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Abstract: We describe a machine learning (ML) approach to process the signals collected from 

Covid-19 optical-based detector. Multilayer Perceptron (MLP) and Support Vector Machine (SVM) 

were used to process both raw data and feature engineering data, and high performances for 

qualitative detection of the SARS-CoV-2 virus with concentration down to 1 TCID50/ml has been 

achieved. Valid detection experiments contain 486 negative and 108 positive samples; and control 

experiments, in which biosensors without antibody functionalization were used to detect SARS-

CoV-2, contains 36 negative samples and 732 positive samples. Data distribution patterns of the 

valid and control detection dataset, based on T-distributed Stochastic Neighbor Embedding (t-SNE), 

was used to study the distinguishability between positive and negative samples, and explain the 

ML prediction performances. This work demonstrates that ML can be a generalized effective 

approach to process signals and dataset of biosensors dependent on resonant modes as biosensing 

mechanism. 

Keywords: machine learning; Support Vector Machine; Multilayer Perceptron; photonic biosensor; 

signal processing; Tamm Plasmon Polariton; Localized Surface Plasmon Resonance 

 

1. Introduction 

The global COVID pandemic has caused huge impact on world health and economy [1]. The 

fast-spreading virus SARS-CoV-2 is the main culprit, and detection of the virus in human population 

is crucial for curbing the epidemic [2]. Traditional detection approaches are mainly Nucleic Acid 

Amplification Test (NAAT) [3] and antigen detection [4] techniques. Currently, the mainstream is 

quantitative Polymerase Chain Reaction (qPCR) [5] which is a kind of NAAT that has high sensitivity 

and specificity, but requires clean environment, bulky and expensive equipment, and trained 

personnel. Therefore, qPCR is not suitable for onsite, fast turnaround detection, or population scale 

screening, which are often required in pandemic control scenarios [6]. To complement qPCR, antigen 

detection based on lateral flow [7] has also been employed in home use and self-test. However, 

antigen detection is limited in detection sensitivity and specificity, hindering its efficacy in fighting a 

pandemic [8]. There still lacks rapid, accurate and low cost detection techniques that can be deployed 

onsite for population scale epidemic screening and/or surveillance [9], especially for regions of 

limited resources [10].  

Biosensors have been proposed for detection of SARS-CoV-2 [11]. Biosensor technologies have 

the advantages of high sensitivity, good specificity, fast turnaround, ease of operation, low cost, and 

onsite deployment capability [12, 13]. We have previously proposed a photonic biosensor for fast 

onsite detection of SARS-CoV-2 with high sensitivity and specificity [14, 15]. The biosensor is based 

on nanoporous silicon material fabricated via CMOS-compatible silicon process, and nanophotonic 

working principles of Localized Surface Plasmon Resonance (LSPR) [16] and Tamm Plasmon 

Polariton (TPP) [17, 18]. The measurement of the biosensor is based on reflection spectroscopy [14].  
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We have also developed handheld and high throughput detection systems [19] that can collect 

the refection spectrum of biosensors and process the spectral data to determine the detection results 

efficiently. The high throughput detection system is suitable for populations scale screening of 

infection, and the handheld detection system is for home use or self-test. The spectral data processing 

algorithm works by recognizing the characteristic resonant valleys in the reflection spectrum of the 

biosensor and determines the detection result by judging if there is spectral red shift of the 

characteristic resonant valleys. This is the often used and so called “find peaks” technique, with its 

name originating from the MATLAB function find_peaks(). This technique can also be implemented 

on Field Programmable Gate Array (FPGA) for fast and efficient processing of signals from array of 

biosensors [20]. In addition, researchers have also proposed Interferogram Average over Wavelength 

(IAW) technique to process signals of optical biosensors that depend on spectral shift of characteristic 

resonant features, which can achieve sensitivity enhancement compared with spectral shift detection 

[21]. Detection of change in reflection intensity due to shift of spectral features in spectrum has also 

been used to detect biomolecules in real time [22]. However, both IAW and light intensity 

measurement techniques are subject to spectral amplitude fluctuations, and thus requires highly 

stable spectroscopy systems, such as stable light source and high signal-to-noise ratio spectrometer. 

