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Abstract: Due to the complex underground environment, pumping machines are prone to produce

numerous failures. The indicator diagrams of faults are similar in a certain degree, which produces

indistinguishable samples. As the samples increases, manual diagnosis becomes difficult, which

decreases the accuracy of fault diagnosis. For accurately and quickly judging the fault type, we

propose an improved adaptive activation function and apply it to five types of neural networks. The

adaptive activation function improves the negative semi-axis slope of the ReLU activation function by

combining the gated channel conversion unit to improve the performance of the deep learning model.

The proposed adaptive activation function is compared with the traditional activation function

through the fault diagnosis data set and the public data set. The results show that the activation

function has better nonlinearity, can improve the generalization performance of deep learning model,

the accuracy of fault diagnosis. In addition, the proposed adaptive activation function can also be

well embedded in other neural networks.

Keywords: deep learning; fault diagnosis; adaptive activation function; pumping unit

1. Introduction

The fault diagnosis of the pumping unit in the process of petroleum collection has been a critical

research topic. Due to the complex underground environment, during the reciprocate movement of the

sucker rod, there are many unknown factors, which are prone to result in the failure of the pumping

machine and then form a safety hazard. Load (P) and displacement (S) are the parameters generated

when the donkey head of the pumping unit moves up and down, and the closed curve formed by

them is the indicator diagram. It can reflect the influence of gas, oil, water, sand, wax and other factors

on pumping unit in real time [1]. If the pump is in the fault state for a long time, the wear of the pump

will be aggravated and the service life of the equipment will be further reduced.

The traditional method for fault diagnosis of pumping unit is to measure the load change with

displacement at the suspension point, draw the suspension point indicator diagram, and then diagnose

the working condition of the pumping unit according to the shape of the indicator diagram. The

disadvantages of the traditional method are as follows: first, the fault of the pumping unit is judged

mainly by the method of manual identification of indicator diagram, which has great influence

on human factors and low recognition accuracy. Secondly, due to the large number and wide

distribution of pumped Wells, manual detection of Wells is time-consuming and laborious. However,

as the complexity and high cost of pump units, there is less tolerance for performance degradation,

productivity decrease, and safety hazards, therefore, it is necessary to detect and identify all potential

faults rapidly [2,3]. It means that it is imperative to replace the manual fault diagnosis of the pumping

unit with a computer.
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With the continuous progress of deep learning technology, using deep learning technology for

fault diagnosis has become a new trend. For example, Convolutional Neural Network [4] , Generation

Adversarial Network [5], and Long Short Term Memory[6] et.al show superior performance in fault

diagnosis.

At present, the deep learning technology used in fault diagnosis of pumping unit is to classify

the indicator diagram of different kinds of faults. Automatic feature extracted from raw data is

an outstanding advantage of deep learning technology, and it will not depend on the diagnostic

knowledge of specialists [7].

In 2018, Y.Duan[8] proposed an improved Alexnet model to realize the automatic recognition

of indicator graphs, and compared it with the current common neural network model. In 2019, J.

Sang [9] proposed a PSO-BP neural network algorithm, aiming at the problems of slow convergence

and unstable results of the traditional BP neural network algorithm, designed the adjustment rules

of the inertia weight and learning factor of the PSO algorithm, and adjusted the weight coefficient

of the output layer and the hidden layer of the BP neural network algorithm. In 2020, L.Zhang [10]

used Freeman chain code and differential code to extract the characteristics of dynamometer card

data of pumping unit group. Then a diagnosis model based on BP neural network was proposed,

and the fault type of pump group can be automatically identified according to dynamometer card. In

2022, H.Hu[11] proposed a model based on the ResNet-34 residual network to identify the indicator

diagrams, which added a residual block structure to the traditional convolutional neural network to

establish a direct connection between the upper layer input and the lower layer output and achieved

the recognition and classification of six power diagrams through parameter adjustment. In the same

year, T.Bai[12] proposed a fault diagnosis method based on time series transformation generative

adversation network (TSC-DCGAN).

