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Abstract: Mercury toxicity significantly threatens aquatic ecosystems, particularly impacting fish populations 

and human well-being. This article exposes the effects of mercury contamination on aquatic life and their 

habitats. Mercury primarily originates from natural degassing and anthropogenic activities and accumulates 

in aquatic organisms, most notably in predatory fish, through bio-accumulation and bio-magnification. This 

bio-accumulation, driven by microbial transformation to methyl-mercury, leads to elevated concentrations in 

top-level predators. The consequences of mercury exposure on fish physiology are stunted growth, 

reproductive impairments, and compromised immunity, with potential ramifications for population dynamics 

and ecosystem resilience. This study delves into specific impacts of mercury on fish, ranging from bone 

deformities to liver damage, developmental anomalies, neurotoxic effects, and disruptions in reproductive 

systems. The interplay between ecological, physiological, and human health effects underscores the need for a 

comprehensive understanding of mercury’s underlying mechanisms. Monitoring mercury levels in aquatic 

systems emerges as a crucial strategy for ensuring fish populations’ health and ecosystems’ sustainability. 

Urgent collaborative efforts are imperative to address this global concern, promote harmonious coexistence 

between human activities and aquatic environments, and secure the availability of safe and nutritious fish for 

future generations. In conclusion, this article highlights the urgent necessity for targeted interventions and 

informed decision-making to mitigate the influence of mercury contamination on aquatic ecosystems. 
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Introduction 

Vast and teeming with diverse life forms, aquatic ecosystems play a vital role in the global 

ecological balance. Fish are essential elements that support food webs, nutrient cycling, and the 

general stability of an ecosystem (Vanni et al., 2002; Hall et al. et al., 2007). However, these organisms 

increasingly face a silent yet pervasive threat of mercury toxicity (Barkay et al.; I., 2005). Mercury, a 

naturally occurring element, is a heavy metal that has been a persistent environmental pollutant for 

decades(Braune et al. et al., 2005). Inorganic mercuric salts and organomercury constitute the majority 

of the mercury (Hg) present in all environmental media, i.e., water, sediments, and biota. The 

environment’s most common forms of mercury are the mercuric salts HgCl2, HgS, and Hg (OH)2 

(USEPA 1997a) 

One primary concern is the accumulation and increase of mercury in aquatic food chains. 

Mercury, approximately 10,000 tons, originates from degassing of the earth’s crust and anthropogenic 

activities, such as industrialization and burning fossil fuels (Nittler et al., S. Z. 2019). The levels 

accumulate in aquatic organisms over time(Souza-Araujo et al., M. B. G. 2016). Mercury exists in 

different forms, with methyl-mercury being the most harmful and easily absorbed form (Gochfeld, 

M. 2003; Wang et al. 2015.). In aquatic environments, microorganisms change inorganic mercury into 

methyl-mercury, making it easier to absorb (Hong et al.,2012). As smaller fish eat these 

microorganisms and become prey to larger fish, mercury accumulates in higher levels of the food 

chain, a process called bio-magnification (Suedel et al.,1994). As a result, predatory marine fish at the 
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top of the food chain end up having dangerously high levels of mercury, which can have severe 

consequences for their health and those who rely on them as a food source (Hall et al., 2007). 

There is substantial evidence that prolonged exposure to high levels of mercury can disrupt 

critical physiological processes in fish, leading to stunted growth, reproductive complications, and 

weakened immune functions (Crump et al.; V. L., 2009). These effects harm individual fish and have 

broader impacts on population dynamics and the resilience of ecosystems (Gentile et al. et al.,1983). 

Additionally, mercury toxicity can affect the behavior of marine fish, which is crucial for their 

survival and interactions within the ecosystem at the cellular and molecular level (Boudou et al., D., 

Ribeyre, F., & Saouter, E.,1991). The oxidative stress hypothesis suggests that mercury-induced 

reactive oxygen species cause damage to cellular components, leading to oxidative stress and 

subsequent disruptions in physiological processes (Lushchak et al., 2016; Hermes-Lima, M.2002). 