In this work, we demonstrate that it is advantageous to utilize artificial intelligence technology, 

more specifically machine learning (ML) algorithm to process the spectral data of the biosensor [23]. 

Instead of depending on programming, its algorithm is learnt from big volume of data [24]. Machine 

learning has been used for computer vision [25], face recognition [26], autonomous driving [27], 

auxiliary decision-making [28], brain-machine interface [29], and games [30]. It includes supervised 

learning, unsupervised learning, and reinforcement learning [31]. Supervised learning (SL) is an 

algorithm that learns from massive, labeled data and generates prediction models that can work to 

generate labels for new dataset. SL includes Support Vector Machine (SVM) [32], Multilayer 

Perceptron (MLP) [33], Linear Regression [34], Linear Discriminant Analysis [35], K-nearest Neighbor 

[36], Decision Tree [37], and Naïve Bayes [38]. In this work, we demonstrate that SVM and MLP can 

be used for processing of the photonic biosensor signal and dataset. Compared with previously 

proposed techniques, ML technique has the advanteges of : 1) no need to find appropriate parameters 

of the algorithm, e.g. the find_peaks() function, in a try-and-error way to guarantee accurate 

recognition of spectral feature; 2) no need to discriminate between redshift or blueshift which can be 

an extra issue in algorithm design; 3) not sensitive to spectral amplitude fluctuations so that 

requirements on stable and expensive hardware are relaxed; 4) generalizable to all kinds of sensors 

with salient features in response signal which serve as the basis of discriminating between positive 

and negatibe responses. 

Data visualization approach can help us to understand the distribution of dataset and find out 

the distinguishability of the dataset. T-distributed Stochastic Neighbor Embedding (t-SNE) is a 

prevalent approach to map high-dimensional data to low-dimensional embedding [39]. In this 

contribution, we also implemented t-SNE approach on the SARS-CoV-2 detection dataset to clarify 

the distinguishability of the biosensor dataset so that a better understanding of the data processing 

and ML prediction performances can be obtained. 

2. Materials and Methods 

2.1. Biosensor Working Principal and Measurement Setup 

As shown in Figure 1(a), the biosensor is basically a porous silicon microcavity consisting of two 

Bragg reflectors and one resonant cavity [14, 40]. 
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Figure 1. Photonic biosensor : (a) Structure and its reflection spectroscopy measurement; b) Typical 

example of redshift showing resonant valleys in reflection spectra; (c) blueshift of resonant valleys in 

reflection spectra. 

One Bragg reflector is six periods of alternating low porosity (LP) and high porosity (HP) porous 

silicon (PSi) thin films of thickness equal to quarter resonant wavelength. On top of the porous silicon 

is deposited noble metal thin film. Because of the nanoporous structure of the porous silicon material, 

the conformally deposited noble metal thin film is also porous. When light is incident on the surface 

of the biosensor, some of its energy will couple into Localized Surface Plasmon Resonance (LSPR) 

supported [40] by the nanostructures of the noble metal thin film. In addition, some of its energy will 

also couple into Tamm Plasmon Polariton (TPP) supported by the interface between the top Bragg 

reflector and the noble metal thin film [41]. Therefore, LSPR and TPP are excited by the incident light 

simultaneously, coupled with each other, and form strong field confinement around the noble metal 

thin film. If specific antibodies are immobilized beforehand on the surface of the noble metal, they 

can capture SARS-CoV-2 virus specifically. Such binding events will cause addition of biomaterials 

around the noble metal thin film, and the added biomaterial will interact strongly with the LSPR and 

TPP coupled field. This is the working mechanism of the biosensor for sensitive detection of virus. 

As shown in Figure 1(a), in order to measure the signals of the biosensor, reflection spectroscopy is 

used. White light source provides incident light, which goes through the Y-shape fiber and shine 

vertically onto the biosensor surface. The light reflected from the biosensor surface is collected by the 

Y-shape fiber and goes into the spectrometer for data analysis. The Y-shape fiber consists of six 

circumferential fibers guiding incident light, and one central fiber guiding reflected light. 

