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Abstract: The elastic wave equation with the seismic tensorial force is solved in a homogeneous and
isotropic medium (the Earth). Spherical-shell waves are obtained, which are associated to the primary
P and S seismic waves. It is shown that these waves produce secondary waves with sources on the
plane surface of a half-space, which have the form of abrupt walls with a long tail, propagating in the
interior and on the surface of the half-space. These secondary waves are associated to the seismic
mainshock. The results, previously reported, are re-derived by using Fourier transformations and
specific regularization procedures. The relevance of this seismic motion for the ground motion, the
seismographs’ recordings and the effect of the inhomogeneities in the medium are discussed.
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1. Introduction

A typical seismogram recorded on the Earth’s surface consists of a faible tremor followed by
an abrupt motion with a long tail.[1] The precursory tremor is associated to spherical-shell waves,
called primary seismic waves, while the abrupt motion is known as the seismic mainshock. Such a
seismogram is sketched in Figure 1. The interpretation of the seismograms was recognized since long
as the Seismological Problem (or Lamb’s problem).[2] It is known that this seismic motion originates in
a very small focal region, where a short, sudden disturbance occurs. In the absence of the knowledge
of the force acting in the seismic focus, the primary waves are derived by the so-called double-couple
procedure, based on the solution to the Stokes problem.[3] Apart from inconvenient restrictions to
particular orientations of the double couple, the result may include unphysical contributions.[4,5] The
mainshock, associated to Rayleigh surface waves,[6] is treated as a vibration problem.[7,8]

P S MS

b

Figure 1. Schematic representation of a typical seismogram, with the P and S waves and the mainshocks
MS; the arrow indicates the flow of the time ¢.

The force density acting in the seismic focus has been introduced in Ref. [9,10]. It reads
fi = TM;j6(t)0;0(R — Ry) , 1)

where M;; are the cartesian components of a symmetrical tensor, known as the tensor of the seismic
moment; this force acts a very short time T in the seismic focus localized at the position Ry. It
corresponds to a shearing fault. The total force and the total angular momentum of this force density
are zero, according to the physical requirements. The primary P (longitudinal) and S (transverse)
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seismic waves produced by this force in a homogeneous and isotropic elastic body have been derived,
in agreement with the recorded seismograms.[10] The force given by equation (1) corresponds to a
single rupture in the focus; several successive ruptures may appear (for a so-called structured focus),
with corresponding oscillations displayed by the seismic waves.

For limited distances the Earth may be approximated by a half-space with a plane surface. Once
arrived at the Earth’s surface, the primary waves generates surface sources which, in turn produce
secondary waves, according to Huygens’ principle. These secondary waves have the form of an abrupt
wall with a long tail (actually two walls, corresponding to the two primary waves), in agreement
with the mainshock exhibited by seismograms.[10] A structured focus may generate oscillations in the
mainshock.

Also, the static deformations of a (homogeneous and isotropic) elastic half-space generated by
the tensorial force density given by equation (1) have been computed,[9] as well as the vibrations of
the half-space. Moreover, the seismic-moment tensor was derived from measurements of the primary
waves at Earth’s surface (the so-called Inverse Seismological Problem).[11]

2. Elastic wave equation

The seismic waves are governed by the Navier-Cauchy equation[12]
i; — C%a]a]ul — (Clz — C%)ala]u] = Tml]§(t)a]5(R) p (2)

where u; are the Cartesian components of the local diplacement vector, c;; are the transverse and
the longitudinal elastic wave velocities (in a homogeneous and isotropic elastic body), m;; is the
symmetrical tensor of the seismic moment divided by the density of the medium and T denotes the
short duration of the force localized at the initial moment ¢ = 0 in the seismic focus placed at R = 0.[10]

Equation (2) was solved for the seismic waves in Ref. [10] by using the decomposition in
Helmbholtz potentials and the Kirchhoff formula. A certain regularization procedure was needed,
in order to remove unphysical contributions arising from the singular nature of the source term in
equation (2). We describe here a different method of solving the above equation, which throws more
light upon the singular, unphysical behaviour of the solution.