This oxidative damage can harm cell membranes, DNA, and essential cellular functions. 

Furthermore, mercury has been found to affect gene expression and alter molecular pathways 

(Sevcikova M. et al.,2011). 

The implications of mercury toxicity go beyond marine ecology and affect human health. Since 

aquatic fish are a valuable source of protein and nutrients (Zahir et al.; R. H., 2005) consuming 

affected fish poses serious health risks for humans. Mercury can accumulate in aquatic systems and 

be transferred to humans when consumed, particularly in larger predator fish like tuna, swordfish, 

and sharks (Wang, W., 2012). Methyl-mercury, a potent neurotoxin, is particularly harmful to the 

neurological development of fetuses and young children (Choi et al.,1989). This highlights the 

interconnections between marine ecosystems, human well-being, and the need for comprehensive 

environmental management strategies. Studies have determined mercury concentrations in fish, 

evaluated the health hazards associated with eating fish, and recommended fish intake (Liu et al., 

2018; Jeevanaraj et al., 2016). However, the aberrant growth of marine fish brought on by mercury 

poisoning is less well understood. 

The health impacts of mercury toxicity on aquatic ecosystems involve complex interactions 

between ecology, physiology, and human health. Understanding the mechanisms behind mercury’s 

toxic effects is crucial as ecosystems continue to face its influence. This article aims to explore the 

multifaceted repercussions of mercury contamination on aquatic populations and their habitats. By 

understanding mercury’s reach and impact holistically, we can make informed decisions, implement 

targeted interventions, and foster a more sustainable coexistence between humanity and the delicate 

aquatic environments we rely on. 

Effects of Mercury Contamination on Fish 

Microorganisms, e.g., bacteria, the primary transfer agent in which mercury is transported to 

fish (Wagner I.,2003), endanger fish species in freshwater systems since these systems tend to have 

high bio-availability of microorganisms (Berninger G. et al.,1991). Due to the high absorption of 

mercury by bacteria and phytoplankton (Schaefer J.K et al.,2014; Pickhardt & Fisher N.,2007), which 

are food to fish, they tend to increase the mercury concentration in fish through bio-accumulation 

since they are consumed. The bio-accumulation rate of mercury in freshwater and marine fish varies 

greatly, and its level is influenced by changes in metabolic and environmental traits across different 

species (Zheng N.A. et al.,2019). Mercury can cause metabolic, genetic, psychological, and 

neurological alterations in fish, even at low levels (Huang W.et al.,2011). 

i. Bone formation 

Fish exposed to mercury are more likely to develop bone abnormalities, which can have a 

devastating impact on their ability to hunt, avoid predators, and migrate over long distances, in 

addition to their ability to grow and maintain their external morphological characteristics (Zheng 

N.A. et al.,2019). In fish, kyphosis (sacral curvature), scoliosis (lateral curvature), and lordosis (sacral 

Doris) are the most often seen deformities (Morcillo P. et al.,2016b). Fish with abnormalities, especially 

spinal malformations, have more incredible difficulty interacting with their environment and hence 

have lower survival rates (Noble C. et al.,2012). Though insufficient nutrition can also induce bone 
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malformations, mercury ions are the primary culprit since they change the notochord’s structure 

during fish development (Zheng N.A et al.,2019) 

ii. Liver impairment 

A quantitative proteome study subsequently showed that mitochondria are the main target for 

mercury attack in cells, resulting in cytoskeletal degradation, cellular inflammation, and alterations 

in energy metabolism (Chen et al., 2017; Wang et al., 2013). This finding supports that mercury may 

cause liver damage when it enters the body. According to Wang et al. (2013), the liver of medaka 

