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Abstract: Innovative solutions are now being researched to manage the ever-increasing amount of
data required to optimize the performance of internal combustion engines. Machine Learning
approaches have shown to be a valuable tool for signal prediction due to their real-time and cost-
effective deployment. Among them, the architecture consisting of Long Short-Term Memory
(LSTM) and one-dimensional Convolutional Neural Networks (IDCNN) has emerged as a highly
promising and effective option for replacing the role of physical sensors. The architecture combines
the capacity of LSTM to detect patterns and relationships in smaller segments of the signal with the
ability of IDCNN to detect patterns and relationships in larger segments of the signal. The purpose
of this work is to assess the feasibility of substituting a physical device dedicated to calculating the
torque supplied by a spark-ignition engine. The suggested architecture was trained and tested using
signals from the field during a test campaign conducted under transient operating conditions. The
results reveal that LSTM+1DCNN is particularly well suited for signal prediction with considerable
variability. It constantly outperforms other architectures used for comparison, with average error
percentages of less than 2%, proving the architecture's ability to replace physical sensors.

Keywords: machine learning; LSTM+1DCNN architecture; neural network; torque

1. Introduction

The more rigorous regulations regarding pollutant emissions from Internal Combustion Engines
(ICEs), along with customer demands for increased performance, made vehicle control increasingly
challenging [1-3]. The calibration and run-time operation of engines in different areas, such as
automotive or aerospace, where huge amounts of data are required [4,6]. To successfully handle and
process such produced information, significant computing efforts are necessary [7]. The many
measurements obtained by sensors and monitoring systems during engine calibration operations are
critical for fine-tuning and maximizing performance while also assuring efficient and dependable
operation [8]. Furthermore, during run-time operations, the engines' real-time outputs are critical for
monitoring engine health and detecting possible anomalies [9]. Advanced approaches are being
researched to improve engine performance while lowering consumption, pollutant emissions, and
operating longevity [10]. In the automobile industry, machine learning (ML) techniques are rapidly
being employed to enhance computing performance and minimize costs [6,11]. Because of their small
setup and low-cost hardware implementation, as well as their capacity to forecast operational
parameters, they can reduce the number of operating points to be examined, resulting in significant
memory and computational speed advantages [12]. LSTM+1DCNN appears to be a promising
method to perform signal analysis among the ML approaches [13]. The LSTM (Long short-term
memory) approach is a sort of Recurrent Neural Network (RNN) that can reproduce the sequential
nature of non-linear observations across time [14,15]. One-dimensional convolutional neural
networks (IDCNNs) are commonly utilized because of their simplicity and compact design in
comparison to other neural network architectures, as well as their ability to quickly combine feature
extraction and classification into a single adaptive learning body [16].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Ren at al. [17] proposed an Auto-CNN-LSTM technique for predicting the remaining useful life
of a Lithium-Ion battery. The architecture surpasses two existing data-driven models based on
ADNN and SVM, reducing prediction errors by more than 50%. Quin et al. [18] assessed the
performance of an LSTM-1DCNN for anti-noise diesel engine misfire detection. The design has an
average accuracy of approximately 98%, which is approximately 10% higher than other studied
methods such as CNN, random forest, and deep neural networks. Based on high-speed flame image
sequences, Lyu et al. [19] proposed an LSTM-1DCNN model for detecting thermoacoustic instability.
The method achieves high accuracy (98.72%), sensitivity (99.99%), and specificity (97.50%), with a
short processing time of about 1.23 ms per frame on a commercial GPU adapter which can be
considered for real-time identification. A recent work of the same research group [20] developed a
combined LSTM+1DCNN structure to evaluate the possibility of replacing a real sensor with a virtual
one. This goal's achievement could be crucial for cutting costs and, in particular, avoiding the
destruction of test bench components due to the resonance phenomena. The structure accurately
reproduces the recorded signal's natural frequency, and the absolute difference between recorded
and predicted values is always less than the fixed acceptable threshold of 10%.

This work intends to evaluate the possibilities of an LSTM+1DCNN structure in forecasting the
torque delivered by a three-cylinder spark ignition engine. Under transient running conditions,
experimental data from physical sensors and engine control unit (ECU) were utilized. Preliminary
evaluations were carried out with the goal of optimizing the internal structure of the model and
identifying the variables with the lowest impact on torque prediction. The LSTM+1DCNN was then
tested, and its performance was compared to that of other optimized systems.

