
Article

Not peer-reviewed version

Making a Grammar Checker with

Autocorrect Options Using NLP

Tools

Radu Bucea Manea Tonis

*

 and Adrian Beteringhe

Posted Date: 25 August 2023

doi: 10.20944/preprints202308.1640.v2

Keywords: grammar; natural language; logic programming; syntactic analysis; lambda calculus.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3036689

Article

Making a Grammar Checker with Autocorrect
Options Using NLP Tools

Radu Bucea Manea Tonis 1,†,‡,∗ , Adrian Beteringhe 2,‡

1 Danubius University, School of Behavioral and Applied Sciences; radumanea@univ-danubius.ro
2 Danubius University, School of Behavioral and Applied Sciences; adrianbeteringhe@univ-danubius.ro

* Correspondence: radub_m@yahoo.com

† Current address: 3 Galati Boulevard, Galati 800654, Romania.

‡ These authors contributed equally to this work.

Abstract: Our natural language approach concerns syntactic analysis using a dedicated Javascript

library - wink-nlp - and semantic analysis based on Prolog programming language, facilitated by

another Javascript library - tau-prolog - that allows defining logical programs, declaring rules and

checking for goals inside Javascript language. Firstly, our program splits the original text into

sentences, than into tokens and identifies each part of the sentence, dynamically maps entities into

Prolog rules, then check the spelling accordingly to the Definite Clause Grammar (DCG) by querying

the pre-defined program for initial goals (the sentence itself). Basically, we let the parser infer its own

rules from the syntactic point of view, then check the grammar from a semantic perspective against

the DCG inside the same work flow or pipeline of steps.The provided article combine the usage of

wink-nlp and tau-prolog packages for natural language processing (NLP) and understanding (NLU),

and demonstrates the need of a supplementary logic layer based on beta reductions over lambda

expressions.

Keywords: grammar; natural language; logic programming; syntactic analysis; lambda calculus

1. Introduction

Grammar proofreaders fall into two categories, those that perform syntactic analysis of the

sentence and ensure the identification of sentence parts in order to establish the correct relationship

between them according to a predefined linguistic model, and those that are based on AI, e.g.

Grammarly, and which can learn step by step the correct structure of a sentence and transform a

grammatically wrong sentence into a correct one. For learning, training sets are used, such as C4_200M

made and provided by Google and which contains examples of grammatical errors along with their

correct form. [1] Syntactic analysis shows the following aspects of the sentence: [2]

• Word order and meaning - syntactic analysis aims to extract the dependence of words with other

words in the document. If we change the order of words, then it will be difficult to understand

the sentence;
• Retention of stop words - if we remove stop words, then the meaning of a sentence can be changed

altogether;
• Word morphology - stemming, lemmatization will bring words to their basic form, thereby

changing the grammar of the sentence;
• Parts of speech of words in a sentence - identifying the correct speech part of a word is important.

Identifying entities and their relationships in text is useful for several NLP tasks, for example creating

knowledge graphs, summarizing text, answering questions, and correcting possible grammatical

mistakes. For this last purpose, we need to analyze the grammatical structure of the sentence, as well

as identify the relationships between individual words in a particular context. Individual words that

refer to the different topics and objects in a sentence, such as names of places and people, dates of

interest, or other the same, are referred to as "entities", see Figure 1:[3]

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-6417-5115
https://doi.org/10.20944/preprints202308.1640.v2
http://creativecommons.org/licenses/by/4.0/

2 of 10

Figure 1. The interaction between lexical analyzer and parser, after [2]

Relationships are established by means of verbs or simple joining, as is the case with collocations.

In the case of the latter, bigram trees can be used in the form of linear development on the agglutinative

principle or the Fibonacci sequence, resulting in simply chained lists, please see Figure 2:

Figure 2. Inference pipeline architecture, after [3]

The main unit of content mapping is the sentence or statement. In the case of natural languages,

the sentence structure is SVO in the case of Indo-European languages. Other primitive structures like

the agglutinative language of the Minoans highlighted in the Linear A script (partially deciphered)

seems to follow a VSO structure and the ancient Germanic languages a curious OSV (pre-Celtic?)

order. There are some problematic considerations about rendering sentences in predicate logic [4], but

since we address our parser only to simple, straight forward English texts, we hope not to encounter

ambiguous situations like the following, where is not clear why every farmer should beat every donkey

they own, if Pedro, for instance, beats regularly his donkeys:

