
Article

Not peer-reviewed version

Graph Neural Networks (GNN) for

Tensile Strength Prediction in

Additive Manufacturing

Akshansh Mishra 

*

 and Vijaykumar S. Jatti 

*

Posted Date: 14 August 2023

doi: 10.20944/preprints202308.1007.v1

Keywords: Graph Neural Networks; Fused Deposition Modeling; 3D Printing; Polylactic Acid; Tensile

strength

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2404797
https://sciprofiles.com/profile/2444118


 

Article 

Graph Neural Networks (GNN) for Tensile Strength 
Prediction in Additive Manufacturing 

Akshansh Mishra 1,* and Vijaykumar S Jatti 2,* 

1 School of Industrial and Information Engineering, Politecnico Di Milano, Milan, Italy 
2 Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune 412115, 

Maharashtra, India 

* Correspondence: akshansh.mishra@mail.polimi.it (A.M.); vijaykumar.jatti@sitpune.edu.in (V.S.J.) 

Abstract: This paper presents the use of Graph Neural Networks (GNNs) to predict the tensile strength of 

Fused Deposition Modeling (FDM) specimens. In the present work, there are four main input parameters i.e. 

Infill percentage, Layer height, Print speed and Extrusion temperature while the Tensile Strength is an output 

parameter were considered. This study includes use of central composite design based response surface 

methodology to finalize the experimental layout.  3D printed specimen were manufactured as per the ASTM 

E8 standard on FDM printer using Polylactic Acid (PLA) as filament.  Micro-tensile test were performed on 

the printed specimen as per ASTM E8 standard.  The GNN algorithm was trained on a dataset of FDM 

specimens, achieving a mean squared error (MSE) of 2.47, mean absolute error (MAE) of 1.14, and R-squared 

value of 0.78. An adjacency matrix, which shows the connections between nodes in a graph. The obtained plot 

for nodes and weights in a GNN provide valuable information about the model and its performance. The 

results show the potential of using GNNs in predicting the mechanical properties of additively manufactured 

specimens and provide a promising direction for further research in this field.  

Keywords: Graph Neural Networks; Fused Deposition Modeling; 3D Printing; Polylactic Acid; 

tensile strength 

 

1. Introduction 

Graph Neural Networks (GNNs) represent a category of advanced machine learning algorithms 

that specifically handle data organized in graph structures. Unlike conventional neural networks, 

which are tailored for grid-based data like images or tables, GNNs are designed to effectively process 

data structured as graphs. In these graphs, nodes symbolize distinct entities, while edges signify 

relationships connecting these entities [1–5]. 

GNNs operate by accumulating information from neighboring nodes within a graph and 

leveraging this information to make informed predictions about node properties. This process hinges 

on the application of graph convolutional layers, which apply learned filters to the graph layout, 

thereby gathering insights from neighboring nodes and refining the representation of each node. 

GNNs have proven versatile across numerous applications, including recommendations, protein 

structure prediction, and social network analysis. Their strength lies in tackling scenarios where 

intricate entity relationships are prevalent, as they excel at capturing the intricate interplay of 

relationships within graph-based data [6–9]. 

Hestroffer et al. [10] pioneered the concept of Graph Neural Networks (GNNs) to accurately 

predict the mechanical attributes of polycrystalline materials. They devised a GNN model that 

employed a graph representation of polycrystals, encompassing essential grain characteristics such 

as size, crystal orientation, and neighboring grain connections. In the realm of additive 

manufacturing research, Graph Neural Networks (GNNs) carry the potential to revolutionize the 

field. Additive manufacturing involves the layer-by-layer construction of physical objects, often 

leading to end products with diverse mechanical traits, like tensile strength. Mozaffar et al. [11] 

introduced a graph-based model with neural networks to capture the intricate spatiotemporal 

relationships within additive manufacturing processes, focusing on the Directed Energy Deposition 
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technique. The outcomes demonstrated that this deep learning framework adeptly forecasts thermal 

histories for unfamiliar geometries during training, offering a viable alternative to resource-intensive 

computational methods. 

GNNs hold promise for modeling and predicting the mechanical characteristics of additively 

manufactured samples which find application in aerospace and biomedical sector as well [12–15], as 

they decipher the intricate connections between different geometric attributes and the corresponding 

mechanical traits. This approach unveils valuable insights into the nexus between specimen geometry 

and mechanical behavior, thereby guiding the optimization of the manufacturing procedure. 

