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Abstract: We describe a machine learning (ML) approach to process the signals collected from
Covid-19 optical-based detector. Multilayer Perceptron (MLP) and Support Vector Machine (SVM)
were used to process both raw data and feature engineering data, and high performances for
qualitative detection of the SARS-CoV-2 virus with concentration down to 1 TCIDso/ml has been
achieved. Valid detection experiments contain 486 negative and 108 positive samples; and control
experiments, in which biosensors without antibody functionalization were used to detect SARS-
CoV-2, contains 36 negative samples and 732 positive samples. Data distribution patterns of the
valid and control detection dataset, based on T-distributed Stochastic Neighbor Embedding (t-SNE),
was used to study the distinguishability between positive and negative samples, and explain the
ML prediction performances. This work demonstrates that ML can be a generalized effective
approach to process signals and dataset of biosensors dependent on resonant modes as biosensing
mechanism.

Keywords: machine learning; Support Vector Machine; Multilayer Perceptron; photonic biosensor;
signal processing; Tamm Plasmon Polariton; Localized Surface Plasmon Resonance

1. Introduction

The global COVID pandemic has caused huge impact on world health and economy [1]. The
fast-spreading virus SARS-CoV-2 is the main culprit, and detection of the virus in human population
is crucial for curbing the epidemic [2]. Traditional detection approaches are mainly Nucleic Acid
Amplification Test (NAAT) [3] and antigen detection [4] techniques. Currently, the mainstream is
quantitative Polymerase Chain Reaction (QPCR) [5] which is a kind of NAAT that has high sensitivity
and specificity, but requires clean environment, bulky and expensive equipment, and trained
personnel. Therefore, qPCR is not suitable for onsite, fast turnaround detection, or population scale
screening, which are often required in pandemic control scenarios [6]. To complement qPCR, antigen
detection based on lateral flow [7] has also been employed in home use and self-test. However,
antigen detection is limited in detection sensitivity and specificity, hindering its efficacy in fighting a
pandemic [8]. There still lacks rapid, accurate and low cost detection techniques that can be deployed
onsite for population scale epidemic screening and/or surveillance [9], especially for regions of
limited resources [10].

Biosensors have been proposed for detection of SARS-CoV-2 [11]. Biosensor technologies have
the advantages of high sensitivity, good specificity, fast turnaround, ease of operation, low cost, and
onsite deployment capability [12, 13]. We have previously proposed a photonic biosensor for fast
onsite detection of SARS-CoV-2 with high sensitivity and specificity [14, 15]. The biosensor is based
on nanoporous silicon material fabricated via CMOS-compatible silicon process, and nanophotonic
working principles of Localized Surface Plasmon Resonance (LSPR) [16] and Tamm Plasmon
Polariton (TPP) [17, 18]. The measurement of the biosensor is based on reflection spectroscopy [14].
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We have also developed handheld and high throughput detection systems [19] that can collect
the refection spectrum of biosensors and process the spectral data to determine the detection results
efficiently. The high throughput detection system is suitable for populations scale screening of
infection, and the handheld detection system is for home use or self-test. The spectral data processing
algorithm works by recognizing the characteristic resonant valleys in the reflection spectrum of the
biosensor and determines the detection result by judging if there is spectral red shift of the
characteristic resonant valleys. This is the often used and so called “find peaks” technique, with its
name originating from the MATLAB function find_peaks(). This technique can also be implemented
on Field Programmable Gate Array (FPGA) for fast and efficient processing of signals from array of
biosensors [20]. In addition, researchers have also proposed Interferogram Average over Wavelength
(IAW) technique to process signals of optical biosensors that depend on spectral shift of characteristic
resonant features, which can achieve sensitivity enhancement compared with spectral shift detection
[21]. Detection of change in reflection intensity due to shift of spectral features in spectrum has also
been used to detect biomolecules in real time [22]. However, both IAW and light intensity
measurement techniques are subject to spectral amplitude fluctuations, and thus requires highly
stable spectroscopy systems, such as stable light source and high signal-to-noise ratio spectrometer.

