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Abstract. In this paper, the Shannon entropy measure was used to assess changes in precipitation 

and temperature conditions. Due to the short, low-volume sequences of precipitation and 

temperature data analysed, a bootstrap method was used in the procedure for calculating Shannon 

entropy. The analysis used minimum and maximum values of monthly precipitation totals and 

monthly mean temperatures for 377 catchments distributed across the globe. A 110-year data series 

from 1901 to 2010 was analysed. Entropy values for the estimated parameters of the generalised 

extreme value distribution (GEV) were calculated for the adopted data. Entropy value calculations 

were performed for the left-hand constraint, based on minimum values, and for the right-hand 

constraint, based on maximum values. The applicability of Shannon’s entropy measure in the 

analysis of climate change was demonstrated by allowing the degree of disorder and complexity of 

the distributions describing climate variables in the form of precipitation and temperature to be 

measured. This made it possible to obtain information on the directions of changes occurring with 

regard to minimum and maximum values in the field of monthly precipitation and mean 

temperatures in the analysed catchments. The study demonstrated the existence of Shannon entropy 

trends. The evaluation of entropy trends for precipitation and temperature sequences was 

performed using non-parametric tests. Mann -Kendall tests at the 5% significance level were used 

for trend analyses. The Pettitt test was performed to determine the point of change in trend for the 

rainfall and temperature data. The performed analysis was supported by graphical presentations. 

Keywords: Shannon entropy; bootstrap method; GPCC data; NOAA data; monthly precipitation; 

average temperature; climate trends; Mann Kendall test; Pettitt test 

 

1. Introduction 

Climate extremes such as droughts, floods, extreme temperatures and storms have the potential 

to make significant impacts on economic sectors that are closely linked to climate, such as water 

management, agriculture, food security, energy security, forestry, health and tourism. Changes in 

these sectors can have far-reaching consequences for countries whose economies rely more heavily 

on these sectors [1–3]. Most research work performed to date on climate change unfortunately 

overlooks or downplays the importance of variability in climate extremes [3]. This is evident in 

studies on reducing the vulnerability of agriculture due to short-term hydrometeorological events, 

which compound the challenge [4–6]. With regard to the existing needs, climate change adaptation 

policies are insufficient [7]. 

The variability of these characteristics is an important aspect of climate change risk assessment, 

as it affects the intensity and frequency of extreme events. The IPCC report points out [8–10] that 

expected changes in the variability of precipitation and temperature in the future will be 

characterised by a high degree of uncertainty. In light of the above, there is a need to develop methods 

and algorithms that can improve the efficiency of predicting and estimating the intensity of climate 

hazards [3,11]. The Earth’s atmospheric system is too complex to be described deterministically. This 
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means that predicting its future state is difficult or impossible [12]. It is an open system and driven 

mainly by the continuous influx of solar radiation and the Earth’s rotation. The system is too large to 

solve deterministically due to the following factors: the amount of data needed to describe its state, 

incomplete instrumentation to monitor its state, the lack of a correct way to spatially partition the 

system for long-term analysis, and the lack of accurate historical data prior to 1900. Therefore, 

stochastic analyses can be useful in assessing the variability of climatic conditions [12]. Analyses of 

entropy directions show that if global warming were to continue, a decrease in thermodynamic 

entropy would mean more free energy driving the weather; an increase in informational entropy 

would mean difficulty in predicting which way the process would go [12]. One potential tool to help 

with this is the Shannon entropy trend assessment. Entropy analysis can provide information on the 

degree of irregularity, unpredictability and variability in climate systems, which can be valuable for 

developing more accurate forecasts and risk-management strategies for extreme climate events [13]. 

Climate change is a phenomenon that leads to significant spatial and temporal heterogeneity in 

the impacts of these changes on biological systems, health and sectors of economies [14]. Studies 

show that global increases in average temperature mask important differences in temperature 

elevation between land and sea and small areas and large regions [15–17]. Climate change also 

inevitably results in changes in the frequency, intensity, spatial extent, duration and timing of 

extreme weather and climate events [3,18]. Extreme values can be analysed in terms of changes in the 

types and parameters of probability distributions and trends in statistical characteristics (e.g., 

minimum, maximum values) [19]. One can also look at the variability of extreme values through the 

characteristics of the tails of extreme distributions [20]. An effective tool is time-frequency analysis, 

which enables the study of changes in time and frequency, which is particularly useful for 

considering correlations between different characteristics describing climate variability [21–23]. It is 

also possible to monitor the change in Shannon entropy and its trends as a measure of climate 

variability and the extreme phenomena that result from this variability [13,24–26]. Shannon entropy 

is a measure of the degree of disorder or unpredictability in a system, and an increase in entropy can 

indicate greater climate variability. Analysis of Shannon entropy and other measures of a statistical 

nature can be useful for assessing climate variability and extremes. 

Projections indicate that climate and weather variability will increase as the planet warms. 

Changes in the frequency and intensity of climate extremes and in the instability of weather patterns 

will have significant consequences for both human and natural systems. By the end of this century, 

the frequency of extreme conditions, such as heat stress, droughts and floods, is projected to increase, 

with numerous negative impacts beyond those resulting from changes in mean values alone [1,2]. 

Given the uncertainty associated with forecasts of changes in extremes and the limited confidence in 

these forecasts, it is important to perform trend analyses and analyses of extreme values based on the 

longest possible series of measurements. Both the low certainty of the forecasts and the high 

confidence in the forecasts do not exclude the possibility of extreme changes. In the context of 

limitations in understanding climate processes in different regions, there is the possibility of extreme 

changes with low probability, however, with significant impact. Changes in extremes are observed 

and there is evidence that some of these changes are due to anthropogenic influences [1]. Analysis of 

historical observations of climate variables indicates anthropogenic climate change [27–29]. The study 

of changes in precipitation and temperature variability [30–32] dependent upon the observed period 

show changes in trends and allow us to assess the form of the directions of these occurring changes 

[33,34]. However, the attribution of individual extreme events to these influences remains a challenge. 

An example of this is the analyses performed as part of work on climate variability at different 

periods and scales within a region (e.g., in the rhythm of multi-decadal oscillations) [35,36]. The 

observed changes in the magnitude, frequency and timing of extreme events obtained represent one 

of the first analyses of this under-researched phenomenon in which patterns have been shown to be 

complex and not always consistent with previous studies [10,27,37,38]. 