Because of the complexity of pumps working conditions, there are different shapes of indicator

diagrams in different working states. The indicator diagrams of different kinds of faults are similar in

a certain degree thus indistinguishable samples are produced. This will lead to poor generalization

ability of deep learning models and difficulty in between indistinguishable samples. The function of

activation function is to carry out nonlinear transformation of data and solve the problem of insufficient

expression and classification ability of linear model. If the network is all linear transformation, then

the multi-layer network can be directly converted into a layer of neural network through matrix

transformation. Therefore, the existence of activation function can make the deep learning model

perform better with the increase of the number of layers. Therefore, we will propose a new activation

function to imporove the generalization performance of the deep learning model, so that the faults of

the pumping unit can be distinguished in a high dimensional space.

Rectifying linear unit(ReLU)[13], which has low computational complexity and fast convergence

speed, can solve the problems of gradient disappearance and gradient saturation. In recent years,

there have been many improved versions of ReLU (rectified linear unit). To solve the Dead ReLU

phenomenon, the negative part of ReLU is substituted for a non-zero slope and Leaky ReLU [14] is

proposed. Hence Leaky ReLU is more inclined to activate in the negative area.

In deep learning, the selection of activation function is generally determined according to the

specific situation, and there is no fixed choice. As the adaptive activation function can be automatically

adjusted to adapt to the network structure and practical problems, it has been widely developed.

Parametric Rectified Linear Unit (PReLU) [15]is also used to solve the Dead ReLU phenomenon. The

slope of the negative part can be obtained by learning from the data, rather than from defined fixed

values. Therefore, PReLU has all the advantages of ReLU in theory and is more flexible than Leaky

ReLU. In 2017, the Swish activation function was proposed. It has the characteristics of lower bound,

no upper bound and non-monotonic. It is very smooth with its first derivative [16], and its performance

is better than ReLU in many aspects. In 2021, H.Hu [17] proposed a new scheme to explore the optimal

activation function with greater flexibility and adaptability by adding only a few parameters on the

basis of traditional activation functions such as Sigmoid, Tanh and ReLU. This method avoids local
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minima by introducing a few parameters into a fixed activation function. In the same year, M.Zhao

[18] used the specially designed subnetwork of Resnet-APReLU as an embedded module in order to

adaptively generate the multiplicative coefficient in nonlinear transformation.

Based on the above discussions, an adaptive activation function combined with the gate-controlled

channel transfer unit module (GCT)[19] is designed in this paper. The main contributions are as follows:

1. We propose an improved adaptive activation function. Each layer of deep learning generates

different activation functions, improves the generalization performance of deep learning models,

and has strong adaptability to different deep learning models.
2. We apply the proposed activation function to the fault diagnosis of pumping unit, so as to better

extract features from the contours of the indicator diagram. The proposed activation function

improves the accuracy of fault diagnosis and has a better search ability, which is verified and

comprared with AlexNet[20], VGG-16[21], GoogleNet[22], ResNet[23] and DenseNet[24].
3. The propose activation function is extended to the public datasets CIFAR10 which proves that the

proposed activation function is suitable and universal.

The rest of this paper is organized as follows. In section 2, we introduce the pumping unit data

set. In section 3, we introduce the common adaptive activation function, and propose the composition

of our adaptive activation function. In section 4, the experimental analysis and the discussion on the

pumping unit failure data set and the public dataset are presented. In section 5, we conclude the paper.

2. Experiment Design and Measurement

2.1. Introduction to pumping unit

At present, about 80 % of oil wells in most oil fields in China use rod pumping equipments, and

the most widely used is the beam pumping unit[25]. The failure data set of pumping unit comes from

the real data generated by the pumping unit operation in a certain oil field of Northeast China. The

pumping unit is a part of a rod pumping unit. Rod pumping equipment is mainly composed of three

parts: oil pumping unit, well pumping pump and sucker rod. The Rod pumping equipment is shown

in Figure 1.

The pumping unit is driven by a motor and through the reducer transmission system and the

execution system, the rod and the pump plunger are driven to move up and down, and finally the

crude oil is lifted from the well to the surface. The operation of the pumping unit is shown in Figure 2.