When compared to alternative neural architectures, the results demonstrated the ability of the
LSTM+1DCNN structure to reproduce the target trend with reduced percentual error and a lower
number of predictions below crucial thresholds. The proposed model is able to reach average
percentual errors below 2%, without ever exceeding 10% of error on the single prediction.

2. Materials and Methods

2.1. Experimental Setup

Tests were performed on a 1L 3-cylinder turbocharged engine of 84 CV maximum power at 5250
rpm and 120 Nm of maximum torque at 3250 rpm. The internal cylinder bore is 72 mm while the
piston stroke is 81.8 mm. The compression ratio is equal to 10:1. The engine operates in Port Fuel
Injection (PFI) with European market gasoline (E5, with RON = 95 and MON= 85) injected at 4.2 bar
absolute. A Borghi&Saveri eddy current brake dynamometer of 600 CV ensures the engine speed in
firing condition (Figure 1a). A Vascat electric motor of 66.2 kW allows controlling the engine speed
both in motored and firing conditions. All the engine parameters are controlled using an EFI EURO-
4 engine control unit. The signals coming from thermocouples TCK and pressure sensors PTX 1000
are acquired by data acquisition systems of National Instrument. The indicated analysis is performed
through a Kistler Kibox combustion analysis system (maximum temporal resolution of 0.1 CAD) that
acquires the pressure signals coming from the piezoresistive sensors (Kistler 4624A) placed in the
intake and exhaust ports, the in-cylinder pressure of the piezoelectric sensor (Kistler 5018) placed on
a side of the combustion chamber beside the flywheel, the ignition signal from ECU and the absolute
crank angular position measured by an optical encoder (AVL 365C). Due to structural and mechanical
constraints, only the combustion chamber adjacent to the flywheel has been equipped with a
piezoelectric sensor, which is used to determine the Indicated Mean Effective Pressure (IMEP). The
torque delivered by the engine is measured using a torquemeter positioned near the engine
crankshaft. All of the above quantities are recorded by AdaMo Hyper software during engine
operations, allowing simultaneous management of the engine's speed, torque, and valve throttle
position in both firing and motored states. Figure 1b summarizes the experimental layout.
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2.2. Case Study

(b)
Figure 1. (a) SMART 1L three-cylinder turbo-charged. (b) configuration of the test bench.

A transient cycle (Figure 2) has been chosen to preliminarily evaluate the performance of the
LSTM+1DCNN proposed algorithm in predicting the torque delivered by the three-cylinder SI
engine. A total of 12 variables acquired by AdaMo Hyper are initially selected among the most

characteristics, as input parameters.

Parameters coming from ECU: activation time of the injector (InjectionTime) and ignition timing

of the spark (SparkAdvance) at the first cylinder beside the flywheel.

Parameters coming from pressure sensors and thermocouples: temperature of the air before the

filter (TC_Air_Intake), temperature and pressure of the air at the intake pipe (TC_ETB_OUT and
MAP), pressure and temperature of the exhaust gas before (TC_Turbine IN, P_Turbine IN) and
after the turbine (TC_Turbine OUT and P_Turbine OUT), temperature of the engine oil

(TC_Engine Oil).

speed (Engine speed).

Parameters related to the AdaMo actuation: throttle valve opening (Throttle Position) and engine

The cycle is comprised of an input matrix of [12 X 28800] samples and of an output matrix of [1
x 28800] samples. 80% of the entire dataset is used for training sessions and the remaining 20% for

the test sessions, i.e. Torque prediction (Figure 2).
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Figure 2. Delivered torque trend during transient operation.

It is feasible to efficiently reduce the dimensions of the model and improve its accuracy by
removing parameters with low correlation. As a result, a preliminary analysis using the Shapley value
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was done on the complete dataset. SHAP attempts to explain an instance's prediction by assessing
the contribution of each attribute to the forecast. The authors were able to quantify the impact of the
single measured quantities on the objective function using the average absolute Shapley values
(ABSV) [21,22]. The less influential parameters, i.e. TC_Turbine OUT, SparkAdvance and Throttle
Position (Figure 3) are excluded by the initial input dataset since presenting the lowest percentage of
impact. In this way, the number of input parameters is reduced from 12 to 9.
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Figure 3. Shapley analysis: global interpretation of the feature’s importance for the in-cylinder
pressure prediction.

