
− 4

∫

a1dV. (19)

Using small V approximation, i.e., considering the early universe, we obtain the solution as

V = C1 +
√

3C + bt, (20)

where b is a constant and C1 is integration constant.

Using Eq. (15), we now obtain the solutions for the scale factors as

a1 = C2

[

C1 +
√

3C + bt

]
1
3− 2K

3
√

3C+b

, (21)

a2 =
1√
C2

[

C1 +
√

3C + bt

]
1
3+

K
3
√

3C+b

, (22)

where C2 is a constant.

We now consider

∆H1 = H1 − H, ∆H2 = H2 − H. (23)

The anisotropy parameter Γ is defined as

Γ =
1

3

[ (

∆H1

H

)2

+ 2

(

∆H2

H

)2 ]

. (24)

Using the above obtained scale factors, we find the anisotropy parameter to be

Γ =
2b

(3C + b)
, (25)

which is a constant.

The average scale factor am can be written as

am =
(

a1a2
2

)
1
3

. (26)
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Hence we can define the deceleration parameter q as

q = − am ¨am

˙am
2

. (27)

Alternatively, it may also be computed as

q = −1 − Ḣ

H2
. (28)

Using either of the above relations, we obtain q = 2 for the present model. This is the same

value of deceleration parameter as obtained for Petrov Type-D anisotropic cosmological solutions by

Alvarado [43] and in the case of anisotropic dark energy cosmological model under the framework of

generalised Brans-Dicke theory by Tripathy et al. [44].

Case-2: B = 0.

In this case, we get

V̇2 = 3CV + 3
A

Cα

Vα+2

α + 2
− 4

∫

a1dV. (29)

In the small V approximation, it is not possible to obtain the solutions in the analytical form,

however in the asymptotic limit

V ∝ (t − t0)
2, a1 ∝ (t − t0)

2
3 , a2 ∝ (t − t0)

2
3 , (30)

where V(t0) = 0.

In the asymptotic limit, the anisotropy parameter turns out to be zero.

Case-3: B = 1
2 .

In this case, we have

V̇2 = 3CV
1
2 + 3

A

Cα

V
3α
2 +2

3α
2 + 2

− 4
∫

a1dV. (31)

We obtain the solutions by using small V approximation as

V = β
4
3 (t − t0)

4
3 , (32)

where β = 3
4

√
3C.

The scale factors are obtained as

a1 =
β

4
3

g2
(t − t0)

4
9 , (33)

a2 = g(t − t0)
4
9 , (34)

where g is integration constant.

The anisotropy parameter has zero value whereas the deceleration parameter has value q ∼ 0.39.

3. Bianchi-I Model

The line element for the Bianchi-I representing anisotropic flat space is given by

ds2 = −dt2 + [Ri(t)dxi]2, (35)
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where i=1, 2, 3. We choose R1 = a1 and R2 = R3 = a2.

The EFE for this metric with MCG as source can be written as

ȧ2
2

a2
2

+ 2
ȧ1 ȧ2

a1a2
= ρ, (36)

ȧ2
2

a2
2

+ 2
ä2

a2
=

A

ρα
− Bρ, (37)

ä1

a1
+

ä2

a2
+

ȧ1 ȧ2

a1a2
=

A

ρα
− Bρ. (38)

After some algebraic manipulation, we get from the above equations

2
ä1

a1
+ 2

ȧ1 ȧ2

a1a2
− ȧ2

2

a2
2

=
A

ρα
− Bρ. (39)

From Eqs. (30) and (33) we get

d(VH1)

dt
=

(1 − B)

2
CV−B +

A

2Cα
Vα(1+B)+1. (40)

Again, from Eqs. (30) and (31) we obtain

d(VH2)

dt
=

(1 − B)

2
CV−B +

A

2Cα
Vα(1+B)+1. (41)

From the above obtained EFEs in terms of volume, we find

V̈ =
3

2
(1 − B)CV−B +

3

2

A

Cα
Vα(1+B)+1. (42)

This gives after integration

V̇ =

√

3CV1−B + 3
A

Cα

Vα(1+B)+2

α(1 + B) + 2
. (43)

It can be observed that, for the BI universe also, the solutions for the volume and scale factors

depend on the MCG parameters α, A and B and as such the dependence on the B-parameter is

substantial. Here also, we consider the three different values of the parameter B to assess its effect on

the exact solutions.

Case-1: B = 1.

