Pre prints.org

Article Not peer-reviewed version

Making a Grammar Checker with
Autocorrect Options Using NLP
Tools

Radu Bucea Manea Tonis ~ and Adrian Beteringhe

Posted Date: 25 August 2023
doi: 10.20944/preprints202308.1640.v2

Keywords: grammar; natural language; logic programming; syntactic analysis; lambda calculus.

E E Preprints.org is a free multidiscipline platform providing preprint service that
2 ; is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3036689

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Making a Grammar Checker with Autocorrect
Options Using NLP Tools

1,1,1,*

Radu Bucea Manea Tonis , Adrian Beteringhe

Danubius University, School of Behavioral and Applied Sciences; radumanea@univ-danubius.ro
Danubius University, School of Behavioral and Applied Sciences; adrianbeteringhe@univ-danubius.ro
Correspondence: radub_m@yahoo.com

t Current address: 3 Galati Boulevard, Galati 800654, Romania.

T These authors contributed equally to this work.

Abstract: Our natural language approach concerns syntactic analysis using a dedicated Javascript
library - wink-nlp - and semantic analysis based on Prolog programming language, facilitated by
another Javascript library - tau-prolog - that allows defining logical programs, declaring rules and
checking for goals inside Javascript language. Firstly, our program splits the original text into
sentences, than into tokens and identifies each part of the sentence, dynamically maps entities into
Prolog rules, then check the spelling accordingly to the Definite Clause Grammar (DCG) by querying
the pre-defined program for initial goals (the sentence itself). Basically, we let the parser infer its own
rules from the syntactic point of view, then check the grammar from a semantic perspective against
the DCG inside the same work flow or pipeline of steps.The provided article combine the usage of
wink-nlp and tau-prolog packages for natural language processing (NLP) and understanding (NLU),
and demonstrates the need of a supplementary logic layer based on beta reductions over lambda
expressions.

Keywords: grammar; natural language; logic programming; syntactic analysis; lambda calculus

1. Introduction

Grammar proofreaders fall into two categories, those that perform syntactic analysis of the
sentence and ensure the identification of sentence parts in order to establish the correct relationship
between them according to a predefined linguistic model, and those that are based on Al, e.g.
Grammarly, and which can learn step by step the correct structure of a sentence and transform a
grammatically wrong sentence into a correct one. For learning, training sets are used, such as C4_200M
made and provided by Google and which contains examples of grammatical errors along with their
correct form. [1] Syntactic analysis shows the following aspects of the sentence: [2]

e Word order and meaning - syntactic analysis aims to extract the dependence of words with other
words in the document. If we change the order of words, then it will be difficult to understand
the sentence;

*  Retention of stop words - if we remove stop words, then the meaning of a sentence can be changed
altogether;

e Word morphology - stemming, lemmatization will bring words to their basic form, thereby
changing the grammar of the sentence;

¢ Parts of speech of words in a sentence - identifying the correct speech part of a word is important.

Identifying entities and their relationships in text is useful for several NLP tasks, for example creating
knowledge graphs, summarizing text, answering questions, and correcting possible grammatical
mistakes. For this last purpose, we need to analyze the grammatical structure of the sentence, as well
as identify the relationships between individual words in a particular context. Individual words that
refer to the different topics and objects in a sentence, such as names of places and people, dates of
interest, or other the same, are referred to as "entities", see Figure 1:[3]

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0001-6417-5115
https://doi.org/10.20944/preprints202308.1640.v2
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

2 0f 10

token

- Parse

Source Lexical
Parser free

text Analyzer -

getNext

Figure 1. The interaction between lexical analyzer and parser, after [2]