In this work, we demonstrate that it is advantageous to utilize artificial intelligence technology,
more specifically machine learning (ML) algorithm to process the spectral data of the biosensor [23].
Instead of depending on programming, its algorithm is learnt from big volume of data [24]. Machine
learning has been used for computer vision [25], face recognition [26], autonomous driving [27],
auxiliary decision-making [28], brain-machine interface [29], and games [30]. It includes supervised
learning, unsupervised learning, and reinforcement learning [31]. Supervised learning (SL) is an
algorithm that learns from massive, labeled data and generates prediction models that can work to
generate labels for new dataset. SL includes Support Vector Machine (SVM) [32], Multilayer
Perceptron (MLP) [33], Linear Regression [34], Linear Discriminant Analysis [35], K-nearest Neighbor
[36], Decision Tree [37], and Naive Bayes [38]. In this work, we demonstrate that SVM and MLP can
be used for processing of the photonic biosensor signal and dataset. Compared with previously
proposed techniques, ML technique has the advanteges of : 1) no need to find appropriate parameters
of the algorithm, e.g. the find peaks() function, in a try-and-error way to guarantee accurate
recognition of spectral feature; 2) no need to discriminate between redshift or blueshift which can be
an extra issue in algorithm design; 3) not sensitive to spectral amplitude fluctuations so that
requirements on stable and expensive hardware are relaxed; 4) generalizable to all kinds of sensors
with salient features in response signal which serve as the basis of discriminating between positive
and negatibe responses.

Data visualization approach can help us to understand the distribution of dataset and find out
the distinguishability of the dataset. T-distributed Stochastic Neighbor Embedding (t-SNE) is a
prevalent approach to map high-dimensional data to low-dimensional embedding [39]. In this
contribution, we also implemented t-SNE approach on the SARS-CoV-2 detection dataset to clarify
the distinguishability of the biosensor dataset so that a better understanding of the data processing
and ML prediction performances can be obtained.

2. Materials and Methods

2.1. Biosensor Working Principal and Measurement Setup

As shown in Figure 1(a), the biosensor is basically a porous silicon microcavity consisting of two
Bragg reflectors and one resonant cavity [14, 40].
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Figure 1. Photonic biosensor : (a) Structure and its reflection spectroscopy measurement; b) Typical

example of redshift showing resonant valleys in reflection spectra; (c) blueshift of resonant valleys in
reflection spectra.

One Bragg reflector is six periods of alternating low porosity (LP) and high porosity (HP) porous
silicon (PSi) thin films of thickness equal to quarter resonant wavelength. On top of the porous silicon
is deposited noble metal thin film. Because of the nanoporous structure of the porous silicon material,
the conformally deposited noble metal thin film is also porous. When light is incident on the surface
of the biosensor, some of its energy will couple into Localized Surface Plasmon Resonance (LSPR)
supported [40] by the nanostructures of the noble metal thin film. In addition, some of its energy will
also couple into Tamm Plasmon Polariton (TPP) supported by the interface between the top Bragg
reflector and the noble metal thin film [41]. Therefore, LSPR and TPP are excited by the incident light
simultaneously, coupled with each other, and form strong field confinement around the noble metal
thin film. If specific antibodies are immobilized beforehand on the surface of the noble metal, they
can capture SARS-CoV-2 virus specifically. Such binding events will cause addition of biomaterials
around the noble metal thin film, and the added biomaterial will interact strongly with the LSPR and
TPP coupled field. This is the working mechanism of the biosensor for sensitive detection of virus.
As shown in Figure 1(a), in order to measure the signals of the biosensor, reflection spectroscopy is
used. White light source provides incident light, which goes through the Y-shape fiber and shine
vertically onto the biosensor surface. The light reflected from the biosensor surface is collected by the
Y-shape fiber and goes into the spectrometer for data analysis. The Y-shape fiber consists of six
circumferential fibers guiding incident light, and one central fiber guiding reflected light.