Notably, this study introduces a pioneering application of the Graph Neural Network (GNN) model 

for predicting the properties of additively manufactured specimens. 

2. Problem Statement 

In this study, we investigate the use of Graph Neural Networks (GNNs) to forecast the tensile 

strength of specimens produced using Fused Deposition Modeling (FDM). Infill %, Layer height, 

Print speed, and Extrusion temperature are the four main input parameters used in the inquiry, with 

the goal of estimating the Tensile Strength as the output parameter. To optimize the experimental 

design, the study combines response surface approach and central composite design.  

Polylactic Acid (PLA) filament is used to 3D print specimens that adhere to ASTM E8 

requirements on an FDM printer in order to undertake the experimental analysis. The fabricated 

specimens are subjected to ASTM E8-recommended micro-tensile tests. We train a dataset of FDM 

specimens using the Graph Neural Network (GNN) technique. 

The study also explores how to build an adjacency matrix, which reveals how nodes in a graph 

are connected to one another. The nodes and weights within the GNN are seen as a result, and this 

provides important insights into the properties and effectiveness of the model. The results illustrate 

the potential of GNNs in predicting the mechanical characteristics of specimens made using additive 

manufacturing, outlining a promising path for furthering study in this area. 

3. Experimental Procedure 

To establish a standardized framework, the ASTM E8 standard geometry was selected as the 

reference, and its dimensions were uniformly reduced by 50% to optimize printing size and material 

consumption, while minimizing production time. The Response Surface Methodology (RSM) Design 

of Experiment approach was utilized to formulate a series of 30 distinct trial conditions, illustrated in 

Figure 1, encompassing three levels for each input parameter. Subsequently, the CAD model was 

sliced accordingly and translated into G-code via Ultimaker Cura software. The empirical exploration 

was conducted utilizing a Creality 3D FDM printer, as depicted in Figure 2. Each printing session 

was assigned a unique configuration of settings, varying parameters such as layer height, infill 

density, infill pattern, bed temperature, and nozzle temperature, all tailored to produce Polylactic 

Acid (PLA) specimens. A comprehensive datasheet was generated to systematically organize these 

input parameters. 
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Figure 1. Prepared samples in the present work 

 

Figure 2. FDM Process setup 

The FDM samples used in this research were fabricated with a Creality Ender 3 printer, which 

boasts a build area of 220 × 220 × 250 mm3. The measurements of the tensile specimen adhere to the 

specifications outlined in ASTM D638, with dimensions of 63.5 × 9.53 × 3.2 mm, meeting the 

prescribed criteria. Table 1 shows the experimental results obtained corresponding to the given input 

parameters.   
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Table 1. Experimental Results 

Infill 

percentage 

Layer 

height 

(mm) 

Print 

speed 

(mm/s) 

Extrusion 

temperature 

( ℃ ) 

Tensile 

strength 

(MPa) 

78 0.32 35 220 46.17 

10.5 0.24 50 210 42.78 

33 0.16 35 220 45.87 

33 0.32 35 200 41.18 

33 0.16 65 200 43.59 

100 0.24 50 210 54.2 

78 0.16 35 200 51.88 

33 0.32 65 200 43.19 

78 0.32 65 200 50.34 

33 0.16 65 220 45.72 

78 0.16 35 220 53.35 

55.5 0.24 50 210 49.67 

33 0.32 35 220 45.08 

55.5 0.24 50 190 47.56 

55.5 0.24 50 210 48.39 

78 0.32 65 220 46.49 

55.5 0.24 50 210 47.21 

55.5 0.24 50 210 48.3 

55.5 0.24 50 230 50.15 

33 0.32 65 220 43.35 

55.5 0.24 50 210 45.33 

55.5 0.24 80 210 45.56 

78 0.16 65 200 49.84 

55.5 0.24 20 210 48.51 

55.5 0.08 50 210 42.63 

55.5 0.4 50 210 42.87 

55.5 0.24 50 210 47.14 

78 0.32 35 200 45.17 

55.5 0.24 50 210 47.07 

78 0.16 65 220 50.99 

33 0.16 35 200 52.87 

Figure 3 shows the implemented framework in the present study. All the necessary libraries 

required to build and train a graph neural network were imported.  
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Figure 3. Framework used in the present work  

The dgl library is used for graph manipulation, pandas is used for loading and manipulating 

data, numpy is used for array processing, torch is used for neural network modelling and matplotlib 

is used for plotting graphs. The dataset is imported from the CSV file and stored it in a pandas data 

frame. A directed graph is created using the dgl library. The add_nodes() method is used to add the 

number of nodes to the graph equal to the number of rows in the dataset. The performance of the 

model is evaluated by calculating the mean absolute error, mean squared error and R-squared score. 