Relationships are established by means of verbs or simple joining, as is the case with collocations.
In the case of the latter, bigram trees can be used in the form of linear development on the agglutinative
principle or the Fibonacci sequence, resulting in simply chained lists, please see Figure 2:

pair 1,2, ... m

Entity detection |::> Relation detection

Figure 2. Inference pipeline architecture, after [3]

entity 1. 2. ....n

The main unit of content mapping is the sentence or statement. In the case of natural languages,
the sentence structure is SVO in the case of Indo-European languages. Other primitive structures like
the agglutinative language of the Minoans highlighted in the Linear A script (partially deciphered)
seems to follow a VSO structure and the ancient Germanic languages a curious OSV (pre-Celtic?)
order. There are some problematic considerations about rendering sentences in predicate logic [4], but
since we address our parser only to simple, straight forward English texts, we hope not to encounter
ambiguous situations like the following, where is not clear why every farmer should beat every donkey
they own, if Pedro, for instance, beats regularly his donkeys:

Vx[[donkey(x)&own(Pedro, x)| — beat(Pedro, x)] 1)

VxVy[[farmer(x)&donkey(y)&own(x,y)] — beat(x,y)] )

In order to overrun this inconvenience we decide to improve our DCG syntax adding a new A operator
to bind free variables. There are several situations that will benefit from this approach: [9]

e Interpreting determiners, e.g. a man is not the same with there is a man;

e  Typeraising, e.g. the argument may become the function, like in the case of callback functions or
inversion of control design pattern;

e  Transitive verbs, e.g. the following expression Ax.love(x,y) may improve the lexicon in this
special case, and the expression Ax.walk(x) will do the same for intransitive verbs;

*  Quantifier and scope ambiguity, e.g. In this country, a woman gives birth every 15 minutes. and Every
man loves a woman , respectively;

e Coordination or summing up, e.g. walk(john) A walk(mary).

This way we are getting closer to a Natural Language Understanding (NLU) component responsible
for extracting information at a single step throughout a pipeline process consisting of several stages:
[10] tokanization, syntactic analysis and generating the semantic grammar lexicon on the fly, based on
the original term redexes, i.e. reduced forms.


https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

30f 10

2. Materials

Factors such as openness, simplicity, flexibility, full browser integration, and attention to the
security and privacy concerns that naturally arise in executing untrusted code have helped the
Javascript language gain very significant popularity despite its low initial efficiency. Overall, it allows
for a disruptive paradigm shift that gradually replaces the development of OS-dependent applications
with web applications that can run in a variety of devices, some completely portable.[5] WinkNLP
is a JavaScript library for natural language processing (NLP). Specifically designed to make NLP
application development easier and faster, winkNLP is optimized for the right balance between
performance and accuracy. It is built from the ground up with a weak code base that has no external
dependence. The .readDoc() method, when used with the default instance of winkNLDP, splits text into
tokens, entities, and sentences. It also determines a number of their properties. They are accessible by
the .out() method based on the input parameter — its.property. Some examples of properties are value,
stopWordFlag, pos, and lemma, see Table 1:

Table 1. Common its.properties that become available at each stage, after https://winkjs.org/wink-nlp.

Stage Description

tokenization Splits text into tokens.
Sentence boundary detection — determines span of each sentence in terms of start and end

sbd token indexes.
negation Negation handling — sets the negation Flag for every token whose meaning is negated due
a "not" word.
sentiment Computes sentiment score of each sentence and the entire document.
ner Named entity recognition — detects all named entities and also determines their type and
span.
pos Performs part-of-speech tagging.
cer Custom entity recognition — detects all custom entities and their type and span.

The .readDoc() API processes input text in several stages. All steps together form a processing
channel/flow, also called pipes. The first stage is tokenization, which is mandatory. Later steps such
as sentence limit detection (SBD) or part-of-speech (POS) tagging are optional. Optional steps are
user-configurable. The following figure and table illustrate the actual Wink flow, see Figure 3:

text
—— = token shd negation sentiment ner pos cer .doc

Figure 3. Wink processing flow, after https:/ /winkjs.org/wink-nlp / processing-pipeline.html