The increase in entropy affects the unpredictability of the weather and makes it difficult to plan 

adaptation measures. There can be a sudden transition from one extreme state to another in a short 

period of time. An increase in entropy in the climate system increases the degree of chaos and 
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unpredictability. This, in turn, leads to greater weather variability, more frequent occurrence of 

extreme climatic events and difficulty in predicting long-term trends. Increased entropy can 

negatively affect economic sectors such as agriculture, which need stable weather conditions for 

efficient production. However, increased entropy can also lead to increased biodiversity, as 

organisms need to adapt to more variable environmental conditions. There is a complex interaction 

between polarisation feedback [39] and increased entropy in the climate system. Polarisation 

feedback refers to the change in direction and intensity of climatic phenomena over a short period of 

time. Abrupt jumps between weather extremes, such as sudden changes from drought to torrential 

rain or from extreme cold to heat, are examples of polarisation feedback. The implication of 

polarisation and entropy increase is that phenomena identified by entropy and polarisation reinforce 

each other. Rapid changes in weather that are characteristic of polarisation can contribute to greater 

weather variability and an increase in entropy. In turn, an increase in entropy can influence larger 

jumps between extreme weather states, further intensifying polarisation. Therefore, with regard to 

understanding positive feedback in the climate system, polarisation and entropy in the climate 

system may be important to better understand climate change and develop effective management 

and adaptation strategies. The interactions of climate variables can influence the occurrence of 

hurricanes, tornadoes and droughts. In addition, these interactions can affect a measure of risk that 

includes threats to life, livelihoods, health, well-being, ecosystems, species, economic, social and 

cultural resources, services (including ecosystem services) and infrastructure. Risk results from the 

interaction between system vulnerability and exposure, and between system exposure and forcing 

[15,40,41]. As a result, one phenomenon can amplify or weaken another, complicating the process of 

understanding the scale of climate change. Anthropogenic factors, such as industrial activity, 

deforestation, land use transformation, pollutant emissions and greenhouse gas emissions [42–44], 

can influence the variability of extreme values and the polarisation of climate factors [15,39,45]. 

2. Methodology 

There is now a growing body of scientific evidence confirming that human activities are 

influencing climate change, contributing to shorter durations of high-intensity precipitation and 

longer periods of high temperature and low precipitation. The variability of extreme events, such as 

floods and droughts, is increasingly apparent and can be attributed to the erratic nature and intensity 

of human activities. Therefore, investigating the climate variability factors associated with monthly 

precipitation and mean monthly temperatures is key to understanding climate change at the regional 

level and developing strategies to manage water resources and reduce the risk of floods and 

droughts. 

Minimum and maximum values of monthly precipitation and minimum and maximum values 

of mean monthly temperatures over the year were adopted for the analysis. In view of the purpose 

of the analysis, i.e., assessing long-term climate variability, it is better to perform analyses on averages 

rather than on extreme values for several reasons. Such analyses are characterised by greater 

statistical stability. Averages have less variability than extreme values, which means that for the same 

data, we will obtain a smaller standard error of the average estimator than of the extreme value 

estimator. Statistical stability is particularly important for long-term analyses, as variability in values 

can affect the interpretation of results and decision-making. Another argument is the larger number 

of observations, as the analysis on averages can be conducted for a larger number of observations 

than the analysis on extreme values, enabling more representative results. It should be noted that 

analyses on averages are a better reflection of reality, providing information on typical values that 

are more representative of long-term changes than extreme values. Furthermore, extreme values may 

be the result of random factors or unpredictable events that do not reflect typical conditions. To 

summarise, for the search for long-term changes, analysis on averages is more statistically stable, 

enabling a larger number of observations and a better reflection of typical values, which is important 

for decision-making and action planning. 

Shannon’s entropy variability calculations were performed for the left constraint on the basis of 

minimum values of monthly precipitation and minimum values of monthly mean temperature. For 
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the right-hand constraint, calculations of Shannon entropy variability were performed on the basis 

of maximum values of monthly precipitation and maximum values of mean monthly temperature. 

Due to the small-volume dataset, a bootstrap technique [46,47] was used to assess the extreme 

distributions of the minimum and maximum values of Shannon entropy variability. 

2.1. Bootstrap Resampling Technique 

In the present study, a bootstrap resampling technique was used to estimate the parameters of 

the distribution of extreme precipitation and temperature values.. The main idea of the bootstrap 

method is to generate large samples with replacement by resampling the original samples based on 

the assumption that the samples are independent and identically distributed. This method is 

recommended not only for its computational efficiency but as an easy-to-implement approach that 

generates bootstrap replications without relying on the assumption of true distribution [48]. It can be 

implemented by relying only on the information obtained from the sample value. 

The steps of the bootstrap method used in this study are described as follows: 

1. Population sequences of annual minimum and maximum values from monthly precipitation 

and annual minimum and maximum values from monthly average temperatures were created: 

 For the estimation of GEV parameters describing minimum values: 

����
� = min

�
��,�  , � = 1, … ,12; � = 1901, … ,2010 

����
� = min

�
��,�  , � = 1, … ,12; � = 1901, … ,2010 

 For the estimation of the GEV parameters describing the maximum values of: 

����
� = max

�
��,�  , � = 1, … ,12; � = 1901, … ,2010 

����
� = max

�
��,�  , � = 1, … ,12; � = 1901, … ,2010 

The number of elements in both the precipitation and temperature sequence does not reliably 

allow an assessment of Shannon entropy values at the 5% significance level. A 1000-fold number of 

draws from the seventy-element sequence was assumed. For the assessment of Shannon entropy 

trends, the seventy-element strings were assumed to be created in the following recursive manner: 

 For the estimation of Shannon entropy values based on the GEV distribution describing 

minimum values: 

��
� = ����

������, . . , ����
������ , � = 1, … ,40 

��
� = ����

������, . . , ����
������ , � = 1, … ,40 

 For the estimation of Shannon entropy values based on the GEV distribution describing the 

maximum values of: 

��
� = ����

������, . . , ����
������ , � = 1, … ,40 

��
� = ����

������, . . , ����
������ , � = 1, … ,40 

Forty seventy-element strings were arbitrarily obtained in this way. These strings provided a 

resource for 1000-fold bootstrap draws. In this way, forty 1000-fold bootstrapped strings were created 

from which Shannon entropy was calculated at the 5% significance level for both precipitation and 

temperature for minimum and maximum values (Figure 1). 

2. It was assumed that the series of annual minimum and maximum monthly precipitation and 

average temperature were original samples, the total length of multi-year records. 

3. Bootstrap samples of the minimum and maximum series of precipitation and temperature were 

drawn using the bootstrapping process, which involves randomly selecting values to replace the 

original sample. 