(Oryzias melastigma) treated with various concentrations of mercuric chloride demonstrated that 

exposure to mercury enhanced mercury accumulation in the liver and consequently damaged the 

liver’s ultrastructure, thus interfering with its functions. 

iii. Embryo development 

Pollution of aquatic systems with mercury during the developmental stage, i.e., embryonic and 

larval phases, can impact the development of several fish organs, such as improper cardiovascular 

and eyeball growth and development (Huang W. et al., 2011). Since the infancy stage is the most 

vulnerable to mercury toxicity (Yoshimasu K. et al.,2014), the majority of fish suffer damage at this 

stage because mercury can stimulate energy-intensive detoxifying processes and consume a 

substantial quantity of energy, which reduces the amount of energy that would otherwise be 

available for development (Sfakianakis D. et al., 2015). As a result, this may result in physical 

abnormalities, premature growth, and possibly death. Huang et al.’s 2011 study found that mercury 

levels greater than 20 µgL- subchronic toxicity testing on red sea bream may raise death rates, 

decrease spawning success, and cause reproductive harm in larvae. 

iv. Nervous system 

Mercury monitoring should be enhanced in aquatic systems to enhance fish production since 

Hg alters an organism’s nervous system, a vital organization (Baatrup E.,1991). Neurotoxicity can 

damage and possibly kill nerve cells, which are vital for processing and transmitting impulses in the 

cerebral cortex as well as other components of the neurological system (Lee J.W. et al.,2019). 

According to a recent study of medaka (Oryzias melastigma) (Wang et al.,2015), inorganic mercury 

exposure can cause neurotoxicity through the generation of oxidative strain, malfunctioning of the 

fibers creating the prokaryotes and eukaryotic cells, and metabolic dysfunction. In a previous study, 

the levels of proteins increased by at least 20 percent following fish being exposed to methyl-mercury, 

according to a proteomic examination of brain tissue. According to Berg et al.,2010, these proteins 

were linked to the main cellular targets and processes that cause methylmercury-induced 

neurodegeneration. Mercury can also cause long-term neurological harm by altering the number of 

neurotransmitters and neuroglia in some areas of the brain (Capriccio V.L. et al., 2019). Changes can 

follow these alterations in swimming behaviors, thus can lead to starvation and, thereafter, death. 

v. Reproductive system 

Since mercury bio-accumulates in fish, adult fish are at a high risk of being affected by mercury 

exposure. Fish gonads can accumulate mercury, harming the reproduction process and preventing 

fish gonads from growing and developing properly (Liao C.Y. et al.,2006). A key variable in the 

healthy development of the fish reproductive organs is the hypothalamic-pituitary-gonadal axis, 

which regulates the reproduction process by secreting several hormones (Dang et al.,2015). Exposure 

to mercury may modify the expression of genes associated with the hypothalamic-pituitary-gonadal 

axis and change the levels of sexual hormones, which may impact fertility in fish. According to Zhang 

et al. (2016), inorganic mercury exposure has been reported to result in chronic oxidative stress, which 

damages fish gonad tissue. After fish exposure to mercury, male testicular hormone levels are 

significantly reduced, and tissue necrosis and spermatogenic degeneration are evident. 

Conclusion 

A severe hazard to aquatic environments, especially the related fauna, and flora, is mercury 

toxicity. The aquaculture business experiences a permanent setback due to the catastrophic impacts 
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metals such as mercury have on aquatic species, mainly fish. In order to be utilized as a tool for future 

genotoxicity-related studies by scientists in related fields, this article discusses the damaging effects 

of mercury on fish with a focus on the infancy, development, and reproduction of fish. Accumulation 

of mercury in aquatic organisms, especially fish, has become a significant global problem that must 

be resolved. Key study goals now include identifying the mercury’s sources and comprehending how 

it moves across the aquatic environment. Monitoring the fish and surrounding ecosystems is 

necessary to increase the aquaculture business’s sustainability and provide healthy fish. 
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