According to [3], there is a need for a compiler from Prolog (and extensions) to JavaScript, that
may use logical programming (constraint) to develop client-side web applications while complying
with current industry standards. Converting code into JavaScript makes (C)LP programs executable in
almost any modern computing device, with no additional software requirements from the user’s point
of view. The use of a very high-level language facilitates the development of complex and high-quality
software. Tau Prolog is a client-side Prolog interpreter, implemented entirely in JavaScript and designed
to promote the applicability and portability of Prologue text and data between multiple data processing
systems. Tau Prolog has been developed for use with either Node or a seamless browser.js and allows
browser event management and modification of a web’s DOM using Prolog predicates, making Prolog


https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

40f10

even more powerful. [6] Tau-prolog provides an effective tool for implementing a Lexical-Functional
Grammar (LFG): a sentence structure rule annotated with functional schemes such as S —> NP, VP. to
be interpreted as: [7]

* the identification of the special grammatical relation to the subject position of any sentence
analyzed by this clause vis-a-vis the NP appearing in it;
¢ theidentification of all grammatical relations of the sentence with those of the VP.

The procedural semantics of the Prolog are such that the instantiation of variables in a clause is
inherited from the instantiation given by its sub-scopes, if they succeed. Another way to deal with
logic programming is using a dedicated library [8] allowing us to declare facts and rules functional
style, a step further to constraint programming, an interesting paradigm we aim to explore in our
future research.

3. Methodology

We see the process of understanding natural language as the application of a complex H function
that achieves the transformation of an external form into a certain understanding in a particular field
of knowledge. One strategy to define H is to decompose it into a linear sequence of functions h, which
applies to intermediate structures S;:

H(P) = hyohpqo...ohy(P). (3)

Decomposition is motivated by linguistic and mathematical considerations. Then, for computational
reasons, h; may again be decomposed or, conversely, integrated. The exact nature of each S; and h;
is not yet completely clear to [11], yet, within the logical programming paradigm, he considers h; as
rewriting systems. After lexical analysis of the text and identification of words with the help of the
token function, a first step is to identify the parts of the sentence. Extremely useful again is binary
development, this time at the level of sentence, dividing the statement into noun phrase (NF) and
verbal phrase (VF). Recursive development is done after the second term, decomposed into a new NF,
VEF and so on. For example, the process of syntactic analysis rewrites a sentence in a syntactic tree,

. / \
/ \ // \Vp.
\

DET N W /NF'\

a woman expects an American to win
Figure 4. Syntactic tree

We upgrade the syntactic tree with the lambdas constructs to obtain a semantic tree, please see
Figure 5:


https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

50f 10

s ((Ax. hy.expects(x, v) ) xvinlx))an American))| 3 x.voman|x))

/ NP\EI X woman [_le//\fP\ (7 x kv expects(x, v)) [k xwin(x)an American))

NP, VP!

DET N v /\

DET N
I

hxhoy.expects(x, v)
I | |

a woman expects an American

hoxawin| x)|an American )

\VP
Iy

Figure 5. Semantic tree

The most evident advantage is applying beta reductions when parsing the whole expression

semantically:
(Ax.Ay.expects(x,y)((Ax.win(x))an_American))(3Ix.woman(x)) :
L B
(Ax.Ay.expectsx, y((Ax.winx)an_American))(3x.womanx)
2. P
Ay.expectsx, y((Ax.winx)an_American)
3.

Ay.expectsx, y(winan_American)

Roughly speaking, the semantic interpretation process rewrites the syntactic tree into a logic formula.
It is an expression where the bound variables occur at several nesting depths, please see Figure 6:

Figure 6. Viewing the term nesting structure

In the name-free notation, no variable name appears after the A symbol and bound variable
indexes appear as numbers. The name x of a bound variable serves only to match each occurrence of
x with its binding A x so each occurrence of a bound variable is represented by an index, giving the
number of abstractions lying between it and its binding abstraction. [12] In the name-free notation, the
three occurrences of x are represented by 0 and 1, and 0 for the occurrence of y:

A((£0)£1)(30)

Finally, this logical formula is rewritten into a set of Prolog clauses. The program loads the wink-nlp
package, imports an English language model, creates a session with tau-prolog, and performs natural
language processing tasks using winkNLP. It also defines a Prolog program, extracts entities from a
given text, and queries the Prolog program using tau-prolog against the rules obtained by syntactic
analysis (previous step).

