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Abstract: This paper introduces the spatial component in cross-section econometric estimations and 

specifically, the spatial dependence effect inherent in some of the variables involved in the modelling process. 

First, the spatial structure of the data from thematic maps is observed and Moran's spatial autocorrelation 

indicators are presented. Subsequently, the spatial weights matrix is built under different specifications. 

Finally, several modelling specification strategies are shown and the interpretation of the estimated 

coefficients. The theoretical concepts are illustrated with examples and their corresponding R software codes. 

This code and databases are available in a freely accessible repository in the BE2SHARE-EUDAT platform so 

that they can be easily reproduced. 
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1. Introduction 

As first affirmed by the French philosopher and sociologist Henri Lefebvre in his work "The 

Production of Space", published in 1974 and translated into English in 1991: “space matters” ([1]). The 

idea behind this statement emphasizes the importance of understanding space not just as a physical 

entity but also as a social and cultural construct that plays a significant role in shaping human 

experiences and interactions. Space can play an important role in determining the processes to be 

modelled. Hence it is relevant to find a way to incorporate this phenomenon into the estimation of 

spatial processes. 

In fact, social phenomena are often not independent of the geographical space in which they 

occur. For example, in cities one can find certain neighbourhoods with high-income households 

surrounded by neighbourhoods with high-income households, and vice versa: spatial concentrations 

of neighbourhoods with lower-income families. These conditions are framed by Tobler's First Law of 

Geography: "Everything is related to everything else, but near things are more related than distant things" 

([2], p 236). 

Spatial data tend to be positively autocorrelated over geographic space so that the degree of 

autocorrelation usually decreases with physical distance. Therefore, observations of spatial variables 

are usually not independent of each other. In the context of linear regression models, this situation 

implies a violation of the basic assumption of independence of observations required by the Ordinary 

Least Squares (OLS) estimation method. In other words, in this context of spatial dependence, OLS 

estimators are no longer optimal and, thus, the significance statistics (t and F) could lead to erroneous 

conclusions. For this reason, it is necessary to explicitly consider geographical space in spatial 

econometric regression models. In this paper, this issue will be addressed. First, some Exploratory 

Spatial Data Analysis (ESDA) methods are presented to identify spatial structures and spatial 

autocorrelation effects in the variables, and then the main spatial regression models and their 

corresponding estimation and testing methods will be shown. 
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2. Exploratory Spatial Data Analysis (ESDA) 

Exploratory spatial data analysis (ESDA) was developed from a-spatial exploratory data analysis 

(EDA). It is widely used in spatial statistics, spatial econometrics and geostatistics (see Bivand [3]). 

ESDA is a set of techniques and methods used to analyse and visualize spatial data in order to 

uncover patterns, trends, and relationships that might not be immediately apparent. Common 

techniques used in ESDA include spatial visualization (e.g., thematic maps) and spatial 

autocorrelation analysis. 

2.1. Thematic Maps 

Standard exploratory data analysis uses tools that allow to observe the distribution of data (such 

as histograms), but not their geographical location. One way to observe the spatial distribution of 

variables is through the use of thematic maps. A thematic map is a cartographic representation of a 

variable using symbols and colours to show differences in values in different units or regions. When 

the regions are coloured based on the values of a variable, the thematic map is called “choropleth 
map” while a so called “graduated symbol map” would map the same data using a symbol sized 
proportionately to the data amount and placed within each county on the map. Choropleth maps are 

the most commonly used in ESDA. For example, quantile maps represent the overall spatial trend of 

a variable by dividing and grouping the data into categories with the same number of observations 

(e.g., quartiles, quintiles, deciles, etc.). In this section of the paper we will employ the dataset of in 

Guerry's study [4], also used in [5].1 These data can also be found along with the other databases 

used in this paper in Chasco and Vallone [6]. 

Figure 1 shows the histogram and the quintile map of the variable “clergy” representing the rate 
of Catholic priests per active service population in the provinces of France. 

