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Abstract: Innovative solutions are now being researched to manage the ever-increasing amount of 

data required to optimize the performance of internal combustion engines. Machine Learning 

approaches have shown to be a valuable tool for signal prediction due to their real-time and cost-

effective deployment. Among them, the architecture consisting of Long Short-Term Memory 

(LSTM) and one-dimensional Convolutional Neural Networks (1DCNN) has emerged as a highly 

promising and effective option for replacing the role of physical sensors. The architecture combines 

the capacity of LSTM to detect patterns and relationships in smaller segments of the signal with the 

ability of 1DCNN to detect patterns and relationships in larger segments of the signal. The purpose 

of this work is to assess the feasibility of substituting a physical device dedicated to calculating the 

torque supplied by a spark-ignition engine. The suggested architecture was trained and tested using 

signals from the field during a test campaign conducted under transient operating conditions. The 

results reveal that LSTM+1DCNN is particularly well suited for signal prediction with considerable 

variability. It constantly outperforms other architectures used for comparison, with average error 

percentages of less than 2%, proving the architectureʹs ability to replace physical sensors. 

Keywords: machine learning; LSTM+1DCNN architecture; neural network; torque 

 

1. Introduction 

The more rigorous regulations regarding pollutant emissions from Internal Combustion Engines 

(ICEs), along with customer demands for increased performance, made vehicle control increasingly 

challenging [1–3]. The calibration and run-time operation of engines in different areas, such as 

automotive or aerospace, where huge amounts of data are required [4,6]. To successfully handle and 

process such produced information, significant computing efforts are necessary [7]. The many 

measurements obtained by sensors and monitoring systems during engine calibration operations are 

critical for fine-tuning and maximizing performance while also assuring efficient and dependable 

operation [8]. Furthermore, during run-time operations, the enginesʹ real-time outputs are critical for 

monitoring engine health and detecting possible anomalies [9]. Advanced approaches are being 

researched to improve engine performance while lowering consumption, pollutant emissions, and 

operating longevity [10]. In the automobile industry, machine learning (ML) techniques are rapidly 

being employed to enhance computing performance and minimize costs [6,11]. Because of their small 

setup and low-cost hardware implementation, as well as their capacity to forecast operational 

parameters, they can reduce the number of operating points to be examined, resulting in significant 

memory and computational speed advantages [12]. LSTM+1DCNN appears to be a promising 

method to perform signal analysis among the ML approaches [13]. The LSTM (Long short-term 

memory) approach is a sort of Recurrent Neural Network (RNN) that can reproduce the sequential 

nature of non-linear observations across time [14,15]. One-dimensional convolutional neural 

networks (1DCNNs) are commonly utilized because of their simplicity and compact design in 

comparison to other neural network architectures, as well as their ability to quickly combine feature 

extraction and classification into a single adaptive learning body [16]. 
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Ren at al. [17] proposed an Auto-CNN-LSTM technique for predicting the remaining useful life 

of a Lithium-Ion battery. The architecture surpasses two existing data-driven models based on 

ADNN and SVM, reducing prediction errors by more than 50%. Quin et al. [18] assessed the 

performance of an LSTM-1DCNN for anti-noise diesel engine misfire detection. The design has an 

average accuracy of approximately 98%, which is approximately 10% higher than other studied 

methods such as CNN, random forest, and deep neural networks. Based on high-speed flame image 

sequences, Lyu et al. [19] proposed an LSTM-1DCNN model for detecting thermoacoustic instability. 

The method achieves high accuracy (98.72%), sensitivity (99.99%), and specificity (97.50%), with a 

short processing time of about 1.23 ms per frame on a commercial GPU adapter which can be 

considered for real-time identification. A recent work of the same research group [20] developed a 

combined LSTM+1DCNN structure to evaluate the possibility of replacing a real sensor with a virtual 

one. This goalʹs achievement could be crucial for cutting costs and, in particular, avoiding the 

destruction of test bench components due to the resonance phenomena. The structure accurately 

reproduces the recorded signalʹs natural frequency, and the absolute difference between recorded 

and predicted values is always less than the fixed acceptable threshold of 10%. 

