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Abstract: Our concern was to obtain a biocomposite material with improved properties of the constituent
materials (poly(lactic-co-glycolic acid) (PLGA) and zinc-boron (Zn-B) complex) in accordance with the
novelties in the field of delivery systems for therapeutic agents which lately redefine the importance of
biopolymer nanocomposites with PLGA (biodegradable composites). The advantages of such a biomaterial
target the health system, being easy to obtain, through a cost-effective method. The water/oil/water double
emulsion method also allows the adjustment of the synthesis parameters, to maximize the degree of Zn-B
complex encapsulation. The morphological aspects of the samples (size, shape, porosity) were established by
scanning electron microscopy (SEM). Particle size distribution (by volume and by number) was determined by
direct light scattering (DLS). For all the synthesized materials, the observed morphology was typical for PLGA,
spherical one. The particle size distribution showed that depending on the synthesis conditions, the particles
can be obtained with diameters between 10-450 nm range and the value of the zeta potential (ZP) shows that
the particles have electronegative surface charge, which offers a favorable perspective on the phenomena of
aggregation, flocculation, dispersion. It was observed, applying the design of experiments (DoE), that the size
of the particles increased with increasing amounts of PLGA and polyvinyl alcohol (PVA) in the formulation,
while ZP increased with higher PLGA and smaller PVA. The encapsulation efficiency was determined by ultra-
high performance liquid chromatography/mass spectrometry (UHPLC/MS).

Keywords: Zn-B-PLGA biocomposite; DLS; SEM; DoE; UHPLC/MS

1. Introduction
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Poly(lactic-co-glycolic acid) (PLGA) has a series of properties (adjustable sizes, stability,
biodegradability, the possibility of surface functionalization) that offers it numerous advantages
already described that led to its extensive use as a drug delivery system [1].

Analyzing Elsevier and Springer databases using keywords such as ‘PLGA’ (subject areas:
material science, pharmaceutical science), we found a total number of 32 596 articles, including
review and research articles between 2000 and 2023. Between 20002005, only 1685 articles were
found, representing 5.16%. Between 2006-2010, the search returned double the number of articles,
3366 (10.32%). In the next five years, 2011-2015 has an impressive number of 6252 articles,
representing 19.18%. Between 2015-2020, we found 11 500 (35.28%) articles. In the last three years,
there are 9015 articles already published with PLGA, representing 27.65% of the total (Figure 1).

2021-2023

2016-2020

2006-2010

2000-2005

Figure 1. Distribution by year of articles written with PLGA from 2000 to the present, analyzing two
databases: Springer and Elsevier. PLGA: Poly(lactic-co-glycolic acid).

The flexibility of degradation is an important factor that makes PLGA suitable to produce
medical devices, such as nanoparticles, implants, or grafts. PLGA consists of a class of biodegradable
polymers that are approved by the Food and Drug Administration (FDA), which gives them
sustainability in terms of drug delivery. These polymers have been studied as vehicles for proteins,
peptides, ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) [2].

PLGA-based micro or nanoparticles represent most formulations on the pharmaceutical market,
there are 14 products with PLGA clinically approved and currently used in medical practice (e.g.,
Lupron® — the oldest one, approved in 1989 [3], Zilretta® [4], Bydureon® [5]) in diseases such as
prostate cancer, osteoarthritis, diabetes, etc., and many other PLGA-based products in clinical trials

[61.

1.1. PLGA Structure and Physical Properties

PLGA is a copolymer of polyglycolic acid (PGA) and polylactic acid (PLA). Several types of
PLGA can be obtained depending on the molar ratio of PLA to PGA: 50/50, 65/35, 75/25 and 95/5
(Figure 2). The molar ratio that also gives the degree of crystallinity of PLGA, which varies from
amorphous to crystalline, and solubility also differs depending on the composition of the polymers:
PLGA with a lot of PLA dissolves in chlorinated solvents, and that with a lot of PGA needs
fluorinated solvents [7].
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Figure 2. Polyglycolic acid (PGA), polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA)
structures.

