Preprint
Article

Recognition of Cancer With Bipartite and Path as Neutrosophic SuperHyperGraph By the Tool Called Stability

Altmetrics

Downloads

95

Views

178

Comments

0

This version is not peer-reviewed

Submitted:

29 August 2023

Posted:

29 August 2023

You are already at the latest version

Alerts
Abstract
New ideas on the framework of Neutrosophic SuperHyperGraph for different styles of Neutrosophic SuperHyper-Bipartite and Neutrosophic SuperHyper-Path are introduced. More instances and more clarifications alongside sufficient references.
Keywords: 
Subject: Computer Science and Mathematics  -   Applied Mathematics

MSC:  05C17; 05C22; 05E45

1. Scientific Research

Referred to Ref. [2].
Theorem 1.1. 
| ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | = max V V N S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i V , V j V : T V ( V i , V j E i ) ¬ min [ T V ( V i ) , T V ( V j ) ] V i , V j E N S H G , I V ( V i , V j E i ) ¬ min [ I V ( V i ) , I V ( V j ) ] V i , V j E N S H G , and F V ( E i ) ( V i , V j E i ) ¬ min [ F V ( V i ) , F V ( V j ) ] V i , V j E N S H G }
Example 1.2. 
Referred to the Figure 1.
Theorem 1.3. 
Neutrosophic SuperHyperBipartiteStyles-I don’t coincide.
Proof. 
| ( V i V = { V 1 } T ( V i ) , V i V = { V 1 } I ( V i ) , V i V = { V 1 } F ( V i ) ) | = ( 0.26 , 0.26 , 0.26 ) .
Example 1.4. 
Referred to the Figure 2.
Theorem 1.5. 
Neutrosophic SuperHyperBipartiteStyles-II don’t coincide.
Proof. 
| ( V i V = { V 1 , V 2 } T ( V i ) , V i V = { V 1 , V 2 } I ( V i ) , V i V = { V 1 , V 2 } F ( V i ) ) | = ( 0.5 , 0.5 , 0.5 ) = = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V 1 V , V 2 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V 1 ) , T V ( V 2 ) ] V 1 , V 2 E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V 1 ) , I V ( V 2 ) ] V 1 , V 2 E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V 1 ) , F V ( V 2 ) ] V 1 , V 2 E 1 , }
Example 1.6. 
Referred to the Figure 3.
Theorem 1.7. 
Neutrosophic SuperHyperBipartiteStyles-III don’t coincide.
Proof. 
| ( V i V = { V i } i = 1 3 T ( V i ) , V i V = { V i } i = 1 3 I ( V i ) , V i V = { V i } i = 1 3 F ( V i ) ) | = ( 0.75 , 0.75 , 0.75 ) = = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i V , V j V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.8. 
Referred to the Figure 4.
Theorem 1.9. 
Neutrosophic SuperHyperBipartiteStyles-IV don’t coincide.
Proof. 
| ( V i V = { V i } i = 1 4 T ( V i ) , V i V = { V i } i = 1 4 I ( V i ) , V i V = { V i } i = 1 4 F ( V i ) ) | = ( 0.99 , 0.99 , 0.99 ) = = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i V , V j V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.10. 
Referred to the Figure 5.
Theorem 1.11. 
Neutrosophic SuperHyperBipartiteStyles-V don’t coincide.
Proof. 
| ( V i V = { V i } i = 1 5 T ( V i ) , V i V = { V i } i = 1 5 I ( V i ) , V i V = { V i } i = 1 5 F ( V i ) ) | = ( 1.23 , 1.23 , 1.23 ) = = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i V , V j V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.12. 
Referred to the Figure 6.
Theorem 1.13. 
Neutrosophic SuperHyperBipartiteStyles-VI don’t coincide.
Proof. 
| ( V i V = { V i } i = 1 6 T ( V i ) , V i V = { V i } i = 1 6 I ( V i ) , V i V = { V i } i = 1 6 F ( V i ) ) | = ( 1.47 , 1.47 , 1.47 ) = = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i V , V j V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.14. 
Referred to the Figure 7.
Theorem 1.15. 
Neutrosophic SuperHyperBipartiteStyles-VII don’t coincide.
Proof. 
| ( V i V = { V i } i = 1 7 T ( V i ) , V i V = { V i } i = 1 7 I ( V i ) , V i V = { V i } i = 1 7 F ( V i ) ) | = ( 1.71 , 1.71 , 1.71 ) = = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i V , V j V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.16. 
Referred to the Figure 8.
Theorem 1.17. 
Neutrosophic SuperHyperPathStyles-I don’t coincide.
Proof. 