1.  The required packages and modules are imported using the require function. The wink-nlp
package is imported as winkNLP, and the English language model is imported accordingly:


https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

6 of 10

// Load required packages and modules:
const winkNLP = require(’wink-nlp’);
const model = require(’wink-eng-lite-web-model’);

const pl = require("tau-prolog"); .

2. The tau-prolog package is imported as pl, and a session is created with pl.create(1000):
// Create a new session:

const session = pl.create(1000);

3. The winkNLP function is invoked with the imported model to instantiate the nlp object:
// Instantiate winkNLP:
const nlp = winkNLP(model) ;

4.  The its and show variables are assigned to nlp.its and a function that logs the formatted answer
from the tau-prolog session, respectively:
// Define helper functions:
const its = nlp.its;

const showAnswer = x => console.log(session.format_answer(x));

5. The item variable is assigned the value of the third argument passed to the Node.js script using
process.argv|[2]:
// Get command line argument:
const inputItem = process.argv[2]; //’the boy eats the apples.the woman runs the alley’;

// in the back. a woman runs freely on the alley’;

6. The program variable is assigned a Prolog program represented as a string. It defines rules for
sentence structure, including noun phrases, verb phrases, and intransitive verbs. The program
also includes rules for intransitive verbs, e.g. "runs" and "laughs":[13]

// Define the program and goal:
let program = ¢

s(A,B) :- np(A,C), vp(C,D), punct(D,B).

np(A,B) :- proper_noun(A,B).

np(A,B) :- det(A,C), noun(C,B).

vp(A,B) :- verb(A,C), np(C,B).

vp(A, B) :- intransitive_verb(A, B).

proper_noun([Eesha|A],A).

proper_noun([Eeshan|A],A).
intransitive_verb([runs|Al,A). %Ax.run(x)
intransitive_verb([laughs|A],A). %Ax.laugh(x)
punct(4,A).

<.
>

7. The nlp.readDoc function is used to create a document object from the inputltem. The code then
iterates over each sentence and token in the document, extracting the type of entity and its part of
speech:
const doc = nlp.readDoc(inputItem);
let entityMap = new Map();

// Extract entities from the text:
doc.sentences() .each((sentence) => {
sentence.tokens () .each((token) => {

entityMap.set(token.out (its.value), token.out(its.pos));


https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

7 of 10

F)gh)sg

8.  The extracted entities and their parts of speech are stored in a Map object as Prolog rules:
// Add entity rules to the program:
const mapEntriesToString = (entries) => {
return Array.from(entries, ([k, v]) => ‘n ${v.toLowerCase()}(S0,S) :- SO=[${k.toLowerCase()}|S].¢).
join("m) + n

}
//console.log(mapEntriesToString([...entityMap.entries()]));

".
n 3

9. The generated Prolog rules are appended to the program string:

program += mapEntriesToString([...entityMap.entries()]);

10.  The session.consult function is used to load the Prolog program into the tau-prolog session. Then,
the session.query function is used to query the loaded program with the specified goals. The
session.answers function is used to display the answers obtained from the query:
doc.sentences () .each((sentence) => {
let goals = ‘s([${sentence.tokens().out()}],[1).¢;
session.consult (program, {
success: function() {
session.query(goals, {
success: function() {
session.answers (showAnswer) ;

DI

4. Results

Basically, the program measures the impedance between WinkNLP and Tau-Prolog language
models. It is a matter of tuning both in order to get the optimum results, this is to map and filter the
output of WinkNLP according to the DCG Prolog inference rules, since the lexicon is obtained by
consuming its own WinkNLP results, see the results in Figure 7:

C:\Users\radub>node corr "the boy eats the apples.the woman runs the alley."

det([the|A],A).
noun([boy|A],A).
verb([eats|Al,A).
noun([apples|A],A).
punct([.|Al,R).