1.2. PLGA in Living Tissues

PLGA is considered compatible with living tissues, meaning it does not elicit a significant
immune response or toxic effects in living tissues. It has been extensively studied and used in
preclinical and clinical settings. However, it is important to note that individual responses can vary,
and careful consideration of factors, such as degradation rate, molecular weight, and specific
application is necessary to ensure optimal biocompatibility.

In the body, PLGA undergoes a process of hydrolysis and forms lactic acid and glycolic acid [8].
These original monomers of PLGA are secondary products of metabolic pathways in the human
body. The human body can metabolize glycolic acid to toxic oxalic acid, but the amounts in typical
applications are negligible and systemic toxicity is minimal [9]. On the other hand, the acidic PLGA
degradation medium can induce an autocatalytic environment because the local pH drops
sufficiently for this to be possible. The autocatalytic capacities of PLGA are size dependent. The first
surface that begins to degrade is the center of the PLGA matrix because this is where acidic oligomers
accumulate. Thus, an acidic center is formed from which erosion begins.

Polymer—drug interaction was also observed in the studies, which gives PLGA a potential
degree of toxicity in drug dose delivery. At the same time, toxicity can also be associated with the
inconstant release of medicinal substances, but additional studies are needed to prove this aspect
[10].

1.3. Boron — An Essential Element

Boron (B) is an essential element, although it is required in small amounts compared to other
essential elements. It plays important roles in various biological processes and is necessary for the
growth and development of plants, animals, and humans [11]. In plants, B is involved in cell wall
formation, membrane integrity, carbohydrate metabolism, and the transport of nutrients [12]. It also
plays a role in pollen germination and fruit development. In animals and humans, B is involved in
bone health, as it influences the metabolism and utilization of calcium, magnesium, and vitamin D.
It also plays a role in brain function and cognitive performance.

B has a huge impact on the microbiota, particularly in the gastrointestinal tract [13]. There are a
few studies that suggest that it may have a modulatory role. One study published in the Journal of
Trace Elements in Medicine and Biology investigated the influence of B on gut microbiota in rats. The
results showed that B supplementation led to changes in the composition of the gut microbiota,
including an increase in the abundance of certain bacterial species. Karatekeli ef al. (2023) showed
that B exhibits hepatoprotective antioxidant, anti-inflammatory, and antiapoptotic effect in rats
exposed to aflatoxins [14]. Arciniega-Martinez et al. (2022) examined the effects of B on immune
function [15], showing that B-containing compounds induce an immune response on cells.

B was recently claimed as an essential element for the human host-microbiota healthy symbiosis
and the effects of B deficiency in the microbiota could lead to: (i) dysbiosis (claimed to happen due to
deficiency of the autoinducer-2-furanosyl borate diester (AI-2B) signaling molecule); and (ii)
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degradation of the mucus gel layer, due to the lack of B content in the mucin gel structure, which causes
the interaction of the bacterial biofilm directly with the host cell membranes and therefore, their direct
infection. Recent new insights into B’s mechanism of action are based on claims that: (i) B is an
essential element for the symbiosis between the commensal microorganisms in the microbiome and
the human and animal host; (i7) B is not required by the human cell, the human host cells do not need
B nutritionally, this element being necessary only for a healthy symbiosis between the host organism
and the various microbiomes of the gut, scalp, mouth, skin and vagina; (iii) some naturally occurring
prebiotic B compounds (PBCs) have recently been proven to be microbiota-accessible B compounds.
More than that, PBCs, such as B-containing pectic polysaccharides (BPPs) and the recently discovered
borate complexes of chlorogenic acid (diester chlorogenoborate — DCB), are indigestible compounds
while B inorganics compounds, such as boric acid (BA) and borate salts, are digestible and, in certain
circumstances, they can be toxic. These observations helped to formulate a new perspective on the
essentiality of B in the animal kingdom, pretending that the signaling molecule AI-2B is actually able
to modulate microbiota (composition, bacteria behavior and community dynamics) as well as the
mucus gel layer under conditions of dysbiosis. The production of AI-2B by one phylum could
influence the gene expression of other species and facilitate interspecies communication, making
bacteria to change its behavior, especially luminescence, virulence, and formation of biofilm between
various species. This characteristic determines AI-2B to turn into a very good candidate for regulating
interactions between cells in the human gut and the microbiota, where hundreds of bacterial phyla
live together and communicate. Recently, the AI-2B molecule has been proposed as a biomarker for
dysbiosis [16,17]. In addition, B has recently been declared an essential element involved in the
synthesis of the AI-2 quorum sensing system. At the same time, the active AI-2B is being generated
by the addition of borate to the AI-2 precursor, being able to amplify the activity of AI-2 and support
the secretion of extracellular polymeric substances.