4. The above analysis was performed on all analysed catchments. 
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Figure 1. Schematic of the bootstrap process for estimating Shannon entropy at the 5% significance 

level for a selected catchment for a seventy-element sequence. 

For each drawn sequence, the Anderson-Darling test (ADT) was performed to confirm the 

possibility of describing the drawn sequence with the GEV distribution at the 5% significance level 

(Figure 1). If this possibility was not confirmed, the results of such an experiment were disregarded 

and proceeded to the next draw. For the estimation of the GEV parameters for the minimum values, 

the agreement of the ADT test at the 5% significance level was achieved in 91% of occassions and for 

the maximum values, this level was reached in 99.6% of cases. GEV parameters were estimated using 

the maximum likelihood method [49–51]. The ADT test was adopted due to the priority given to 

values from the tails of the distribution, which is important in the case of extreme distributions. In 

subsequent steps, the value of the Shannon entropy estimator was calculated at the 5% significance 

level [47]. The above methodology was applied to each of the 377 analysed catchments (Figure 1). 

The analysis code was developed in Matlab software. 

2.2. Fitting the GEV Distribution 

Modelling the variability of climate extremes requires the consideration of extreme values of 

phenomena for, inter alia, precipitation, temperature, evaporation and atmospheric pressure [52]. An 

approach that uses a sequence of observations extracted from equal periods, such as a maximum 

from monthly totals or a minimum from monthly precipitation totals for a given year, is widely used 

in modelling extreme values. Similarly, for a maximum from mean temperatures or a minimum from 

mean temperatures for a given year, it assumes that the set of extremes is independent and identically 

distributed, being fitted to a probability distribution model such as the generalised extreme value 

distribution (GEV). As the impact of climate change has become a significant issue, many efforts have 

been made to account for non-stationarity in hydrological applications. One popular approach is to 

apply different non-stationary models to non-stationary data and select an appropriate model based 

on model diagnostics. Due to its adaptability to changes in the data structure, maximum-likelihood 

estimation of non-stationary model parameters is usually used for this purpose [50,51,53,54]. To date, 

this approach has been widely studied and can be described as a ‘user-friendly’ method. Such an 

approach was used in this study. 

The generalised extreme value distribution (GEV) was used in the calculations [55–57]. 
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�(�) =

⎩
⎪⎪
⎨

⎪⎪
⎧

�
1

�
� exp �− �1 + �

(� − �)

�
�

�
�
�

� �1 + �
(� − �)

�
�

���
�
�

, ��� � ≠ 0

�
1

�
� exp �−

(� − �)

�
− ��� �−

(� − �)

�
�

�
�
�

� , ��� � = 0

 

The parameters �, �, � refer to the shape parameter, scale and position [55]. 

2.3. Shannon Entropy 

The concept of entropy has been used in the study of physical systems, and was defined on the 

occasion of the second law of thermodynamics. The measure of entropy defined by C.E. Shannon on 

the basis of information theory has been applied in subsequent years in many scientific fields, 

including statistics and computer science [12,26,47,58]. Today, information theory is still mainly 

concerned with communication systems, but applications of the concept of entropy in the analysis of 

the behavior of a variety of systems, including economic and social systems, financial systems, 

climate systems are emerging, and subsequent years have brought numerous generalizations of 

Shannon’s measure of entropy [12,59,60]. 

Shannon entropy is based on the probability distribution of the data. If this distribution is poorly 

estimated, the entropy can give erroneous results. Therefore, it is important to understand and model 

the data distribution well in order to obtain accurate entropy results. 

In information theory, a measure of the entropy of a random variable �  with a discrete 

distribution { �(�� ), �(�� ), . . . , �(�� )} has been defined [61]. 

The probabilities �(�� ) satisfy the normalisation and singular sum conditions:  

0 ≤ �(�� ) ≤ 1 

� �(�� ) = 1

�

���

 

The Shannon entropy function expressed in units of [bits] takes the form [61]:  

��(�) =  ��(�(�� ), �(�� ), . . . , �(�� )) = � �(�� ) log�

1

�(�� )

�

���

 

The entropy ��(�) is a measure of the uncertainty associated with the probability distribution 

{ �(�� ), �(�� ), . . . , �(�� )}, with which the values {��, ��, … , ��} of the discrete variable �occur.  

Despite the frequent use of this measure, it is important to mention the drawbacks and dangers 

associated with its use. Several limitations associated with Shannon entropy should be noted:  

 Measurement scale: this is sensitive to the measurement scale, meaning that the measurement 

units can affect the entropy results. It is important to accurately define the measurement units 

and adjust the scale so that the results are interpretable, 

 Even distribution: this is greatest when all possible results are evenly distributed. In the case of 

meteorological data such as precipitation and temperature, where there are natural limitations 

at the extremes (e.g., precipitation cannot be negative), even distribution may not be an adequate 

representation. This can lead to lower entropy values than in reality, which can introduce error 

in the interpretation of results. 

 Lack of consideration of correlations: Shannon entropy does not take into account correlations 

between data. In fact, in meteorological data, there are often correlations between different 

variables such as temperature and precipitation – ignoring these correlations may lead to a 

simplified model that does not take into account the full complexity of atmospheric phenomena. 

 Data discretisation: this assumes that the data are discretised, meaning that the data are divided 

into categories or compartments. The choice of discretisation can affect the entropy results, so it 

is important to adjust the discretisation appropriately to the characteristics of the data. 

In the present study, Shannon entropy values were calculated for extreme monthly precipitation 

totals and extreme monthly mean temperatures. The sequences thus created constituted the data for 

further analyses related to the assessment of entropy variability. Knowing the criticisms of the 
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Shannon entropy measure, calculations were planned to avoid the limitations of its use. Units were 

standardised, the selection of GEV distribution parameters was performed using ADT tests and a 

constant discretisation was assumed for all analysed cases. 

2.4. Variability of Entropy 

In the paper, entropy was calculated separately for minimum values and maximum values. A 

measure was proposed to take into account the variability of distributions describing extreme values. 

The evaluation of the variability of Shannon entropy was made on the basis of the values of calculated 

trends. A measure of the Euclidean norm was proposed here [62–64]. 

The Euclidean norm can be written as: 

������ = {�, �} ; 

�|������|� = ����[������] = ��� + �� 

where: 

�, � - coordinates of the vector 

In this study, variability was determined based on Shannon entropy trends separately in the 

form of distributions describing minimum values and distributions describing maximum values. 

Finally, it also allowed calculating the resultant variability of Shannon’s entropy by taking the 

entropy trends for precipitation phenomena and temperature phenomena separately as vector 

coordinates. Finally, a measure was proposed that takes into account the variability of both 

precipitation and temperature extremes. 