Table 1. R Code: ESDA of the rate of Catholic priests per active service population (Figure 1). 

load("guerry.rdata") 

filled_color<-cut(guerry$clergy,breaks=5,include.lowest=TRUE) 

breaks<-5 

histogram_clergy<-ggplot(guerry,aes(x=clergy,fill=filled_color)) + 

  geom_histogram(binwidth=(max(guerry$clergy)-min(guerry$clergy))/breaks, 

                 boundary=min(guerry$clergy)) + 

  scale_fill_brewer(palette="PuRd", name="Priests") + 

  theme_bw() + theme(legend.position='bottom') + 

  xlab("Priests per active service population") + ylab("") 

filled_color2<-cut(guerry$clergy,breaks=quantile(guerry$clergy,probs=seq(0,1,0.2

0)), 

                                                 include.lowest=TRUE) 

map_clergy <- ggplot(guerry,aes(fill=filled_color2))+geom_sf() + 

  scale_fill_brewer(palette="PuRd", name="Priests")+annotation_scale(location="t

l")+ 

  annotation_north_arrow(location = "bl", which_north="true") + 

  theme_map() + theme(legend.position = "right") 

grid.arrange(histogram_clergy,map_clergy,ncol=2) 

 

1 A full description of the database is available at https://geodacenter.github.io/data-and-lab/Guerry 
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The histogram creates intervals of the variable with equal length (in this case, 5 intervals of size 

16.8% with approximately 17 observations each), starting from the minimum value of the variable 

(2%). It shows a practically uniform distribution of this variable. The quintile map groups the data 

into 5 categories with the same number of observations (17 in all cases), almost identically to the 

histogram. However, the observation of the map allows detecting that spatial units with similar 

values are clustered in space, uncovering the existence of positive spatial autocorrelation. 

Table 1 presents the R code needed to generate the results of this Figure. The following five 

libraries2 are required to run this code: "ggplot2", "ggspatial", "ape", "ggthemes", and "gridExtra". The 

main functions involved in this R code are "load", "cut", "ggplot", "geom_histogram", 

"annotation_scale", "annotation_north_arrow" and "grid.arrange". load {base} reload saved datasets 

(in this case, "guerry.rdata"). cut {base} divides the range of a numeric variable into intervals (factor 

variable) coding its values according to which interval they fall. ggplot is a function of “ggplot2”, 

which is a popular data visualization package in R programming. It stands for “Grammar of Graphics 
plot” and provides a consistent and structured way to create visualizations. geom_histogram 

{ggplot2} visualises the distribution of a single continuous variable by dividing the X axis into bins, 

counting the number of observations in each bin, and displaying the counts with bars. 

annotation_scale {ggspatial} allows creating the scale bar, which is a graphical means of depicting 

distance on a map. annotation_north_arrow {ggspatial} allows creating the north arrow on a map, 

which is a graphical representation that points to the geographical north (the option “true” points 

specifically to the North Pole). grid.arrange {gridExtra} allows arranging multiple graphical objects 

(“grobs”) on a page. 

 

Histogram Quintile map 

Figure 1. ESDA of the rate of Catholic priests per active service population in France’s provinces. 

However, quintile maps are not useful when a determined variable has a non-normal 

distribution, as is the case for the variable “suicids” presenting the population per suicide in the 

provinces of France. Thus, when a variable is highly skewed or asymmetric, there is usually a high 

proportion of very similar values in the centre or at one extreme of the distribution, with one or more 

 

2 From now on, only packages other than "base", which contains the R basic functions, will be shown. 
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values far away from the rest at the other extreme, as shown in the histogram in Figure 2. This 

prevents quintiles from being defined correctly by grouping very similar values into different 

intervals or very different values into a single interval. In these cases, it is better to use the choropleth 

map of natural breaks which is the one chosen to represent the variable “suicids” in Figure 2. 

The R code is shown in Table 2.  

Table 2. R Code: ESDA of the rate of suicides (Figure 2). 

load("guerry.rdata") 

filled_color<-cut(guerry$suicids,breaks=5,include.lowest=TRUE) 

breaks<-5 

histogram_suicids <- ggplot(guerry,aes(x=suicids,fill=filled_color))+ 

  geom_histogram(binwidth=(max(guerry$suicids)-min(guerry$suicids))/breaks, 

                 boundary=min(guerry$suicids))+ 

  scale_fill_brewer(palette="BuGn", name="Suicids")+ 

  theme_bw() + theme(legend.position='bottom') + 

  xlab("Population per suicide") + ylab("") 

filled_color2<-cut(guerry$suicids,breaks=getJenksBreaks(guerry$suicids,k=6), 

                   include.lowest=TRUE) 

map_suicids <- ggplot(guerry,aes(fill=filled_color2))+ 

  geom_sf()+ 

  scale_fill_brewer(palette="BuGn", name="Population per suicide")+ 

  annotation_scale(location = "tl") + 

  annotation_north_arrow(location = "bl", which_north="true") + 

  theme_map() + theme(legend.position = "right") 

grid.arrange(histogram_suicids,map_suicids,ncol=2) 

 

 

Histogram Natural breaks map 

Figure 2. ESDA of the population per suicide in the French provinces. 
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The libraries and functions required for this code are the same as above. In addition, the function 

and corresponding library getJenksBreaks {BAMMtools} is added, which calculates the optimum 

breakpoints using Jenks natural breaks optimization. The values in a variable are binned into k+1 

categories (5+1 in our case), according to the Jenks’ classification method. This method is borrowed 
from the field of cartography, and seeks to minimize the variance within categories, while 

maximizing the variance between categories. 