| ( V i V = { V 1 , V 8 , V 12 , V 16 , V 20 , V 25 , V 32 } T ( V i ) , V i V = { V 1 , V 8 , V 12 , V 16 , V 20 , V 25 , V 32 } I ( V i ) , V i V = { V 1 , V 8 , V 12 , V 16 , V 20 , V 25 , V 32 } F ( V i ) ) | = ( 1.82 , 1.82 , 1.82 ) = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i = 1 , 8 , 12 , 16 , 20 , 25 , 32 V , V j = 1 , 8 , 12 , 16 , 20 , 25 , 32 V : T V ( E k NOT DEFINED min [ T V ( V i ) , T V ( V j ) ] V i , V j E k , I V ( E k ) NOT DEFINED min [ I V ( V i ) , I V ( V j ) ] V i , V j E k , and F V ( E k ) NOT DEFINED min [ F V ( V i ) , F V ( V j ) ] V i , V j E k }
Example 1.18. 
Referred to the Figure 9.
Theorem 1.19. 
Neutrosophic SuperHyperPathStyles-II don’t coincide.
Proof. 
| ( V i V = { V 1 2 , 8 , 11 12 , 15 16 , 19 20 , 24 25 , 32 34 } T ( V i ) , V i V = { V 1 2 , 8 , 11 12 , 15 16 , 19 20 , 24 25 , 32 34 } I ( V i ) , V i V = { V 1 2 , 8 , 11 12 , 15 16 , 19 20 , 24 25 , 32 34 } F ( V i ) ) | = ( 3.48 , 3.48 , 3.48 ) = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i = 1 , 8 , 12 , 16 , 20 , 25 , 32 V , V j = 1 , 8 , 12 , 16 , 20 , 25 , 32 V : T V ( E k NOT DEFINED min [ T V ( V i ) , T V ( V j ) ] V i , V j E k , I V ( E k ) NOT DEFINED min [ I V ( V i ) , I V ( V j ) ] V i , V j E k , and F V ( E k ) NOT DEFINED min [ F V ( V i ) , F V ( V j ) ] V i , V j E k , V i = 1 2 , 11 , 15 , 19 , 24 V , V j = 1 2 , 11 , 15 , 19 , 24 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , V i = 32 34 V , V j = 32 34 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.20. 
Referred to the Figure 10.
Theorem 1.21. 
Neutrosophic SuperHyperPathStyles-III don’t coincide.
Proof. 
| ( V i V = { V 1 2 , 8 12 , 15 16 , 19 20 , 24 25 , 31 34 } T ( V i ) , V i V = { V 1 2 , 8 12 , 15 16 , 19 20 , 24 25 , 31 34 } I ( V i ) , V i V = { V 1 2 , 8 12 , 15 16 , 19 20 , 24 25 , 31 34 } F ( V i ) ) | = ( 4.2 , 4.2 , 4.2 ) = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i = 1 , 8 , 12 , 16 , 20 , 25 , 32 V , V j = 1 , 8 , 12 , 16 , 20 , 25 , 32 V : T V ( E k NOT DEFINED min [ T V ( V i ) , T V ( V j ) ] V i , V j E k , I V ( E k ) NOT DEFINED min [ I V ( V i ) , I V ( V j ) ] V i , V j E k , and F V ( E k ) NOT DEFINED min [ F V ( V i ) , F V ( V j ) ] V i , V j E k , V i = 1 2 , 11 , 15 , 19 , 24 V , V j = 1 2 , 11 , 15 , 19 , 24 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , V i = 32 34 V , V j = 32 34 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , V i = 8 10 , 31 , 2 V , V j = 8 10 , 31 , 2 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.22. 
Referred to the Figure 11.
Theorem 1.23. 
Neutrosophic SuperHyperPathStyles-IV don’t coincide.
Proof. 
| ( V i V = { V 1 4 , 8 12 16 , 19 20 , 24 25 , 31 34 } T ( V i ) , V i V = { V 1 4 , 8 12 16 , 19 20 , 24 25 , 31 34 } I ( V i ) , V i V = { V 1 4 , 8 12 16 , 19 20 , 24 25 , 31 34 } F ( V i ) ) | = ( 5.16 , 5.16 , 5.16 ) = max V V S H G | { ( V i V T ( V i ) , V i V I ( V i ) , V i V F ( V i ) ) | V i = 1 , 8 , 12 , 16 , 20 , 25 , 32 V , V j = 1 , 8 , 12 , 16 , 20 , 25 , 32 V : T V ( E k NOT DEFINED min [ T V ( V i ) , T V ( V j ) ] V i , V j E k , I V ( E k ) NOT DEFINED min [ I V ( V i ) , I V ( V j ) ] V i , V j E k , and F V ( E k ) NOT DEFINED min [ F V ( V i ) , F V ( V j ) ] V i , V j E k , V i = 1 2 , 11 , 15 , 19 , 24 V , V j = 1 2 , 11 , 15 , 19 , 24 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , V i = 32 34 V , V j = 32 34 V :
T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , V i = 8 10 , 31 , 2 V , V j = 8 10 , 31 , 2 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , V i = 12 14 , 3 4 V , V j = 12 14 , 3 4 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , V i = 4 , 16 V , V j = 4 , 16 V : T V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ T V ( V i ) , T V ( V j ) ] V i , V j E 1 , I V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ I V ( V i ) , I V ( V j ) ] V i , V j E 1 , and F V ( E 1 ) = ( 0.26 , 0.26 , 0.26 ) ¬ ( 0.24 , 0.24 , 0.24 ) = min [ F V ( V i ) , F V ( V j ) ] V i , V j E 1 , }
Example 1.24. 
Referred to the Figure 12.