�������
��� = ������(��

�(���))� + �����(��
�(���))� 

�������
��� = ������(��

�(���))� + �����(��
�(���))� 

�|�����|� = ������
��

+ �����
��

 

where: 

�����(��
�(���)) – Shannon entropy trend for minimum rainfall values, 

�����(��
�(���)) – Shannon’s entropy trend for maximum rainfall values, 

�����(��
�(���)) – Shannon’s entropy trend for minimum temperature values, 

�����(��
�(���)) – Shannon’s entropy trend for maximum temperature values, 

�����
� – variation of Shannon’s entropy for extreme precipitation values, 

�����
� – variation of Shannon’s entropy for extreme temperature values, 

����� – variation of Shannon’s entropy for extreme values of precipitation and temperature. 

All magnitudes of the analysed component trends and resultant Shannon entropy are expressed 

in the unit [bit/year]. 

The Euclidean norm is one of many ways to measure the dynamics of climate variability, and its 

calculation based on Shannon entropy trends for temperature and precipitation extremes can help 

understand climate variability. It can be used to compare different time periods and geographic 

regions to assess whether the dynamics of climate variability are increasing, decreasing, or remaining 

constant. However, the Euclidean norm itself does not provide insight into the causes of these 

changes, but only informs about the degree of variability itself. It is worth noting that calculating the 

Euclidean norm from Shannon’s entropy trends for minimum and maximum temperature and 

precipitation values is one of many possible ways to analyse climate entropy variability, and should 

be considered as a complement to other research methods and not as the only method of analysis. 

3. Data Preparation for Analysis 

The paper relies on grid data of monthly precipitation totals from the Global Precipitation 

Climatology Center (GPCC) released products and grid data of monthly mean temperatures from 

National Oceanic and Atmospheric Administration (NOAA) products. The data correspond to a 

spatial resolution of 0.5°x 0.5° and are consistent with regard to spatial and temporal factors. Products 
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from both GPCC and NOAA are made available via the Internet [65–68]. These data are not made 

available in real time. 

This paper examines global Shannon entropy trends of monthly precipitation totals and monthly 

mean temperatures from an area of 377 river basins distributed over all continents. A total of 377 

river basins were selected based on data that was made available by GRDC and characterised as areas 

at risk of extreme events [68]. 

Assuming 509.9 million square kilometres of land area, 12.76% of the land area is included in 

the analysis. Table 1 shows the areas covered by the analysis. 

Table 1. Areas covered in the WMO regions analysis [39]. 

Region Continent Lands area Area catchment Coverage of the continents 

WMO  mln km2 mln km2 % 

1 Africa 30.3 8.43 27.83% 

2 Asia 44.3 20.3 45.86% 

3 South America 17.8 12.6 70.57% 

4 North America 24.2 13.0 53.87% 

5 Australia and Oceania 8.5 1.1 13.07% 

6 Europe 10.5 6.7 64.10% 

 Antarctica 13.1 0.0 0.00% 

 Lands together 148.7 65.1 43.77% 

 Earth, total 509.9 65.1 12.76% 

GPCC and NOAA data, were converted to catchment areas. This yielded a sequence of monthly 

precipitation and temperatures, which became the subject of the analyses presented in this article. 

The analyses covered the years 1901 to 2010. 

3.1. Tatistical Tests Used 

In evaluating the form of entropy trends for both precipitation and temperature, a bootstrap 

resampling technique was used to create sequences for calculating Shannon entropy and estimating 

GEV distribution parameters. The form of the trends was verified with the Mann-Kendall test (MKT) 

at the 5% significance level. In addition, entropy trend change points were determined using the 

Pettitt change point test (PCPT) at the 5% significance level. If the change point was positively verified 

at the 5% level of significance, a new trend form was determined for the new sub-series using the 

MKT test. For each sequence of extreme values analyzed, the applicability of the GEV distribution 

was determined by the AD test performed at the 5% significance level. 

To examine the trend in a given time series, the MKT test was used [69,70]. This test is 

independent of the type of distribution and we do not need to assume any special form of data 

distribution function [71]. This test has been widely recommended by the World Meteorological 

Organization for public use; moreover, it has been used in many scientific papers to evaluate the 

trend of water resources data [19,28,70]. The magnitude of the trend is estimated using a 

nonparametric median-based slope estimator proposed by Sen [72] and extended by Hirsch [73]. In 

this study, this test was used to examine the Shannon entropy trend. 

A number of methods [19,38,70,74,75] can be used to determine time series change points. In this 

analysis, the nonparametric Pettitt change point test [76] was used to detect the occurrence of change. 

The Pettitt change point test (PCPT) is a nonparametric abrupt change test in a time sequence. It is 

used to detect the turning point at which a sudden change occurred, the so-called “spike” in the time 

sequence. The TP involves comparing the sum of the ranks of two subsets of data, which are divided 

by a threshold value, to determine whether there is a statistically significant change in the time 

sequence. This test can be used to analyse data with any distribution, and the test result does not 

depend on the assumption of normality of the data. The result of the Pettitt test is the value of the test 

statistic, which is compared with the critical value for the significance level to determine whether the 

null hypothesis of no abrupt change in the time sequence can be rejected.  
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PCPT is widely used to detect changes in observed climatic as well as hydrological time series 

[19,77–79]. In the present study, the existence of change points in the Shannon entropy time series for 

extreme values of monthly precipitation totals and monthly mean temperatures was checked. For 

time series showing a significant change point, the trend test is applied to the sub-series, and if the 

change point is not significant, the trend test is applied to the entire time series [19]. 

3.2. Analysis of Shannon’s Entropy Trend Variation 

This paper focuses on the variability of Shannon entropy in long-term sequences of precipitation 

and temperature to assess the polarity of climate phenomena. Shannon entropy was used as a 

measure of the indeterminacy and unpredictability of climate phenomena - precipitation and 

temperature - which allowed the study of the degree of variability of these sequences over time. An 

increase in Shannon entropy in precipitation sequences indicates increased variability in precipitation 

and potentially extreme weather events such as intense rains or droughts. Conversely, an increase in 

Shannon entropy in temperature sequences signals increased temperature variability and the 

potential for extreme events such as heat waves or extreme cold. Analysis of the variability of 

Shannon entropy enables the identification of areas where the climate becomes more polarised. 

Higher entropy values indicate greater climate variability and unpredictability, which can lead to 

significant changes in the local environment. These changes include shifts in the distribution of plant 

and animal species, changes in weather patterns and changes in sea level [80].  