This work intends to evaluate the possibilities of an LSTM+1DCNN structure in forecasting the 

torque delivered by a three-cylinder spark ignition engine. Under transient running conditions, 

experimental data from physical sensors and engine control unit (ECU) were utilized. Preliminary 

evaluations were carried out with the goal of optimizing the internal structure of the model and 

identifying the variables with the lowest impact on torque prediction. The LSTM+1DCNN was then 

tested, and its performance was compared to that of other optimized systems. 

When compared to alternative neural architectures, the results demonstrated the ability of the 

LSTM+1DCNN structure to reproduce the target trend with reduced percentual error and a lower 

number of predictions below crucial thresholds. The proposed model is able to reach average 

percentual errors below 2%, without ever exceeding 10% of error on the single prediction. 

2. Materials and Methods 

2.1. Experimental Setup 

Tests were performed on a 1L 3-cylinder turbocharged engine of 84 CV maximum power at 5250 

rpm and 120 Nm of maximum torque at 3250 rpm. The internal cylinder bore is 72 mm while the 

piston stroke is 81.8 mm. The compression ratio is equal to 10:1. The engine operates in Port Fuel 

Injection (PFI) with European market gasoline (E5, with RON = 95 and MON= 85) injected at 4.2 bar 

absolute. A Borghi&Saveri eddy current brake dynamometer of 600 CV ensures the engine speed in 

firing condition (Figure 1a). A Vascat electric motor of 66.2 kW allows controlling the engine speed 

both in motored and firing conditions. All the engine parameters are controlled using an EFI EURO-

4 engine control unit. The signals coming from thermocouples TCK and pressure sensors PTX 1000 

are acquired by data acquisition systems of National Instrument. The indicated analysis is performed 

through a Kistler Kibox combustion analysis system (maximum temporal resolution of 0.1 CAD) that 

acquires the pressure signals coming from the piezoresistive sensors (Kistler 4624A) placed in the 

intake and exhaust ports, the in-cylinder pressure of the piezoelectric sensor (Kistler 5018) placed on 

a side of the combustion chamber beside the flywheel, the ignition signal from ECU and the absolute 

crank angular position measured by an optical encoder (AVL 365C). Due to structural and mechanical 

constraints, only the combustion chamber adjacent to the flywheel has been equipped with a 

piezoelectric sensor, which is used to determine the Indicated Mean Effective Pressure (IMEP). The 

torque delivered by the engine is measured using a torquemeter positioned near the engine 

crankshaft. All of the above quantities are recorded by AdaMo Hyper software during engine 

operations, allowing simultaneous management of the engineʹs speed, torque, and valve throttle 

position in both firing and motored states. Figure 1b summarizes the experimental layout. 
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(a) (b) 

Figure 1. (a) SMART 1L three-cylinder turbo-charged. (b) configuration of the test bench. 

2.2. Case Study 

A transient cycle (Figure 2) has been chosen to preliminarily evaluate the performance of the 

LSTM+1DCNN proposed algorithm in predicting the torque delivered by the three-cylinder SI 

engine. A total of 12 variables acquired by AdaMo Hyper are initially selected among the most 

characteristics, as input parameters. 

• Parameters coming from ECU: activation time of the injector (InjectionTime) and ignition timing 

of the spark (SparkAdvance) at the first cylinder beside the flywheel. 

• Parameters coming from pressure sensors and thermocouples: temperature of the air before the 

filter (TC_Air_Intake), temperature and pressure of the air at the intake pipe (TC_ETB_OUT and 

MAP), pressure and temperature of the exhaust gas before (TC_Turbine IN, P_Turbine IN) and 

after the turbine (TC_Turbine OUT and P_Turbine OUT), temperature of the engine oil 

(TC_Engine Oil). 

• Parameters related to the AdaMo actuation: throttle valve opening (Throttle Position) and engine 

speed (Engine speed). 

The cycle is comprised of an input matrix of [12 ൈ 28800] samples and of an output matrix of [1 ൈ 28800] samples. 80% of the entire dataset is used for training sessions and the remaining 20% for 

the test sessions, i.e. Torque prediction (Figure 2). 

