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Abstract: Due to the complex underground environment, pumping machines are prone to produce
numerous failures. The indicator diagrams of faults are similar in a certain degree, which produces
indistinguishable samples. As the samples increases, manual diagnosis becomes difficult, which
decreases the accuracy of fault diagnosis. For accurately and quickly judging the fault type, we
propose an improved adaptive activation function and apply it to five types of neural networks. The
adaptive activation function improves the negative semi-axis slope of the ReLU activation function by
combining the gated channel conversion unit to improve the performance of the deep learning model.
The proposed adaptive activation function is compared with the traditional activation function
through the fault diagnosis data set and the public data set. The results show that the activation
function has better nonlinearity, can improve the generalization performance of deep learning model,
the accuracy of fault diagnosis. In addition, the proposed adaptive activation function can also be
well embedded in other neural networks.

Keywords: deep learning; fault diagnosis; adaptive activation function; pumping unit

1. Introduction

The fault diagnosis of the pumping unit in the process of petroleum collection has been a critical
research topic. Due to the complex underground environment, during the reciprocate movement of the
sucker rod, there are many unknown factors, which are prone to result in the failure of the pumping
machine and then form a safety hazard. Load (P) and displacement (S) are the parameters generated
when the donkey head of the pumping unit moves up and down, and the closed curve formed by
them is the indicator diagram. It can reflect the influence of gas, oil, water, sand, wax and other factors
on pumping unit in real time [1]. If the pump is in the fault state for a long time, the wear of the pump
will be aggravated and the service life of the equipment will be further reduced.

The traditional method for fault diagnosis of pumping unit is to measure the load change with
displacement at the suspension point, draw the suspension point indicator diagram, and then diagnose
the working condition of the pumping unit according to the shape of the indicator diagram. The
disadvantages of the traditional method are as follows: first, the fault of the pumping unit is judged
mainly by the method of manual identification of indicator diagram, which has great influence
on human factors and low recognition accuracy. Secondly, due to the large number and wide
distribution of pumped Wells, manual detection of Wells is time-consuming and laborious. However,
as the complexity and high cost of pump units, there is less tolerance for performance degradation,
productivity decrease, and safety hazards, therefore, it is necessary to detect and identify all potential
faults rapidly [2,3]. It means that it is imperative to replace the manual fault diagnosis of the pumping
unit with a computer.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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With the continuous progress of deep learning technology, using deep learning technology for
fault diagnosis has become a new trend. For example, Convolutional Neural Network [4] , Generation
Adversarial Network [5], and Long Short Term Memory[6] et.al show superior performance in fault
diagnosis.

At present, the deep learning technology used in fault diagnosis of pumping unit is to classify
the indicator diagram of different kinds of faults. Automatic feature extracted from raw data is
an outstanding advantage of deep learning technology, and it will not depend on the diagnostic
knowledge of specialists [7].

In 2018, Y.Duan[8] proposed an improved Alexnet model to realize the automatic recognition
of indicator graphs, and compared it with the current common neural network model. In 2019, J.
Sang [9] proposed a PSO-BP neural network algorithm, aiming at the problems of slow convergence
and unstable results of the traditional BP neural network algorithm, designed the adjustment rules
of the inertia weight and learning factor of the PSO algorithm, and adjusted the weight coefficient
of the output layer and the hidden layer of the BP neural network algorithm. In 2020, L.Zhang [10]
used Freeman chain code and differential code to extract the characteristics of dynamometer card
data of pumping unit group. Then a diagnosis model based on BP neural network was proposed,
and the fault type of pump group can be automatically identified according to dynamometer card. In
2022, H.Hu[11] proposed a model based on the ResNet-34 residual network to identify the indicator
diagrams, which added a residual block structure to the traditional convolutional neural network to
establish a direct connection between the upper layer input and the lower layer output and achieved
the recognition and classification of six power diagrams through parameter adjustment. In the same
year, T.Bai[12] proposed a fault diagnosis method based on time series transformation generative
adversation network (TSC-DCGAN).