4. Results and Discussion 

A Graph Neural Network (GNN) uses graph-structured data to train node representations that 

include both node-level properties and the underlying graph structure. The GNN functions in a 

message-passing framework, where information is transmitted between nodes through edges, given 

a graph with nodes (representing instances) and edges (representing links or connections). Message 

aggregation and updating node representations are the two fundamental processes of the 

mathematical formulation. The dataset's columns correspond to various features, and each row 

represents a node. The input columns for the node features (X) are "Infill percentage," "Layer height," 

"Print speed," and "Extrusion temperature".  

Let 𝑋 be the matrix of the node features where each row 𝑥௜ corresponds to the feature vector 

of node 𝑖. The adjacency matrix (𝐴)encodes the connections between nodes. Now, let 𝐴 be the 

adjacency matrix of the graph where 𝐴௜௝ = 1 if there is an edge between the nodes 𝑖 and 𝑗 and 𝐴௜௝ = 0 in the opposite condition as shown in Figure 4. We adopted a technique that is frequently 

used to express the connections between nodes to produce the adjacency matrix (A) for our graph-

based study. Src_nodes and dst_nodes are two arrays that we defined in this procedure. These arrays 

stand in for the source and destination nodes of the edges in our graph, respectively. The 

corresponding entry in the dst_nodes array identifies the destination node of the same edge, while 

each entry in the src_nodes array identifies the originating node of an edge. We created the edges of 

the network by methodically creating links between the nodes by pairing these arrays. 
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Figure 4. Adjacency Matrix plot 

In the message aggregation process, messages from nearby nodes are computed and aggregated 

to create a combined message for each node. In the graph, this gathers data from the node's neighbors. 

A learnable function is often used to define the aggregation process as shown in Equation 1.  

𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠(௟ାଵ) = 𝜎 ቌ ෍ 𝑊(௟). 𝑥௝(௟)௝ ఢ ௡௘௜௚௛௕௢௨௥௦(௜) ቍ (1) 

Where 𝑙 is the layer index, 𝑥௝(௟) is the feature vector of node 𝑗 in layer 𝑙, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖) represents 

the neighbors of node 𝑖 , 𝑊(௟)   is a learnable weight matrix for layer 𝑙 ,and 𝜎  is a non-linear 

activation function.  

The node representations are updated using the aggregated messages and the node's own 

features after message aggregation. This stage captures the impact of both the graph structure and 

local node attributes as shown in Equation 2.  𝑥௜(௟ାଵ) = 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(௟ାଵ). ൫𝑥௜(௟), 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠(௟ାଵ)൯ (2) 

Predictions are made using the node representations after they have been obtained. In this 

instance, tensile strength values are predicted using regression using the GNN. For regression 

problems, the mean squared error (MSE) loss function is frequently employed as shown in Equation 

3.  𝐿𝑜𝑠𝑠 = 1𝑁 ෍ (𝑦௜ − 𝑦ො௜)ଶே௜ୀଵ  (3) 

Where 𝑁 is the number of instances (nodes) in the dataset, 𝑦௜ is the true label (ground truth) for 

node 𝑖, and 𝑦ො௜ is the predicted label (output of the GNN) for node 𝑖.  
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The GNN parameters (weight matrices in this case) are updated to minimize the loss using an 

optimization algorithm such as Adam as shown in Equation 4.  𝜃(௟ାଵ) = 𝜃(௟) − 𝛼. ∇𝐿𝑜𝑠𝑠 (4) 