∀x[[donkey(x)&own(Pedro, x)] → beat(Pedro, x)] (1)

∀x∀y[[f armer(x)&donkey(y)&own(x, y)] → beat(x, y)] (2)

In order to overrun this inconvenience we decide to improve our DCG syntax adding a new λ operator

to bind free variables. There are several situations that will benefit from this approach: [9]

• Interpreting determiners, e.g. a man is not the same with there is a man;
• Type raising, e.g. the argument may become the function, like in the case of callback functions or

inversion of control design pattern;
• Transitive verbs, e.g. the following expression λx.love(x, y) may improve the lexicon in this

special case, and the expression λx.walk(x) will do the same for intransitive verbs;
• Quantifier and scope ambiguity, e.g. In this country, a woman gives birth every 15 minutes. and Every

man loves a woman , respectively;
• Coordination or summing up, e.g. walk(john) ∧ walk(mary).

This way we are getting closer to a Natural Language Understanding (NLU) component responsible

for extracting information at a single step throughout a pipeline process consisting of several stages:

[10] tokanization, syntactic analysis and generating the semantic grammar lexicon on the fly, based on

the original term redexes, i.e. reduced forms.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

3 of 10

2. Materials

Factors such as openness, simplicity, flexibility, full browser integration, and attention to the

security and privacy concerns that naturally arise in executing untrusted code have helped the

Javascript language gain very significant popularity despite its low initial efficiency. Overall, it allows

for a disruptive paradigm shift that gradually replaces the development of OS-dependent applications

with web applications that can run in a variety of devices, some completely portable.[5] WinkNLP

is a JavaScript library for natural language processing (NLP). Specifically designed to make NLP

application development easier and faster, winkNLP is optimized for the right balance between

performance and accuracy. It is built from the ground up with a weak code base that has no external

dependence. The .readDoc() method, when used with the default instance of winkNLP, splits text into

tokens, entities, and sentences. It also determines a number of their properties. They are accessible by

the .out() method based on the input parameter — its.property. Some examples of properties are value,

stopWordFlag, pos, and lemma, see Table 1:

Table 1. Common its.properties that become available at each stage, after https://winkjs.org/wink-nlp.

Stage Description

tokenization Splits text into tokens.

sbd
Sentence boundary detection — determines span of each sentence in terms of start and end

token indexes.

negation
Negation handling — sets the negation Flag for every token whose meaning is negated due

a "not" word.
sentiment Computes sentiment score of each sentence and the entire document.

ner
Named entity recognition — detects all named entities and also determines their type and

span.
pos Performs part-of-speech tagging.
cer Custom entity recognition — detects all custom entities and their type and span.

The .readDoc() API processes input text in several stages. All steps together form a processing

channel/flow, also called pipes. The first stage is tokenization, which is mandatory. Later steps such

as sentence limit detection (SBD) or part-of-speech (POS) tagging are optional. Optional steps are

user-configurable. The following figure and table illustrate the actual Wink flow, see Figure 3:

Figure 3. Wink processing flow, after https://winkjs.org/wink-nlp/processing-pipeline.html

According to [3], there is a need for a compiler from Prolog (and extensions) to JavaScript, that

may use logical programming (constraint) to develop client-side web applications while complying

with current industry standards. Converting code into JavaScript makes (C)LP programs executable in

almost any modern computing device, with no additional software requirements from the user’s point

of view. The use of a very high-level language facilitates the development of complex and high-quality

software. Tau Prolog is a client-side Prolog interpreter, implemented entirely in JavaScript and designed

to promote the applicability and portability of Prologue text and data between multiple data processing

systems. Tau Prolog has been developed for use with either Node or a seamless browser.js and allows

browser event management and modification of a web’s DOM using Prolog predicates, making Prolog

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

4 of 10

even more powerful. [6] Tau-prolog provides an effective tool for implementing a Lexical-Functional

Grammar (LFG): a sentence structure rule annotated with functional schemes such as S –> NP, VP. to

be interpreted as: [7]

• the identification of the special grammatical relation to the subject position of any sentence

analyzed by this clause vis-à-vis the NP appearing in it;
• the identification of all grammatical relations of the sentence with those of the VP.

