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Abstract: The elastic wave equation with the seismic tensorial force is solved in a homogeneous and

isotropic medium (the Earth). Spherical-shell waves are obtained, which are associated to the primary

P and S seismic waves. It is shown that these waves produce secondary waves with sources on the

plane surface of a half-space, which have the form of abrupt walls with a long tail, propagating in the

interior and on the surface of the half-space. These secondary waves are associated to the seismic

mainshock. The results, previously reported, are re-derived by using Fourier transformations and

specific regularization procedures. The relevance of this seismic motion for the ground motion, the

seismographs’ recordings and the effect of the inhomogeneities in the medium are discussed.
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1. Introduction

A typical seismogram recorded on the Earth’s surface consists of a faible tremor followed by

an abrupt motion with a long tail.[1] The precursory tremor is associated to spherical-shell waves,

called primary seismic waves, while the abrupt motion is known as the seismic mainshock. Such a

seismogram is sketched in Figure 1. The interpretation of the seismograms was recognized since long

as the Seismological Problem (or Lamb’s problem).[2] It is known that this seismic motion originates in

a very small focal region, where a short, sudden disturbance occurs. In the absence of the knowledge

of the force acting in the seismic focus, the primary waves are derived by the so-called double-couple

procedure, based on the solution to the Stokes problem.[3] Apart from inconvenient restrictions to

particular orientations of the double couple, the result may include unphysical contributions.[4,5] The

mainshock, associated to Rayleigh surface waves,[6] is treated as a vibration problem.[7,8]

P S MS

t

Figure 1. Schematic representation of a typical seismogram, with the P and S waves and the mainshocks

MS; the arrow indicates the flow of the time t.

The force density acting in the seismic focus has been introduced in Ref. [9,10]. It reads

fi = TMijδ(t)∂jδ(R − R0) , (1)

where Mij are the cartesian components of a symmetrical tensor, known as the tensor of the seismic

moment; this force acts a very short time T in the seismic focus localized at the position R0. It

corresponds to a shearing fault. The total force and the total angular momentum of this force density

are zero, according to the physical requirements. The primary P (longitudinal) and S (transverse)
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seismic waves produced by this force in a homogeneous and isotropic elastic body have been derived,

in agreement with the recorded seismograms.[10] The force given by equation (1) corresponds to a

single rupture in the focus; several successive ruptures may appear (for a so-called structured focus),

with corresponding oscillations displayed by the seismic waves.

For limited distances the Earth may be approximated by a half-space with a plane surface. Once

arrived at the Earth’s surface, the primary waves generates surface sources which, in turn produce

secondary waves, according to Huygens’ principle. These secondary waves have the form of an abrupt

wall with a long tail (actually two walls, corresponding to the two primary waves), in agreement

with the mainshock exhibited by seismograms.[10] A structured focus may generate oscillations in the

mainshock.

Also, the static deformations of a (homogeneous and isotropic) elastic half-space generated by

the tensorial force density given by equation (1) have been computed,[9] as well as the vibrations of

the half-space. Moreover, the seismic-moment tensor was derived from measurements of the primary

waves at Earth’s surface (the so-called Inverse Seismological Problem).[11]

2. Elastic wave equation

The seismic waves are governed by the Navier-Cauchy equation[12]

üi − c2
t ∂j∂jui − (c2

l − c2
t )∂i∂juj = Tmijδ(t)∂jδ(R) , (2)

where ui are the Cartesian components of the local diplacement vector, ct,l are the transverse and

the longitudinal elastic wave velocities (in a homogeneous and isotropic elastic body), mij is the

symmetrical tensor of the seismic moment divided by the density of the medium and T denotes the

short duration of the force localized at the initial moment t = 0 in the seismic focus placed at R = 0.[10]

Equation (2) was solved for the seismic waves in Ref. [10] by using the decomposition in

Helmholtz potentials and the Kirchhoff formula. A certain regularization procedure was needed,

in order to remove unphysical contributions arising from the singular nature of the source term in

equation (2). We describe here a different method of solving the above equation, which throws more

light upon the singular, unphysical behaviour of the solution.