The variability of entropy trends can be one of the key indicators of climate change, and its 

analysis can facilitate the understanding of future changes in precipitation and temperature. A 

decrease in entropy trends for precipitation may suggest that the region is experiencing periods of 

drought or extreme precipitation, which may result in flooding. An increase in precipitation entropy 

trends may indicate greater variability in the amount and timing of precipitation, which can lead to 

difficulties in managing water resources. Variability in temperature entropy trends can affect plant 

development, biological processes and animal migratio [81,82]. A decrease in temperature entropy 

trends may suggest a more stable climate but at the same time may lead to a lack of adaptation of 

organisms to changing conditions. An increase in temperature entropy trends may indicate 

increasingly unstable climatic conditions, which may lead to a risk of extreme weather events such 

as heat waves or storms.  

The assessment of Shannon entropy trends of extreme precipitation and temperature values is 

an important tool in studies of climate variability [83,84]. The analysis of historical observations 

allows the variability of precipitation and temperature to be accurately assessed according to the 

observed period and enables the form of the directions of these occurring changes to be determined 

[85]. The study of Shannon entropy allows the detection of trends and changes in these trends in 

extreme data. The application of statistical techniques, such as Shannon entropy trend analysis, can 

enable these effects to be predicted more accurately and appropriate preventive action to be taken. 

Finally, the application of statistical techniques in climate variability studies is particularly important 

in the context of predicting the variability of extreme events [27,86–92]. 

The study of the entropy trend change point, i.e., a change in the direction or nature of 

precipitation and temperature trends, can be the result of various atmospheric factors and 

phenomena. This study does not analyse the causes of changes in the direction or nature of trends. 

However, it is possible to note in general terms what may cause this change: 

 Climate cycles: multi-year and decadal climate cycles, such as El Niño and La Niña, the North 

Atlantic Oscillation (NAO) or the South-North Pacific Oscillation (ENSO), affect regional and 

global precipitation pa�erns; changes in these cycles can cause a switch in precipitation trends 

[93–95], 

 Changes in atmospheric circulation: changes in atmospheric circulation, such as changes in 

winds, atmospheric currents or high and low pressure systems, can affect local precipitation 

pa�erns [96], 
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 Changes in ocean surface temperature: ocean surface temperature is an important factor 

affecting regional precipitation pa�erns and ocean temperature anomalies such as El Niño and 

La Niña can affect precipitation changes [97], 

 Urbanisation: urban development and land use changes can affect local precipitation pa�erns 

through the so-called “heat island effect” and changes in air circulation [98], 

 Global climate change: climate changes related to human activities, such as greenhouse gas 

emissions and global warming, can affect changes in precipitation pa�erns on both global and 

regional scales [98],  

 Topography: landforms such as mountains and valleys can affect local precipitation pa�erns 

through the so-called “orographic effect” [32,98], 

 Ocean-atmosphere interactions: changes in ocean-atmosphere interactions, such as ocean 

currents and the phenomenon of deep ocean upwelling, can affect regional precipitation pa�erns 

[98], 

 Industrial development: the growth of industrial activities, particularly greenhouse gas 

emissions and air pollution associated with industrial activities, can affect climate change and 

precipitation pa�erns. Emissions of greenhouse gases such as carbon dioxide (CO2) and methane 

(CH4) cause global warming, which can affect regional precipitation pa�erns, in addition, air 

pollutants emi�ed by industry can affect cloud formation and rain [99], 

 Agricultural development, in particular changes in land use, can affect local precipitation 

pa�erns. Excessive deforestation and changes in soil use can affect air circulation and moisture, 

which can affect local precipitation pa�erns in addition to fertilization and irrigation practices 

in agriculture [98,99], 

 Melting of glaciers and ice caps: a reduction in the earth’s glaciers and ice caps affects albedo, or 

the ability of the surface to reflect solar radiation; a smaller ice cap leads to greater heat 

absorption by the earth, which contributes to global warming [98–100], 

 Changes in solar activity: fluctuations in solar activity can affect the amount of solar radiation 

reaching the earth, which affects climate and surface temperatures [98,99,101], 

 Volcanism: volcanic eruptions introduce large amounts of dust and gases into the atmosphere, 

which can affect global short-term temperature changes [100,102], 

 Other natural factors: in some cases, changes in temperature trends can be the result of natural 

climate changes, such as solar-magnetic cycles and changes in ocean circulation [103]. 

4. Results of the Analyses and Discussion 

In the present study, Shannon entropy trends were investigated based on long-term sequences 

of monthly precipitation totals and monthly mean temperatures for 377 catchments within six WMO 

regions. From the analysed data, sequences of minimum and maximum values of precipitation and 

temperatures were extracted. In assessing the form of the entropy trends for both precipitation and 

temperature, the bootstrap resampling technique was used to create Shannon entropy sequences and 

estimate GEV distribution parameters. The form of the trends was verified with the MKT test at the 

5% significance level. In addition, entropy trend change points were determined using the PCPT test 

at the 5% significance level. If the change point was positively verified at the 5% significance level, a 

new trend form was determined for the new sub-series using the MKT test. The applicability of the 

GEV distribution, for each analysed sequence of extreme values, was assessed using the ADT test at 

the 5% significance level. The results of the analyses are presented graphically. Graphical 

presentations of each aspect of the analysis performed enable the trend of change to be seen more 

easily and precisely. 

Figure 2 shows the Shannon entropy trends for the values of minimum monthly precipitation 

totals. The least negative values of entropy trends for minimum monthly precipitation values 

occurred in the river catchments shown in Table 2. It should be emphasised that in the catchment of 

the Daule River, Ecuador, the decreasing trend worsens, almost doubling from a value of (-0.040) to 

(-0.074). The nineteen-eighties is a period of changing trends. Fewer extreme drought or intense 

rainfall events can be expected in these catchments, which can have a positive impact on agriculture 

and water resources. Lower entropy for minimum precipitation may indicate more predictable 

precipitation patterns, which facilitates the planning and management of water resources. 
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Figure 2. Shannon entropy trends for values of minimum monthly precipitation totals. 

Table 2. River basins in which the smallest decreasing values of Shannon entropy trends were found 

for minimum monthly precipitation values at the 5% level of significance. 