Previous work by the same research group [2,20] shown that when the architectures operate
with the removal of the less relevant parameters, the performance improves. Based on this, the
current work solely illustrates the architectural predicting performance with the previously
established 9 input variables. After identifying the input parameters using the prior analysis, the data
is normalized to reduce excessive prediction mistakes and to allow the architecture to converge faster.
In this context, the normalization process allows for the avoidance of problems caused by differences
in input and output parameters. The values supplied are mapped to the range [0, 1]. Following the
prediction procedure, the predicted data is de-normalized to provide a direct comparison with the
actual experimentally acquired target. Figure 4 describes the entire dataset used in this activity and
the division between input and output parameters for each analyzed case.
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Figure 4. Description of the entire dataset used in this activity; (b) division between input and output

parameters for each case analyzed and displayed in (a); (c) data set segmentation for the training and

test session.
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2.3. Designing of the Neural Architecture to Predict Engine Torque

2.3.1. Structure of the Proposed Model

The predictive scheme of the LSTM+IDCNN structure used in this work for the Torque
prediction is reported in Figure 5a.

e A SequencelnputLayer is used to pass the dataset to the network. Such a layer enters the
sequence data into the network by setting its size and building the related structures.

e A one-dimensional CNN layer applies a 1-D convolutional filter, comprised of 100 neurons, to
each input frame. To perform convolution operations on time series data, the 1D-CNN employs
matrix multiplication. It maps the data variables to a higher-dimensional space and finds local
features based on spatial and temporal correlations. The convolution kernel of the 1D-CNN
moves horizontally or vertically along the data in this process, depending on the nature of the
data. The kernel for time series data moves along the time axis, making it excellent for examining
sensor data over time [23]. This approach is especially beneficial for analyzing signal data in a
short period of time. Because Torque data includes times series recorded by sensors, the CNN
can efficiently extract characteristics from such variable data and improve the prediction
accuracy of the model.

e  RelLu activation function was chosen to improve CNN fitting and sparsity because of its ability
to address difficulties such as delayed convergence and gradient disappearance. [24].

e  The AveragePoolingLayer calculates the average value for feature map patches and allows for
map downsampling by utilizing the mean value in the 2x2 cells square. It uses downsampling
to improve computation speed and the durability of derived characteristics. [25].

In the following stage, another 1D convolutional level, similar to the previous one, is used. LSTM
is used to process the feature maps at this point. The internal architecture of the LSTM network is
made up of components known as gates (Figure 5b) [20]. The LSTM network is a sort of recurrent
neural network (RNN) that handles the issue of gradients receding or exploding during long-term
information propagation. The LSTM network, unlike typical RNNs, has a more sophisticated neuron
structure in the hidden layer. It uses three control mechanisms: the input gate, the forgetting gate,
and the output gate to retain long-term knowledge. [26].

LSTMs provide a distinct additive gradient structure with direct access to forget gate activations,
allowing the network to encourage desired behavior from the error gradient by employing frequent
port updates at each stage of the learning process [20]. Following LSTM, the feature map is
distributed in a temporal vectorial sequence by TimeDistributedLayer, and the loss of mean square
error for the specified regression issue is computed by RegressionOutputLevel.

Sequence Input Layer

1D Convolutional Layer

N c
Pooling Layer
v N
LSTM Layer
i )|
Time Distributed Layer
ra B 5
Regression Output Layer '
& 4
. Xe
(a) (b)

Figure 5. (a) Predictive scheme and (b) LSTM internal structure; subdivision of the structure into
gates.
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2.3.2. Optimization of the Proposed Model

The definition of the neural structure is determined through preliminary analysis by considering
the training sessions’ performance:

¢  The number of neurons in hidden layers N varies from 50 to 200.
e  The batch size Bs is varied from 10 to 100.
e The model depth Ma is varied from 1 to 10.