A direct way to solving equation (2) is to perform a Fourier transform, which gives

(ω2 − c2
t k2)ui − (c2

l − c2
t )kik juj = −iTmijk j . (3)

From this equation we get

kiui = −
iTmijkik j

ω2 − c2
l k2

, (4)

which inserted in equation (3) gives

ui = −
iTmijk j

ω2 − c2
t k2

− (c2
l − c2

t )
iTmjkkik jkk

(ω2 − c2
t k2)(ω2 − c2

l k2)
. (5)

We denote the fractions on the right in this equation by u
(1,2)
i and perform the reverse Fourier tranform.

We get

u
(1)
i = − iT

(2π)4

∫

dωdk
mijkj

ω2−c2
t k2 e−iωteikR =

= − T
(2π)4 mij∂j

∫

dωdk
e−iωteikR

(ω−ctk+iε)(ω+ctk+iε)
=

= T
4πct

mij∂j
δ(R−ctt)

R ,

(6)
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where we placed the ω-poles in the lower half-plane (ε → 0+), in order to get waves which obey the

causality principle (i.e., they are vanishing for t < 0 ).

A similar procedure for u
(2)
i gives

u
(2)
i =

T

2ct(2π)2
mjk∂i∂j∂k

1

R

∫ +∞

−∞

dk
1

k2
eik(R−ctt) − (t → l) . (7)

We can see that the k-integral in equation (7) is improper. We need to give a meaning to this integral.

We may use several procedures of regularizing this integral. For instance, we note that its second

derivative is a δ-function, so we may integrate twice the δ-function, with two constants which need to

be determined. Another procedure might be to use the integral

∫ +∞

−∞

dk
1

k
eik(R−ctt) (8)

as a principal value; it is iπsgn(R − ctt), and we can integrate it with a constant to be determined. Also,

we may view the integral in equation (8) as giving a θ-function. All these regularization procedures

give different results, and they need a justification.

3. Coulomb-potential regularization

Let us introduce the function

F = − T

2c(2π)2

1

R

∫ +∞

−∞

dk
1

k2
eik(R−ct) . (9)

The solution u
(2)
i reads

u
(2)
i = mjk∂i∂j∂k (Fl − Ft) , (10)

where Fl,t are obtained by replacing c by cl,t. The factor 1/k2 in equation (9) may be viewed as the

Fourier transform of the Coulomb potential. Indeed,

∫

dR
1

R
e−ikRe−µR =

4π

k2 + µ2
, (11)

where µ → 0+. This may suggest that F should be regularized by

F = − T

2c(2π)2

1

R

∫ +∞

−∞

dk
1

k2 + µ2
eik(R−ct) . (12)

On the other hand, by direct calculations we get from equation (9)

F̈ = c2
∆F = cT

4π
1
R δ(R − ct) ; (13)

in the limit R → 0 the term c2
∆F dominates, in comparison with F̈, so F satisfies the equation

F̈ − c2
∆F = − cT

4π

1

R
δ(ct) = − T

4π

1

R
δ(t) . (14)

If we integrate this equation with respect to the time, we get

∆

∫

dtF =
T

4πc2

1

R
; (15)
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indeed, from equation (9) we have

∫

dtF = − T

4πc2

1

R

∫

dk
δ(k)

k2 + µ2
eikR (16)

and

∆
∫

dtF = T
4πc2

1
R

∫

dk
k2δ(k)
k2+µ2 eikR =

= T
4πc2

1
R

∫

dkδ(k)eikR = T
4πc2

1
R .

(17)

It is easy to see that the µ-regularization does not work for the function F given by equation (12),

because we have already imposed the retarded-wave condition, while the µ-regularization requires the

presence of both retarded and advanced waves (according to the regularization of the static Coulomb

potential, equation (11)). Consequently, we must derive the function F from its wave equation (14),

and retain only the retarded solutions. By Fourier transforming equation (14), we get