 

Figure 2. Delivered torque trend during transient operation. 

It is feasible to efficiently reduce the dimensions of the model and improve its accuracy by 

removing parameters with low correlation. As a result, a preliminary analysis using the Shapley value 
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was done on the complete dataset. SHAP attempts to explain an instanceʹs prediction by assessing 

the contribution of each attribute to the forecast. The authors were able to quantify the impact of the 

single measured quantities on the objective function using the average absolute Shapley values 

(ABSV) [21,22]. The less influential parameters, i.e. TC_Turbine OUT, SparkAdvance and Throttle 

Position (Figure 3) are excluded by the initial input dataset since presenting the lowest percentage of 

impact. In this way, the number of input parameters is reduced from 12 to 9. 

 

Figure 3. Shapley analysis: global interpretation of the feature’s importance for the in-cylinder 

pressure prediction. 

Previous work by the same research group [2,20] shown that when the architectures operate 

with the removal of the less relevant parameters, the performance improves. Based on this, the 

current work solely illustrates the architectural predicting performance with the previously 

established 9 input variables. After identifying the input parameters using the prior analysis, the data 

is normalized to reduce excessive prediction mistakes and to allow the architecture to converge faster. 

In this context, the normalization process allows for the avoidance of problems caused by differences 

in input and output parameters. The values supplied are mapped to the range [0, 1]. Following the 

prediction procedure, the predicted data is de-normalized to provide a direct comparison with the 

actual experimentally acquired target. Figure 4 describes the entire dataset used in this activity and 

the division between input and output parameters for each analyzed case. 

 

(a) (b) (c) 

Figure 4. Description of the entire dataset used in this activity; (b) division between input and output 

parameters for each case analyzed and displayed in (a); (c) data set segmentation for the training and 

test session. 
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2.3. Designing of the Neural Architecture to Predict Engine Torque 

2.3.1. Structure of the Proposed Model 

The predictive scheme of the LSTM+1DCNN structure used in this work for the Torque 

prediction is reported in Figure 5a. 

• A SequenceInputLayer is used to pass the dataset to the network. Such a layer enters the 

sequence data into the network by setting its size and building the related structures.  

• A one-dimensional CNN layer applies a 1-D convolutional filter, comprised of 100 neurons, to 

each input frame. To perform convolution operations on time series data, the 1D-CNN employs 

matrix multiplication. It maps the data variables to a higher-dimensional space and finds local 

features based on spatial and temporal correlations. The convolution kernel of the 1D-CNN 

moves horizontally or vertically along the data in this process, depending on the nature of the 

data. The kernel for time series data moves along the time axis, making it excellent for examining 

sensor data over time [23]. This approach is especially beneficial for analyzing signal data in a 

short period of time. Because Torque data includes times series recorded by sensors, the CNN 

can efficiently extract characteristics from such variable data and improve the prediction 

accuracy of the model.  

• ReLu activation function was chosen to improve CNN fitting and sparsity because of its ability 

to address difficulties such as delayed convergence and gradient disappearance. [24]. 

• The AveragePoolingLayer calculates the average value for feature map patches and allows for 

map downsampling by utilizing the mean value in the 2x2 cells square. It uses downsampling 

to improve computation speed and the durability of derived characteristics. [25]. 

In the following stage, another 1D convolutional level, similar to the previous one, is used. LSTM 

is used to process the feature maps at this point. The internal architecture of the LSTM network is 

made up of components known as gates (Figure 5b) [20]. The LSTM network is a sort of recurrent 

neural network (RNN) that handles the issue of gradients receding or exploding during long-term 

information propagation. The LSTM network, unlike typical RNNs, has a more sophisticated neuron 

structure in the hidden layer. It uses three control mechanisms: the input gate, the forgetting gate, 

and the output gate to retain long-term knowledge. [26]. 