References

  1. Henry Garrett, “New Ideas In Recognition of Cancer And Neutrosophic SuperHyperGraph As Hyper Tool On Super Toot”, Curr Trends Mass Comm 2(1) (2023) 32-55. Available online: https://www.opastpublishers.com/open-access-articles/new-ideas-in-recognition-of-cancer-and-neutrosophic-super-hypergraph-as-hyper-tool-on-super-toot.pdf.
  2. Henry Garrett, “New Ideas In Recognition of Cancer And Neutrosophic SuperHyperGraph As Hyper Tool On Super Toot”, Curr Trends Mass Comm 2(1) (2023) 32-55. Available online: https://www.opastpublishers.com/open-access-articles/new-ideas-in-recognition-of-cancer-and-neutrosophic-super-hypergraph-as-hyper-tool-on-super-toot.pdf.
  3. Henry Garrett, “Some Super Hyper Degrees and Co-Super Hyper Degrees on Neutrosophic Super Hyper Graphs And Super Hyper Graphs Alongside Applications in Cancer’s Treatments”, J Math Techniques Comput Math 2(1) (2023) 35-47. Available online: https://www.opastpublishers.com/open-access-articles/some-super-hyper-degrees-and-cosuper-hyper-degrees-on-neutrosophic-super-hyper-graphs-and-super-hyper-graphs-alongside-a.pdf.
  4. Henry Garrett, “A Research on Cancer’s Recognition and Neutrosophic Super Hypergraph by Eulerian Super Hyper Paths and Hamiltonian Sets as Hyper Covering Versus Super separations”, J Math Techniques Comput Math 2(3) (2023) 136-148. Available online: https://www.opastpublishers.com/open-access-articles/a-research-on-cancers-recognition-and-neutrosophic-super-hypergraph-by-eulerian-super-hyper-Paths-and-hamiltonian-sets-.pdf.
  5. Henry Garrett, “Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction to Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition and Beyond”, J Math Techniques Comput Math 2(6) (2023) 221-307. Available online: https://www.opastpublishers.com/open-access-articles/neutrosophic-1failed-superhyperforcing-in-the-superhyperfunction-to-use-neutrosophic-superhypergraphs-on-cancers-neutros.pdf.
  6. Henry Garrett. Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs. J Curr Trends Comp Sci Res 2023, 1, 16–24. [CrossRef]
  7. Henry Garrett, “Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes”. J Math Techniques Comput Math, 2022; 1, 242–263. [CrossRef]
  8. Garrett, Henry. “0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph.” CERN European Organization for Nuclear Research - Zenodo, Nov. 2022. [CrossRef]
  9. Garrett, Henry. “0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs.” CERN European Organization for Nuclear Research - Zenodo, Feb. 2022. CERN European Organization for Nuclear Research. [CrossRef]
  10. Henry Garrett, “Beyond Neutrosophic Graphs”. Dr. Henry Garrett. 2023. [CrossRef]
  11. Henry Garrett, “Neutrosophic Duality”. Dr. Henry Garrett. 2023. [CrossRef]