F =
T

(k2 + µ2)(ω2 − c2k2)
(18)

and
F = T

(2π)4

∫

dωdk
e−iωteikR

(k2+µ2)(ω2−c2k2)
=

= − T
2c(2π)2R

∫

dk
k2+µ2

[

eik(R−ct) − eik(R+ct)
]

,

(19)

where we placed the ω-poles in the lower half-plane, according to the causality principle (such that

F = 0 for t < 0). We can see that the term eik(R+ct) gives in fact a damped contribution e−µ(R+ct),

although, formally, it looks like an advanced wave. The result of the integration in equation (19) is

F = − T

8πcRµ

{

eµ(R−ct) − e−µ(R+ct) , 0 < R < ct ,

e−µ(R−ct) − e−µ(R+ct) , 0 < ct < R .

}

. (20)

Here we may take the limit µ → 0 and get

F = − T

4πc

[

θ(ct − R) +
ct

R
θ(R − ct)

]

, (21)

for the retarded wave, where θ(0) = 1/2; the value 1/2 is expected for a series of continuous functions

which approximate the θ-function. This result has been previously obtained in Ref. [10], by solving

equation (14) with the Kirchhoff retarded potentials (where the function F has been introduced and

equation (14) established, by using the Helmholtz potentials for the Navier-Cauchy equation).

4. Seismic-wave regularization

First we note that the function F given by equation (21) for ct 6= R satisfies the free wave equation.

Therefore, the θ-contributions should be removed, and only the contributions for ct = R should be

retained. This is valid also for the derivatives of the prefactor of the θ function. The first-order spatial

derivative is

∂iF =
T

8πc

[

xi

R2
(R − ct)δ(R − ct) +

2ctxi

R3
θ(R − ct)

]

, (22)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0608.v1

https://doi.org/10.20944/preprints202308.0608.v1


5 of 11

where we introduced the factor 1/2 for θ(0) = 0. The first term in the above equation is zero, while

its derivatives are not; the second term should be disregarded, except for R = ct. The second-order

derivative is

∂i∂jF = T
8πc

(

δij

R − ctδij

R2 − xixj

R3 +
3ctxixj

R4

)

δ(R − ct)+

+ T
8πc

(

xixj

R2 − ctxixj

R3

)

δ
′
(R − ct)+

+ T
4πc

(

ctδij

R3 − 3ctxixj

R5

)

θ(R − ct) .

(23)

From equation (23) we get

∆F =
T

4πc

δ(R − ct)

R
+

T

8πc

(

1 − ct

R

)

δ
′
(R − ct) , (24)

which differs from equation (13) by the δ
′
-contribution. Consequently, the δ

′
-contribution must be

removed from ∂i∂jF. Also, according to the discussion above, the θ-contribution must be removed, so

we are left with the regularized expression

∂i∂jF =
T

8πc

(

δij

R
−

ctδij

R2
−

xixj

R3
+

3ctxixj

R4

)

δ(R − ct) . (25)

The regularization procedure described above amounts to viewing the function δ(R − ct) as a

function peaked on R = ct, of the order 1/l over a small distance l, and zero otherwise. Similarly, the

function δ
′
(R − ct) is of the order 1/l2 extended over l. Indeed, this way the δ

′
-function in equation

(23) brings a small contribution, which may be neglected.

Now, it is easy to compute mjk∂i∂j∂k in equation (10). In general, mjk∂k may be replaced by an

external force f j, which is applied to ∂i∂jF. It is not permissible to set ct = R in equation (25), because

f j may include derivatives, which, for the prefactor in equation (25), should be computed before setting

ct = R. For the derivative of the δ-function, we should put ct = R in its prefactor, in accordance to the

regularization of the quantity ∂i∂jF discussed above. We get

mjk∂i∂j∂k =

= T
8πcR3

(

mjjxi + 4mijxj −
9mjkxixjxk

R2

)

δ(R − ct)+

+ T
4πc

mjkxixjxk

R4 δ
′
(R − ct) ,

(26)

where we set ct = R in the δ
′
-contribution.