Several natural organic B species have been detected in bacteria (borate polyketides, borate—
siderophore complexes, AI-2B), fungi (borate esters of carbohydrates) and plants
(rhamnogalacturonan II-borate complex (BPP), borate esters of carbohydrates, borate esters of
organic acids, bis-N-acetyl serine, and borate complexes of phenolic acids, such as DCB). These
organic B species are distinct from inorganic BA/borates, which aren’t prebiotic because they are
digestible and could be toxic to the microbiota [18,19].

2. Materials and Methods

2.1. Chemicals and Reagents

Poly(D,L-lactide-co-glycolide) 65:35, molecular weight (MW) 40 000-75 000, was purchased from
Sigma-Aldrich (Taufkirchen, Germany). Dichloromethane (DCM), polyvinyl alcohol (PVA) 8-88
(MW ~67 000), ammonium acetate and LiChrosolv® water and acetonitrile for chromatography were
achieved from Merck Millipore (Darmstadt, Germany). For zinc-boron (Zn-B) complex synthesis, Zn
powder, BA and fructose were purchased also from Merck Millipore.

2.2. Synthesis of Zn—B Complex

Zn-B complex was synthesized based on general methods used for the synthesis of various
borate complexes with carbohydrates (fructose, sorbitol, mannitol) and B inorganic anions [20-23].
The optimization of Zn-B complex synthesis was made using a Biichi-type reactor made of steel, with
a capacity of 300 mL, and which can withstand a pressure of up to 100 bar, equipped with
temperature probe, pressure gauge, pneumatic connection, and safety valve. For the activation of
metallic Zn, 9.146 g (70 mmol) of Zn powder and 300 mL of distilled water were added to a Biichi-
type reactor, equipped with two necks, device for nitrogen admission and overpressure regulation,
and with a thermometer. The air was gradually replaced, for 10-15 minutes, with inert gas (purging
with nitrogen). The reaction mixture was heated to 140-150°C, for three hours, under strong stirring
(plate with electromagnetic stirrer), to activate metallic Zn. After three hours, the reaction mixture
from the metallic Zn activation was cooled to 50-60°C, then 12.412 g (68.95 mmol) of fructose and
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2.137 g (34.47 mmol) of BA (in this order) were gradually added, while stirring. Next, the reaction
mixture was kept under stirring for 60 minutes, at a temperature of 50-60°C. After three hours, the
reaction mixture has a temperature of 91.5°C and a pH of 6.36. After another 60 minutes, the reaction
mixture was filtered under vacuum to separate the excess of unreacted metallic Zn.

2.3. Synthesis of Zn-B-PLGA Biocomposite

Wi aqueous phase: 50 mg of Zn-B complex were solubilized in 2 mL aqueous solution with 4%
PVA 8-88 (w/v).

Oil phase O: 50-150 mg of PLGA 65:35 was dissolved in DCM. The two phases were brought
into contact and mixed at 45000 rpm in a Heidolph Silent Crusher Vortex (Wood Dale, Illinois, USA)
to obtain the primary emulsion W1/O.

W2 aqueous phase: 95 mL of aqueous solution with 1-4% PVA 8-88 as emulsifier (w/v). The
primary emulsion was added dropwise to the secondary aqueous phase stirred at 1000 rpm for three
hours to evaporate the DCM.

The particles were centrifuged at 11 000 rpm, washed and frozen overnight. The final suspension
was subjected to a lyophilization process using an Alpha 1-2 LSCbasic freeze dryer (Martin Christ

Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany), as follows: the suspended particles
were frozen at -55°C overnight and at 0.02 mbar for 48 hours.