  12. Aaron, D. Aaron D. Gray, and Michael A. Henning, Paired-domination game played on Paths. Discrete Applied Mathematics 2023, 336, 132–146. [Google Scholar] [CrossRef]
  13. Walter Carballosa, and Justin Wisby. Total k-domination in Cartesian product of complete graphs. Discrete Applied Mathematics 2023, 337, 25–41. [CrossRef]
  14. R. R. Del-Vecchio, and M. Kouider, New bounds for the b-chromatic number of vertex deleted graphs. Discrete Applied Mathematics 2022, 306, 108–113. [CrossRef]
  15. M. E. Elaine et al., Bipartite completion of colored graphs avoiding chordless Paths of given lengths. Discrete Applied Mathematics 2022.
  16. R. Janczewski et al., Infinite chromatic games. Discrete Applied Mathematics 2022, 309, 138–146. [CrossRef]
  17. L. Li, and X. Li, Edge-disjoint rainbow triangles in edge- colored graphs. Discrete Applied Mathematics 2022, 318, 21–30. [CrossRef]
  18. W. Li et al., Rainbow triangles in arc-colored digraphs. Discrete Applied Mathematics 2022, 314, 169–180. [CrossRef]
  19. Z.Lu,andL.Shi,A sufficient condition for edge-colorable planar graphs with maximum degree 6. Discrete Applied Mathematics 2022, 313, 67–70. [CrossRef]
  20. Masih, and M. Zaker, Some comparative results concerning the Grundy and b-chromatic number of graphs. Discrete Applied Mathematics 2022, 306, 1–6. [CrossRef]
  21. F. Wu et al., Color neighborhood union conditions for proper edge-pancyclicity of edge-colored complete graphs. Discrete Applied Mathematics 2022, 307, 145–152. [CrossRef]
Figure 1. Referred to the Example 1.2.
Figure 1. Referred to the Example 1.2.
Preprints 83541 g001
Figure 2. Referred to the Example 1.4.
Figure 2. Referred to the Example 1.4.
Preprints 83541 g002
Figure 3. Referred to the Example 1.6.
Figure 3. Referred to the Example 1.6.
Preprints 83541 g003
Figure 4. Referred to the Example 1.8.
Figure 4. Referred to the Example 1.8.
Preprints 83541 g004
Figure 5. Referred to the Example 1.10.
Figure 5. Referred to the Example 1.10.
Preprints 83541 g005
Figure 6. Referred to the Example 1.12.
Figure 6. Referred to the Example 1.12.
Preprints 83541 g006
Figure 7. Referred to the Example 1.14.
Figure 7. Referred to the Example 1.14.
Preprints 83541 g007
Figure 8. Referred to the Example 1.16.
Figure 8. Referred to the Example 1.16.
Preprints 83541 g008
Figure 9. Referred to the Example (1.18)
Figure 9. Referred to the Example (1.18)
Preprints 83541 g009
Figure 10. Referred to the Example 1.20.
Figure 10. Referred to the Example 1.20.
Preprints 83541 g010
Figure 11. Referred to the Example (1.22)
Figure 11. Referred to the Example (1.22)
Preprints 83541 g011
Figure 12. Referred to the Example 1.24.
Figure 12. Referred to the Example 1.24.
Preprints 83541 g012
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated