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Abstract: This paper presents the use of Graph Neural Networks (GNNs) to predict the tensile strength of
Fused Deposition Modeling (FDM) specimens. In the present work, there are four main input parameters i.e.
Infill percentage, Layer height, Print speed and Extrusion temperature while the Tensile Strength is an output
parameter were considered. This study includes use of central composite design based response surface
methodology to finalize the experimental layout. 3D printed specimen were manufactured as per the ASTM
E8 standard on FDM printer using Polylactic Acid (PLA) as filament. Micro-tensile test were performed on
the printed specimen as per ASTM E8 standard. The GNN algorithm was trained on a dataset of FDM
specimens, achieving a mean squared error (MSE) of 2.47, mean absolute error (MAE) of 1.14, and R-squared
value of 0.78. An adjacency matrix, which shows the connections between nodes in a graph. The obtained plot
for nodes and weights in a GNN provide valuable information about the model and its performance. The
results show the potential of using GNNs in predicting the mechanical properties of additively manufactured
specimens and provide a promising direction for further research in this field.

Keywords: Graph Neural Networks; Fused Deposition Modeling; 3D Printing; Polylactic Acid;
tensile strength

1. Introduction

Graph Neural Networks (GNNs) represent a category of advanced machine learning algorithms
that specifically handle data organized in graph structures. Unlike conventional neural networks,
which are tailored for grid-based data like images or tables, GNNs are designed to effectively process
data structured as graphs. In these graphs, nodes symbolize distinct entities, while edges signify
relationships connecting these entities [1-5].

GNNs operate by accumulating information from neighboring nodes within a graph and
leveraging this information to make informed predictions about node properties. This process hinges
on the application of graph convolutional layers, which apply learned filters to the graph layout,
thereby gathering insights from neighboring nodes and refining the representation of each node.
GNNSs have proven versatile across numerous applications, including recommendations, protein
structure prediction, and social network analysis. Their strength lies in tackling scenarios where
intricate entity relationships are prevalent, as they excel at capturing the intricate interplay of
relationships within graph-based data [6-9].

Hestroffer et al. [10] pioneered the concept of Graph Neural Networks (GNNs) to accurately
predict the mechanical attributes of polycrystalline materials. They devised a GNN model that
employed a graph representation of polycrystals, encompassing essential grain characteristics such
as size, crystal orientation, and neighboring grain connections. In the realm of additive
manufacturing research, Graph Neural Networks (GNNSs) carry the potential to revolutionize the
field. Additive manufacturing involves the layer-by-layer construction of physical objects, often
leading to end products with diverse mechanical traits, like tensile strength. Mozaffar et al. [11]
introduced a graph-based model with neural networks to capture the intricate spatiotemporal
relationships within additive manufacturing processes, focusing on the Directed Energy Deposition
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technique. The outcomes demonstrated that this deep learning framework adeptly forecasts thermal
histories for unfamiliar geometries during training, offering a viable alternative to resource-intensive
computational methods.

GNNs hold promise for modeling and predicting the mechanical characteristics of additively
manufactured samples which find application in aerospace and biomedical sector as well [12-15], as
they decipher the intricate connections between different geometric attributes and the corresponding
mechanical traits. This approach unveils valuable insights into the nexus between specimen geometry
and mechanical behavior, thereby guiding the optimization of the manufacturing procedure.
Notably, this study introduces a pioneering application of the Graph Neural Network (GNN) model
for predicting the properties of additively manufactured specimens.

2. Problem Statement

In this study, we investigate the use of Graph Neural Networks (GNNs) to forecast the tensile
strength of specimens produced using Fused Deposition Modeling (FDM). Infill %, Layer height,
Print speed, and Extrusion temperature are the four main input parameters used in the inquiry, with
the goal of estimating the Tensile Strength as the output parameter. To optimize the experimental
design, the study combines response surface approach and central composite design.

Polylactic Acid (PLA) filament is used to 3D print specimens that adhere to ASTM ES8
requirements on an FDM printer in order to undertake the experimental analysis. The fabricated
specimens are subjected to ASTM E8-recommended micro-tensile tests. We train a dataset of FDM
specimens using the Graph Neural Network (GNN) technique.

The study also explores how to build an adjacency matrix, which reveals how nodes in a graph
are connected to one another. The nodes and weights within the GNN are seen as a result, and this
provides important insights into the properties and effectiveness of the model. The results illustrate
the potential of GNNs in predicting the mechanical characteristics of specimens made using additive
manufacturing, outlining a promising path for furthering study in this area.

3. Experimental Procedure

To establish a standardized framework, the ASTM E8 standard geometry was selected as the
reference, and its dimensions were uniformly reduced by 50% to optimize printing size and material
consumption, while minimizing production time. The Response Surface Methodology (RSM) Design
of Experiment approach was utilized to formulate a series of 30 distinct trial conditions, illustrated in
Figure 1, encompassing three levels for each input parameter. Subsequently, the CAD model was
sliced accordingly and translated into G-code via Ultimaker Cura software. The empirical exploration
was conducted utilizing a Creality 3D FDM printer, as depicted in Figure 2. Each printing session
was assigned a unique configuration of settings, varying parameters such as layer height, infill
density, infill pattern, bed temperature, and nozzle temperature, all tailored to produce Polylactic
Acid (PLA) specimens. A comprehensive datasheet was generated to systematically organize these
input parameters.
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Figure 1. Prepared samples in the present work
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Figure 2. FDM Process setup

The FDM samples used in this research were fabricated with a Creality Ender 3 printer, which
boasts a build area of 220 x 220 x 250 mm?. The measurements of the tensile specimen adhere to the
specifications outlined in ASTM D638, with dimensions of 63.5 x 9.53 x 3.2 mm, meeting the
prescribed criteria. Table 1 shows the experimental results obtained corresponding to the given input

parameters.
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Infill Layer Print Extrusion Tensile

height speed temperature strength
percentage

(mm) (mm/s) (°C) (MPa)
78 0.32 35 220 46.17
10.5 0.24 50 210 42.78
33 0.16 35 220 45.87
33 0.32 35 200 41.18
33 0.16 65 200 43.59
100 0.24 50 210 54.2
78 0.16 35 200 51.88
33 0.32 65 200 43.19
78 0.32 65 200 50.34
33 0.16 65 220 45.72
78 0.16 35 220 53.35
55.5 0.24 50 210 49.67
33 0.32 35 220 45.08
55.5 0.24 50 190 47.56
55.5 0.24 50 210 48.39
78 0.32 65 220 46.49
55.5 0.24 50 210 47.21
55.5 0.24 50 210 48.3
55.5 0.24 50 230 50.15
33 0.32 65 220 43.35
55.5 0.24 50 210 45.33
55.5 0.24 80 210 45.56
78 0.16 65 200 49.84
55.5 0.24 20 210 48.51
55.5 0.08 50 210 42.63
55.5 0.4 50 210 42.87
55.5 0.24 50 210 47.14
78 0.32 35 200 4517
55.5 0.24 50 210 47.07
78 0.16 65 220 50.99
33 0.16 35 200 52.87

Figure 3 shows the implemented framework in the present study. All the necessary libraries
required to build and train a graph neural network were imported.
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Figure 3. Framework used in the present work

The dgl library is used for graph manipulation, pandas is used for loading and manipulating
data, numpy is used for array processing, torch is used for neural network modelling and matplotlib
is used for plotting graphs. The dataset is imported from the CSV file and stored it in a pandas data
frame. A directed graph is created using the dgl library. The add_nodes() method is used to add the
number of nodes to the graph equal to the number of rows in the dataset. The performance of the
model is evaluated by calculating the mean absolute error, mean squared error and R-squared score.