A total of 81 combinations are evaluated. The Adam optimizer is used to streamline the updating
of the LSTM network model's weight matrix and bias, as well as to adjust the learning rate adaptively
during the training process. To evaluate the performance of model parameters, the loss function is
created, and the mean square error (MSE) is chosen as the loss function [27]. Set the number of
network epoch iterations, for example, to 100, to calculate the final value of the loss function for each
prediction model once the network training reaches the maximum learning iteration. To predict the
Torque signal, the optimal solution with the lowest loss function value is chosen. For the sake of
clarity, Figure 6 shows the val_loss and training_loss of the structure which performed best, i.e., Nn
=150, Bs = 70, Ma =1. The training results highlight how the model converges without overfitting.

0.025
0.020
Val_loss
., 0015 | ——Train_loss
7
8
— 0.010
\
0.005 \/\
— o
0.000 : . : —T=
0 20 40 60 80 100

Epoch [n°]

Figure 6. Trend of loss value of the LSTM+1DCNN architecture which performed best during the
training session.

To sum up, The LSTM+1DCNN structure is composed of a one-dimensional convolutional layer
with 100 neurons, kernel size equal to 3, and ReLu activation function; a max pooling 1D layer which
uses a pool size of 2 and a stride of 2; a LSTM layer composed by 150 neurons, batch size equal to 70
and model depth is 1; a time distributed layer and a dense layer composed by 1 unit to perform
regression task. The performance of the proposed structures is compared with those deriving from
the utilization of other two different architectures, whose optimizations have been performed
through extensive preliminary analysis:

1. The structure of a Back Propagation (BP) algorithm [28] is composed of one input layer, three
hidden layers, each of which is comprised of 55,180 and 110 neurons, respectively, and one
output layer.

2. A LSTM [20] network prediction model composed of one input layer, one hidden layer
containing 150 neurons, respectively, one output layer, and one fully connected layer.

3. Results and Discussion

The first comparison between the proposed algorithm is performed via training_loss function
(Figure 7) as described in the previous paragraph. All the structures show a decrease trend as epochs
increase and they tend to stabilize around 50 epochs up to reaching a training_loss value lower than
0.001 around the 100* epoch. This certifies that the models converge without overfitting. In particular,
LSTM+1DCNN shows the fastest converge speed since showing training loss below 0.005 already at
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about 10 epochs. Moreover, once stabilized, it presents very low oscillations suggesting that the
model could be more robust than the others.

0.050
0.045 |,

0.040 || —BP
0.035 | —LST™M
6050 | —— LSTM+1DCNN

0.025 ||
0.020 +
0.015 |
0.010 |
0.005 |

0.000 - ' — — =
0 20 40 60 80 100

Epoch [#]

Training Loss [-]

Figure 7. Training loss for the tested architecture during the training session.

Figure 8 displays the prediction of the Torque traces performed by each tested structure. To
make a comparison over the entire predicted range, for each forecast, the average deviation of the
prediction from the target throughout the range is computed (1):

N [lytiarget B Ypiredicted|
1 Yiarget @
Err = — Z g 1
=y /. N * 100
i=

where N is the number of samples considered for the test case and i the ith sample. The average
percentual error, i.e. Errav, is computed as well to draw attention to the global prediction quality. For
this kind of application, a maximum critical threshold of 10 is established for the abovementioned
errors.

All the tested structures (Figure 8) are able to reproduce the trend of the Torque over time.
Starting from BP, the structure performs an average error of about 2.7%, less than the critical
threshold of 10. The number of predictions exceeding such a threshold is 320 samples, corresponding
to about 5.55% of the total predictions. The structure is capable of following the low fluctuations of
the target signal, while when the torque becomes higher in the range between 250 to 280 seconds, the
model underestimates the maximum peaks even if the percentual errors stay below critical
thresholds. In such a zone, the architecture predicts in advance the target peaks showing
underestimations of about 2 Nm, corresponding to Err higher than 6%. However, it is worth
highlighting the structure’s capability of following the fluctuation of the signals in such a large range
from 22 to 34 Nm. Concerning LSTM, such a model outperforms the BP performance since presenting
Erravg = 1.70% with 67 samples exceeding Err = 10%, corresponding to 1.16% of the total predictions.
With respect to BP, LSTM never exceeds Err by 20%. LSTM is capable of following the low
fluctuations of the target and, in the range of highest Torque values, i.e. between 250 to 280 seconds,
well-reproduces the peaks without any advances or delays. At around 265 seconds (second highest
peak zone) the structure underestimates the target value of about 1.5 Nm. According to the
LSTM+1DCNN structure, the architecture is capable of well-reproducing the target trend with
average percentage errors below 1.5%, i.e. Ertavg = 1.19%. The prediction never exceeds 10% of error
throughout the entire torque signal and better follow the rapid oscillations of the signals if compared
to the other architectures.
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Figure 8. Comparison between the predictions performed by the tested structures and the target
Torque with the corresponding percentual errors.