If a highly asymmetric distribution such as the suicide variable in the French provinces were 

represented by a quantile map, we could draw the wrong conclusions. In the quintile map in Figure 

3, for example, the suicide variable obtains the highest values in the southern half and extreme west 

and east of France, leaving only a few northern provinces freer of this problem. However, a more 

appropriate representation of this variable with a map of natural breaks concentrates this 

phenomenon in certain provinces in the centre-south of the country. 

 

Figure 3. Comparison between the quintile and natural breaks maps of the population per suicide in 

the French provinces. 

For this reason, it is important to carry out a preliminary exploratory analysis of the variables to 

analyse, even to know what type of map to use, because, as Monmonier [7] rightly explains, 

consciously or unconsciously, it is very easy “to lie with maps". 

2.2. Spatial Autocorrelation Effect: The Spatial Weights Matrix 

One of the most studied spatial effects so far is that of spatial autocorrelation, which is the one 

we will focus on in this section.3 Spatial dependence4 is said to exist in a variable when the value it 

takes in one observation i is influenced by the value it takes in another observation j, and vice versa 

(see [8]). The spatial autocorrelation effect can be positive, when spatial units with similar values tend 

to be together (high values close to high and low values close to low) or negative, when spatial units 

tend to be surrounded by neighbouring units with opposite values (high surrounded by low, and the 

other way around). The absence of spatial autocorrelation is known as spatial randomness. In Figure 

4, various spatial patterns are shown for spatial autocorrelation and spatial randomness. 

The code and R packages needed to produce this Figure can be found in Appendix A.1. The 

following five libraries are required to run this code: "ggplot2" and "gridExtra". The main functions 

involved in this R code are " geom_rect" and " grid.arrange". geom_rect {ggplot2} is a geometric object 

 

3 The other spatial effect is spatial heterogeneity, extensively presented at Anselin [8], chapter 9. 

4  Strictly speaking, the concepts of spatial dependence and spatial autocorrelation are not 

synonymous. Indeed, spatial autocorrelation is a form of spatial dependence defined statistically in 

a weaker form, through only the first moments of the joint distribution of a spatial variable. However, 

as most authors use both terms interchangeably this will be also done in this paper. 
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(“geom”) that draws a rectangle using the locations of the four corners (“xmin”, “xmax”, “ymin” and 
“ymax”). grid.arrange {gridExtra} is defined as above. 

 
 

Figure 4. Spatial autocorrelation patterns. 

The concept of autocorrelation alone refers to the modelling of a variable with itself. Thus, when 

referring to serial autocorrelation in econometric models, we state to the fact that the past values of a 

variable affect the present values of the same variable. 𝑦𝑡 = 𝑓(𝑦𝑡−1, … , 𝑦1). In this case, it is a one-way 

interaction of the variable: from the past to the present. However, the influence of geographical space 

is not unidirectional but multidirectional, in the environment or neighbourhood of a unit of analysis. 

It is therefore crucial to define the concept of spatial neighbourhood, in order to carry out any spatial 

analysis. 

The spatial neighbourhood matrix, 𝐖𝑛×𝑛 , also called spatial weights matrix, shows the 

relationship among 𝑛 spatial units under analysis. This matrix defines the spatial neighbourhood 

condition and thus the interaction between the spatial units. In its simplest form, the spatial weights 

matrix is a symmetric and binary matrix, where the element 𝑤𝑖𝑗 = 1 if spatial units 𝑖 and 𝑗 are 

neighbours and zero if they are not. By convention, it is established that 𝑤𝑖𝑖 = 0, i.e., a spatial unit 

cannot be a neighbour of itself. There are different criteria for defining this matrix depending on the 

process to be modelled and the characteristics of the data. But basically, we could identify the 

following two groups of spatial weighting matrices: spatial contiguity matrices and spatial weights 

matrices based on distances. 

2.2.1. Spatial Contiguity Matrices 

When working with a map in which the geographical units are polygons, one of the criteria 

presented in Figure 5 can be used to define the 𝐖 matrix.  

The linear criterion is the simplest. It considers as neighbours to a given spatial unit i all those 

units located to the north and south of this unit, provided they share a border in common with i. This 

criterion could also be applied if the neighbouring and contiguous units to i were located to the east 

and west sides. 