Because of the complexity of pumps working conditions, there are different shapes of indicator
diagrams in different working states. The indicator diagrams of different kinds of faults are similar in
a certain degree thus indistinguishable samples are produced. This will lead to poor generalization
ability of deep learning models and difficulty in between indistinguishable samples. The function of
activation function is to carry out nonlinear transformation of data and solve the problem of insufficient
expression and classification ability of linear model. If the network is all linear transformation, then
the multi-layer network can be directly converted into a layer of neural network through matrix
transformation. Therefore, the existence of activation function can make the deep learning model
perform better with the increase of the number of layers. Therefore, we will propose a new activation
function to imporove the generalization performance of the deep learning model, so that the faults of
the pumping unit can be distinguished in a high dimensional space.

Rectifying linear unit(ReLU)[13], which has low computational complexity and fast convergence
speed, can solve the problems of gradient disappearance and gradient saturation. In recent years,
there have been many improved versions of ReLU (rectified linear unit). To solve the Dead ReLU
phenomenon, the negative part of ReLU is substituted for a non-zero slope and Leaky ReLU [14] is
proposed. Hence Leaky ReLU is more inclined to activate in the negative area.

In deep learning, the selection of activation function is generally determined according to the
specific situation, and there is no fixed choice. As the adaptive activation function can be automatically
adjusted to adapt to the network structure and practical problems, it has been widely developed.
Parametric Rectified Linear Unit (PReLU) [15]is also used to solve the Dead ReLU phenomenon. The
slope of the negative part can be obtained by learning from the data, rather than from defined fixed
values. Therefore, PReLU has all the advantages of ReLU in theory and is more flexible than Leaky
ReLU. In 2017, the Swish activation function was proposed. It has the characteristics of lower bound,
no upper bound and non-monotonic. It is very smooth with its first derivative [16], and its performance
is better than ReLU in many aspects. In 2021, H.Hu [17] proposed a new scheme to explore the optimal
activation function with greater flexibility and adaptability by adding only a few parameters on the
basis of traditional activation functions such as Sigmoid, Tanh and ReLU. This method avoids local
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minima by introducing a few parameters into a fixed activation function. In the same year, M.Zhao
[18] used the specially designed subnetwork of Resnet-APReLU as an embedded module in order to
adaptively generate the multiplicative coefficient in nonlinear transformation.

Based on the above discussions, an adaptive activation function combined with the gate-controlled
channel transfer unit module (GCT)[19] is designed in this paper. The main contributions are as follows:

1. We propose an improved adaptive activation function. Each layer of deep learning generates
different activation functions, improves the generalization performance of deep learning models,
and has strong adaptability to different deep learning models.

2. We apply the proposed activation function to the fault diagnosis of pumping unit, so as to better
extract features from the contours of the indicator diagram. The proposed activation function
improves the accuracy of fault diagnosis and has a better search ability, which is verified and
comprared with AlexNet[20], VGG-16[21], GoogleNet[22], ResNet[23] and DenseNet[24].

3. The propose activation function is extended to the public datasets CIFAR10 which proves that the
proposed activation function is suitable and universal.

The rest of this paper is organized as follows. In section 2, we introduce the pumping unit data
set. In section 3, we introduce the common adaptive activation function, and propose the composition
of our adaptive activation function. In section 4, the experimental analysis and the discussion on the
pumping unit failure data set and the public dataset are presented. In section 5, we conclude the paper.

2. Experiment Design and Measurement

2.1. Introduction to pumping unit

At present, about 80 % of oil wells in most oil fields in China use rod pumping equipments, and
the most widely used is the beam pumping unit[25]. The failure data set of pumping unit comes from
the real data generated by the pumping unit operation in a certain oil field of Northeast China. The
pumping unit is a part of a rod pumping unit. Rod pumping equipment is mainly composed of three
parts: oil pumping unit, well pumping pump and sucker rod. The Rod pumping equipment is shown
in Figure 1.

The pumping unit is driven by a motor and through the reducer transmission system and the
execution system, the rod and the pump plunger are driven to move up and down, and finally the
crude oil is lifted from the well to the surface. The operation of the pumping unit is shown in Figure 2.

Figure 1. Pumping machine equipment

2.2. Fault types of pumping unit

The fault data set of pumping unit consists of nine types of indicator diagrams: normal, insufficient
fluid supply, contain sand, piston stuck, gas influence, pump up touch, pump down touch, double
valve leakage, and pumping rod detachment. The following details will be introduced:
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Figure 2. The operation of the pumping unit.

1. Normal

The pump work diagram made by normal operation refers to the position shift of the end
suspension point relative to the lower dead point as the transverse setting mark, the self-weight
force of the rod and the cumulative load received by the pump plug as the longitudinal setting
mark. Drawn in parallel quadrilateral shape.

2. Insufficient fluid supply

The shortage of liquid supply is due to the insufficient amount of crude oil in the well, and the
plunger pump inhales a large amount of air while drawing crude oil each time. As a result, a
large amount of gas in the pump cannot be fully operated.

3. Contain sand

Because the well contains sand, the plunger creates an additional resistance in an area during
movement. The additional resistance on the up stroke increases the load at the suspension point
and on the down stroke at the same position. The increased resistance reduces the load at the
suspension point. Because the distribution of sand particles in the pump barrel is not the same,
its influence on the load varies greatly in various places, so it will lead to severe fluctuations in
the load in a short time.

4.  Piston stuck

When the pump plunger is stuck near the bottom dead point, the rod is in a stretched state
during the up stroke and the down stroke since the whole stroke is actually the process of elastic
deformation of the rod, the well work diagram at this time is approximately an oblique line.

5. Gas interference

The gas interference is the situation that the gas precent in the oil of the pumping well is high,
while the crude oil precent is relatively low. This causes the pump barrel to extract most of the

gas, resulting in a significant difference between the actual load and the theoretical load.
6. Pump down touch

When the anti-impact distance is too large, the piston running up is approaching the upper
dead point, and the continuous upward movement of the piston collides with the moving val,
which leads to the sudden loading of the piston and the bunching at the upper dead point.

7. Pump up touch

When the anti-impact distance is too small, it is attached to the lower dead point, and the piston
moves down and collides with the fixed Val, resulting in sudden unloading of the piston and
bunching at the lower dead point.


https://doi.org/10.20944/preprints202308.0739.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 August 2023 doi:10.20944/preprints202308.0739.v1

50f12

8. Double valve leakage

Double valve leakage refers to the situation where both the moving valve leakage and the
fixed valve leakage happen at the same time, and the leakage may be caused by a combination of

multiple faults.
9. Pumping rod detachment

The pumping unit’s power cannot be transmitted to the pump due to the detachment of the
sucker rod, resulting in the inability to extract oil.

The failure of pumping unit will cause great economic losses and security risks. Therefore, rapid
and accurate fault diagnosis of pumping unit is very necessary. The fault diagnosis process in this
paper is as follows: Firstly, the displacement and load data of the pumping unit are collected by
wireless dynamometer. Secondly, the indicator diagram of various faults is drawn by the collected
data. Finally, the indicator diagram is preprocessed, and then the indicator diagram is input into the
deep learning model to output the fault type. The fault diagnosis flow chart of the pumping unit in
this paper is shown in Figure 3.

Deep learning Adaptive activation
model function

AlexNet
Vggl6 i

ResNet §E

GengleNet

DenseNet

Pumping machine fault
diagnosis report

Figure 3. Fault diagnosis flow chart of pumping unit
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3. Theoretical Analysis

3.1. Common adaptive activation functions

PReLU activation function is a further improvement on the fixed predefined slope of LeakyReLU,
which can be changed by backpropagation. It has better adapt ability [13] than LeakyReLU. The
formula of activation function is as follows:

f(x) = Max(x,0) + éMin(x,0) (1)

where x is the input, J is the trainable multiplicative coefficient (i.e., slope). Each layer has its own
6, which improves the nonlinear capability. In PReLU, ¢ in Eq.(1) is the learnable parameter during
training, but it is § constant and cannot be adjusted during testing.

The design of Swish activation function [16] is inspired by Long Short-term Memory (LSTM)
neural network. The Swish activation function can prevent the gradient from gradually approaching
zero and leading to saturation during training. It plays an important role in optimization and
generalization. The formula of Swish activation function is as follows:

f(x) = xSigmoid(Zx) 2

where B is the learnable parameter or constant. When ¢ = 0, the Swish activation function becomes
the linear function f(x) = x/2. When { =oo, the Swish activation function becomes 0 or x, which is
equivalent to ReLU activation function. Therefore, the Swish activation function can be considered as
a smooth function between linear function and ReLU activation function.
Compared with ReLU, Mish activation function is smoother at the origin [26]. The formula is as
follows:
f(x) = xtanh(In(1+e")) 3)

From Eq.(3), Mish Activation function has no upper limit, but only a lower limit, which can ensure no
saturated region, thus there will be no vanishing gradient during the training. At the same time, it has
a faster convergence speed.

3.2. The structure of adaptive activation functions

The structure of adaptive activation functions are shown in Figure 4. The input of the subnetwork
is concatenated by the one-dimensional vector obtained from the two inputs. The two inputs are
positive features after separation and negative features after separation. The separation of positive and
negative features can highlight the key features. The following calculation paths are GCT—-GAP—FC—
Batch Nomoalation(BN)— ReLU— FC— BN— Sigmoid —Scales. The function of each layer is
described in following section.

l
lin(x,0)

Slope

Sigmoid

I Min
Concat

1D vector
a =
By «m»&%ﬂ@ B-&-

— e ———

| Max(,0) |1

Input features
map

Output features
map

— Min(x,0)

® .‘ e

? ? 'q? Max(x,0) w
= o( ©

Figure 4. Graph of adaptive activation functions
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GCT combines normalization methods and attention mechanisms, which makes it easy to analyze
the relationships (competition orcooperation) between channels. As shown in Figure 5, The GCT
module introduces three trainable parameters «, f and 7 to evaluate the communication channels.
Among them, « helps embed the output adaptive ability, while § and -y are used to control the activation
threshold, which determines the behavior of GCT in each channel. & and w are the dimensions of
feature vectors, ¢ is the number of channals, and L2-norm is the normalization of L2.

(1.1e) (1.1e) (1.1 tanh
a “

B

(1.1c) @ A\
> suw >

(1.1.1)

L2-norm

(L.Le)

L2-norm/ \/E

S

(hw,c) (h.w.e)

Figure 5. GCT structure drawing

Global average pooling (GAP) can replace the fully connected (FC) layer to achieve dimensionality
reduction. Eespically, it retains the spatial information extracted from the previous convolutional
layers and pooling layers and can also strengthen the relationship between categories and feature
maps [27].

ReLU is selected as the activation function of FC in the first layer to reduce the computational
complexity and keep the gradient value within a reasonable range for feature extraction. The formula
is as follows:

flx) = { xx=0 )

0,x <0

Then we add BN layer, which is a way to unify the scattered data and is similar to normal data
standardization. It is also a way to optimize the neural network. The data with unified specifications
can make it easier to learn the rules in the data for the deep learning model [28] and can also solve the
problem of vanishing gradient. The normalization is described by the following formula:

1 Noag
"= N 1; Xi @)

2 1 N 2
= N 1; (xi —n) (6)
Yi= 1/79? +0 (8)

where x; and y; are the observed input and output of each Nbatch, y represents the mean of the input,
0? represents the variance of the input, ¢ is a constant near zero, and 6, ¢ are learnable parameters
governing the scaling and shifting distributions. The activation function of the second FC layer is
Sigmoid, which can limit the output value during the interval (0,1) and prevent excessive slope from
affecting the performance of the activation function.
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To summarize the above contents, the proposed adaptive activation function has the ability to
automatically learn complex features. Different nonlinear transformation is applied to different inputs
to improve the generalization performance of deep learning model, which will well solve the problems
in extracting feature contour of indicator diagram and sparsity of indicator diagram in pumping unit
fault diagnosis. The following experimental simulation will verify the effectiveness of the designed
adaptive activation function.

4. Experimental simulation

This section mainly verified the performance of our activation function which was tested on
AlexNet[20], VGG-16[21], GoogleNet [22], ResNet [23] and DenseNet [24]. The structure diagrams of
these five networks are shown in Figure 6. Moreover, we compared our activation function with the
traditional activation functions such as ReLU, Sigmoid, Tanh, LReLU and PReLU.

AlexNet

ResNet

Vegl6

DenseNet

GoogleNet

Tnput Input Tnput Tnput Input
Conv:11x11x96 Conv:3x3x16 Conv:3x3x64 Conv:3x3x16 Conv:3x3x64
Maxpooling:3x3 Residual block Conv:3x3x64 BatchNormalization Maxpooling:2x2

izati lizati Maxpooling:2x2 Conv:1x1x32 BatchNormalization
Conv:5x5%256 Conv:3x3x16 Conv:3x3x128 BatchNormalization | *2 Conv:1x1x64
- 4
Maxpooling:3x3 Conv:3x3x16 * Conv:3x3x128 Conv:3x3x32 Conv:3x3x192
BatchNormalization gkipclmlnelc; Maxpooling 2x2 Concatenate
onv:lx1x
Conv:3x3x384 Residual block Conv:3x3x256 Transition_layer Maxpooling:2+2
Conv:3x3x384 — Conv:3x3x256 Inception-3a
Conv:3x3x256 Conv3rinaz Conv:3x3x256 Conv:1x1x32 Inception-3b
Maxpooling:3x3 o “4 Maxpooling:2x2 lizati x4 Maxpooling:2+2
FC:4096 e .
Skip-connect Conv:3x3x512 Conv:3x3x32 Inception-4a
Droupout Conv:1x1x16 Conv:3x3x512 Concatenate Inception-4b
FC:4096 Residual block Conv:3x3x512 Transition_layer Inception-dc
D t BatchNormalization ine:
roupou Maxpooling:2-2 Inception-4d
FC:10 Conv:3x3x64 -
» Conv:3x3x512 Conv:1x1x32 Inception-de
Output:10 Conv:3x3x64 -
- ; Conv:3x3x512 8 Maxpooling:2x2
Skip-connect Conv:3x3x512 i
Conv:1x1x64 e Conv:3x3x32 Inception-Sa
X
Averagepooling:8x8 C Inception-5b
gepooTing FC:4096 P
FC:10 Transition_layer Averagepooling2x2
Droupout
Output:10 Droupout
FC:4096
- FC:10
Droupout GlobalAveragePooling
oo p— Output:10
Output:10 Output:10

Figure 6. Network architectures of AlexNet,VGG-16,GoogleNet,ResNet, DenseNet

The experiment is mainly divided into two parts. The first part is the simulation on the fault
diagnosis dataset of pumping unit. This will prove that the proposed adaptive activation function can
extract the features of the indicator diagram and solve the sparsity problem of the indicator diagrams.
The improvement in fault diagnosis accuracy indicates that indistinguishable samples are correctly
classified. The second part is to verify the superiority of the designed adaptive activation function on
the public dataset CIFAR10.