Figures 1(b) and 1(c) show representative reflection spectra of the biosensor. They have 

characteristic resonant valleys in the spectral range of 600-800 nm in wavelength. If there are viruses 

binding with antibodies on the biosensor surface, the binding events will cause shift of the spectral 

features to longer wavelength, which is also called “redshift”. For example, Figure 1(b) shows such a 

case where virus binds with antibodies, redshift occurs and the detection result is determined to be 
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positive. On the other hand, if there is no virus binding with antibodies on the biosensor surface, 

there will be no shift of the spectral features, i.e., almost overlapping spectra for both before and after 

binding reaction. In the third case, there could also appear shift of the resonant features to shorter 

wavelength, which is also called “blueshift”. In such case, the detection result is determined to be 

negative. Figure 1(c) shows an example wherein there appears blueshift. In summary, the principle 

of the biosensor is based on interactions between biomaterials and photonic energy, and the detection 

result is determined based on shift of spectral features in optical spectrum collected from reflection 

spectroscopy measurement. 

2.2. Data Preprocessing 

The dataset was obtained from detection experiments of inactivated SARS-CoV-2 in clinical 

swab specimens, with virus concentration as low as 1 TCID50/ml [14]. Figure 1 shows example spectra 

of the biosensor for positive and negative detection results. For positive result, there is spectral 

redshift; and for negative result, there is no spectral shift or there is spectral blueshift. The 

experimental data is collected by reflection spectroscopy with corresponding spectra for before and 

after applying specimens on biosensor surface. Each spectral data contains 2048 data points 

representing reflection intensities, with data-to-data spacing of 0.48 nm in the wavelength range of 

200-1200 nm. We usually need to carry out preprocessing of the spectral data before data analysis, 

such as normalization and artifacts removal. Furthermore, normalization was implemented on each 

data sample for the purpose of training convenience. Spectral data of both before and after adding 

specimens are combined as a single sample, so that the size of the reformed sample is 2×2048, or 4096. 

Each detection experiment is regarded as a sample for either training or test purpose. After several 

outliers were removed to clean the dataset, there are 486 negative samples and 108 positive samples 

left in total for the classification model training and prediction test. 

2.3. Feature Engineering 

As shown in Figure 2, the input to the model could be the data of size 4096. This requires 4096 

input neuron nodes which could be a computation burden. In addition to this raw data approach, the 

input could also be features extracted from the data. We propose feature engineering methods 

comprising three different approaches – wavelet transform, Fourier transform, and spectral 

difference. As for wavelet domain, we used the wavelet transform with scales of 30 and take average 

of each scale, which generates 30 features for each spectral curve, two curves (before and after virus) 

would generate 60 wavelet-based features. In terms of Fourier domain, we have found that most 

information appears in the low frequency range (< 50Hz), so that we took average of each 5Hz in 

order from 0 to 50Hz, so that 10 features for each spectral curve and 20 features for spectra pairs 

would be obtained in Fourier domain. For spectral difference, we utilized the difference between the 

spectral data of before and after binding reaction on biosensor, instead of two separate spectra. There 

are three features selected from spectral difference, they are mean, variance and sign change rate. 

 

Figure 2. Simplified block diagram of the data processing procedure. Raw data and feature 

engineering methods are used in the experiments. 
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Eventually, for each training sample containing spectral data of before and after reaction, 

wavelet transform and Fourier transform domain features need spectra of both before and after 

reaction, and spectral difference features only need difference between spectra of before and after 

reaction. Therefore, there are 83 (60 wavelet domain + 20 Fourier domain + 3 spectral difference) 

features selected for the classification experiments. 

2.4. Classification Models 

All samples were randomly shuffled and separated as 70% for training and 30% for test. This 

allocation ratio is a practical standard for benchmark performance. Multilayer Perceptron (MLP) and 

Support Vector Machine (SVM) models were used since they are usually considered as efficient ML 

models capable of achieving baseline performance. As shown in Figure 3, in terms of MLP model, 

two hidden layers with 100 and 50 neuron nodes are implemented, optimizer is stochastic gradient 

decent solver, learning rate and epoch is set as 0.1 and 30, respectively. As for SVM model, we set the 

gamma parameter of radial basis kernel function as 1. 