After comparing the prediction performance, and considering the obtained results, the proposed
LSTM+1DCNN structure has been tested on another two transient cycles presenting different trends,
compared to the case of Figure 2, but the same number of samples (Figure 9). As possible to observe,
the structure confirms its capability to reproduce the Torque trend, showing average percentual
errors below 1.7% and no predictions above 10% of Err, in both reported cases.
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Figure 9. Comparison between the predictions performed by the LSTM+1DCNN structure and the
target Torque experimentally obtained by performing two different transient cycles compared to the
one used for the preliminary activity.

4. Conclusions

The present work evaluates the possibility of replacing a physical sensor dedicated to computing
the torque delivered by an internal combustion engine, under transient condition, by using a
LSTM+1DCNN approach. The optimized structure combines the capability of LSTM to capture long-
term dependencies and temporal pattern with the ability of IDCNN to detect patterns within smaller
signal segments. The performance of the proposed architecture was compared with the ones of other
optimized artificial neural structures, i.e. Back Propagation and LSTM, used for comparative
purposes. All the structures proved to be able to reproduce the experimental trend of the engine
delivered torque. Specifically, BP model achieved average error of about 3% with 6% of prediction
exceeding the critical threshold set at 10%. It accurately reproduced low fluctuations of the signals
but underestimated the maximum peaks of the torque. LSTM overperformed BP showing an average
error of 1.7% with about 1.6% of predictions exceeding the critical threshold. Even in this case,
underestimations of the local maximum peaks were shown. With average errors of less than 1.5%
(Erravg = 1.19%), the LSTM+1DCNN structure outperforms dealing architectures. It follows torque
trends properly, never going over a 10% inaccuracy, and captures fast signal oscillations better. The
structure's performance was confirmed further in testing on two additional transient cycles, with
average errors maintained at 1.7% and no forecasts above 10% inaccuracy. Overall, the study shows
that LSTM+1DCNN can replace physical sensors in torque computation for spark-ignition engines.
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Nomenclature
Err Percentage Errors
Erravg Average Percentage Errors
ABSV Absolute Shapley Values
CNN Convolutional Neural Network
ECU Engine Control Unit
ICE Internal Combustion Engine
ML Machine Learning
LSTM Long Short-Term Memory
MON Motor Octane Number
PFI Port Fuel Injection
RON Research Octane Number
SI Spark Ignition
References

1. K.Y.H.Lim, P. Zheng, C.H. Chen, A state-of-the-art survey of Digital Twin: techniques, engineering product
lifecycle management and business innovation perspectives, J. Intell. Manuf. 31 (6) (2020) 1313-1337.

2. Ricci, Federico, Luca Petrucci, and Francesco Mariani. "Using a Machine Learning Approach to Evaluate
the NOx Emissions in a Spark-Ignition Optical Engine." Information 14.4 (2023): 224.

3. Reitz, Rolf D,, et al. "IJER editorial: The future of the internal combustion engine." International Journal of
Engine Research 21.1 (2020): 3-10.

4. R.Fiifi, F. Yan, M. Kamal, A. Alj, and J. Hu, “Engineering Science and Technology, an International Journal
Artificial neural network applications in the calibration of spark-ignition engines: An overview,” Eng. Sci.
Technol. an Int. J., vol. 19, no. 3, pp. 1346-1359, 2016

5. L. Petrucci et al. "A Development of a New Image Analysis Technique for Detecting the Flame Front
Evolution in Spark Ignition Engine under Lean Condition." Vehicles 4.1 (2022): 145-166.

6. L. Petrucci, et al. “Engine knock evaluation using a machine learning approach.”, No. 2020-24-0005. SAE
Technical Paper, 2020.

7. Srinivasu, Parvathaneni Naga, et al. "Classification of skin disease using deep learning neural networks
with MobileNet V2 and LSTM." Sensors 21.8 (2021): 2852.