Where 𝜃(௟)  is the parameter set (weights) of layer 𝑙 , 𝛼  is the learning rate, and ∇𝐿𝑜𝑠𝑠  is the 

gradient of the loss with respect to the parameters. Figure 5 shows the plot of learning rate with 

increasing number of epochs. Especially during the optimization process, the plot of learning rate 

with increasing number of epochs is a useful visualization that offers insights into the training 

dynamics and convergence behavior of a machine learning model. The use of a learning rate 

schedule, where the learning rate changes over time (for example, progressively declines), is 

advantageous for some models. The plot can demonstrate the success or failure of the learning rate 

schedule in achieving a smooth and constant convergence trajectory. The plot also demonstrates the 

speed at which the optimization process reaches a minimum. The parameter updates could oscillate 

and stop converging at an excessive learning rate. However, if the learning rate is too low, the 

convergence may take a long time. Finding an ideal learning rate that strikes a fair balance between 

rapid convergence and stability is made easier with the aid of the plot. 

 
Figure 5. Variation of learning rate with number of epochs 

Table 2 shows the results of the obtained metrics features from the given framework. The result 

of the GNN model for the prediction of tensile strength was evaluated using the R-squared metric, 

which measures the amount of variation in the target value that is explained by the input features. 

An R-squared value of 0.78 was obtained, which indicates that the model was able to explain 78% of 

the variation in the tensile strength measurements. The result obtained from the GNN model is 

considered to be a good indicator of the accuracy of the model. An R-squared value of 0.78 indicates 

that the model was able to capture the majority of the underlying relationship between the input 

features and the target value. This result is considered to be highly satisfactory and accurate, as it 
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indicates that the model was able to learn the important relationships between the input features and 

the target value. 

Table 2. Obtained Metrics features 

MSE MAE R2 

2.47 1.14 0.78 

The scatter plot as shown in Figure 6 allows us to visually assess how well the predicted tensile 

strengths match the actual (ground truth) tensile strengths. Each point on the plot represents a data 

point, where the x-coordinate is the actual tensile strength and the y-coordinate is the predicted 

tensile strength. If the points closely follow a diagonal line (the gray dashed line in the plot), it 

indicates that the predictions are accurate and closely aligned with the ground truth. 

 

Figure 6. Plot for Predicted vs Actual Tensile Strength 

Each point's color corresponds to the real tensile strength value. This color information adds a 

new level of information dimension. It may be a sign of heteroscedasticity, when prediction errors 

fluctuate across different levels of actual tensile strength, if the color gradient shifts along the 

expected vs. actual line.  

The link between the actual tensile strength values and the related residuals (differences 

between anticipated and real values) from a machine learning model is depicted in Figure 7 which is 

a residual plot. We can locate any systematic biases or inaccuracies in the predictions of the model by 

examining the scatter plot of the actual tensile strength vs. residuals. The residuals may be 

systematically overestimating or underestimating the tensile strength if they consistently wander 

above or below the horizontal line (y = 0). The plot reveals how the model's predictive power varies 

at various levels of observed tensile strength. If a particular pattern can be seen in the residuals (e.g., 

a rise or drop with increasing tensile strength), the model's performance is not uniform across the 

whole range of data. As residuals that considerably depart from the horizontal line, outliers or 
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anomalous data points might be found. These points could be examples of situations when the 

model's predictions were noticeably off or where there were problems with the data. 

 
Figure 7. Residual plot obtained in the present work 

The model's predictions appear to be impartial and precise because of the random distribution 

of points around the horizontal line (y = 0). On the other hand, a recognizable pattern or trend in the 

residuals can suggest that key aspects of the data have been missed by the model. 

5. Conclusion 

It is clear from the results of using a Graph Neural Network (GNN) to forecast the tensile 

strength of an additively built specimen that the GNN shown a noteworthy capacity for doing so. 

Mean absolute error (MAE) of 1.14 and mean squared error (MSE) of 2.47, respectively, indicate that 

the model produced predictions with relatively low variance. Additionally, the model's capacity to 

explain almost 78% of the variation in tensile strength observed is highlighted by its R-squared value 

of 0.78, which demonstrates its strong predictive power. Recognizing that there are still opportunities 

for improvement and improvement is important. It is acknowledged that more optimization may be 

possible. The inclusion of additional data, such as material characteristics or manufacturing process 

factors, into the graph is an attractive area for future exploration. This project tries to determine 

whether increased information leads to better prediction accuracy. This study lays the groundwork 

for such iterative improvements by showing the GNN's potential while simultaneously encouraging 

the investigation of more thorough prediction frameworks. 
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