noun([woman|A],A).
verb([runs|A],A).
noun([alley|Al,A).

s([the,boy,eats,the,apples,.],[]1).
s([the,woman,runs,the,alley,.],[1).
true

true

Figure 7. The result of corr’s execution

In order to show the possible valid combination of words, it suffice changing the program’s
goal from ‘s([$sentence.tokens().out()],[]).” to ‘findall(M,s(M,[]),R).”. The result will be a list of valid
sentences according to the dynamic generated DCG lexicon, see Figure 8:


https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

8 of 10

C:\Users\radub>node corr "a woman runs the alley."

s([a,woman, runs, the,alley,.],[1).

R = [[a,woman,runs,a,woman], [a,woman,runs,a,woman, .], [a,woman,runs,a,alley], [a,woman,runs,a,alley,.], [a,woman, runs, the, u
oman] , [a,woman, runs,the,woman,.], [a,woman,runs, the alley], [a, woman,runs, the alley,.], [a,alley,runs,a,woman], [a,alley, run
s,a,woman, .], [a,alley,runs,a,alley], [a,alley,runs,a,alley,.], [a,alley, runs, the,woman], [a,alley,runs,the ,woman, .], [a alle

v, runs, the alley], [a alley,runs,the alley, .], [the,woman,runs, a,woman], [the woman,runs,a,woman, .], [the woman,runs, a alley
1,[the,woman, runs,a,alley, .], [the, woman,runs,the,woman], [the,woman,runs,the,woman, .1, [the , woman,runs,the,alley], [the, wom
an,runs,the, alley, .],[the,alley,runs,a,woman], [the, alley,runs,a,woman, .], [the,alley,runs,a,alley], [the,alley,runs,a,alle
v,.],[the,alley, runs,the,woman], [the, alley,runs,the,woman,.], [the, alley,runs,the,alley], [the, alley,runs,the,alley, .]]
false

Figure 8. The result of corr’s findall execution

It is important to notice that a determinant like ‘a’, i.e. 3, almost triples the area of semantic field,
thus emphasizes the importance of the semantic capabilities of the parser. It is obvious we have to run
the findall method after each sentence not to combine the lexicon of the two sentences. Otherwise, the
result is interesting, bring our program closer to generating Al features, e.g. chatGPT, rather than a
normal grammatical corrector: the boy eats the boy , the boy eats the apples , the boy eats the woman , the boy
eats the alley , the boy runs the boy , the boy runs the apples , the boy runs the woman , the woman eats the apples
, and so on. This is most likely the field of Al (e.g. https://sunilchomal.github.io/ GECWBERT /#c-bert)
to choose the appropriate language model in order to get the minimum entropy or information loss.

5. Discussion

If the required packages (wink-nlp, wink-eng-lite-web-model and tau-prolog) are not installed,
the code will throw an error. Also, if the Node.js script is not executed with a third argument,
the item variable will be undefined, which may cause issues later in the code. In our future
research will add error handling to gracefully handle any exceptions thrown during package
imports or function invocations, and, eventually, implement additional natural language processing
tasks using the wink-nlp package. Also, we aim to enhance the Prolog program to handle
more complex sentence structures and semantic relationships using an extended DCG parser (e.g.
https:/ / github.com/hfeky/definite-clause-grammar-parser/blob/main/dcgp.pl) and feel prepared
to consider using a logic Javascript library (e.g. https://github.com/mcsoto/Logic]S) to replace the
entire Prolog script from our source code.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual
contributions must be provided. The following statements should be used “Conceptualization, R.M. and A.B.;
methodology, R.M.; software, R.M.; validation, A.B.; formal analysis, A.B.; investigation, R.M.; resources, R.M.;
data curation, A.B.; writing—original draft preparation, R.M.; writing—review and editing, R.M.; visualization,
A.B,; supervision, A.B.; project administration, R.M. All authors have read and agreed to the published version of
the manuscript.”, please turn to the CRediT taxonomy for the term explanation.