Name of river 
Name of 

country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, min 

values 

Year of change of 

slope of Shannon 

entropy min values 

Slope of 

Shannon 

entropy, min 

values -

subseries 

  [km2] [bit/year]  [bit/year] 

Daly Australia 47000 -0.049 1990 -0.025 

Daule Ecuador 8690 -0.040 1988 -0.074 

Mahanadi River  India 132090 -0.036 1986 -0.006 

Canete Peru 4900 -0.033 1990 -0.017 

Fuerte Mexico 34247 -0.026 1990 -0.009 

Vinces Ecuador 4400 -0.023 1990 -0.014 

Little Mecatina River Canada 19100 -0.017 1989  

Kouilou Congo 55010 -0.015 1984  

Biobio Chile 24029 -0.014 1989 -0.012 

Esmeraldas Ecuador 18800 -0.014 1991 -0.010 

The largest values of entropy trends for the minimum values of monthly precipitation occurred 

in the river catchments shown in Table 3. It should be noted that in the catchment of the Anyuy River, 

Russian Federation, there is a decrease of more than four times the Shannon entropy from the value 

of 0.036 to 0.008 in 1990. The beginning of the nineteen=nineties was a period of changing trends. In 

the case of the catchment area of the Khatanga River, Russian Federation, there is a trend reversal 

from a value of 0.033 to a value of (-0.002). The trend collapse occurred in 1990. In these catchments, 

the increase in entropy for minimum precipitation means greater variability and instability of 
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atmospheric conditions, which can lead to longer periods of drought. This is particularly 

unfavourable for agriculture, as it causes a decrease in crop yields and worsens the food situation. 

Table 3. River catchments in which the largest increasing values of Shannon entropy trends were 

found for minimum monthly precipitation values at the 5% level of significance. 

Name of river Name of country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, min 

values 

Year of 

change of 

slope of 

Shannon 

entropy min 

values 

Slope of 

Shannon 

entropy, min 

values -

subseries 

  [km2] [bit/year]  [bit/year] 

Sittang River Myanmar 14660 0.044 1990 0.031 

Quoich River Canada 30100 0.040 1990 0.016 

Macarthur River Australia 10400 0.039 1990 0.032 

Bol. Anyuy Russian Feder. 49600 0.038 1990 0.011 

Ellice River Canada 16900 0.037 1989 0.019 

Anyuy Russian Feder. 30000 0.036 1990 0.008 

Baleine, Grande River Canada 29800 0.035 1990 0.014 

Khatanga Russian Feder. 275000 0.033 1990 -0.002 

Tapti River India 61575 0.030 1991 0.006 

Narmada India 89345 0.029 1992 0.001 

Ferguson River Canada 12400 0.029 1990 0.031 

Figure 3 shows Shannon entropy trends for the values of maximum monthly precipitation totals. 

The lowest values of entropy trends for the maximum values of monthly precipitation occurred in 

the river catchments shown in Table 4. In the case of the catchment of the St. Johns River: United 

States, a twofold deepening of the trend is shown, from a value of (-0.010) to (-0.020) in 1994. In the 

catchment of the Santa Cruz River, Argentina, there is an almost fourfold deepening of the trend, 

from a value of (-0.008) to a value of (-0.022) in 1997. The following can be expected in these 

catchments: a reduction in variability in rainfall intensity, which can affect water cycles and natural 

processes that are important for ecosystem health. However, an increase in the stability of high-

intensity precipitation may at the same time lead to flooding, which can have serious consequences 

for infrastructure and human life and health.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2024                   doi:10.20944/preprints202308.0260.v2



 13 

 

 

Figure 3. Shannon entropy trends for values of maximum monthly precipitation totals. 

Table 4. River basins in which the smallest decreasing values of Shannon entropy trends were found 

for maximum monthly precipitation values at the 5% level of significance. 

Name of river Name of country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, max 

values 

Year of change of 

slope of Shannon 

entropy max values 

Slope of Shannon 

entropy, max values 

-subseries 

  [km2] [bit/year]  [bit/year] 

Sakarya Turkey 55322 -0.015 1987 -0.025 

Stikine River United States 51593 -0.014 1987  

Brahmaputra Bangladesh 636130 -0.010 1988 -0.005 

St. Johns River United States 22921 -0.010 1994 -0.020 

Juba Somalia 179520 -0.009 1994 -0.004 

Loa Chile 33570 -0.009 1990  

Tana (No, Fi) Norway 14165 -0.009 1992 -0.013 

Ashburton 

River 
Australia 70200 -0.008 1995  

Tranh (Nr Thu 

Bon) 
Viet Nam 9153 -0.008 1994 -0.020 

Santa Cruz Argentina 15550 -0.008 1997 -0.022 

The largest entropy trend values for maximum monthly precipitation values occurred in the 

river catchments presented in Table 5. In the catchment of the Volta River: Ghana, a twofold decrease 

in trend values from 0.014 to 0.008 in 1990 is shown, and similarly in the Anyuy Russian Federation 

river catchment from 0.025 to 0.013 in 1990. The processes in these catchments indicate an increase in 

rainfall variability. This can affect water cycles and natural processes that are important for ecosystem 

health. On the one hand, an increase in maximum precipitation can benefit the ecosystems of dry 

regions, which need more water. On the other hand, increased maximum precipitation can lead to 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2024                   doi:10.20944/preprints202308.0260.v2



 14 

 

flooding and soil erosion. In that case, reducing the variability of maximum precipitation would be 

beneficial to the health of ecosystems. In the context of climate change, increased maximum 

precipitation is one of the expected effects of global warming. 

Table 5. River catchments in which the largest increasing values of Shannon entropy trends were 

found for monthly precipitation maxima at the 5% significance level. 

Name of river Name of country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, 

max values

Year of change 

of slope of 

Shannon 

entropy max 

values 

Slope of 

Shannon 

entropy, max 

values -

subseries 

  [km2] [bit/year]  [bit/year] 

Anyuy Russian Feder. 30000 0.025 1990 0.013 

Rio Maicuru Brazil 17072 0.018 1984  

Bol. Anyuy Russian Feder. 49600 0.018 1990  

San Pedro Mexico 25800 0.017 1995  

Brahmani River India 39033 0.016 1990 0.017 

Anadyr Russian Feder. 156000 0.016 1990 0.007 

Sassandra Cote D’ivoire 62000 0.016 1990 0.005 

Kinabatangan Malaysia 10800 0.016 1988  

Ponoy Russian Feder. 15200 0.016 1989 0.010 

Volta Ghana 394100 0.014 1990 0.008 

Figure 4 shows the Shannon entropy trends for the values of minimum monthly average 

temperatures. The lowest values of entropy trends for minimum monthly average temperatures 

occurred in the catchments shown in Table 6. The Churchill River catchment in Canada showed a 

twofold increase in trend from a value of (-0.007) to (-0.003) in 1987. In these catchments, the direction 

of the change in temperature entropy may suggest that temperature variability is less comparable 

with the past, so the climate is becoming more stable. 
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Figure 4. Shannon entropy trends for minimum values of monthly average temperatures. 