Figure 1. Pumping machine equipment

2.2. Fault types of pumping unit

The fault data set of pumping unit consists of nine types of indicator diagrams: normal, insufficient

fluid supply, contain sand, piston stuck, gas influence, pump up touch, pump down touch, double

valve leakage, and pumping rod detachment. The following details will be introduced:
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Figure 2. The operation of the pumping unit.

1. Normal

The pump work diagram made by normal operation refers to the position shift of the end

suspension point relative to the lower dead point as the transverse setting mark, the self-weight

force of the rod and the cumulative load received by the pump plug as the longitudinal setting

mark. Drawn in parallel quadrilateral shape.
2. Insufficient fluid supply

The shortage of liquid supply is due to the insufficient amount of crude oil in the well, and the

plunger pump inhales a large amount of air while drawing crude oil each time. As a result, a

large amount of gas in the pump cannot be fully operated.
3. Contain sand

Because the well contains sand, the plunger creates an additional resistance in an area during

movement. The additional resistance on the up stroke increases the load at the suspension point

and on the down stroke at the same position. The increased resistance reduces the load at the

suspension point. Because the distribution of sand particles in the pump barrel is not the same,

its influence on the load varies greatly in various places, so it will lead to severe fluctuations in

the load in a short time.
4. Piston stuck

When the pump plunger is stuck near the bottom dead point, the rod is in a stretched state

during the up stroke and the down stroke since the whole stroke is actually the process of elastic

deformation of the rod, the well work diagram at this time is approximately an oblique line.
5. Gas interference

The gas interference is the situation that the gas precent in the oil of the pumping well is high,

while the crude oil precent is relatively low. This causes the pump barrel to extract most of the

gas, resulting in a significant difference between the actual load and the theoretical load.
6. Pump down touch

When the anti-impact distance is too large, the piston running up is approaching the upper

dead point, and the continuous upward movement of the piston collides with the moving val,

which leads to the sudden loading of the piston and the bunching at the upper dead point.
7. Pump up touch

When the anti-impact distance is too small, it is attached to the lower dead point, and the piston

moves down and collides with the fixed Val, resulting in sudden unloading of the piston and

bunching at the lower dead point.
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8. Double valve leakage

Double valve leakage refers to the situation where both the moving valve leakage and the

fixed valve leakage happen at the same time, and the leakage may be caused by a combination of

multiple faults.
9. Pumping rod detachment

The pumping unit’s power cannot be transmitted to the pump due to the detachment of the

sucker rod, resulting in the inability to extract oil.

The failure of pumping unit will cause great economic losses and security risks. Therefore, rapid

and accurate fault diagnosis of pumping unit is very necessary. The fault diagnosis process in this

paper is as follows: Firstly, the displacement and load data of the pumping unit are collected by

wireless dynamometer. Secondly, the indicator diagram of various faults is drawn by the collected

data. Finally, the indicator diagram is preprocessed, and then the indicator diagram is input into the

deep learning model to output the fault type. The fault diagnosis flow chart of the pumping unit in

this paper is shown in Figure 3.

Figure 3. Fault diagnosis flow chart of pumping unit
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3. Theoretical Analysis

3.1. Common adaptive activation functions

PReLU activation function is a further improvement on the fixed predefined slope of LeakyReLU,

which can be changed by backpropagation. It has better adapt ability [13] than LeakyReLU. The

formula of activation function is as follows:

f (x) = Max(x, 0) + δMin(x, 0) (1)

where x is the input, δ is the trainable multiplicative coefficient (i.e., slope). Each layer has its own

δ, which improves the nonlinear capability. In PReLU, δ in Eq.(1) is the learnable parameter during

training, but it is δ constant and cannot be adjusted during testing.