4.1. The dataset of pumping

Adaptive Moment Estimation (Adam) was used here, and the initial learning rate was 0.001. The
epoch of training was no less than 200. The average accuracy of each model is shown in Table 1. In the
fault diagnosis data set of pumping unit, the adaptive activation function proposed in this paper has
the greatest accuracy improvement in the ResNet model. Compared to traditional activation function
ReLU, Tanh, Sigmoid, LeakReLU, PReLU, Mish, Swish, the average accuracy of ResNet model with
our activation function respectively increased by 1.7%, 5.09%, 5.72%, 2.54%, 1.46%, 1.75%, 1.56%.
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Table 1. CLASSIFICATION PRECISION OF VARIOUS ACTIVATION FUNCTIONS FOR DIFFERENT
MODELS ON PUMPING MACHINE FAULT DIAGNOSIS

Methods AlexNet(%) VGG-16(%) GoogleNet(%) ResNet(%) DenseNet(%)
Ours 97.91+0.4997 97.57+0.2658 99.13+0.1941 97.82+0.4061 97.52+0.4706
ReLU 97.33+0.5534  96.94+0.9537  98.56+0.3220 96.12+0.6140  96.89+0.0970
Sigmoid = 94.51+0.4930 96.41+0.3567 96.17+0.2831 92.14+0.2145 94.17+0.6584
Tanh 96.41+0.3220 97.04+0.4706 97.91+0.3632 94.66+0.3070  95.05+0.4231
LReLU 97.48+0.8209 97.14+0.5405 98.74+0.2830 95.28+0.9029  96.36+0.5091
PReLU 97.43+0.6254 97.04+0.3220 98.74+0.6584 96.36+0.5091  97.04+0.3883
Mish 97.23+0.6063  96.02+0.6254  98.74+0.2830 96.07+0.3883 97.17+0.1144
Swish 97.72+0.3292  95.15+0.8547 98.74+0.1816 96.26+0.3943  96.75+0.5661

Confusion matrix is a common index and visualization tool to evaluate the results of the
classification model and it can judge the advantages and disadvantages of classifiers. The rows
of the matrix represent the true value, and the columns of the matrix represent the predicted value.
The confusion matrix can respectively count the number of the wrong classification and the right
classification, and then display the results in a matrix. Figure 7 shows the confusion matrix of the
five models for the pumping unit fault data set. It can be seen that the designed adaptive activation
function can effectively represent the mapping relationship between the displacement and the load in
the indicator diagram, and extract the features of the indicator diagram, thus those indistinguishable
samples are correctly classified. Table 2 gives the accuracy of various types of faults for the five models,
which proves that the proposed adaptive activation function can be well applied in the five models
and has great adaptability to the models.

True label
w
8
True label

0 1 2 3 4 5
Predicted label

(b) VGG-16 (c) GoogleNet

3 4 5 6 7 8
Predicted label

(d) ResNet

Predicted label

(e) DenseNet

Figure 7. The confusion matrix of the five models of the pumping unit fault diagnosis dataset.
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Table 2. DIAGNOSTIC ACCURACY OF FIVE MODELS FOR EACH FAULT TYPE OF PUMPING

UNIT
The type of fault AlexNet VGG-16  GoogleNet ResNet DenseNet
Pump up touch 0.96 0.98 0.90 0.96 0.90
Pumping rod detachment  1.00 0.98 0.96 0.98 1.00
Insufficient liquid supply ~ 0.94 0.95 0.93 0.95 091
Contain sand 1.00 1.00 1.00 1.00 1.00
Piston stuck 1.00 0.98 0.98 1.00 0.97
Gas influence 0.89 0.92 0.98 0.92 1.00
Double valve leakage 1.00 1.00 1.00 1.00 1.00
Pump down touch 0.94 0.92 0.93 0.90 0.96
Normal 1.00 1.00 1.00 1.00 1.00

The loss function curve is shown in Figure 8. Among them, (a) AlexNet, (b) VGG-16 and (e)
DenseNet have fast convergence speed. The loss functions of (d) ResNet and (e) GoogleNet decline
relatively slowly, but eventually converge to the optimal value.