Table 6. River catchments in which the smallest decreasing values of Shannon entropy trends were 

found for minimum monthly average temperatures at the 5% level of significance. 

Name of river Name of country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, 

min values 

Year of change of 

slope of Shannon 

entropy min 

values 

Slope of 

Shannon 

entropy, min 

values -

subseries 

  [km2] [bit/year]  [bit/year] 

Rio Ribeira Do Igu Brazil 12450 -0.012 1990  

Chubut Argentina 16400 -0.010 1987  

Ellice River Canada 16900 -0.008 1994  

Orange South Africa 850530 -0.008 1986 -0.011 

Gilbert River Australia 11800 -0.008 1998 -0.010 

Penobscot River United States 19464 -0.008 1991  

Loa Chile 33570 -0.008 1997 -0.009 

Syr Darya Kazakhstan 402760 -0.007 1989 -0.009 

Churchill River Canada 287000 -0.007 1987 -0.003 

Mono Benin 21575 -0.007 1987 -0.010 

The largest entropy trend values for minimum monthly average temperatures occurred in the 

catchments presented in Table 7. The three catchments of Svarta, Skagafiroi, Iceland, Thjorsa, Iceland 

and Joekulsa A Fjoellu, Iceland, showed the largest trend values of 0.016 to 0.019. For the first two 

catchments, there was a threefold decrease in trend values to a magnitude of 0.006 to 0.005. For the 

third catchment, a year of trend change (1988) was shown, while the value of the new trend at the 5% 

significance level was not determined. An increase in temperature entropy can increase extreme 

weather conditions such as droughts, heat waves, hurricanes and storms, which can have negative 

effects on human, animal and environmental health. Increasing the entropy of minimum 

temperatures may be beneficial for agriculture and vegetation growth. However, more research is 

needed to better understand the effects of changes in temperature entropy and develop strategies to 

adapt to climate change. 

Table 7. River basins in which the largest increasing values of Shannon entropy trends were found 

for minimum monthly average temperatures at the 5% level of significance. 

Name of river Name of country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, 

min values 

Year of change of 

slope of 

Shannon 

entropy min 

values 

Slope of 

Shannon 

entropy, min 

values -

subseries 

  [km2] [bit/year]  [bit/year] 

Svarta, Skagafiroi Iceland 393 0.019 1990 0.006 

Thjorsa Iceland 7380 0.016 1988 0.005 

Joekulsa A Fjoellu Iceland 7074 0.016 1988  

Lempa El Salvador 18176 0.013 1989 0.011 

Pra Ghana 22714 0.013 1987 0.010 

Thames United Kingdo 9948 0.010 1991 0.007 

Grande De Matagalp Nicaragua 14646 0.009 1990 0.011 

Comoe Cote D’ivoire 69900 0.009 1990 0.012 

Grisalva Mexico 37702 0.009 1988  

Sabine River United States 24162 0.009 1991 0.007 

Figure 5 shows Shannon entropy trends for the values of maximum monthly average 

temperatures. The lowest values of entropy trends for maximum monthly average temperatures 

occurred in the catchments presented in Table 8. In the case of the catchment of the Nadym River, 
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Russian Federation, a doubling of the trend from a value of (-0.011) to a value of (-0.021) in 1991 is 

shown. In the catchment of the Loa River, Chile, there is a reversal of the weather pattern and a 

change in the direction of the trend from a value of (-0.011) to a value of 0.003 in 1983. In these 

catchments, the trend of maximum temperature entropy is decreasing and this means that the 

variability in high temperatures is decreasing, which may suggest that extreme heat becomes less 

common. This could have a beneficial effect on human health but could also affect ecosystems, 

including plants, animals and microorganisms that are adapted to certain temperatures. 

 

Figure 5. Shannon entropy trends for maximum values of monthly average temperatures. 

Table 8. River basins in which the smallest decreasing values of Shannon entropy trends were found 

for maximum monthly average temperatures at the 5% level of significance. 

Name of river Name of country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, max 

values 

Year of change of 

slope of Shannon 

entropy max values 

Slope of 

Shannon 

entropy, max 

values -

subseries 

  [km2] [bit/year]  [bit/year] 

Nadym Russian Feder. 48000 -0.011 1991 -0.021 

Loa Chile 33570 -0.011 1983 0.003 

Ferguson River Canada 12400 -0.011 1983  

Kouilou Congo 55010 -0.011 1986 -0.018 

Pahang Malaysia 19000 -0.009 1993  

Kelantan Malaysia 11900 -0.009 1998  

Karun Iran, Islamic 60769 -0.009 1984  

San Pedro Mexico 25800 -0.008 1987 -0.006 

Nelson River Canada 1060000 -0.008 1992  

Rhone France 95590 -0.008 1989 -0.003 

The largest entropy trend values for maximum monthly average temperatures occurred in the 

catchments presented in Table 9. The catchment of the Juba River, Somalia has a twofold decrease in 
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trend values from 0.010 to a value of 0.005 in 1990. An increase in temperature entropy can increase 

extreme weather conditions such as droughts, heat waves, hurricanes and storms, which can have 

negative effects on human, animal and environmental health. 

Table 9. River basins in which the largest increasing values of Shannon entropy trends were found 

for maximum monthly average temperatures at the 5% level of significance. 

Name of river 
Name of 

country 

Area 

catchment 

 

Slope of 

Shannon 

entropy, max 

values 

Year of change of 

slope of Shannon 

entropy max values 

Slope of 

Shannon 

entropy, max 

values -subseries 

  [km2] [bit/year]  [bit/year] 

Godavari India 299320 0.018 1991 0.014 

Tapti River India 61575 0.014 1988 0.008 

Mahi River India 33670 0.013 1990 0.016 

Lempa El Salvador 18176 0.013 1990  

Rio Ribeira Do Igu Brazil 12450 0.012 1992 0.012 

Narmada India 89345 0.011 1987  

Sacramento River United States 60885.7 0.010 1991 0.017 

Juba Somalia 179520 0.010 1990 0.005 

Nottaway Canada 57500 0.010 1991 0.008 

Dniestr Moldova, Repu 66100 0.009 1990 0.014 

Figure 6 shows the spatial location of the catchments in which the greatest dynamics of Shannon 

entropy trends for minimum and maximum values of precipitation and temperature were identified 

at the 5% significance level. The maximum values of the norm take the magnitude of 0.049 [bit/year] 

for the Daly river catchment, Australia, the smallest 4e-16 [bit/year] for the Kovda river catchment, 