2.4. Design of Experiments Analysis

To solve design constraints and perform minimum experimental runs, we used design of
experiments (DoE) by a systematic quality by design (QbD) approach. The details of the variables are
described in Table 1. The independent variables (factors) were the PVA concentration and the PLGA
concentration, whereas the dependent variables (responses) were the size of the Zn-B-PLGA
biocomposite and the zeta potential (ZP). According to a full factorial (two levels) design, interaction
model, we performed seven experiments, as in Table 2. The model included only those terms for
which the significance level was less than p<0.05. We calculated R? (the fraction of the variation in the
response explained by the model), Q? (the predictive power of the models), F-value (the ratio of the
mean regression), model validity (the extent to which the measurement corresponds to real-life
situations), reproducibility (ability to produce the same output if the input is the same).

Table 1. Independent variables (factors) and their levels.

Levels
Independent variable Symbol
-1 0 +1
PVA concentration [%] X1 1 2.5 4
PLGA concentration [mg] X2 50 100 150

PLGA: Poly(lactic-co-glycolic acid); PVA: Polyvinyl alcohol.

Table 2. Experimental design matrix of responses.

do0i:10.20944/preprints202309.0300.v1

Experiment PVA concentration PLGA concentration Particle size 7P [mV1]
[%] [mg] [nm]
N1 50 17.7+0.071 -1.11+0.55
N2 4 50 225+0.912 -5.07+0.57
N3 1 150 365.7+0.05 3.45+2.49
N4 4 150 435.2+0.079 -2.19+0.64
N5 2.5 100 232.9+0.411 -3.71+1.69
N6 2.5 100 241.9+0.04 -3.11+0.45
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N7 25 100 257.5+0.246 -2.78+0.33
PLGA: Poly(lactic-co-glycolic acid); PVA: Polyvinyl alcohol; ZP: Zeta potential.

The experimental data obtained from the seven experiments were fitted to a polynomial model,
allowing the prediction of the formulation variables on the Zn-B-PLGA biocomposite characteristics,
using the MODDE for Windows software ver. 21.1 (Sartorius Stedim Data Analytics AB, Ume3,
Sweden). In this mathematical approach, each response Y can be represented by an equation:

Y=">bo+ biXi + byXs + bi2XiXo 1)

where X1, X2 are the independent variables as in Table 1, and the coefficients are as follows: b1, b2
represent the estimation of the main effects of the X1, Xz factors; bi2 represents the estimation of the
interaction between X1 and Xz factors.

2.5. Morphological Aspects of Zn—-B-PLGA Biocomposite

Micrographs were acquired using a high-resolution scanning electron microscope, FEI Inspect
F50 (FEI Company, Hillsboro, Oregon, USA), at 30 keV and various magnifications.

2.6. Hydrodynamic Diameter of the Particles Determined by the DLS Technique

The numerical and volumetric distribution of the synthesized nanoparticles (hydrodynamic
diameter) was measured by the dynamic light scattering (DLS) technique using a Brookhaven 90 Plus
equipment (Brookhaven Instruments Corp., Austin, Texas, USA) provided with laser of 35 mW
output power and 660 nm wavelength. The analysis of the Brownian motion of the particles brought
into the liquid medium and dispersed (by ultrasonication) was correlated with the size of the particles
by illuminating them with a laser and analyzing the intensity of the fluctuations of the scattered light.

2.7. Determination of Loading Efficiency by UHPLC/MS

The loading efficiency (LE%) was determined by measuring 25 mg of Zn-B-PLGA biocomposite
particles in 2 mL of water. The dispersion was initially stirred under ultrasound and then left for 40
days for the complete release of the active principle and complete and complete hydrolysis of the
polymer. The obtained solution was filtered, diluted 1:20 and subjected to ultra-high performance
liquid chromatography/mass spectrometry (UHPLC/MS) analysis (Figure 3).

£
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Figure 3. Zn-B complex UHPLC chromatogram for a standard solution of 25 pg/mL. UHPLC: Ultra-
high performance liquid chromatography.