Figures 1(b) and 1(c) show representative reflection spectra of the biosensor. They have
characteristic resonant valleys in the spectral range of 600-800 nm in wavelength. If there are viruses
binding with antibodies on the biosensor surface, the binding events will cause shift of the spectral
features to longer wavelength, which is also called “redshift”. For example, Figure 1(b) shows such a
case where virus binds with antibodies, redshift occurs and the detection result is determined to be
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positive. On the other hand, if there is no virus binding with antibodies on the biosensor surface,
there will be no shift of the spectral features, i.e., almost overlapping spectra for both before and after
binding reaction. In the third case, there could also appear shift of the resonant features to shorter
wavelength, which is also called “blueshift”. In such case, the detection result is determined to be
negative. Figure 1(c) shows an example wherein there appears blueshift. In summary, the principle
of the biosensor is based on interactions between biomaterials and photonic energy, and the detection
result is determined based on shift of spectral features in optical spectrum collected from reflection
spectroscopy measurement.

2.2. Data Preprocessing

The dataset was obtained from detection experiments of inactivated SARS-CoV-2 in clinical
swab specimens, with virus concentration as low as 1 TCIDso/ml [14]. Figure 1 shows example spectra
of the biosensor for positive and negative detection results. For positive result, there is spectral
redshift; and for negative result, there is no spectral shift or there is spectral blueshift. The
experimental data is collected by reflection spectroscopy with corresponding spectra for before and
after applying specimens on biosensor surface. Each spectral data contains 2048 data points
representing reflection intensities, with data-to-data spacing of 0.48 nm in the wavelength range of
200-1200 nm. We usually need to carry out preprocessing of the spectral data before data analysis,
such as normalization and artifacts removal. Furthermore, normalization was implemented on each
data sample for the purpose of training convenience. Spectral data of both before and after adding
specimens are combined as a single sample, so that the size of the reformed sample is 2x2048, or 4096.
Each detection experiment is regarded as a sample for either training or test purpose. After several
outliers were removed to clean the dataset, there are 486 negative samples and 108 positive samples
left in total for the classification model training and prediction test.

2.3. Feature Engineering

As shown in Figure 2, the input to the model could be the data of size 4096. This requires 4096
input neuron nodes which could be a computation burden. In addition to this raw data approach, the
input could also be features extracted from the data. We propose feature engineering methods
comprising three different approaches — wavelet transform, Fourier transform, and spectral
difference. As for wavelet domain, we used the wavelet transform with scales of 30 and take average
of each scale, which generates 30 features for each spectral curve, two curves (before and after virus)
would generate 60 wavelet-based features. In terms of Fourier domain, we have found that most
information appears in the low frequency range (< 50Hz), so that we took average of each 5Hz in
order from 0 to 50Hz, so that 10 features for each spectral curve and 20 features for spectra pairs
would be obtained in Fourier domain. For spectral difference, we utilized the difference between the
spectral data of before and after binding reaction on biosensor, instead of two separate spectra. There
are three features selected from spectral difference, they are mean, variance and sign change rate.

Preprocessin\ /
Wavelet

Fourier
Transform

Difference

Figure 2. Simplified block diagram of the data processing procedure. Raw data and feature
engineering methods are used in the experiments.
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Eventually, for each training sample containing spectral data of before and after reaction,
wavelet transform and Fourier transform domain features need spectra of both before and after
reaction, and spectral difference features only need difference between spectra of before and after
reaction. Therefore, there are 83 (60 wavelet domain + 20 Fourier domain + 3 spectral difference)
features selected for the classification experiments.