The design of Swish activation function [16] is inspired by Long Short-term Memory (LSTM)

neural network. The Swish activation function can prevent the gradient from gradually approaching

zero and leading to saturation during training. It plays an important role in optimization and

generalization. The formula of Swish activation function is as follows:

f (x) = xSigmoid(ζx) (2)

where β is the learnable parameter or constant. When ζ = 0, the Swish activation function becomes

the linear function f (x) = x/2. When ζ =∞, the Swish activation function becomes 0 or x, which is

equivalent to ReLU activation function. Therefore, the Swish activation function can be considered as

a smooth function between linear function and ReLU activation function.

Compared with ReLU, Mish activation function is smoother at the origin [26]. The formula is as

follows:

f (x) = x tanh(In(1 + ex)) (3)

From Eq.(3), Mish Activation function has no upper limit, but only a lower limit, which can ensure no

saturated region, thus there will be no vanishing gradient during the training. At the same time, it has

a faster convergence speed.

3.2. The structure of adaptive activation functions

The structure of adaptive activation functions are shown in Figure 4. The input of the subnetwork

is concatenated by the one-dimensional vector obtained from the two inputs. The two inputs are

positive features after separation and negative features after separation. The separation of positive and

negative features can highlight the key features. The following calculation paths are GCT→GAP→FC→

Batch Nomoalation(BN)→ ReLU→ FC→ BN→ Sigmoid →Scales. The function of each layer is

described in following section.

Figure 4. Graph of adaptive activation functions
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GCT combines normalization methods and attention mechanisms, which makes it easy to analyze

the relationships (competition orcooperation) between channels. As shown in Figure 5, The GCT

module introduces three trainable parameters α, β and γ to evaluate the communication channels.

Among them, α helps embed the output adaptive ability, while β and γ are used to control the activation

threshold, which determines the behavior of GCT in each channel. h and w are the dimensions of

feature vectors, c is the number of channals, and L2-norm is the normalization of L2.

Figure 5. GCT structure drawing

Global average pooling (GAP) can replace the fully connected (FC) layer to achieve dimensionality

reduction. Eespically, it retains the spatial information extracted from the previous convolutional

layers and pooling layers and can also strengthen the relationship between categories and feature

maps [27].

ReLU is selected as the activation function of FC in the first layer to reduce the computational

complexity and keep the gradient value within a reasonable range for feature extraction. The formula

is as follows:

f (x) =

{

x, x ≥ 0

0, x < 0
(4)

Then we add BN layer, which is a way to unify the scattered data and is similar to normal data

standardization. It is also a way to optimize the neural network. The data with unified specifications

can make it easier to learn the rules in the data for the deep learning model [28] and can also solve the

problem of vanishing gradient. The normalization is described by the following formula:

µ =
1

Nbatch

Nbatch

∑
i=1

xi (5)

σ2 =
1

Nbatch

Nbatch

∑
i=1

(xi − µ)2 (6)

∧
x
i
=

xi − µ√
σ2 + ε

(7)

yi = ψ
∧
x
i
+ θ (8)

where xi and yi are the observed input and output of each Nbatch, µ represents the mean of the input,

σ2 represents the variance of the input, ε is a constant near zero, and θ, ψ are learnable parameters

governing the scaling and shifting distributions. The activation function of the second FC layer is

Sigmoid, which can limit the output value during the interval (0,1) and prevent excessive slope from

affecting the performance of the activation function.
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To summarize the above contents, the proposed adaptive activation function has the ability to

automatically learn complex features. Different nonlinear transformation is applied to different inputs

to improve the generalization performance of deep learning model, which will well solve the problems

in extracting feature contour of indicator diagram and sparsity of indicator diagram in pumping unit

fault diagnosis. The following experimental simulation will verify the effectiveness of the designed

adaptive activation function.

4. Experimental simulation

This section mainly verified the performance of our activation function which was tested on

AlexNet[20], VGG-16[21], GoogleNet [22], ResNet [23] and DenseNet [24]. The structure diagrams of

these five networks are shown in Figure 6. Moreover, we compared our activation function with the

traditional activation functions such as ReLU, Sigmoid, Tanh, LReLU and PReLU.