4. Results and Discussion

A Graph Neural Network (GNN) uses graph-structured data to train node representations that
include both node-level properties and the underlying graph structure. The GNN functions in a
message-passing framework, where information is transmitted between nodes through edges, given
a graph with nodes (representing instances) and edges (representing links or connections). Message
aggregation and updating node representations are the two fundamental processes of the
mathematical formulation. The dataset's columns correspond to various features, and each row
represents a node. The input columns for the node features (X) are "Infill percentage,” "Layer height,"
"Print speed," and "Extrusion temperature".

Let X be the matrix of the node features where each row x; corresponds to the feature vector
of node i. The adjacency matrix (A)encodes the connections between nodes. Now, let A be the
adjacency matrix of the graph where A;; =1 if there is an edge between the nodes i and j and
A;j = 0 in the opposite condition as shown in Figure 4. We adopted a technique that is frequently
used to express the connections between nodes to produce the adjacency matrix (A) for our graph-
based study. Src_nodes and dst_nodes are two arrays that we defined in this procedure. These arrays
stand in for the source and destination nodes of the edges in our graph, respectively. The
corresponding entry in the dst_nodes array identifies the destination node of the same edge, while
each entry in the src_nodes array identifies the originating node of an edge. We created the edges of
the network by methodically creating links between the nodes by pairing these arrays.
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Figure 4. Adjacency Matrix plot

In the message aggregation process, messages from nearby nodes are computed and aggregated
to create a combined message for each node. In the graph, this gathers data from the node's neighbors.
A learnable function is often used to define the aggregation process as shown in Equation 1.

Messages™*V = o Z WO, x,O 1)

j e neighbours(i)

Where [ is the layer index, xj(’) is the feature vector of node j inlayer [, neighbours(i) represents
the neighbors of node i, W& is a learnable weight matrix for layer l,and ¢ is a non-linear
activation function.

The node representations are updated using the aggregated messages and the node's own
features after message aggregation. This stage captures the impact of both the graph structure and
local node attributes as shown in Equation 2.

x; "D = Message Aggregation™V. (x;, Messages™V) (2

Predictions are made using the node representations after they have been obtained. In this
instance, tensile strength values are predicted using regression using the GNN. For regression
problems, the mean squared error (MSE) loss function is frequently employed as shown in Equation
3.

1 N
Loss==>" (=90 ®
=1

Where N is the number of instances (nodes) in the dataset, y; is the true label (ground truth) for
node i, and J; is the predicted label (output of the GNN) for node i.
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The GNN parameters (weight matrices in this case) are updated to minimize the loss using an
optimization algorithm such as Adam as shown in Equation 4.

U+ =9 — ¢.VLoss @)

Where 6©? is the parameter set (weights) of layer [, a is the learning rate, and VLoss is the
gradient of the loss with respect to the parameters. Figure 5 shows the plot of learning rate with
increasing number of epochs. Especially during the optimization process, the plot of learning rate
with increasing number of epochs is a useful visualization that offers insights into the training
dynamics and convergence behavior of a machine learning model. The use of a learning rate
schedule, where the learning rate changes over time (for example, progressively declines), is
advantageous for some models. The plot can demonstrate the success or failure of the learning rate
schedule in achieving a smooth and constant convergence trajectory. The plot also demonstrates the
speed at which the optimization process reaches a minimum. The parameter updates could oscillate
and stop converging at an excessive learning rate. However, if the learning rate is too low, the
convergence may take a long time. Finding an ideal learning rate that strikes a fair balance between
rapid convergence and stability is made easier with the aid of the plot.