3. 4.0
ours

50 100 150 200 250 ) 50 100 150 200 250

epoch epoch

(a) AlexNet (b) VGG-16

2.00
o

% 1 D ——'
-

1.50
125
2100
0.75
0.50
0.25
0.00

50 100 150 200 250 50 100 150 200 250
epoch epoch

(d) ResNet (e) DenseNet

Figure 8. The decline curve of the loss function.
4.2. CIFAR10

We used CIFAR10 data set to conduct experiments and analysed AlexNet, VGG-16, GoogleNet,
ResNet and DenseNet models with our activation function and the traditional activation functions.
We augmented the data to reduce overfitting. The Adam was used with the initial learning rate 0.001.
The epoch of training was no less than 200. The average accuracy of each model is shown in Table 3,
where the designed activation function improves the performances of those. Among them, AlexNet,
VGG-16 and DenseNet have the best performance. Compared with the traditional activation functions
ReLU, Tanh, Sigmoid, LeakReLU, PReLU, Swish, and Mish, our activation function in AlexNet model
is improved respectively by 1.84%, 4.11%, 5.45%, 0.79%, 2.74%, 1.91%, 2.04%,; our activation function
in VGG-16 model is improved respectively by 3.1%, 4.54%, 4.45%, 0.48%, 2.02%, 4.69%, 3.94%; our
activation function in DenseNet model is improved respectively by 1.88%, 5.1%, 9.63%, 1.07%, 0.61%,
0.35%, 0.37%. The above data indicate the superiority of the proposed activation function.
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Table 3. CLASSIFICATION PRECISION OF VARIOUS ACTIVATION FUNCTIONS FOR DIFFERENT

MODELS ON CIFAR10
Methods AlexNet(%) VGG-16(%) GoogleNet(%) ResNet(%) DenseNet(%)
Ours 91.10+0.0445 93.86+0.0406  90.35+0.1070 91.73+0.0231  92.30+0.0681
ReLU 89.26+0.0576  90.76+0.0987  89.00+0.0337 90.27+0.0034  90.42+0.0846
Sigmoid  85.65+0.0365 89.32+0.1127  87.23+0.0485 88.06+0.0835 82.67+0.2110
Tanh 86.99+0.2432  89.41+0.0189  83.69+0.0402 88.68+0.0414  87.20+0.0745
LReLU 90.31+0.2147 93.38+0.0414  89.70+0.0527 91.24+0.1059  91.23+0.0684
PReLLU 88.36+0.0436  91.84+0.0633  89.31+0.0454 91.08+0.0637  91.69+0.0755
Mish 89.07+0.0847 89.92+0.0577  88.64+0.0729 91.12+0.7960  91.97+0.0758
Swish 89.19+0.0628 89.19+0.0618 88.94+0.1161 90.93+0.0850  91.95+0.0893

5. Conclusions

In this paper, a new adaptive activation function is designed and applied to five models of neural
networks. Specifically, the adaptive activation function improves the negative semi-axis slope of the
ReLU activation function by combining the gated channel conversion unit to enhance the performance
of the deep learning model. The activation function in each layer of neural network is unique, thus
the input signal of each layer has a unique nonlinear transformation. Therefore, compared with the
traditional fixed activation function, our activation function has a better nonlinear transformation
ability and it can be well embedded in five models. Such as through the fault diagnosis data set of
pumping unit, it is proved that our activation function can effectively display the mapping relationship
between displacement and load in the indicator diagram, thus extract the features of the indicator
diagram and solve the sparsity problem of the indicator diagrams. Indistinguishable samples are
correctly classified. Through CIFIAR10 dataset, it verifies the superiority and universality of our
adaptive activation function.

In short, the proposed adaptive activation function increases the accuracy of fault diagnosis and
has a better generalization performance and search ability. Moreover, the proposed adaptive activation
functions also can be well embedded in other models of neural networks.
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