By making use of equations (6) and (10), we get the near-field displacement

un
i = − Tmijxj

4πctR3 δ(R − ctt)+

+ T
8πR3

(

mjjxi + 4mijxj −
9mjkxixjxk

R2

)

·

·
[

1
cl

δ(R − clt)− 1
ct

δ(R − ctt)
]

(27)
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and the far-field displacement (R ≫ l)

u
f
i =

Tmijxj

4πctR2 δ
′
(R − ctt)+

+
Tmjkxixjxk

4πR4

[

1
cl

δ
′
(R − clt)− 1

ct
δ
′
(R − ctt)

]

.

(28)

We can see that the far-field displacement consists of two spherical-shell waves, with a scissor-like

shape, one longitudinal, propagating with velocity cl , the other transverse, propagating with velocity

ct. These are the P and S seismic waves.[10] The relevance of the near-field displacement for the

derivation of the seismic-moment tensor has been discussed in Ref. [13].

5. Secondary waves

The focus of a typical earthquake is localized both in space and time, in a point beneath the Earth’s

surface. During the short time of releasing the seismic energy in an earthquake, the focus produces

two primary waves, which look like spherical shells, propagating with the longitudinal and transverse

elastic wave velocities cl,t. These primary waves are known in seismology as the P and S seismic

waves. Once arrived at Earth’s surface, such a primary wave generates a circular wavefront on the

surface, which propagates with a velocity v, greater than the velocity c of the primary wave. The

difference between the two velocities goes to zero for large epicentral distances. These wavefronts are

localized on the surface in an infinitesimal torus. According to the Huygens principle, they generate

secondary waves, which give the seismic mainshock. The displacement is given by the derivatives of

some potentials, denoted here generically by ψ. These potentials satisfy the wave equation

ψ̈ − c2
∆ψ = δ(r − vt)δ(z) , (29)

where r is the position vector parallel to the surface and t denotes the time; the surface is viewed as a

plane surface, placed at z = 0. The velocity v is considered constant. This equation can be called the

mainshock equation. The (homogeneous and isotropic) elastic medium occupies the half-space z < 0.

The above equation is valid for a limited range of epicentral distances r, centered on a value of the

order of the depth of the focus.[10]

We introduce the notation

F(R, t) = δ(r − vt)δ(z) , (30)

where R = (r, z), and compare equation (29) with the same equation with the source S = δ(R)δ(t) =

δ(r)δ(z)δ(t). The solution of this latter equation is the spherical wave δ(R − ct)/4πcR. We note that

the source S is singular in a point with four coordinates (time included), while the source F is singular

in a set of points, each with three coordinates, placed along a line (r = vt). Therefore, the source F is

more singular than the source S, so we expect a divergent solution of equation (29). The singularity is

more effective for a larger size of the length of the line r = ct, i.e. for large r, so we need, at least, a

small cutoff wavevector.

We show below that equation (29) has a regular solution for v ≃ c, when the source may be

treated as a boundary condition, in accordance with the standard procedure.

We perform the Fourier transform of equation (29),

(ω2 − c2K2)ψ(ω, K) = −F(ω, K) , (31)

where K = (k, κ) and

F(ω, K) =
∫

dtdRδ(r − vt)δ(z)eiωte−iKR =

= 1
v

∫

dreiωr/ve−ikr = 2π
v

∫

dr · reiωr/v J0(kr) ,

(32)
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where J0(kr) is the Bessel function. This expression can also be written as

F(ω, K) = 2π
v

∂
∂(iω/v)