LSTMs provide a distinct additive gradient structure with direct access to forget gate activations, 

allowing the network to encourage desired behavior from the error gradient by employing frequent 

port updates at each stage of the learning process [20]. Following LSTM, the feature map is 

distributed in a temporal vectorial sequence by TimeDistributedLayer, and the loss of mean square 

error for the specified regression issue is computed by RegressionOutputLevel. 

  

(a) (b) 

Figure 5. (a) Predictive scheme and (b) LSTM internal structure; subdivision of the structure into 

gates. 
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2.3.2. Optimization of the Proposed Model 

The definition of the neural structure is determined through preliminary analysis by considering 

the training sessions’ performance: 

• The number of neurons in hidden layers Nh varies from 50 to 200. 

• The batch size Bs is varied from 10 to 100. 

• The model depth Md is varied from 1 to 10. 

A total of 81 combinations are evaluated. The Adam optimizer is used to streamline the updating 

of the LSTM network modelʹs weight matrix and bias, as well as to adjust the learning rate adaptively 

during the training process. To evaluate the performance of model parameters, the loss function is 

created, and the mean square error (MSE) is chosen as the loss function [27]. Set the number of 

network epoch iterations, for example, to 100, to calculate the final value of the loss function for each 

prediction model once the network training reaches the maximum learning iteration. To predict the 

Torque signal, the optimal solution with the lowest loss function value is chosen. For the sake of 

clarity, Figure 6 shows the val_loss and training_loss of the structure which performed best, i.e., Nh 

=150, Bs = 70, Md =1. The training results highlight how the model converges without overfitting. 

 

Figure 6. Trend of loss value of the LSTM+1DCNN architecture which performed best during the 

training session. 

To sum up, The LSTM+1DCNN structure is composed of a one-dimensional convolutional layer 

with 100 neurons, kernel size equal to 3, and ReLu activation function; a max pooling 1D layer which 

uses a pool size of 2 and a stride of 2; a LSTM layer composed by 150 neurons, batch size equal to 70 

and model depth is 1; a time distributed layer and a dense layer composed by 1 unit to perform 

regression task. The performance of the proposed structures is compared with those deriving from 

the utilization of other two different architectures, whose optimizations have been performed 

through extensive preliminary analysis: 

1. The structure of a Back Propagation (BP) algorithm [28] is composed of one input layer, three 

hidden layers, each of which is comprised of 55,180 and 110 neurons, respectively, and one 

output layer.  

2. A LSTM [20] network prediction model composed of one input layer, one hidden layer 

containing 150 neurons, respectively, one output layer, and one fully connected layer. 

3. Results and Discussion 

The first comparison between the proposed algorithm is performed via training_loss function 

(Figure 7) as described in the previous paragraph. All the structures show a decrease trend as epochs 

increase and they tend to stabilize around 50 epochs up to reaching a training_loss value lower than 

0.001 around the 100th epoch. This certifies that the models converge without overfitting. In particular, 

LSTM+1DCNN shows the fastest converge speed since showing training loss below 0.005 already at 
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about 10 epochs. Moreover, once stabilized, it presents very low oscillations suggesting that the 

model could be more robust than the others.  

 

Figure 7. Training loss for the tested architecture during the training session. 

Figure 8 displays the prediction of the Torque traces performed by each tested structure. To 

make a comparison over the entire predicted range, for each forecast, the average deviation of the 

prediction from the target throughout the range is computed (1): 

𝐸𝑟𝑟 ൌ 1𝑁 ෍ ቈห𝑌௧௔௥௚௘௧௜ െ 𝑌௣௥௘ௗ௜௖௧௘ௗ௜ ห𝑌௧௔௥௚௘௧௜ ቉𝑁 ∗ 100

ே
௜ୀ1

 
(1)

where N is the number of samples considered for the test case and i the ith sample. The average 

percentual error, i.e. Erravg, is computed as well to draw attention to the global prediction quality. For 

this kind of application, a maximum critical threshold of 10 is established for the abovementioned 

errors.  

All the tested structures (Figure 8) are able to reproduce the trend of the Torque over time. 