Figure 6. Network architectures of AlexNet,VGG-16,GoogleNet,ResNet, DenseNet

The experiment is mainly divided into two parts. The first part is the simulation on the fault

diagnosis dataset of pumping unit. This will prove that the proposed adaptive activation function can

extract the features of the indicator diagram and solve the sparsity problem of the indicator diagrams.

The improvement in fault diagnosis accuracy indicates that indistinguishable samples are correctly

classified. The second part is to verify the superiority of the designed adaptive activation function on

the public dataset CIFAR10.

4.1. The dataset of pumping

Adaptive Moment Estimation (Adam) was used here, and the initial learning rate was 0.001. The

epoch of training was no less than 200. The average accuracy of each model is shown in Table 1. In the

fault diagnosis data set of pumping unit, the adaptive activation function proposed in this paper has

the greatest accuracy improvement in the ResNet model. Compared to traditional activation function

ReLU, Tanh, Sigmoid, LeakReLU, PReLU, Mish, Swish, the average accuracy of ResNet model with

our activation function respectively increased by 1.7%, 5.09%, 5.72%, 2.54%, 1.46%, 1.75%, 1.56%.
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Table 1. CLASSIFICATION PRECISION OF VARIOUS ACTIVATION FUNCTIONS FOR DIFFERENT

MODELS ON PUMPING MACHINE FAULT DIAGNOSIS

Methods AlexNet(%) VGG-16(%) GoogleNet(%) ResNet(%) DenseNet(%)

Ours 97.91±0.4997 97.57±0.2658 99.13±0.1941 97.82±0.4061 97.52±0.4706
ReLU 97.33±0.5534 96.94±0.9537 98.56±0.3220 96.12±0.6140 96.89±0.0970
Sigmoid 94.51±0.4930 96.41±0.3567 96.17±0.2831 92.14±0.2145 94.17±0.6584
Tanh 96.41±0.3220 97.04±0.4706 97.91±0.3632 94.66±0.3070 95.05±0.4231
LReLU 97.48±0.8209 97.14±0.5405 98.74±0.2830 95.28±0.9029 96.36±0.5091
PReLU 97.43±0.6254 97.04±0.3220 98.74±0.6584 96.36±0.5091 97.04±0.3883
Mish 97.23±0.6063 96.02±0.6254 98.74±0.2830 96.07±0.3883 97.17±0.1144
Swish 97.72±0.3292 95.15±0.8547 98.74±0.1816 96.26±0.3943 96.75±0.5661

Confusion matrix is a common index and visualization tool to evaluate the results of the

classification model and it can judge the advantages and disadvantages of classifiers. The rows

of the matrix represent the true value, and the columns of the matrix represent the predicted value.

The confusion matrix can respectively count the number of the wrong classification and the right

classification, and then display the results in a matrix. Figure 7 shows the confusion matrix of the

five models for the pumping unit fault data set. It can be seen that the designed adaptive activation

function can effectively represent the mapping relationship between the displacement and the load in

the indicator diagram, and extract the features of the indicator diagram, thus those indistinguishable

samples are correctly classified. Table 2 gives the accuracy of various types of faults for the five models,

which proves that the proposed adaptive activation function can be well applied in the five models

and has great adaptability to the models.

(a) AlexNet (b) VGG-16 (c) GoogleNet

(d) ResNet (e) DenseNet

Figure 7. The confusion matrix of the five models of the pumping unit fault diagnosis dataset.
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Table 2. DIAGNOSTIC ACCURACY OF FIVE MODELS FOR EACH FAULT TYPE OF PUMPING

UNIT

The type of fault AlexNet VGG-16 GoogleNet ResNet DenseNet

Pump up touch 0.96 0.98 0.90 0.96 0.90
Pumping rod detachment 1.00 0.98 0.96 0.98 1.00
Insufficient liquid supply 0.94 0.95 0.93 0.95 0.91
Contain sand 1.00 1.00 1.00 1.00 1.00
Piston stuck 1.00 0.98 0.98 1.00 0.97
Gas influence 0.89 0.92 0.98 0.92 1.00
Double valve leakage 1.00 1.00 1.00 1.00 1.00
Pump down touch 0.94 0.92 0.93 0.90 0.96
Normal 1.00 1.00 1.00 1.00 1.00

The loss function curve is shown in Figure 8. Among them, (a) AlexNet, (b) VGG-16 and (e)

DenseNet have fast convergence speed. The loss functions of (d) ResNet and (e) GoogleNet decline

relatively slowly, but eventually converge to the optimal value.