The UHPLC/MS analysis was performed on the Waters (Milford, Massachusetts, USA) Arc
System coupled with a Waters QDa MS detector. The column was a Waters Atlantis Premier BEH Z-
HILIC (2.1x100 mm, 2.5 um) eluted with two solvents: A (10% ammonium acetate in water) and B
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(acetonitrile) in isocratic mode (25% A). The mobile phase had a flow rate set at 0.3 mL/min. The
column temperature was equilibrated to 30°C. The injection volume was 5 pL. The QDa MS detector
was set to negative mode at 0.8 kV for the capillary, 20 V for the cone voltage and 400°C for the
capillary. The mass range was set at m/z 100-600 for spectra collection and Selected Ion Recording
(SIR) mode was used for quantification at m/z 367 (Figure 4).
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Figure 4. Zn-B complex mass spectrum: m/z 179 fructose fragment; m/z 367 Zn from Zn-B complex.

LE% was calculated using formula:

massof Zn-B complex(mg)

x100
Zn-B-PLGA mass(mg)

Loading efficiency(%)=

3. Results

3.1. Synthesis of Zn-B-PLGA Biocomposite

The water/oil/water (W/O/W) double emulsion method [24] is one of the most used methods for
PLGA-based biomaterials due to the simplicity of the process, the low cost of the used
instrumentation, and the easiness in parameters control [25]. The method consists in adding the
insoluble volatile organic phase (DCM) [26] over the W1 aqueous phase, which contains Zn-B
complex dissolved in the aqueous phase, emulsifying at a high speed (45000 rpm) with a
homogenizer. The result is a water-in-oil primary emulsion that was added by continuous mixing to
a very large amount of W2 aqueous phase (95 mL) containing different surfactants, in our case PVA
(1-4%, w/v) forming a W/O/W double emulsion (Figure 5). The concentration of the polymer was
chosen between 50 and 150 mg. The use of DCM as organic solvent leads to Zn-B-PLGA
biocomposite spheres of 15-450 nm size (as shown by DLS), while for the use of other type of organic
solvent (acrylonitrile [27], tetrahydrofuran [28]) leads to obtaining smaller particles, with diameters
less than 100 nm.
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Figure 5. Zn-B-PLGA biocomposite delivery system synthesis flow, W/O/W double emulsion
followed by lyophilization. O: Oil; W: Water.

3.2. Design of Experiments Analysis

To determine the levels of factors that ensure optimal size and ZP, we fitted an initial model that
explained over 99% of the size’s variation and over 94% of the ZP’s variation, indicating that all
responses were well fitted by the model. The predictive power of the model was high for size (82%)
and moderate for ZP (51%), indicating that all responses were well predicted by the model.
Furthermore, model validity (0.62 for size and 0.86 for ZP) and reproducibility (0.99 for size and 0.86
for ZP) values were greater than 0.6 and 0.8, respectively, suggesting a reduced experimental error.
F-value for regression was 128.26 (p-value = 0.001) for size, and 15.9 (p-value = 0.024) for ZP,
respectively (Table 2; Figure 6).

Scaled & Centered Coefficients for Size Scaled & Centered Coefficients for ZP
20
150
100 1.0
50
00
1]
-50 10
£ <t < <L
> ] o £ [ 5
a p ) | o ) -
£ 2
-1 a
N=7 RZ=0.992 RSD=16.27 N=7 R2=0.941 RSD=0.4272
DF=3 Qz=0.816 Conf. lev.=0.35 DF=3 Q2=0.511 Conf. lev.=0.35

Figure 6. Regression coefficients plots showing the scaled and centered coefficients for the two
responses. Conf. lev.: Confidence level; DF: Degrees of freedom; N: No. of experiments; RSD: Residual
standard deviation; ZP: Zeta potential.