Starting from BP, the structure performs an average error of about 2.7%, less than the critical 

threshold of 10. The number of predictions exceeding such a threshold is 320 samples, corresponding 

to about 5.55% of the total predictions. The structure is capable of following the low fluctuations of 

the target signal, while when the torque becomes higher in the range between 250 to 280 seconds, the 

model underestimates the maximum peaks even if the percentual errors stay below critical 

thresholds. In such a zone, the architecture predicts in advance the target peaks showing 

underestimations of about 2 Nm, corresponding to Err higher than 6%. However, it is worth 

highlighting the structure’s capability of following the fluctuation of the signals in such a large range 

from 22 to 34 Nm. Concerning LSTM, such a model outperforms the BP performance since presenting 

Erravg = 1.70% with 67 samples exceeding Err = 10%, corresponding to 1.16% of the total predictions. 

With respect to BP, LSTM never exceeds Err by 20%. LSTM is capable of following the low 

fluctuations of the target and, in the range of highest Torque values, i.e. between 250 to 280 seconds, 

well-reproduces the peaks without any advances or delays. At around 265 seconds (second highest 

peak zone) the structure underestimates the target value of about 1.5 Nm. According to the 

LSTM+1DCNN structure, the architecture is capable of well-reproducing the target trend with 

average percentage errors below 1.5%, i.e. Erravg = 1.19%. The prediction never exceeds 10% of error 

throughout the entire torque signal and better follow the rapid oscillations of the signals if compared 

to the other architectures. 
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Back Propagation 

 
 

LSTM 

 
 

LSTM + 1DCNN 

  

Figure 8. Comparison between the predictions performed by the tested structures and the target 

Torque with the corresponding percentual errors. 

After comparing the prediction performance, and considering the obtained results, the proposed 

LSTM+1DCNN structure has been tested on another two transient cycles presenting different trends, 

compared to the case of Figure 2, but the same number of samples (Figure 9). As possible to observe, 

the structure confirms its capability to reproduce the Torque trend, showing average percentual 

errors below 1.7% and no predictions above 10% of Err, in both reported cases. 
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Figure 9. Comparison between the predictions performed by the LSTM+1DCNN structure and the 

target Torque experimentally obtained by performing two different transient cycles compared to the 

one used for the preliminary activity. 

4. Conclusions 

The present work evaluates the possibility of replacing a physical sensor dedicated to computing 

the torque delivered by an internal combustion engine, under transient condition, by using a 

LSTM+1DCNN approach. The optimized structure combines the capability of LSTM to capture long-

term dependencies and temporal pattern with the ability of 1DCNN to detect patterns within smaller 

signal segments. The performance of the proposed architecture was compared with the ones of other 

optimized artificial neural structures, i.e. Back Propagation and LSTM, used for comparative 

purposes. All the structures proved to be able to reproduce the experimental trend of the engine 

delivered torque. Specifically, BP model achieved average error of about 3% with 6% of prediction 

exceeding the critical threshold set at 10%. It accurately reproduced low fluctuations of the signals 

but underestimated the maximum peaks of the torque. LSTM overperformed BP showing an average 

error of 1.7% with about 1.6% of predictions exceeding the critical threshold. Even in this case, 

underestimations of the local maximum peaks were shown. With average errors of less than 1.5% 

(Erravg = 1.19%), the LSTM+1DCNN structure outperforms dealing architectures. It follows torque 

trends properly, never going over a 10% inaccuracy, and captures fast signal oscillations better. The 

structureʹs performance was confirmed further in testing on two additional transient cycles, with 

average errors maintained at 1.7% and no forecasts above 10% inaccuracy. Overall, the study shows 

that LSTM+1DCNN can replace physical sensors in torque computation for spark-ignition engines. 
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Nomenclature 

Err Percentage Errors 

Erravg Average Percentage Errors 

ABSV Absolute Shapley Values 

CNN Convolutional Neural Network 

ECU Engine Control Unit 

ICE Internal Combustion Engine 

ML Machine Learning 

LSTM Long Short-Term Memory 

MON Motor Octane Number 

PFI Port Fuel Injection 

RON Research Octane Number 

SI Spark Ignition 
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