The procedural semantics of the Prolog are such that the instantiation of variables in a clause is

inherited from the instantiation given by its sub-scopes, if they succeed. Another way to deal with

logic programming is using a dedicated library [8] allowing us to declare facts and rules functional

style, a step further to constraint programming, an interesting paradigm we aim to explore in our

future research.

3. Methodology

We see the process of understanding natural language as the application of a complex H function

that achieves the transformation of an external form into a certain understanding in a particular field

of knowledge. One strategy to define H is to decompose it into a linear sequence of functions h, which

applies to intermediate structures Si:

H(P) = hn ◦ hn-1 ◦ ... ◦ h1(P). (3)

Decomposition is motivated by linguistic and mathematical considerations. Then, for computational

reasons, hi may again be decomposed or, conversely, integrated. The exact nature of each Si and hi

is not yet completely clear to [11], yet, within the logical programming paradigm, he considers hi as

rewriting systems. After lexical analysis of the text and identification of words with the help of the

token function, a first step is to identify the parts of the sentence. Extremely useful again is binary

development, this time at the level of sentence, dividing the statement into noun phrase (NF) and

verbal phrase (VF). Recursive development is done after the second term, decomposed into a new NF,

VF and so on. For example, the process of syntactic analysis rewrites a sentence in a syntactic tree,

please see Figure 4:

Figure 4. Syntactic tree

We upgrade the syntactic tree with the lambdas constructs to obtain a semantic tree, please see

Figure 5:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

5 of 10

Figure 5. Semantic tree

The most evident advantage is applying beta reductions when parsing the whole expression

semantically:

(λx.λy.expects(x, y)((λx.win(x))an_American))(∃x.woman(x)) :

1. β

(λx.λy.expectsx, y((λx.winx)an_American))(∃x.womanx)

2. β

λy.expectsx, y((λx.winx)an_American)

3.

λy.expectsx, y(winan_American)

Roughly speaking, the semantic interpretation process rewrites the syntactic tree into a logic formula.

It is an expression where the bound variables occur at several nesting depths, please see Figure 6:

Figure 6. Viewing the term nesting structure

In the name-free notation, no variable name appears after the λ symbol and bound variable

indexes appear as numbers. The name x of a bound variable serves only to match each occurrence of

x with its binding λ x so each occurrence of a bound variable is represented by an index, giving the

number of abstractions lying between it and its binding abstraction. [12] In the name-free notation, the

three occurrences of x are represented by 0 and 1, and 0 for the occurrence of y:

λ((f 0) f 1)(∃0)

Finally, this logical formula is rewritten into a set of Prolog clauses. The program loads the wink-nlp

package, imports an English language model, creates a session with tau-prolog, and performs natural

language processing tasks using winkNLP. It also defines a Prolog program, extracts entities from a

given text, and queries the Prolog program using tau-prolog against the rules obtained by syntactic

analysis (previous step).

1. The required packages and modules are imported using the require function. The wink-nlp

package is imported as winkNLP, and the English language model is imported accordingly:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

6 of 10

// Load required packages and modules:

const winkNLP = require(’wink-nlp’);

const model = require(’wink-eng-lite-web-model’);

const pl = require("tau-prolog"); .

2. The tau-prolog package is imported as pl, and a session is created with pl.create(1000):

// Create a new session:

const session = pl.create(1000);

3. The winkNLP function is invoked with the imported model to instantiate the nlp object:

// Instantiate winkNLP:

const nlp = winkNLP(model);

4. The its and show variables are assigned to nlp.its and a function that logs the formatted answer

from the tau-prolog session, respectively:

// Define helper functions:

const its = nlp.its;

const showAnswer = x => console.log(session.format_answer(x));

5. The item variable is assigned the value of the third argument passed to the Node.js script using

process.argv[2]:

// Get command line argument:

const inputItem = process.argv[2]; //’the boy eats the apples.the woman runs the alley’;

// in the back. a woman runs freely on the alley’;

6. The program variable is assigned a Prolog program represented as a string. It defines rules for

sentence structure, including noun phrases, verb phrases, and intransitive verbs. The program

also includes rules for intransitive verbs, e.g. "runs" and "laughs":[13]

// Define the program and goal:

let program = ‘

s(A,B) :- np(A,C), vp(C,D), punct(D,B).

np(A,B) :- proper_noun(A,B).

np(A,B) :- det(A,C), noun(C,B).

vp(A,B) :- verb(A,C), np(C,B).

vp(A, B) :- intransitive_verb(A, B).

proper_noun([Eesha|A],A).

proper_noun([Eeshan|A],A).

intransitive_verb([runs|A],A). %λx.run(x)

intransitive_verb([laughs|A],A). %λx.laugh(x)

punct(A,A).