8. Ankobea-Ansah, King, and Carrie Michele Hall. "A hybrid physics-based and stochastic neural network
model structure for diesel engine combustion events.” Vehicles 4.1 (2022): 259-296.

9.  Krepelka, Michal, and Jiri Vrany. "Synthesizing Vehicle Speed-Related Features with Neural Networks."
Vehicles 5.3 (2023): 732-743.

10. Fadairo, Adebayo, and Weng Fai Ip. "A Study on Performance Evaluation of Biodiesel from Grape Seed Oil
and Its Blends for Diesel Vehicles." Vehicles 3.4 (2021): 790-806.

11. C.A. Escobar, R. Morales-Menendez, Machine learning techniques for quality control in high conformance
manufacturing environment, Adv. Mech. Eng. 10 (2) (2018) 1-16.

12. L. Petrucci et al. "Detecting the Flame Front Evolution in Spark-Ignition Engine under Lean Condition
Using the Mask R-CNN Approach." Vehicles 4.4 (2022): 978-995.

13. Wang, Ke, et al. "A hybrid deep learning model with 1IDCNN-LSTM-Attention networks for short-term
traffic flow prediction." Physica A: Statistical Mechanics and its Applications 583 (2021): 126293.

14. Elmaz, F.; Eyckerman, R.; Casteels, W.; Latré, S.; Hellinckx, P. CNN-LSTM architecture for predictive
indoor temperature mod-568 eling. Building and Environment, 2021, 206, 108327.
doi:10.1016/j.buildenv.2021.108327

15.  Zhao, J.; Deng, F.; Cai, Y.; Chen, ]J. Long short-term memory - Fully connected (LSTM-FC) neural network
for PM2.5 concentra-585 tion prediction. Chemosphere, 2019, 220, 486-492.
doi:10.1016/j.chemosphere.2018.12.128

16. Wang, Xin, Dongxing Mao, and Xiaodong Li. "Bearing fault diagnosis based on vibro-acoustic data fusion
and 1D-CNN network." Measurement 173 (2021): 108518.

17. Ren, Lei, et al. "A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful
life." IEEE Transactions on Industrial Informatics 17.5 (2020): 3478-3487.

18. Qin, Chengjin, et al. "Anti-noise diesel engine misfire diagnosis using a multi-scale CNN-LSTM neural
network with denoising module." CAAI Transactions on Intelligence Technology (2023).


https://doi.org/10.20944/preprints202308.0149.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2023 doi:10.20944/preprints202308.0149.v1

11

19. Lyu, Zengyi, et al. "A comprehensive investigation of LSTM-CNN deep learning model for fast detection
of combustion instability." Fuel 303 (2021): 121300.

20. Petrucci, L., Ricci, F., Mariani, F., & Mariani, A. (2022). From real to virtual sensors, an artificial intelligence
approach for the industrial phase of end-of-line quality control of GDI pumps. Measurement, 199, 111583.

21. S.Tang, etal., Data valuation for medical imaging using Shapley value and application to a large-scale chest
X-ray dataset, Sci. Rep. 11 343 (1) (2021) 1-9.

22. S. Hart, “Shapley value.” Game Theory, Palgrave Macmillan, London, 1989, pp. 210-216.

23. Ozcanli, Asiye Kaymaz, and Mustafa Baysal. "Islanding detection in microgrid using deep learning based
on 1D CNN and CNN-LSTM networks." Sustainable Energy, Grids and Networks 32 (2022): 100839.

24. Bai, Yuhan. "RELU-function and derived function review." SHS Web of Conferences. Vol. 144. EDP
Sciences, 2022.

25. Zafar, Afia, et al. "A comparison of pooling methods for convolutional neural networks." Applied Sciences
12.17 (2022): 8643.

26. Hu, Haowen, et al. "Development and application of an evolutionary deep learning framework of LSTM
based on improved grasshopper optimization algorithm for short-term load forecasting." Journal of
Building Engineering 57 (2022): 104975.

27.  Calasan, Martin, Shady HE Abdel Aleem, and Ahmed F. Zobaa. "On the root mean square error (RMSE)
calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on
Lambert W function." Energy conversion and management 210 (2020): 112716.

28. Cui, Yanqing, et al. "Investigation on the ignition delay prediction model of multi-component surrogates
based on back propagation (BP) neural network." Combustion and Flame 237 (2022): 111852.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202308.0149.v1