∫

dreiωr/v J0(kr) =

= − 2πi
vk2

∂
∂λ

∫

∞

0 dxeiλx J0(x) ,

(33)

where λ = ω/vk. The integral in the second row of equation (33) is the Weyl-Sommerfeld integral,

I(λ) =
∫

∞

0
dxeiλx J0(x) =

θ(1− | λ |)√
1 − λ2

+ isgn(λ)
θ(| λ | −1)√

λ2 − 1
. (34)

Therefore, from equation (31) we get

ψ(R, t) = i
(2π)3v

∫

dωdK
∂I/∂λ

k2(ω−cK+iε)(ω+cK+iε)
e−iωteiKR , (35)

where ε → 0+. We place the ω-poles in the lower half-plane in order to have ψ = 0 for t < 0, according

to the causality principle. Henceforth, we consider t > 0 only. Equation (35) can also be written as

ψ(R, t) = i
(2π)3v2

∫

dλdK
∂I/∂λ

k3(λ−λ1)(λ−λ2)
e−ivktλeiKR , (36)

where λ1 = cK/vk − iε and λ2 = −cK/vk − iε. We need to compute ∂I/∂λ for λ1,2, by using equation

(34). We get

(∂I/∂λ)λ1
=







λ0

(1−λ2
0)

3/2 , λ0 = cK/vk < 1 ,

− iλ0

(λ2
0−1)3/2 , λ0 = cK/vk > 1

(37)

and

(∂I/∂λ)λ2
=







− λ0

(1−λ2
0)

3/2 , λ0 = cK/vk < 1 ,

− iλ0

(λ2
0−1)3/2 , λ0 = cK/vk > 1 .

(38)

It follows

ψ(R, t) = 1
(2π)2v2

∫

dK
1
k3







cos cKt
(1−λ2

0)
3/2

− sin cKt
(λ2

0−1)3/2







eiKR =

= v
(2π)2

∫

dK

{

cos cKt
(v2k2−c2K2)3/2

− sin cKt
(c2K2−v2k2)3/2

}

eiKR ,

(39)

where the expressions under the square root are positive.

The function ψ(R, t) given by equation (39) is a superposition of plane waves eicKt+iKR and

e−icKt+iKR; we must retain only the outgoing wave e−icKt+iKR, in accordance with the causality

principle, so equation (39) becomes

ψ(R, t) =
v

2(2π)2

∫

dK

{

1
(v2k2−c2K2)3/2

− i
(c2K2−v2k2)3/2

}

e−icKteiKR (40)

(where in the second row we must add the complex conjugate and divide by 2). Also, the wave should

be progressive, i.e. ct > R, a condition which can also be writen as

c2t2
> R2 = r2 + z2 ; (41)

otherwise, the wave is zero.
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6. Mainshock

For v close to c only the second row in equation (40) is valid. By using γ2 = v2/c2 − 1, equation

(40) can be written as

ψ(R, t) = − iv
2(2π)2c3

∫

dkdκ e−ic
√

κ2+k2t

(κ2−γ2k2)3/2 eiκzeikr =

= − iv
4πc3

∫

dkkJ0(kr)
∫

dκ 1
(κ2−γ2k2)3/2 e−ic

√
κ2+k2teiκz .

(42)

For z < 0 the κ-integration must be carried out in the lower half-plane. The integrand has two branch

points at κ = ±γk. It is easy to see that the integral along this branch cut is singular, as expected.

According to the discussion above, we put v = c and displace the pole κ = 0 slightly below in the

lower half-plane. This operation provides the standard procedure of treating the source as a boundary

condition. For v = c (γ = 0) the integral in equation (42) becomes

ψ(R, t) ≃ − i

4πc2

∫

dkkJ0(kr)
∫

dκ
1

κ3
e−ic

√
κ2+k2teiκz . (43)

The pole placed slightly below κ = 0 plays the role of a lower cutoff wavevector. The calculation of

this contribution is performed by writing

e−ic
√

κ2+k2teiκz = e−ictke−ictκ2/2keiκz ≃

≃ e−ictk
(

1 + iκz − κ2z2

2 − i ctκ2

2k + ...
)

,

(44)

which leads to
ψ(R, t) ≃ i

8πc2 {z2
∫

dkkJ0(kr)e−ictk+

+ict
∫

dkJ0(kr)e−ictk}
∫

dκ 1
κ .