‘;

7. The nlp.readDoc function is used to create a document object from the inputItem. The code then

iterates over each sentence and token in the document, extracting the type of entity and its part of

speech:

const doc = nlp.readDoc(inputItem);

let entityMap = new Map();

// Extract entities from the text:

doc.sentences().each((sentence) => {

sentence.tokens().each((token) => {

entityMap.set(token.out(its.value), token.out(its.pos));

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

7 of 10

});});

8. The extracted entities and their parts of speech are stored in a Map object as Prolog rules:

// Add entity rules to the program:

const mapEntriesToString = (entries) => {

return Array.from(entries, ([k, v]) => ‘n ${v.toLowerCase()}(S0,S) :- S0=[${k.toLowerCase()}|S].‘).

join("") + "n";

}

//console.log(mapEntriesToString([...entityMap.entries()]));

9. The generated Prolog rules are appended to the program string:

program += mapEntriesToString([...entityMap.entries()]);

10. The session.consult function is used to load the Prolog program into the tau-prolog session. Then,

the session.query function is used to query the loaded program with the specified goals. The

session.answers function is used to display the answers obtained from the query:

doc.sentences().each((sentence) => {

let goals = ‘s([${sentence.tokens().out()}],[]).‘;

session.consult(program,{

success: function() {

session.query(goals, {

success: function() {

session.answers(showAnswer);

}})}})});

4. Results

Basically, the program measures the impedance between WinkNLP and Tau-Prolog language

models. It is a matter of tuning both in order to get the optimum results, this is to map and filter the

output of WinkNLP according to the DCG Prolog inference rules, since the lexicon is obtained by

consuming its own WinkNLP results, see the results in Figure 7:

Figure 7. The result of corr’s execution

In order to show the possible valid combination of words, it suffice changing the program’s

goal from ‘s([$sentence.tokens().out()],[]).‘ to ‘findall(M,s(M,[]),R).‘. The result will be a list of valid

sentences according to the dynamic generated DCG lexicon, see Figure 8:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

8 of 10

Figure 8. The result of corr’s findall execution

It is important to notice that a determinant like ’a’, i.e. ∃, almost triples the area of semantic field,

thus emphasizes the importance of the semantic capabilities of the parser. It is obvious we have to run

the findall method after each sentence not to combine the lexicon of the two sentences. Otherwise, the

result is interesting, bring our program closer to generating AI features, e.g. chatGPT, rather than a

normal grammatical corrector: the boy eats the boy , the boy eats the apples , the boy eats the woman , the boy

eats the alley , the boy runs the boy , the boy runs the apples , the boy runs the woman , the woman eats the apples

, and so on. This is most likely the field of AI (e.g. https://sunilchomal.github.io/GECwBERT/#c-bert)

to choose the appropriate language model in order to get the minimum entropy or information loss.

5. Discussion

If the required packages (wink-nlp, wink-eng-lite-web-model and tau-prolog) are not installed,

the code will throw an error. Also, if the Node.js script is not executed with a third argument,

the item variable will be undefined, which may cause issues later in the code. In our future

research will add error handling to gracefully handle any exceptions thrown during package

imports or function invocations, and, eventually, implement additional natural language processing

tasks using the wink-nlp package. Also, we aim to enhance the Prolog program to handle

more complex sentence structures and semantic relationships using an extended DCG parser (e.g.

https://github.com/hfeky/definite-clause-grammar-parser/blob/main/dcgp.pl) and feel prepared

to consider using a logic Javascript library (e.g. https://github.com/mcsoto/LogicJS) to replace the

entire Prolog script from our source code.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual
contributions must be provided. The following statements should be used “Conceptualization, R.M. and A.B.;
methodology, R.M.; software, R.M.; validation, A.B.; formal analysis, A.B.; investigation, R.M.; resources, R.M.;
data curation, A.B.; writing—original draft preparation, R.M.; writing—review and editing, R.M.; visualization,
A.B.; supervision, A.B.; project administration, R.M. All authors have read and agreed to the published version of
the manuscript.”, please turn to the CRediT taxonomy for the term explanation.