2.4. Classification Models

All samples were randomly shuffled and separated as 70% for training and 30% for test. This
allocation ratio is a practical standard for benchmark performance. Multilayer Perceptron (MLP) and
Support Vector Machine (SVM) models were used since they are usually considered as efficient ML
models capable of achieving baseline performance. As shown in Figure 3, in terms of MLP model,
two hidden layers with 100 and 50 neuron nodes are implemented, optimizer is stochastic gradient
decent solver, learning rate and epoch is set as 0.1 and 30, respectively. As for SVM model, we set the
gamma parameter of radial basis kernel function as 1.

Hidden Hidden

Input Layer 1 Layer 2 Output
Layer

Negative

(a) (b)

Figure 3. (a) Simplified diagram for illustration of MLP architecture; and (b) SVM explanation.

2.5. Control Experiments

For control experiments, we detected SARS-CoV-2 specimens with photonic biosensors which
do not have specific antibodies immobilized on biosensor surface beforehand. There are in total 732
data samples of detecting SARS-CoV-2 virus specimens of various concentrations, and 36 data
samples of detecting specimens containing no SARS-CoV-2 viruses. This new dataset is processed by
the SVM and MLP models already trained as shown in Figure 3.

2.6. Dataset Distinguishability Analysis

Nowadays, data visualization approach can help understand the distribution of the dataset and
intuitively investigate whether the dataset is distinguishable or not. T-distributed Stochastic
Neighbor Embedding (t-SNE) is a tool to visualize high-dimensional data. It converts similarities
between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence [42]
between the joint probabilities of the low-dimensional embedding and the high-dimensional data.

We implemented t-SNE tool on specimen detection dataset to interpret the distinguishability of
the dataset. The data distribution patterns can help interpret performances of models on the dataset.
Both raw dataset and features extracted from raw data are considered of their distinguishability. We
also investigated whether extracted features have distributions different from that of raw data.

3. Results and Discussion

In terms of the experiments, we used SVM and MLP models to test the raw data processing and
feature engineering method. Two performance metrics are considered in the experiments: sensitivity
(SEN) and specificity (SPE) which are defined as
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SEN = —& 1)
TP+FN

SPE = —& @)
TN+FP

where TP, FN, TN, FP stand for true positive, false negative, true negative and false positive,
respectively.

Table 1 shows the performances of ML model predictions. We can see that perfect performances
are achieved for both raw data and feature engineering methods, combined with either SVM or MLP
model. The last row in Table 1 shows the performance of the models in processing the control
experiment dataset. The performance is very poor, and this is due to the fact that the biosensors have
not been functionalized with specific antibodies and thus, cannot detect SARS-CoV-2 virus
effectively.

Table 1. Performance of Raw Data and Feature Engineering Processing Methods with Two Machine
Learning Modeles.

Method Raw Data Feature Engineering
Model SVM MLP SVM MLP
Parameter SEN SPE SEN SPE SEN SPE SEN SPE
Performance on o o o o o o o o
Control Detection Data 100% 0% 100% 0% 0% 83% 0% 90%
Performance on Valid
1 O,
Detection Data 00%
SVM: Support Vector Machine MLP: Multilayer Perceptron SEN: Sensitivity SPE: Specificity

Figure 4 (a) shows data distribution of raw dataset in 2D space by t-SNE data visualization
approach. We can see that the positive and negative samples from dataset of valid detection
experiments are clustered without any overlapping. Thus, the valid experimental dataset is
distinguishable. Figure 4 (b) shows data distribution of features extracted from the dataset of Figure
4 (a). The extracted features change the data distribution, while maintaining the distinguishability
because the samples are separated into different clusters. Figure 4(c) shows the data distribution of
dataset obtained from control experiments wherein biosensors are not functionalized with specific
antibodies. Negative samples are overlaping with positive samples, and the dataset is
indistinguishable according to the visualization results. Figure 4 (d) shows data distribution of
features extracted from the dataset of Figure 4 (c). The distribution of features’ dataset is still mixed
up, so that feature engineering cannot help the dataset to be classified effectively. These dataset
distribution results could serve to interpret the performance comparisons demonstrated in Table 1.
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Figure 4. The t-SNE data visualization results of experimental SARS-CoV-2 detection dataset, red and
blue represent positive and negative samples respectively: (a) Raw dataset of valid detection
experiment; (b) Feature engineering dataset of valid detection experiment; (c) Raw dataset of control
detection experiment; (d) Features engineering dataset of control detection experiment.