(45)

Straightforward calculations give

ψ(R, t) ≃ i
4c2 { z2

r2
∂

∂λ

∫

dxe−iλx J0(x)+

+λ
∫

dxe−iλx J0(x)} ,

(46)

where λ = ct/r (>1 ). By making use of equation (34), we get

ψ(R, t) ≃ 1

4c2

(

c2t2 − r2 − z2
)

ct

(c2t2 − r2)3/2
(47)

for ct > r (i.e. c2t2 > r2, and c2t2 > r2 + z2). This is precisely the result obtained previously.[10] In

order to account for the small difference between the two velocities, from the denominator in equation

(42) we may infer that K should be replaced by Kv/c in the exponent of equation (43), which amounts

to replacing the time t by the retarded time τ = tc/v.

We can check by direct calculations that

ψ̈ − c2
∆ψ = ψ̈ − c2

(

∂2ψ

∂r2
+

∂ψ

r∂r
+

∂2ψ

∂z2

)

= 0 , (48)

except for z → 0, r → ct. The singularity at ct = r in equation (47) (for z = 0), arises from the sharpness

of the δ-functions of the source term in equation (29). It can be smoothed out by replacing ct − r by l,

where l is an infinitesimal distance.
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The solution given by equation (47) has a spherical wavefront r2 + z2 = c2t2; it has a rapid

variation with r and a rather slow variation with z, so it may be viewed as a quasi-cylindrical wave,

with a wall-like structure. It corresponds to the seismic mainshock. We can see that the potential given

by equation (47) and its spatial derivatives (the displacement) look like an abrupt wall with a long tail,

propagating with velocity c in the interior of the Earth and on its surface. Actually, we get two such

walls, corresponding to the two primary P and S waves, propagating with velocities cl,t.

7. Site response and inhomogeneities

The δ-functions occurring in these problems should be viewed as highly-peaked functions over

a small region. For instance, δ(R) which occurs in the tensorial force acting in the earthquake focus

(equation (1)) is approximately 1/l3 over a small region with dimension l, where l is of the order of the

dimension of the seismic focus. The cutoff length l occurs also in the primary seismic waves derived

above (equations (28)). It is related to the elastic energy stored in the seismic focus, and released during

an earthquake. A measure of the seismic energy is the earthquake (moment) magnitude Mw, such that,

for instance, for an earthquake with magnitude Mw = 7 we get l = 316m (for a density ρ = 5g/cm3 of

the Earth and an average velocity c = 5km/s of the elastic waves). However, the extension of the spot

left by the seismic waves on the Earth’s surface is much larger. This is so, because of the energy loss

suffered by the seismic waves during their propagation through the Earth.

The results presented above relate to a homogeneous and isotropic medium, while the Earth is

recognized as inhomogeneous and anisotropic. The spatial distribution of a wave is characterized by

its Fourier transform. Let us take a far-field seismic wave of the form

u =
δ
′
(R − ct)

R
; (49)

its Fourier transform is

u(K) =
∫

dR
δ
′
(R − ct)

R
e−iKR = −4π cos cKt. (50)

When encountering an inhomogeneity, this wave sets in motion its particles, and even the

inhomogeneity as a whole. Consequently, the incident wave loses energy, which is transferred to

the inhomogeneity, which, in turn, generates secondary waves; part of the energy may be dissipated.

Obviously, the effect is larger for small wavelengths, which are numerous, due to the large number of

distinct directions for a large K. This is the wave scattering, with a possible energy loss (absorption). It

is reasonable to assume that inhomogeneities are distributed relatively uniformly, over their various

size and mean separation distance. Consequently, we expect a secondary (scattered) diffuse radiation,

with a large content of small wavelengths. It follows that the incident wave content is diminished

isotropically, with a larger weigth for small wavelengths. This amounts to modify the Fourier transform

given above according to

u(K) = −4πe−αK cos cKt , (51)

where the parameter α characterizes the inhomogeneities distribution. The resulting reverse Fourier

transform is
u = − 4π

(2π)3

∫

dKe−αK cos cKteiKR =

= 1
πR

∂
∂R

α
(R−ct)2+α2 ,

(52)

where we retain only the retarded waves. We can see that we recover the incident wave given by

equation (49) in the limit α → 0. The effect of the inhomogeneities, included in the parameter α,

is a flattening of the δ
′
-incident wave, which gets a a larger width l0 = 2α/

√
3 > l and a smaller

heigth ≃ 1/l2
0 . The ratio l0/l may attain values of the order of ten.[14] The scissor-like structure of the

primary seismic waves shows that the frequency content of these waves is mainly centered on a single
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frequency, of the order of the wave velocity to the dimension of the seismic focus (c/l0). Therefore, the

Fourier analysis of the primary waves may give an estimate of the dimension of the focus.[14]

The P and S seismic waves and the mainshock derived above are the seismic motion, generated

by a point-like seismic focus acting a short time interval. These results are obtained by assuming a

homogeneous and isotropic elastic medium (the Earth). This assumption is valid for an average of the

elastic properties of the medium. As long as we are interested in the overall, average behaviour of

the elastic motion, this is a satisfactory hypothesis. However, if we are interested in the local elastic

motion, the elastic particularities of the site should be taken into account. In a simple model, any site

may be viewed as a damped harmonic oscillator, with frequency ωg, connected by elastic forces to

its surroundings. The seismic motion acts as an external force upon such an oscillator. The resulting

motion is the ground motion. It consists of the original, scissor-like primary seismic waves and the

wall-like seismic mainshock, over which the damped ωg-oscillations of the site are superposed; these

damped oscillations are the seismic response of the site. In the ground motion the long tail of the

seismic mainshock is governed by the damping coefficient of the site. In turn, the ground motion acts

as an external force upon the seismographs (or the structures built on the Earth’s surface). As a simple

model, we may take a linear damped harmonic oscillator for the seismograph, with frequency ωs,

such that the seismograms record the ωg,s-oscillations, superposed over the original seismic motion.

All these results are included in Ref. [14], where an estimation is also given of the maximum (peak)

values of the ground-motion displacement, velocity and acceleration, which may be useful as input

parameters for seismic hazard studies.

8. Concluding remarks

The primary seismic waves and the sesimic mainshock are derived for a homogeneous and

isotropic half-space with a plane surface (the Earth), by solving the elastic wave equation with the

seismic tensorial force acting a very short time (time-impulse) in a localized (point-like) seismic focus.

The solution is the seismic motion. It is known as the Seismological, or Lamb’s, Problem. The results

reported previously are re-derived by using a new method, which emphasizes the regularization

procedure. The time-impulse and point-like tensorial force is a combination of a temporal δ-function

and derivatives of a spatial δ-functions (equation (1)). The equation of the elastic motion with such a

source term may be called a singular equation. The singular nature of such a source leads to singular,

improper solutions and unphysical contributions. Therefore, a regularization procedure is necessary.

The regularization procedure employed here includes both a Coulomb-potential type regularization,

due to the use of the Fourier expansions, and a seismic-wave regularization, specific to the singular

elastic wave equation. This regularization procedure amounts to using a long wavelength cutoff

(Coulomb potential), an approximation by continuous-function series for the step θ-function, the

removal of superfluous solutions of the free-wave equation and a small cutoff time/length for the

peaked temporal/spatial δ-distribution.

In addition, a summary information is provided for the effect of the inhomogeneities and the site

response in determining the ground motion and the seismographs’ recordings.
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