(a)                                             (b) 

Figure 3. (a) Simplified diagram for illustration of MLP architecture; and (b) SVM explanation. 

2.5. Control Experiments 

For control experiments, we detected SARS-CoV-2 specimens with photonic biosensors which 

do not have specific antibodies immobilized on biosensor surface beforehand. There are in total 732 

data samples of detecting SARS-CoV-2 virus specimens of various concentrations, and 36 data 

samples of detecting specimens containing no SARS-CoV-2 viruses. This new dataset is processed by 

the SVM and MLP models already trained as shown in Figure 3. 

2.6. Dataset Distinguishability Analysis 

Nowadays, data visualization approach can help understand the distribution of the dataset and 

intuitively investigate whether the dataset is distinguishable or not. T-distributed Stochastic 

Neighbor Embedding (t-SNE) is a tool to visualize high-dimensional data. It converts similarities 

between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence [42] 

between the joint probabilities of the low-dimensional embedding and the high-dimensional data. 

We implemented t-SNE tool on specimen detection dataset to interpret the distinguishability of 

the dataset. The data distribution patterns can help interpret performances of models on the dataset. 

Both raw dataset and features extracted from raw data are considered of their distinguishability. We 

also investigated whether extracted features have distributions different from that of raw data. 

3. Results and Discussion 

In terms of the experiments, we used SVM and MLP models to test the raw data processing and 

feature engineering method. Two performance metrics are considered in the experiments: sensitivity 

(SEN) and specificity (SPE) which are defined as  
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SEN = ୘୔୘୔ା୊୒         (1) 

SPE = ୘୒୘୒ା୊୔         (2) 

where TP, FN, TN, FP stand for true positive, false negative, true negative and false positive, 

respectively.  

Table 1 shows the performances of ML model predictions. We can see that perfect performances 

are achieved for both raw data and feature engineering methods, combined with either SVM or MLP 

model. The last row in Table 1 shows the performance of the models in processing the control 

experiment dataset. The performance is very poor, and this is due to the fact that the biosensors have 

not been functionalized with specific antibodies and thus, cannot detect SARS-CoV-2 virus 

effectively.  

Table 1. Performance of Raw Data and Feature Engineering Processing Methods with Two Machine 

Learning Modeles. 

Method Raw Data Feature Engineering 

Model SVM MLP SVM MLP 

Parameter SEN SPE SEN SPE SEN SPE SEN SPE 

Performance on 

Control Detection Data 
100% 0% 100% 0% 0% 83% 0% 90% 

Performance on Valid 

Detection Data 
100% 

SVM: Support Vector Machine  MLP: Multilayer Perceptron  SEN: Sensitivity  SPE: Specificity 

Figure 4 (a) shows data distribution of raw dataset in 2D space by t-SNE data visualization 

approach. We can see that the positive and negative samples from dataset of valid detection 

experiments are clustered without any overlapping. Thus, the valid experimental dataset is 

distinguishable. Figure 4 (b) shows data distribution of features extracted from the dataset of Figure 

4 (a). The extracted features change the data distribution, while maintaining the distinguishability 

because the samples are separated into different clusters. Figure 4(c) shows the data distribution of 

dataset obtained from control experiments wherein biosensors are not functionalized with specific 

antibodies. Negative samples are overlaping with positive samples, and the dataset is 

indistinguishable according to the visualization results. Figure 4 (d) shows data distribution of 

features extracted from the dataset of Figure 4 (c). The distribution of features’ dataset is still mixed 

up, so that feature engineering cannot help the dataset to be classified effectively. These dataset 

distribution results could serve to interpret the performance comparisons demonstrated in Table 1.  
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Figure 4. The t-SNE data visualization results of experimental SARS-CoV-2 detection dataset, red and 

blue represent positive and negative samples respectively: (a) Raw dataset of valid detection 

experiment; (b) Feature engineering dataset of valid detection experiment; (c) Raw dataset of control 

detection experiment; (d) Features engineering dataset of control detection experiment. 