According to the coefficient list for designed model, as in Figure 6, each response was
represented by the equations:

Size =253.7 + 69.2*%X; + 139.55%X; — 34.45* X1 * X5 (2)

ZP =-3.06 - 0.68*X; + 0.14*X5> + 1.31*X*X, 3)

The results of the analysis of variance (ANOVA) test showed not only the p-value was lower
than 0.05 for all responses, but also p-value for the lack of fit was greater than 0.05 for all responses
(F-value = 3.12, p-value = 0.219 for size, and F-value = 0.46, p-value = 0.566 for ZP), confirming that
the proposed model is adequate, reliable, and has a good predictive power.
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The responses contour plots illustrated the quantitative effect of the factors on the two responses,
identifying the optime values for the two factors to obtain the expected responses, as in Figure 7.

Investigation: Zn-B-PLGA (MLR) [ S
Normalized Coefficients 5 RO il
10
05
00
05
Size pid

Figure 7. Coefficient overview plot for both responses. MLR: Multiple linear regression.

After performing optimizer within the design space with a target of 200 nm for size and
minimize for ZP, the model proposed the X1 = 4% and X2 = 50 mg values. More, using prediction list
outside the design space, as in Figure 8, the characteristics of the optimum formulation could be
obtained for X1=>5 and X2 =10 values, the model predicting the size =221 nm (119 nm to 323 nm) and
ZP =-8.3 (-11 to -5.7) values (Figure 9).
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Figure 8. Contour plots showing the effect of the interaction between factors on the two responses.

PLGAcoNC
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PLGAconc
o388888388

PVAconc

Figure 9. Contour plots with optimizer showing the effect of the interaction between factors on the
two responses beyond the initial intervals.

3.3. Morphological Aspects of Zn—-B—PLGA Biocomposite

Scanning electron microscopy (SEM) at different magnitudes revealed a porous material, the
spherical shape of the particles of Zn-B-PLGA biocomposite are well organized. The three-
dimensional aspect of the lattice was also highlighted by SEM (Figure 10, A and B).
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Figure 10. Morphology of the Zn-B-PLGA biocomposite particles. SEM micrographs at different
magnitudes: (A) Zn-B-PLGA biocomposite; (B) Zn-B complex. SEM: Scanning electron microscopy.

Energy dispersive X-ray (EDX) analysis on the elemental composition of Zn-B-PLGA
biocomposite is shown in Figure 11. According to the EDX mapping, the predominant elements
content in the Zn-B-PLGA biocomposite are C (56.33 wt%), O (43.46 wt%), Zn (0.21 wt%). Our EDX
analyzer can detect elements with an atomic number from 11 (Na) upward, so B, our major interest
element could not be detected by this method (Figure 11).

s

P

Figure 11. EDX mapping analysis of Zn—-B-PLGA biocomposite. EDX: Energy dispersive X-ray.

3.4. Hydrodynamic Diameter of the Zn-B-PLGA Biocomposite Particles

The obtained data showed the presence of two granulometric intervals: [190-291] nm and [1-
1.6] um, respectively. From the point of view of the numerical distribution, for N2 synthesis the
largest number of particles have a size around 225 nm (Figure 12A), and the particles that are the
majority in the case of volume distribution (the largest volume being around the size of 1.1 um, Figure
12B) are just a few in number.
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The ZP (-5.07+0.57 for n=5, Figure 13) was calculated by determining the electrophoretic mobility
and applying the Henry equation.
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Figure 12. (A) Numerical distribution of Zn-B-PLGA biocomposite particles — maximum number of
particles at 225.43 nm for N2 synthesis according to experimental design model (highlighted in red);
(B) Volumetric distribution of Zn—-B-PLGA biocomposite particles for N2 synthesis.
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Figure 13. ZP of Zn-B-PLGA biocomposite particles for N2 synthesis.

3.5. Determination of Loading Efficiency by UHPLC/MS

LEs between 5-16% were obtained for different synthesis conditions. Figure 14 shows a typical
chromatogram for N5 synthesis with LE of 5%. The desired loading efficiency can widely vary [29].
Through the double emulsion method, incorporation efficiencies of up to 30-35% are generally
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obtained. This percentage may vary depending on experimental variables (PLGA/Zn-B ratio, solvent,
evaporation conditions), and in the synthesis process [30]. Based on the intended therapeutic purpose
and the nature of the active substance being encapsulated, there is no universally fixed minimum
LE%. Our future analyzes will focus on maximizing the incorporation percentage by varying the
synthesis conditions.