A direct way to solving equation (2) is to perform a Fourier transform, which gives

(wz — C%kz)ui - (Clz — C%)k,k]u] = —iTmi]'k]' . (3)
From this equation we get
kiu; = _wz,clzkz ’ 4

which inserted in equation (3) gives

w? — c2k2

> ) iTm]-kkikjkk
— (7 — . 5
(Cl Ct) (wz — C%kz)(wz — Clzkz) ( )

U= —

(12)

We denote the fractions on the right in this equation by u;

We get

and perform the reverse Fourier tranform.

Migki it oikR _
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where we placed the w-poles in the lower half-plane (¢ — 07), in order to get waves which obey the
causality principle (i.e., they are vanishing for t < 0).

(2)

A similar procedure for u;” gives
S —— / k— k(R=cit) _(f 5 ] 7
1/[1 th (2 ) ]k ko R d ( - ) : ( )

We can see that the k-integral in equation (7) is improper. We need to give a meaning to this integral.

We may use several procedures of regularizing this integral. For instance, we note that its second
derivative is a 6-function, so we may integrate twice the /-function, with two constants which need to
be determined. Another procedure might be to use the integral

+o0 .
/ dk%elk(Rfctt) (8)

—00

as a principal value; it is irtsgn (R — ¢;t), and we can integrate it with a constant to be determined. Also,
we may view the integral in equation (8) as giving a 6-function. All these regularization procedures
give different results, and they need a justification.

3. Coulomb-potential regularization

Let us introduce the function

F=- 27'(2R/ S ©

(2)

The solution u;”’ reads

1/[1(2) = m]kaza]ak (Pl — Ft) ’ (10)

where F; are obtained by replacing ¢ by ¢;;. The factor 1/ K in equation (9) may be viewed as the
Fourier transform of the Coulomb potential. Indeed,

4r
fkR
/dR e ! m ’ (11)

where  — 07. This may suggest that F should be regularized by

_ T 1 e 1 ik(R—ct)
b= 2c¢(27)2 R /_oo dkk2 + yze ' (12)

On the other hand, by direct calculations we get from equation (9)

F=c2AF = L45(R—ct) ; (13)
in the limit R — 0 the term c>AF dominates, in comparison with F, so F satisfies the equation

.. cT 1 T 1
F—c*AF = gt = =2 (t) - (14)

If we integrate this equation with respect to the time, we get

T 1
A | dtF= ———; 1
/ 472 R’ (15)
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indeed, from equation (9) we have

T 1, 6k
Jarr=— 54 Wiz (16)

and

k=5(k)
AJdtF = Lo [ dkiEeR =

(17)

_ T 1 kR _ T 1
= 4m2§fdk5(k)e’ = 2R

It is easy to see that the p-regularization does not work for the function F given by equation (12),
because we have already imposed the retarded-wave condition, while the y-regularization requires the
presence of both retarded and advanced waves (according to the regularization of the static Coulomb
potential, equation (11)). Consequently, we must derive the function F from its wave equation (14),
and retain only the retarded solutions. By Fourier transforming equation (14), we get

T

T e ) i

and e—iwt oikR
F = Gy | Aok g oy =

(19)

— T dk ik(R—ct ik(R+ct

=~z | i [ -]

where we placed the w-poles in the lower half-plane, according to the causality principle (such that
F = 0 for t < 0). We can see that the term ¢*(R+¢") gives in fact a damped contribution e~ #(R+¢t),

although, formally, it looks like an advanced wave. The result of the integration in equation (19) is

T eH(R=ct) _p=p(Rtet) 0 < R < ct
S A e (20)
87cRy | e MR—ct) _p=u(Rtct) 0 < of <R .
Here we may take the limit 4 — 0 and get
T ct
F= T [G(d —R)+ §6(R - ct)} , (21)

for the retarded wave, where 0(0) = 1/2; the value 1/2 is expected for a series of continuous functions
which approximate the §-function. This result has been previously obtained in Ref. [10], by solving
equation (14) with the Kirchhoff retarded potentials (where the function F has been introduced and
equation (14) established, by using the Helmholtz potentials for the Navier-Cauchy equation).

4. Seismic-wave regularization

First we note that the function F given by equation (21) for ct # R satisfies the free wave equation.
Therefore, the 6-contributions should be removed, and only the contributions for ¢t = R should be
retained. This is valid also for the derivatives of the prefactor of the 6 function. The first-order spatial

derivative is
T X

8mc | R2

O;F = (R—ct)o(R —ct) + ZXig(R —ct)| (22)
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where we introduced the factor 1/2 for (0) = 0. The first term in the above equation is zero, while
its derivatives are not; the second term should be disregarded, except for R = ct. The second-order
derivative is

i ctd;; XiX; 3ctxjx;
00;F = 5 (% — T — o+ gt S(R—ct)+
XiXi ctxix- /
g ( - R3]) 5 (R —ct)+ (23)

+o (T - T oR—ct) .

e RS

From equation (23) we get

T 6(R—ct) T ct\ o
— - = R — 24
A=t r e (l R) O (R—ct) , @4)

which differs from equation (13) by the ¢'-contribution. Consequently, the ¢'-contribution must be
removed from 81-8]-1-“ . Also, according to the discussion above, the 6-contribution must be removed, so
we are left with the regularized expression

T 5,‘]' Ctél’]' XiXj 3ctxixj
87c

The regularization procedure described above amounts to viewing the function §(R — ct) as a
function peaked on R = ct, of the order 1/I over a small distance /, and zero otherwise. Similarly, the
function ' (R — ct) is of the order 1/12 extended over I. Indeed, this way the & -function in equation
(23) brings a small contribution, which may be neglected.

Now, it is easy to compute m;;0;0;0y in equation (10). In general, mdy may be replaced by an
external force f;, which is applied to 9;d;F. It is not permissible to set ¢t = R in equation (25), because
fj may include derivatives, which, for the prefactor in equation (25), should be computed before setting
ct = R. For the derivative of the J-function, we should put ct = R in its prefactor, in accordance to the
regularization of the quantity 0,0, F discussed above. We get

m]kala]ak =

97ijij]'xk

T m]'kx,'ijk /
+m RE (5 (R — Ct) P

where we set ¢t = R in the 6 -contribution.
By making use of equations (6) and (10), we get the near-field displacement

Tmi]'Xj

ult = 747rctR35(R —cet)+
Om jxixix
+ 5 (mjjxi + dmyjx; — — k) : (27)

[26(R—t) - Lo(R— )]

Cy Ct
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and the far-field displacement (R > )

Tmijx]'
47TC¢R2

Ll{ 5 (R — Ctt) +

(28)
Tmjx;ixix, / /
TR [375 (R—ct) — L6/ (R~ ctt)] .
We can see that the far-field displacement consists of two spherical-shell waves, with a scissor-like
shape, one longitudinal, propagating with velocity c;, the other transverse, propagating with velocity
ct. These are the P and S seismic waves.[10] The relevance of the near-field displacement for the
derivation of the seismic-moment tensor has been discussed in Ref. [13].

5. Secondary waves

The focus of a typical earthquake is localized both in space and time, in a point beneath the Earth’s
surface. During the short time of releasing the seismic energy in an earthquake, the focus produces
two primary waves, which look like spherical shells, propagating with the longitudinal and transverse
elastic wave velocities ¢;;. These primary waves are known in seismology as the P and S seismic
waves. Once arrived at Earth’s surface, such a primary wave generates a circular wavefront on the
surface, which propagates with a velocity v, greater than the velocity ¢ of the primary wave. The
difference between the two velocities goes to zero for large epicentral distances. These wavefronts are
localized on the surface in an infinitesimal torus. According to the Huygens principle, they generate
secondary waves, which give the seismic mainshock. The displacement is given by the derivatives of
some potentials, denoted here generically by . These potentials satisfy the wave equation

P — CZAIIJ =6(r—ot)é(z) , (29)

where r is the position vector parallel to the surface and t denotes the time; the surface is viewed as a
plane surface, placed at z = 0. The velocity v is considered constant. This equation can be called the
mainshock equation. The (homogeneous and isotropic) elastic medium occupies the half-space z < 0.
The above equation is valid for a limited range of epicentral distances r, centered on a value of the
order of the depth of the focus.[10]
We introduce the notation
F(R,t) =6(r—vt)é(z2) , (30)

where R = (r,z), and compare equation (29) with the same equation with the source S = §(R)4(t) =
0(r)d(z)6(t). The solution of this latter equation is the spherical wave é(R — ct) /4tcR. We note that
the source S is singular in a point with four coordinates (time included), while the source F is singular
in a set of points, each with three coordinates, placed along a line (r = vt). Therefore, the source F is
more singular than the source S, so we expect a divergent solution of equation (29). The singularity is
more effective for a larger size of the length of the line » = ct, i.e. for large r, so we need, at least, a
small cutoff wavevector.

We show below that equation (29) has a regular solution for v ~ ¢, when the source may be
treated as a boundary condition, in accordance with the standard procedure.

We perform the Fourier transform of equation (29),

(w? — 2K p(w,K) = —F(w,K) , (31)

where K = (k,x) and
F(w,K) = [ dtdR6(r — vt)é(z)eiwte KR —
(32)
= %fdreiwr/vefikr — 2771 fdf’ . T’Eiwr/v]()(kr) ,
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where Jy(kr) is the Bessel function. This expression can also be written as

F(w,K) = 2

%

iwr/v]g(ki’) _
(33)
= ﬁ?zl ax Jo dxe™Jo(x)

where A = w/vk. The integral in the second row of equation (33) is the Weyl-Sommerfeld integral,

0= [ o) = LD @A -

Therefore, from equation (31) we get

dI/IA —iwt ,iIKR
P(R 1) = otys; [ dwdK g U5l e e R (35)

where ¢ — 0. We place the w-poles in the lower half-plane in order to have i = 0 for t < 0, according
to the causality principle. Henceforth, we consider ¢ > 0 only. Equation (35) can also be written as

] 91/dA —i i
P(R,t) = W fdAdee ivktA iKR (36)

where Ay = cK/vk —ieand A, = —cK/vk — ie. We need to compute d1/0A for A, by using equation
(34). We get

Ay
——s , Ag=cK/vk <1,
(aI/aA)Al _ (1- /\2)3/2 (37)
W' Ay = cK/vk > 1
and )
——=0 Ay =cK/vk <1
1-2y372 7 0 ’
@1/, =0 T (38)
(/\%71)3/2 ’ AO CK/Uk >1.
It follows
cos cKt
1—)2)3/2 .
YR 1) = (27‘( (2n)20? deks _( sir?gKt KR —
()%_1)3/2
39)

sin cKt
(ZK2—02k2)372

cos cKt
_ ( U)z de{ (vzsz.c2K2)3/2 }eiKR
27 _ 4

where the expressions under the square root are positive.
The function (R, t) given by equation (39) is a superposition of plane waves e/KI+KR and
e~ieKI+HKR, we must retain only the outgoing wave e *KI+KR in accordance with the causahty

principle, so equation (39) becomes
1
1P(R,t) = Lz /dK (02k2762i1<2)3/2 o~ icKt 5iKR (40)
2(27m) S el

(where in the second row we must add the complex conjugate and divide by 2). Also, the wave should
be progressive, i.e. ct > R, a condition which can also be writen as

202 5 R2 =424+ 2% (41)

otherwise, the wave is zero.

doi:10.20944/preprints202308.0608.v1
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6. Mainshock

For v close to ¢ only the second row in equation (40) is valid. By using 72 = v?/c? — 1, equation
(40) can be written as
710\/mt ; ;
IIJ(R, t) = 2 3 fddem@mzelkr =
(42)

= _471;23 fdkk]O(kr) deme*iC\/mteikz )