Funding: “This research received no external funding”

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: “The authors declare no conflict of interest.”


http://img.mdpi.org/data/contributor-role-instruction.pdf
https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

9 of 10
Abbreviations
Abbreviations
The following abbreviations are used in this manuscript:
DCG  Definite Clause Grammar
NLP  Natural Language Processing
NLU  Natural Language Understanding
Al Artificial Intelligence
SVO  Subject Verb Object
VSO Verb Subject Object
OSV  Object Subject Verb
(O] Operating System
DOAJ Directory of open access journals
LFG Lexical-Functional Grammar
LP Logic Programming
References
1. NLP: Building a  Grammatical Error  Correction = Model. Available  online:

https:/ /towardsdatascience.com/nlp-building-a-grammatical-error-correction-model-deep-learning-analytics-
c914c3a8331b (accessed on 16 Aug. 2023).

2. Syntactic Analysis - Guide to Master Natural Language Processing(Part 11).  Available online:
https:/ /www.analyticsvidhya.com/blog/2021/06/part-11-step-by-step-guide-to-master-nlp-syntactic-analysis
(accessed on 16 Aug. 2023).

3. Relation Extraction and Entity Extraction in Text wusing NLP. Available online:
https:/ /nikhilsrihari-nik. medium.com/identifying-entities-and-their-relations-in-text-76efa8c18194
(accessed on 16 Aug. 2023).

4. Discourse Representation Theory. Available online: https://plato.stanford.edu/entries/discourse-
representation-theory (accessed on 16 Aug. 2023).

5.  Jose F. Morales, Rémy Haemmerlé, Manuel Carro, and Manuel V. Hermenegildo. Lightweight
compilation of (C)LP to JavaScript. Theory and Practice of Logic Programming 2012, 12(4-5), 755-773,
https://doi.org/10.1017/51471068412000336.

6. An open source Prolog interpreter in JavaScript. Available online:
https:/ /socket.dev/npm/package/tau-prolog (accessed on 16 Aug. 2023).

7.  Frey W,; Reyle U. A Prolog Implementation of Lexical Functional Grammar as a Base for a Natural Language
Processing System. Conference of the European Chapter of the Association for Computational Linguistics
(1983); URL: https:/ /api.semanticscholar.org/CorpusID:17161699

8.  Logic programming in JavaScript using Logic]S. Available online:
https:/ /abdelrahman.sh /2022 /05 /logic-programming-in-javascript (accessed on 16 Aug. 2023).

9.  Introduction to semantic parsing. Available online: https://stanford.edu/class/cs224u/2018 /materials/
cs224u-2018-intro-semparse.pdf (accessed on 22 Aug. 2023).

10. Bercaru, G.; Truicd, C.-O.; Chiru, C.-G.; Rebedea, T. Improving Intent Classification Using Unlabeled Data
from Large Corpora. Mathematics 2023, 11, 769. https:/ /doi.org/10.3390/math11030769.

11. Saint-Dizier, P. An approach to natural-language semantics in logic programming; Journal
of Logic Programming. Journal of Logic Programming 1986, Volume 3, Issue 4), 329-356,
https://doi.org/10.1016/0743-1066(86)90010-5.


https://doi.org/10.20944/preprints202308.1640.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 do0i:10.20944/preprints202308.1640.v2

10 of 10

12.  Paulson, L.C. Writing Interpreters for the A -Calculus. In ML for the Working Programmer; Cambridge
University Press, Country, 2007; pp. 357 — 396; ; DOL: https://doi.org/10.1017 /CB09780511811326.011.

13. Kamath, R, Jamsandekar, S.,, Kamat, R. Exploiting Prolog and Natural Language
Processing for Simple English Grammar. In Proceedings of National Seminar
NSRTIT-2015, CSIBER, Kolhapur, Date of Conference (March 2015); URL: URL:
https:/ /www.researchgate.net/publication/280136353_Exploiting_Prolog_and_Natural Language_
Processing_for_Simple_English_Grammar.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202308.1640.v2

	Introduction
	Materials
	Methodology
	Results
	Discussion
	References