Learning Rate Schedule
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Figure 5. Variation of learning rate with number of epochs

Table 2 shows the results of the obtained metrics features from the given framework. The result
of the GNN model for the prediction of tensile strength was evaluated using the R-squared metric,
which measures the amount of variation in the target value that is explained by the input features.
An R-squared value of 0.78 was obtained, which indicates that the model was able to explain 78% of
the variation in the tensile strength measurements. The result obtained from the GNN model is
considered to be a good indicator of the accuracy of the model. An R-squared value of 0.78 indicates
that the model was able to capture the majority of the underlying relationship between the input
features and the target value. This result is considered to be highly satisfactory and accurate, as it
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indicates that the model was able to learn the important relationships between the input features and
the target value.

Table 2. Obtained Metrics features

MSE MAE R?
247 1.14 0.78

The scatter plot as shown in Figure 6 allows us to visually assess how well the predicted tensile
strengths match the actual (ground truth) tensile strengths. Each point on the plot represents a data
point, where the x-coordinate is the actual tensile strength and the y-coordinate is the predicted
tensile strength. If the points closely follow a diagonal line (the gray dashed line in the plot), it
indicates that the predictions are accurate and closely aligned with the ground truth.

Scatter Plot: Predicted vs. Actual Tensile Strength

54
54 L
Fd
Fa
Fa
% B 52
52 e e
s L
O
£ Fal
o 50
AL s =
=] - =
in @ 27 =
A 2 e @
3 p 48 2
& o g
= il ¥
g 4 4 S
s A a
E @ e =
(o . !/
44 5 ® i
. F
o
2
Rl 42

42 44 46 48 20 22 o4
Actual Tensile Strength

Figure 6. Plot for Predicted vs Actual Tensile Strength

Each point's color corresponds to the real tensile strength value. This color information adds a
new level of information dimension. It may be a sign of heteroscedasticity, when prediction errors
fluctuate across different levels of actual tensile strength, if the color gradient shifts along the
expected vs. actual line.

The link between the actual tensile strength values and the related residuals (differences
between anticipated and real values) from a machine learning model is depicted in Figure 7 which is
a residual plot. We can locate any systematic biases or inaccuracies in the predictions of the model by
examining the scatter plot of the actual tensile strength vs. residuals. The residuals may be
systematically overestimating or underestimating the tensile strength if they consistently wander
above or below the horizontal line (y = 0). The plot reveals how the model's predictive power varies
at various levels of observed tensile strength. If a particular pattern can be seen in the residuals (e.g.,
a rise or drop with increasing tensile strength), the model's performance is not uniform across the
whole range of data. As residuals that considerably depart from the horizontal line, outliers or
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anomalous data points might be found. These points could be examples of situations when the
model's predictions were noticeably off or where there were problems with the data.
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Figure 7. Residual plot obtained in the present work

The model's predictions appear to be impartial and precise because of the random distribution
of points around the horizontal line (y = 0). On the other hand, a recognizable pattern or trend in the
residuals can suggest that key aspects of the data have been missed by the model.

5. Conclusion

It is clear from the results of using a Graph Neural Network (GNN) to forecast the tensile
strength of an additively built specimen that the GNN shown a noteworthy capacity for doing so.
Mean absolute error (MAE) of 1.14 and mean squared error (MSE) of 2.47, respectively, indicate that
the model produced predictions with relatively low variance. Additionally, the model's capacity to
explain almost 78% of the variation in tensile strength observed is highlighted by its R-squared value
of 0.78, which demonstrates its strong predictive power. Recognizing that there are still opportunities
for improvement and improvement is important. It is acknowledged that more optimization may be
possible. The inclusion of additional data, such as material characteristics or manufacturing process
factors, into the graph is an attractive area for future exploration. This project tries to determine
whether increased information leads to better prediction accuracy. This study lays the groundwork
for such iterative improvements by showing the GNN's potential while simultaneously encouraging
the investigation of more thorough prediction frameworks.

Authors Contribution: Conceptualization, A.M. and V.S.J.; Methodology, A.M.; Software, A.M.; Validation,
AM. and V.SJ.; Formal Analysis, V.S.J.; Investigation, A.M.; Resources, V.S.]J.; Data Curation, A.M.; Writing —
Original Draft Preparation, A.M.; Writing — Review & Editing, V.S.J.; Visualization, A.M.; Supervision, V.S.J.;
Project Administration, V.S.J.

Funding Information: No external funding was received for this research work.

Conflict of Interests Statement: The authors declare no competing interest.


https://doi.org/10.20944/preprints202308.1007.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2023 d0i:10.20944/preprints202308.1007.v1

10

References

1.  Zhou, ], Cui, G, Hu, S., Zhang, Z., Yang, C., Liu, Z,, Wang, L., Li, C. and Sun, M., 2020. Graph neural
networks: A review of methods and applications. Al open, 1, pp.57-81.

2. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network
model. IEEE transactions on neural networks, 20(1), pp.61-80.

3. Shchur, O., Mumme, M., Bojchevski, A. and Giinnemann, S., 2018. Pitfalls of graph neural network
evaluation. arXiv preprint arXiv:1811.05868.

4. Xu,K,Hu, W, Leskovec, J. and Jegelka, S., 2018. How powerful are graph neural networks?. arXiv preprint
arXiv:1810.00826.

5. Liu, M,, Gao, H. and Jj, S., 2020, August. Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 338-348).

6. Zheng, X, Liu, Y., Pan, S., Zhang, M., Jin, D. and Yu, P.S., 2022. Graph neural networks for graphs with
heterophily: A survey. arXiv preprint arXiv:2202.07082.

7. Wu, L, Chen, Y., Shen, K., Guo, X., Gao, H,, Li, S, Pei, J. and Long, B., 2023. Graph neural networks for
natural language processing: A survey. Foundations and Trends® in Machine Learning, 16(2), pp.119-328.

8. Xia, L., Liang, Y., Leng, J. and Zheng, P., 2023. Maintenance planning recommendation of complex
industrial equipment based on knowledge graph and graph neural network. Reliability Engineering &
System Safety, 232, p.109068.

9. Liu, X, Li, X,, Fiumara, G. and De Meo, P., 2023. Link prediction approach combined graph neural network
with capsule network. Expert Systems with Applications, 212, p.118737.

10. Hestroffer, .M., Charpagne, M.A., Latypov, M.I. and Beyerlein, 1.]., 2023. Graph neural networks for
efficient learning of mechanical properties of polycrystals. Computational Materials Science, 217, p.111894.

11. Mozaffar, M., Liao, S., Lin, H., Ehmann, K. and Cao, J., 2021. Geometry-agnostic data-driven thermal
modeling of additive manufacturing processes using graph neural networks. Additive Manufacturing, 48,
p-102449.

12. Badini, S., Regondj, S., Lammi, C., Bollati, C., Donvito, G. and Pugliese, R., 2023. Computational Mechanics
of Form-Fitting 3D-Printed Lattice-Based Wrist-Hand Orthosis for Motor Neuron Disease. Biomedicines,
11(7), p-1787.

13. Sala, R., Regondi, S., Graziosi, S. and Pugliese, R., 2022. Insights into the printing parameters and
characterization of thermoplastic polyurethane soft triply periodic minimal surface and honeycomb lattices
for broadening material extrusion applicability. Additive Manufacturing, 58, p.102976.

14. Xu, Z., La Mendola, I, Razavi, S.M.]. and Bagherifard, S., 2023. Additive manufactured Triply Periodical
Minimal Surface lattice structures with modulated hybrid topology. Engineering Structures, 289, p.116249.

15.  Greco, L., Buccino, F., Xu, Z., Vergani, L., Berto, F., Guagliano, M., Razavi, S.M.]. and Bagherifard, S., 2023.
Design and analysis of energy absorbent bioinspired lattice structures. Journal of Bionic Engineering, pp.1-
17.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202308.1007.v1