For z < 0 the x-integration must be carried out in the lower half-plane. The integrand has two branch
points at ¥ = k. It is easy to see that the integral along this branch cut is singular, as expected.
According to the discussion above, we put v = ¢ and displace the pole x = 0 slightly below in the
lower half-plane. This operation provides the standard procedure of treating the source as a boundary
condition. For v = ¢ (y = 0) the integral in equation (42) becomes

i 1 . o,
P(R,t) ~ —W/dkk]()(kr) /dxge ieViEHR ginz (43)

The pole placed slightly below x = 0 plays the role of a lower cutoff wavevector. The calculation of
this contribution is performed by writing

eficx/ K2+k2tei1cz _ efictkefictic2 /2keiKZ ~

(44)
~e lCtk(l—i—sz %— %—F ) ,
which leads to ) )
P(R, 1) ~ o5 {2 [ dkk]o(kr)e "+
(45)
+ict [ dkJo(kr)e Y} [ dicl
Straightforward calculations give
(R, 1) = gh {5 3y [ dxe M o(x)+
(46)
+A [dxe" ¥ Jo(x)}
where A = ct/r (>1). By making use of equation (34), we get
1 (P2 —r2—22)ct
IP(R, t) = TCQ (Cztz — 1"2)3/2 (47)

for ct > r (i.e. c*t? > r?, and c?t?> > r? + z?). This is precisely the result obtained previously.[10] In
order to account for the small difference between the two velocities, from the denominator in equation
(42) we may infer that K should be replaced by Kv/c in the exponent of equation (43), which amounts
to replacing the time ¢ by the retarded time T = tc/v.

We can check by direct calculations that

2
P — Ay = — <M+a¢+¢>=0, (48)

or2  ror  9z2

except for z — 0, r — ct. The singularity at ct = r in equation (47) (for z = 0), arises from the sharpness
of the J-functions of the source term in equation (29). It can be smoothed out by replacing ct — r by I,
where [ is an infinitesimal distance.

doi:10.20944/preprints202308.0608.v1
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The solution given by equation (47) has a spherical wavefront r> + z2 = c2t?; it has a rapid
variation with r and a rather slow variation with z, so it may be viewed as a quasi-cylindrical wave,
with a wall-like structure. It corresponds to the seismic mainshock. We can see that the potential given
by equation (47) and its spatial derivatives (the displacement) look like an abrupt wall with a long tail,
propagating with velocity c in the interior of the Earth and on its surface. Actually, we get two such

walls, corresponding to the two primary P and S waves, propagating with velocities c; ;.

7. Site response and inhomogeneities

The J-functions occurring in these problems should be viewed as highly-peaked functions over
a small region. For instance, 6(R) which occurs in the tensorial force acting in the earthquake focus
(equation (1)) is approximately 1/ 13 over a small region with dimension I/, where [ is of the order of the
dimension of the seismic focus. The cutoff length [ occurs also in the primary seismic waves derived
above (equations (28)). It is related to the elastic energy stored in the seismic focus, and released during
an earthquake. A measure of the seismic energy is the earthquake (moment) magnitude M, such that,
for instance, for an earthquake with magnitude My, = 7 we get | = 316m (for a density p = 5g/cm?> of
the Earth and an average velocity ¢ = 5km /s of the elastic waves). However, the extension of the spot
left by the seismic waves on the Earth’s surface is much larger. This is so, because of the energy loss
suffered by the seismic waves during their propagation through the Earth.

The results presented above relate to a homogeneous and isotropic medium, while the Earth is
recognized as inhomogeneous and anisotropic. The spatial distribution of a wave is characterized by
its Fourier transform. Let us take a far-field seismic wave of the form

/

O (R—ct)

u= R ;

(49)

its Fourier transform is

u(K) = / dRMe—”‘R = —471 cos cKt. (50)

When encountering an inhomogeneity, this wave sets in motion its particles, and even the
inhomogeneity as a whole. Consequently, the incident wave loses energy, which is transferred to
the inhomogeneity, which, in turn, generates secondary waves; part of the energy may be dissipated.
Obviously, the effect is larger for small wavelengths, which are numerous, due to the large number of
distinct directions for a large K. This is the wave scattering, with a possible energy loss (absorption). It
is reasonable to assume that inhomogeneities are distributed relatively uniformly, over their various
size and mean separation distance. Consequently, we expect a secondary (scattered) diffuse radiation,
with a large content of small wavelengths. It follows that the incident wave content is diminished
isotropically, with a larger weigth for small wavelengths. This amounts to modify the Fourier transform
given above according to

u(K) = —4me *KcoscKt , (51)

where the parameter a characterizes the inhomogeneities distribution. The resulting reverse Fourier

transform is

U= S dKe K cos cKteKR =

__An
(2m)?
(52)
_ 1 9 o

" 7ROIR (R—ct)2+a2 ’
where we retain only the retarded waves. We can see that we recover the incident wave given by
equation (49) in the limit # — 0. The effect of the inhomogeneities, included in the parameter «,
is a flattening of the ¢ -incident wave, which gets a a larger width Iy = 2a/+/3 > I and a smaller
heigth ~ 1/ Zg. The ratio Iy /] may attain values of the order of ten.[14] The scissor-like structure of the

primary seismic waves shows that the frequency content of these waves is mainly centered on a single
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frequency, of the order of the wave velocity to the dimension of the seismic focus (c/Iy). Therefore, the
Fourier analysis of the primary waves may give an estimate of the dimension of the focus.[14]

The P and S seismic waves and the mainshock derived above are the seismic motion, generated
by a point-like seismic focus acting a short time interval. These results are obtained by assuming a
homogeneous and isotropic elastic medium (the Earth). This assumption is valid for an average of the
elastic properties of the medium. As long as we are interested in the overall, average behaviour of
the elastic motion, this is a satisfactory hypothesis. However, if we are interested in the local elastic
motion, the elastic particularities of the site should be taken into account. In a simple model, any site
may be viewed as a damped harmonic oscillator, with frequency wg, connected by elastic forces to
its surroundings. The seismic motion acts as an external force upon such an oscillator. The resulting
motion is the ground motion. It consists of the original, scissor-like primary seismic waves and the
wall-like seismic mainshock, over which the damped wq-oscillations of the site are superposed; these
damped oscillations are the seismic response of the site. In the ground motion the long tail of the
seismic mainshock is governed by the damping coefficient of the site. In turn, the ground motion acts
as an external force upon the seismographs (or the structures built on the Earth’s surface). As a simple
model, we may take a linear damped harmonic oscillator for the seismograph, with frequency ws,
such that the seismograms record the wy s-oscillations, superposed over the original seismic motion.
All these results are included in Ref. [14], where an estimation is also given of the maximum (peak)
values of the ground-motion displacement, velocity and acceleration, which may be useful as input
parameters for seismic hazard studies.

8. Concluding remarks

The primary seismic waves and the sesimic mainshock are derived for a homogeneous and
isotropic half-space with a plane surface (the Earth), by solving the elastic wave equation with the
seismic tensorial force acting a very short time (time-impulse) in a localized (point-like) seismic focus.
The solution is the seismic motion. It is known as the Seismological, or Lamb’s, Problem. The results
reported previously are re-derived by using a new method, which emphasizes the regularization
procedure. The time-impulse and point-like tensorial force is a combination of a temporal J-function
and derivatives of a spatial J-functions (equation (1)). The equation of the elastic motion with such a
source term may be called a singular equation. The singular nature of such a source leads to singular,
improper solutions and unphysical contributions. Therefore, a regularization procedure is necessary.
The regularization procedure employed here includes both a Coulomb-potential type regularization,
due to the use of the Fourier expansions, and a seismic-wave regularization, specific to the singular
elastic wave equation. This regularization procedure amounts to using a long wavelength cutoff
(Coulomb potential), an approximation by continuous-function series for the step 6-function, the
removal of superfluous solutions of the free-wave equation and a small cutoff time/length for the
peaked temporal/spatial J-distribution.

In addition, a summary information is provided for the effect of the inhomogeneities and the site
response in determining the ground motion and the seismographs’ recordings.
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