(a) AlexNet (b) VGG-16 (c) GoogleNet

(d) ResNet (e) DenseNet

Figure 8. The decline curve of the loss function.

4.2. CIFAR10

We used CIFAR10 data set to conduct experiments and analysed AlexNet, VGG-16, GoogleNet,

ResNet and DenseNet models with our activation function and the traditional activation functions.

We augmented the data to reduce overfitting. The Adam was used with the initial learning rate 0.001.

The epoch of training was no less than 200. The average accuracy of each model is shown in Table 3,

where the designed activation function improves the performances of those. Among them, AlexNet,

VGG-16 and DenseNet have the best performance. Compared with the traditional activation functions

ReLU, Tanh, Sigmoid, LeakReLU, PReLU, Swish, and Mish, our activation function in AlexNet model

is improved respectively by 1.84%, 4.11%, 5.45%, 0.79%, 2.74%, 1.91%, 2.04%; our activation function

in VGG-16 model is improved respectively by 3.1%, 4.54%, 4.45%, 0.48%, 2.02%, 4.69%, 3.94%; our

activation function in DenseNet model is improved respectively by 1.88%, 5.1%, 9.63%, 1.07%, 0.61%,

0.35%, 0.37%. The above data indicate the superiority of the proposed activation function.
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Table 3. CLASSIFICATION PRECISION OF VARIOUS ACTIVATION FUNCTIONS FOR DIFFERENT

MODELS ON CIFAR10

Methods AlexNet(%) VGG-16(%) GoogleNet(%) ResNet(%) DenseNet(%)

Ours 91.10±0.0445 93.86±0.0406 90.35±0.1070 91.73±0.0231 92.30±0.0681
ReLU 89.26±0.0576 90.76±0.0987 89.00±0.0337 90.27±0.0034 90.42±0.0846
Sigmoid 85.65±0.0365 89.32±0.1127 87.23±0.0485 88.06±0.0835 82.67±0.2110
Tanh 86.99±0.2432 89.41±0.0189 83.69±0.0402 88.68±0.0414 87.20±0.0745
LReLU 90.31±0.2147 93.38±0.0414 89.70±0.0527 91.24±0.1059 91.23±0.0684
PReLU 88.36±0.0436 91.84±0.0633 89.31±0.0454 91.08±0.0637 91.69±0.0755
Mish 89.07±0.0847 89.92±0.0577 88.64±0.0729 91.12±0.7960 91.97±0.0758
Swish 89.19±0.0628 89.19±0.0618 88.94±0.1161 90.93±0.0850 91.95±0.0893

5. Conclusions

In this paper, a new adaptive activation function is designed and applied to five models of neural

networks. Specifically, the adaptive activation function improves the negative semi-axis slope of the

ReLU activation function by combining the gated channel conversion unit to enhance the performance

of the deep learning model. The activation function in each layer of neural network is unique, thus

the input signal of each layer has a unique nonlinear transformation. Therefore, compared with the

traditional fixed activation function, our activation function has a better nonlinear transformation

ability and it can be well embedded in five models. Such as through the fault diagnosis data set of

pumping unit, it is proved that our activation function can effectively display the mapping relationship

between displacement and load in the indicator diagram, thus extract the features of the indicator

diagram and solve the sparsity problem of the indicator diagrams. Indistinguishable samples are

correctly classified. Through CIFIAR10 dataset, it verifies the superiority and universality of our

adaptive activation function.

In short, the proposed adaptive activation function increases the accuracy of fault diagnosis and

has a better generalization performance and search ability. Moreover, the proposed adaptive activation

functions also can be well embedded in other models of neural networks.
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