-
8
2255

ssocoo]

Mectes

Figure 14. Zn-B-PLGA biocomposite UHPLC chromatogram for N2 synthesis according to
experimental design model.

4. Discussion

The properties of PLGA biocomposites depend greatly on the lactic acid/glycolic acid (LA/GA)
polymer ratio because GA has a low solubility in water while LA is extremely high soluble in water.

For our synthesis, with Zn-B complex-loaded PLGA nanoparticles as potential oral delivery
system, we preferred to use PLGA with the ratio of copolymers 65:35, which is known to have a
slower degradation time (2-3 months) and implicitly the release of the active principle (1-2 months)
slower than PLGA 50:50 but not so great as that of PLGA 85:15 [31].

Since Zn-B complex is hydrophilic, the W/O/W double emulsion was successfully used,
evaporating the organic solvent (DCM), which could have raised the issue of high toxicity [32].

We used PVA as a non-ionic surfactant [33] in the aqueous phase which has hydrophilic head
and a hydrophobic tail ([CH.CH(OH)].), which is considered a critical double emulsion-stabilizing
surfactant, although there are studies that consider that an increased concentration of it can affect the
encapsulation efficiency [34]. Since in our previous studies of experimental design we found that the
stirring speed had no major impact on efficiency or particle size, therapeutic agent encapsulation
efficiency increase with concentration and pH, and decrease with PLGA concentration [35,36], we
chose to investigate how other parameters influence the size of Zn-B-PLGA biocomposite, such as
the amount of polymer added in the synthesis process and the concentration of the emulsifying agent.
Our findings confirm that the size of the particles increase with increasing amounts of PLGA and
PVA.

4.1. Morphology

At higher magnifications, a fibrillar interpenetrated structure can be noted with the appearance
of a folded sheet. Furthermore, the SEM micrographs showed pore channels, which are characteristic
to W/O/W double emulsion, the inner water droplets tend to come out through a diffusion process
during the volatilization process of the organic solvent, as the polymer precipitates and encapsulates
the active principle from W1 aqueous phase [37]. The addition of Zn-B complex does not substantially
change the morphology of the material, the active substance being most likely absorbed inside the
pores and just a smaller amount may be on the surface of the particles.
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4.2. DLS Measurements

PLGA is extremely safe as a drug delivery system for micro/nanoparticles, but nanoparticles of
any biocomposite material have specific biodistribution, with toxic effects depending on the size [38].
Even if nanoparticles with larger sizes can incorporate a larger amount of drug, those with smaller
sizes have a better penetration of biological barriers and the arrival of the drug at the site of action.

Our goal was to vary the synthesis parameters to obtain particles with dimensions of 100-200
nm, because cellular uptake is deeply affected by the size of the nanoparticle [39]. When we obtained
Zn-B-PLGA biocomposite particles as targeted drug delivery, we also considered that the active
principle loading capacity increases with size.

4.3. Zeta Potential

Information regarding ZP for biopolymeric nanocomposites is very limited. The data provided
by our study is novel in this field. When immersed in water, Zn-B-PLGA biocomposite exhibits a
negative ZP. The obtained negative charge is attributed to dissociation of carboxylic groups on the
particle surface [40]. Also, the ZP (-5 mV) after lyophilization is not in the stability range [-25 mV; +25
mV], the literature mentions that particles with negative charges have colloid stability. Our other ZP
studies on nanocomposites with PLGA showed that the centrifuged particles exhibit a much lower
potential (-42 mV) compared to the lyophilized ones [41].

5. Conclusions

The Zn-B-PLGA biocomposite represents a novel delivery system for Zn and B as active
principles. Its applicability will be further analyzed, and the synthesis parameters will be adjusted to
better use of PLGA as novel Zn-B complex carrier. The obtained material is stable and functional,
being able to combine the desired properties of the carrier material and the encapsulated Zn-B
complex in future pharmaceutical applications.
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