Table 2 demonstrates the advantages of ML data processing technique when compared with 

other techniques. It can be seen that the general advtantages of ML are valid, in addition to eased 

hardware requirement.  

Table 2. Comparison of machine learning technique with other signal processing techniques. 

     Factor     

 

Technique 

Need data filtering 

and denoising 

Need to take 

care of shift 

direction 

Need stable light 

source and low noise 

spectroscopy system 

Needed researcher 

work 

Find peaks and 

calculate 

spectral shift 

Yes Yes No Algorithm design 

and test 

Interferogram 

average over 

wavelength 

Yes No Yes Algorithm design 

and test 

Intensity 

interrogation 

Yes No Yes Algorithm design 

and test 

Machine 

learning 

Yes No No Model training 

from data 

To verify the efficacy of the ML data processing technique for biosensors, detection experiments 

of inactivated SARS-CoV-2 in vaccination sites of Hangzhou Center for Disease Control and 

Prevention (CDC) were carried out and the detection results are compared with the gold standard-

reverse transcription qPCR technique. The envrionmental specimens were collected from various 

locations in different vaccination sites, delivered to Hangzhou CDC within 4 hours,, and were 

simultaneously analyzed by both techniques. Table 3 shows that biosensors, together with ML data 
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processing, generate detection results that are consistent with qPCR results. Note that qPCR provides 

semi-quantitative results dependent on the Ct value [5], while ML processing of biosensor data only 

provides qualitative results. This comparative study demonstrates that the ML technique is an 

effective tool for biosensor signal and data processing, 

Table 3. Comparison of detection results of inactivated SARS-CoV-2 in vaccination sites of Hangzhou 

CDC, by both qPCR technique and biosensor with ML technique. 

Specimen Collection Location qPCR Result Biosensor with ML Result 

Vaccination Site 1 Operation Desktop Weak positive Positive 

Vaccination Site 1 Vaccination Station Strong positive Positive 

Vaccination Site 2 Operation Desktop Weak positive Positive 

Vaccination Site 2 Vaccination Station Weak positive Positive 

Vaccination Site 2 Ventilation Plate Strong positive Positive 

Vaccination Site 2 Innoculation Table 

Handle 

Weak positive Positive 

Vaccination Site 4 Keyboard and Mouse Negative Negative 

Vaccination Site 5 Pen and White Board Strong positive Positive 

Vaccination Site 55 Innoculation Table 

Handle 

Negative Negative 

No. 4 ans No. 5 

Innoculation Desk 

Room 

Door Handle and  

Switch 

Negative Negative 

Other Hemostatic Swab Weak positive Positive 

Other Cleaner’s Hand Negative Negative 

4. Conclusion 

In this work, machine learning techniques have been used to process the signals and dataset of 

photonic biosensors. Both SVM and MLP have been used to process raw data and future engineering 

data, and perfect results have been obtained to distinguish between negative and positive detections. 

Control experiments have also been carried out wherein biosensors not functionalized with specific 

antibodies are used to detect SARS-CoV-2 virus. Both SVM and MLP models trained with valid 

experimental data cannot distinguish between negative and positive detections in control 

experiments. To demonstrate the distinguishability of the raw data and the future engineering data 

for both valid experiments and control experiments, we implemented t-SNE data visualization 

approach. Results show that the valid experimental dataset is distinguishable, and the control 

experimental dataset is indistinguishable according to both raw data and features engineering 

methods. The results are consistent with the data processing performances of machine learning 

techniques achieved for valid experimental dataset and control experimental dataset. Future research 

will focus on ML techniques for determination of quantitative detection results so that the quantity 

of target biospecies in specimen can be obtained. ML can be a powerful tool in processing signals and 

dataset of biosensors for which there are salient features in the response signals of such biosensors, 

such as optical, electrochemical, thermal, and mechanical biosensors.  
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