Table 2 demonstrates the advantages of ML data processing technique when compared with
other techniques. It can be seen that the general advtantages of ML are valid, in addition to eased

hardware requirement.

Table 2. Comparison of machine learning technique with other signal processing techniques.

Factor Need data filtering ~ Need to take Need stable light Needed researcher

and denoising care of shift ~ source and low noise work
Technique direction spectroscopy system
Find peaks and Yes Yes No Algorithm design
calculate and test
spectral shift
Interferogram Yes No Yes Algorithm design
average over and test
wavelength
Intensity Yes No Yes Algorithm design
interrogation and test
Machine Yes No No Model training
learning from data

To verify the efficacy of the ML data processing technique for biosensors, detection experiments
of inactivated SARS-CoV-2 in vaccination sites of Hangzhou Center for Disease Control and
Prevention (CDC) were carried out and the detection results are compared with the gold standard-
reverse transcription JPCR technique. The envrionmental specimens were collected from various
locations in different vaccination sites, delivered to Hangzhou CDC within 4 hours,, and were
simultaneously analyzed by both techniques. Table 3 shows that biosensors, together with ML data
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processing, generate detection results that are consistent with qPCR results. Note that qPCR provides
semi-quantitative results dependent on the Ct value [5], while ML processing of biosensor data only
provides qualitative results. This comparative study demonstrates that the ML technique is an
effective tool for biosensor signal and data processing,

Table 3. Comparison of detection results of inactivated SARS-CoV-2 in vaccination sites of Hangzhou
CDC, by both gPCR technique and biosensor with ML technique.

Specimen Collection Location qPCR Result Biosensor with ML Result
Vaccination Site 1 Operation Desktop Weak positive ~ Positive
Vaccination Site 1 Vaccination Station Strong positive  Positive
Vaccination Site 2 Operation Desktop Weak positive  Positive
Vaccination Site 2 Vaccination Station Weak positive  Positive
Vaccination Site 2 Ventilation Plate Strong positive  Positive
Vaccination Site 2 Innoculation  Table Weak positive  Positive

Handle
Vaccination Site 4 Keyboard and Mouse = Negative Negative
Vaccination Site 5 Pen and White Board  Strong positive  Positive
Vaccination Site 55 Innoculation  Table Negative Negative
Handle
No. 4 ans No. 5 Door Handle and Negative Negative
Innoculation ~ Desk Switch
Room
Other Hemostatic Swab Weak positive  Positive
Other Cleaner’s Hand Negative Negative

4. Conclusion

In this work, machine learning techniques have been used to process the signals and dataset of
photonic biosensors. Both SVM and MLP have been used to process raw data and future engineering
data, and perfect results have been obtained to distinguish between negative and positive detections.
Control experiments have also been carried out wherein biosensors not functionalized with specific
antibodies are used to detect SARS-CoV-2 virus. Both SVM and MLP models trained with valid
experimental data cannot distinguish between negative and positive detections in control
experiments. To demonstrate the distinguishability of the raw data and the future engineering data
for both valid experiments and control experiments, we implemented t-SNE data visualization
approach. Results show that the valid experimental dataset is distinguishable, and the control
experimental dataset is indistinguishable according to both raw data and features engineering
methods. The results are consistent with the data processing performances of machine learning
techniques achieved for valid experimental dataset and control experimental dataset. Future research
will focus on ML techniques for determination of quantitative detection results so that the quantity
of target biospecies in specimen can be obtained. ML can be a powerful tool in processing signals and
dataset of biosensors for which there are salient features in the response signals of such biosensors,
such as optical, electrochemical, thermal, and mechanical biosensors.
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