Funding: “This research received no external funding”

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: “The authors declare no conflict of interest.”

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

http://img.mdpi.org/data/contributor-role-instruction.pdf
https://doi.org/10.20944/preprints202308.1640.v2

9 of 10

Abbreviations

Abbreviations

The following abbreviations are used in this manuscript:

DCG Definite Clause Grammar

NLP Natural Language Processing

NLU Natural Language Understanding

AI Artificial Intelligence

SVO Subject Verb Object

VSO Verb Subject Object

OSV Object Subject Verb

OS Operating System

DOAJ Directory of open access journals

LFG Lexical-Functional Grammar

LP Logic Programming

References

1. NLP: Building a Grammatical Error Correction Model. Available online:

https://towardsdatascience.com/nlp-building-a-grammatical-error-correction-model-deep-learning-analytics-

c914c3a8331b (accessed on 16 Aug. 2023).

2. Syntactic Analysis - Guide to Master Natural Language Processing(Part 11). Available online:

https://www.analyticsvidhya.com/blog/2021/06/part-11-step-by-step-guide-to-master-nlp-syntactic-analysis

(accessed on 16 Aug. 2023).

3. Relation Extraction and Entity Extraction in Text using NLP. Available online:

https://nikhilsrihari-nik.medium.com/identifying-entities-and-their-relations-in-text-76efa8c18194

(accessed on 16 Aug. 2023).

4. Discourse Representation Theory. Available online: https://plato.stanford.edu/entries/discourse-

representation-theory (accessed on 16 Aug. 2023).

5. Jose F. Morales, Rémy Haemmerlé, Manuel Carro, and Manuel V. Hermenegildo. Lightweight

compilation of (C)LP to JavaScript. Theory and Practice of Logic Programming 2012, 12(4-5), 755–773,

https://doi.org/10.1017/S1471068412000336.

6. An open source Prolog interpreter in JavaScript. Available online:

https://socket.dev/npm/package/tau-prolog (accessed on 16 Aug. 2023).

7. Frey W.; Reyle U. A Prolog Implementation of Lexical Functional Grammar as a Base for a Natural Language

Processing System. Conference of the European Chapter of the Association for Computational Linguistics

(1983); URL: https://api.semanticscholar.org/CorpusID:17161699

8. Logic programming in JavaScript using LogicJS. Available online:

https://abdelrahman.sh/2022/05/logic-programming-in-javascript (accessed on 16 Aug. 2023).

9. Introduction to semantic parsing. Available online: https://stanford.edu/class/cs224u/2018/materials/

cs224u-2018-intro-semparse.pdf (accessed on 22 Aug. 2023).

10. Bercaru, G.; Truică, C.-O.; Chiru, C.-G.; Rebedea, T. Improving Intent Classification Using Unlabeled Data

from Large Corpora. Mathematics 2023, 11, 769. https://doi.org/10.3390/math11030769.

11. Saint-Dizier, P. An approach to natural-language semantics in logic programming; Journal

of Logic Programming. Journal of Logic Programming 1986, Volume 3, Issue 4), 329–356,

https://doi.org/10.1016/0743-1066(86)90010-5.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

10 of 10

12. Paulson, L.C. Writing Interpreters for the λ -Calculus. In ML for the Working Programmer; Cambridge

University Press, Country, 2007; pp. 357 – 396; ; DOI: https://doi.org/10.1017/CBO9780511811326.011.

13. Kamath, R, Jamsandekar, S., Kamat, R. Exploiting Prolog and Natural Language

Processing for Simple English Grammar. In Proceedings of National Seminar

NSRTIT-2015, CSIBER, Kolhapur, Date of Conference (March 2015); URL: URL:

https://www.researchgate.net/publication/280136353_Exploiting_Prolog_and_Natural_Language_

Processing_for_Simple_English_Grammar.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 August 2023 doi:10.20944/preprints202308.1640.v2

https://doi.org/10.20944/preprints202308.1640.v2

	Introduction
	Materials
	Methodology
	Results
	Discussion
	References