In small V limit, the above differential equation reduces to

V̇ =
√

3C. (44)

This gives the solution

V = ae
√

3Ct, a1 =
a

b2
e
√

3Ct, a2 = be
√

3Ct, (45)

where both a and b are constants.
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Here the anisotropy parameter is evaluated to be zero. On the other hand, the deceleration

parameter has value q = −1.

Case-2: B = 0.

In small V limit, Eq. (37) reduces to

V̇2 = 3CV. (46)

The solution is of the form

V =
3C

4
(t − t0)

2. (47)

The scale factors can be found to be

a1 =
3C

4c2
(t − t0)

2
3 , a2 = c(t − t0)

2
3 , (48)

where c is constant of integration. The anisotropy and the deceleration parameters are respectively

turn out to be zero and q = 0.5.

Case-3: B = 1
2 .

In this case, we have

V̇2 = 3CV
1
2 + 3

A

Cα

V
3α
2 +2

3α
2 + 2

. (49)

We obtain the solutions by using small V approximation as

V = β
4
3 (t − t0)

4
3 , (50)

where β = 3
4

√
3C.

The scale factors are obtained as

a1 =
β

4
3

g2
(t − t0)

4
9 , (51)

a2 = g(t − t0)
4
9 , (52)

where g is integration constant.

The anisotropy parameter is found to have zero value whereas the deceleration parameter turns

out to be q ∼ 0.39.

4. Discussion and Conclusion

In this paper, we have studied two anisotropic universes with MCG as matter source. We see

that the solutions for the volume and scale factors depend on the MCG parameters α, A and B. The

dependence on the B-parameter is found to be the strongest, so we choose to vary it for obtaining

different solutions.

The solutions are identical for B = 1
2 for both the universes. However, for the rest of the two cases,

the solutions differ significantly. For both the models there is a large initial anisotropy which washes

out over a small period of time as isotropization starts quickly to produce the homogeneity and thus

an isotropic universe observed on large scales.

For B = 0 we find that the KS universe does not give an analytical solution while for Bianchi-I

universe we get an analytical solution. However, we can obtain an approximate behaviour of the

volume and scale factors in the asymptotic limit which is similar to that for the Bianchi-I universe.
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The initial anisotropy decays out with time and rate of isotropization for Bianchi-I model is almost

identical to the rate for KS model in asymptotic limit. It may, however, be noted that after elapsing of

some time this isotropy has been disappeared but again regained at later times to give the observed

isotropic universe. This may be physically interesting as the losing and regaining of isotropy at the

intermediate and later times, respectively, may correspond to the process of structure formation.

The most significant difference in behaviour between the two models is for B = 1 case. In this

case, for the KS universe we find that unlike all other cases, the anisotropy parameter is a non-zero

constant indicating that it does not vanish at any later time. The large initial anisotropy is retained

significantly to prevent isotropization. On the contrary, for the Bianchi-I model, not only do we get a

vanishing anisotropic parameter indicating isotropic universe, but also the solutions with de Sitter like

behaviour. Interestingly, although we have considered presence of no Cosmological Constant Λ in our

study, the constant C involving all the three MCG parameters behaves effectively as Λ

9 ∼ Λe f f ective.

For B = 1, in the case of the KS universe, besides remaining anisotropy, we get q = 2 which gives

a closed universe decelerating fast enough to collapse whereas for the Bianchi-l universe we get q = −1

providing an accelerating early universe in confirmity with the effective Λ behaviour. On the other

hand, for B = 0, we get a flat matter dominated Bianchi-l universe with q = +0.5, while for B = 1/2

we get both the KS and Bianchi-l solutions with q value 0.39 giving open, forever expanding universes.

It is to be noted that theoretically Mishra et al. [45] in their model have obtained the lowest values

of q at -0.495 and -0.558 whereas highest values as 0.4 and 0.2. The other theoretical reported value

of the deceleration parameter lies nearly q = −1 [46,47] to q > −1 [48]. However, the observational

constraints as set upon the parameter in the present epoch from type Ia supernova and X-ray cluster

gas mass fraction measurements is q = −0.81 ± 0.14 [49] whereas that from H(z) and SN-Ia data to be

q = −0.34 ± 0.05 [50]. Therefore, our obtained value seems acceptable one as far as the accelerating

early universe is concerned.

Thus, there are a number of very interesting results that appear from our study which help us to

compare and contrast the two different anisotropic models along with proper understanding of the

role of MCG as matter source in these models.
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