Russian Federation, Table 10. Note that the dynamics of Shannon entropy for minimum and 

maximum monthly average precipitation compared to the dynamics of Shannon entropy for 

minimum and maximum monthly average temperatures is greater than 1 and takes values from 2.0 

to 19.8, Table 10. The almost twenty-times-greater dynamics in the Anyuy river catchment, Russian 

Federation, in the area of precipitation compared to the dynamics of temperature means that the 

variability of extreme precipitation values in this catchment is much greater than the variability of 

extreme temperature values. In other words, extreme precipitation events are more varied and 

extreme than extreme temperature events. This may indicate that the area experiences more extreme 

and varied precipitation-related weather conditions, such as floods, storms, heavy rains, droughts, 

etc., than temperature-related conditions, such as heat waves and freezing temperatures. 
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Figure 6. Catchments in which the greatest dynamics of Shannon entropy trends for extremes of 

precipitation and temperature were recognized at the 5% significance level. 

Table 10. River basins with the highest dynamics calculated from Shannon entropy trend values for 

minimum and maximum monthly average precipitation and minimum and maximum monthly 

average temperatures at the 5% significance level. 

Name of river 
Name of 

country 

Area 

catchment 

 

Dynamic of 

Shannon 

entropy of 

precipitation 

Dynamic of 

Shannon 

entropy of 

temperature 

Multiplicity 

of entropy 

dynamics of 

precipitation 

to 

temperature 

Total 

dynamic 

of 

Shannon 

entropy  

  [km2] [bit/year] [bit/year]  [bit/year] 

Daly Australia 47000 0.049 0.008 5.8 0.049 

Anyuy (Trib. Kolym Russian Feder. 30000 0.044 0.002 19.8 0.044 

Quoich River Canada 30100 0.041 0.007 5.7 0.041 

Macarthur River Australia 10400 0.039 0.008 4.8 0.040 

Ellice River Canada 16900 0.037 0.010 3.9 0.039 

Mahanadi River (Ma India 132090 0.036 0.006 6.4 0.037 

Khatanga Russian Feder. 275000 0.034 0.006 5.7 0.034 

Tapti River India 61575 0.030 0.015 2.0 0.033 

Narmada India 89345 0.029 0.011 2.7 0.031 

Santa Cruz Argentina 15550 0.026 0.007 3.8 0.027 

5. Summary  

This study demonstrates the applicability of the Shannon entropy measure in the analysis of 

climate change by allowing the degree of disorder and complexity of distributions describing climate 

variables in the form of precipitation and temperature to be measured. Catchment areas were 

identified where Shannon entropy trends were identified at a 5% level of significance in both 

temperature and precipitation. Possible weather patterns were also identified, as well as their 
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directions due to changes in these trends. A bootstrap method was used to evaluate the entropy 

trends. As a result, Shannon entropy trend values were obtained to assess the variability of climatic 

conditions in the 377 catchment areas. The presented analysis was based on annual minimum and 

maximum values calculated from mean values. Analysis of averages is statistically more stable, 

allows for a larger number of observations and better reflects typical values, which is important for 

detecting persistent trends and ongoing changes. 

The trend relationships of Shannon entropy in extreme precipitation and extreme temperature 

defined in this study can be characterised as follows: 

 An increase in the entropy of extreme precipitation can be related to increased variability in 

precipitation occurrence and intensity, which can affect extreme weather events such as 

downpours, floods or droughts. 

 A decrease in the entropy of extreme precipitation may indicate reduced variability in the 

occurrence of extreme precipitation, which may imply more stable precipitation pa�erns in an 

area. 

 An increase in the entropy of extreme temperature may reflect greater variability in temperature 

extremes, such as heat waves or sudden temperature drops.  

 A decrease in extreme temperature entropy may indicate less variability in extreme 

temperatures, which may suggest more stable thermal conditions in a given area. 

 A positive correlation between the entropy of extreme precipitation and the entropy of extreme 

temperature may indicate that changes in precipitation and temperature are occurring in similar 

pa�erns, which may be due to the influence of the same climatic factors. 

 A negative correlation between the entropy of extreme precipitation and the entropy of extreme 

temperature may indicate that variations in these two variables occur in opposite directions, 

which may be due to different factors influencing precipitation and temperature. 

 An increase in the entropy of extreme precipitation with a decrease in the entropy of extreme 

temperature may indicate variability in the occurrence of precipitation without much change in 

extreme temperature. 

 A decrease in the entropy of extreme precipitation with a simultaneous increase in the entropy 

of extreme temperature may indicate less variability in precipitation with greater variability in 

temperature. 

 The lack of a relationship between trends in the entropy of extreme precipitation and trends in 

the entropy of extreme temperature may suggest that the variability in these two variables is 

independent of each other and due to different factors. 

Noting the variability and relationships between the entropy trends of minimum and maximum 

precipitation and temperature can facilitate the analysis of climate change and forecasting extreme 

weather events. The analyses documented the conditions of climate variability in the area of 

precipitation and temperature, and these are key factors affecting the environment and water 

resources, which is particularly relevant for predicting the effects of hydrological floods and 

droughts, which have serious consequences for humanity and the environment.  

Shannon’s entropy measures the indeterminacy and unpredictability of information. In the case 

of climate change, entropy can facilitate the analysis of the various drivers of climate change and 

predict future impacts. It can help identify changes in atmospheric conditions, such as changes in 

temperature, precipitation and pressure, which may affect climate change. Entropy can also help 

analyse the complex interactions between different climate factors, such as atmospheric circulation, 

ocean circulation and the amount of solar radiation. It can also be used to assess the risk of climate 

change in assessing the probability of different climate change scenarios and in determining the 

degree of uncertainty associated with these scenarios. In addition, entropy can help identify different 

patterns of climate change, such as climate cycles in which periodic changes in solar radiation and 

ocean circulation influence climate change. Entropy can also be used to identify the complexity of 

climate and its systems, which can help us to understand how different factors influence climate 

change. Finally, entropy analysis can help develop strategies to manage the risks associated with 

climate change, which is particularly important in view of the increasing number of climate change-

related disasters such as hurricanes, floods and droughts. Shannon’s entropy is appropriate for 
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climate change analysis by enabling the measurement of the degree of disorder and the complexity 

of climate change distributions. It can help identify trends, cyclicity, fluctuations and anomalies in 

climate data, as well as forecasting future changes based on historical data. It can be used to analyse 

a variety of climate factors and to assess the effectiveness of measures to reduce the impact of human 

activities on the climate. 
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