The rest of the contiguity criteria follow the moves on a checkerboard to define spatial unit i’s 
neighbourhood. The construction of a neighbourhood matrix under the rook criterion implies 
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considering as neighbours of spatial unit i those spatial units located in the four cardinal points 

(north, south, east, and west), provided that they share a common border with this unit. The use of 

the bishop criterion considers as neighbours of unit i those units located in the secondary or lateral 

cardinal points (north-east, north-west, south-east or south-west) of spatial unit i, provided that they 

have at least one point in common. 

 

Lineal Rook Bishop Queen 

Figure 5. Spatial neighbourhood criteria in polygon data (Source: Martori et al. [9]). 

The queen criterion is the most complete of all by considering as neighbourhood of spatial unit 

i those spatial units located in all main and secondary cardinal directions, provided that they have a 

point or a border in common with spatial unit i (Martori et al. [9]). Since the neighbourhood criterion 

in all these W matrices is based on the units or regions having a common border (edge or point), they 

are also called spatial contiguity matrices. 

In certain contexts, such as spatial regression models, spatial weight matrices are row 

standardised, so that their elements are transformed as follows: 𝑤𝑖𝑗∗ = 𝑤𝑖𝑗∑ 𝑤𝑖𝑗𝑛𝐽=1  (1)  

In simple words, each element of a row of the matrix W* is divided by the sum of the values of 

that row. This ensures that each element of the standardised spatial weights matrix lies between the 

values 0 and 1, and that the sum of the values in each row is always equals to 1. 

The R code required for the construction of spatial contiguity matrices is presented in Table 3. 

Table 3. R Code: construction of a queen contiguity matrix and its spatial network (Figure 6). 

load("guerry.rdata") 

#Constructs the queen contiguity matrix 

wqueen<-poly2nb(guerry, queen=TRUE) 

#Constructs the row-standardized queen contiguity matrix 

wqueens<-nb2listw(wqueen, style="W", zero.policy = TRUE) 

# Plots first the map and then the neighbourhood network  

plot(guerry$geometry) 

plot(queens,st_centroid(guerry$geometry), col="blue", add = TRUE)  

The "spdep" library is required to run this code (see Bivand and Wong [10]). It is a collection of 

functions to create spatial weights matrix objects from polygon 'contiguities', point patterns by 

distance and tessellations. It also loads the "spData" package (a group of spatial datasets for 

demonstrating, benchmarking, and teaching), which is underpinned by some legacy packages 
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("maptools", "rgdal" and "rgeos"). They will be retired during 2023, joint to all the "sp" classes, 

methods, and functions, and "sf", ”terra" or other packages will be needed instead. 

The main functions involved in this R code, besides “load", are “poly2nb", “nb2listw" and “plot". 

poly2nb {spdep} builds a neighbours list based on regions with contiguous boundaries, that are 

sharing one or more boundary points. nb2listw {spdep} adds a weights list with values given by a 

coding scheme style, the most commonly used being B (basic 0-1 binary coding) and W (row 

standardised). 

plot is more than a function, it is placeholder for a family of related functions which allows to 

create a plot passing two vectors (of the same length), a dataframe, matrix, map, or even other objects, 

depending on its class or the input type. This function makes it possible to represent the spatial 

neighbourhood network of the W matrix corresponding to the provinces of France (Figure 6). 

 

Figure 6. Neighbourhood network of a queen spatial contiguity matrix. 

The construction of a rook-style spatial contiguity matrix requires the same packages and 

functions, but the ”queen” parameter of the “poly2nb" function must be changed to "FALSE ", as in 

Table 4. When working with administrative regions, differences in the spatial network of the queen- 

and rook-based contiguity matrices are almost non-existent, as practically all regions have more than 

one point in common. 

Table 4. R Code: construction of a rook spatial contiguity matrix and its spatial network. 

load("guerry.rdata") 

#Constructs the rook contiguity matrix 

wrook<-poly2nb(guerry, queen = FALSE) 

#Constructs the row-standardized rook contiguity matrices 

wrooks<-nb2listw(wrook, style="W", zero.policy = TRUE) 

# Plots first the map and then the neighbourhood relationship  

plot(guerry$geometry) 

plot(wrooks, st_centroid(guerry$geometry), col = "blue", add = TRUE) 

2.2.2. Spatial Weights Matrices Based on Distances 

There are situations where spatial contiguity matrices are not the most appropriate. For example, 

when spatial data are isolated points or locations, with no possibility of having common boundaries 

or in the case of polygonal data with "islands", i.e., units with no neighbours because they do not 
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have a common boundary with other units in the system. The zero-neighbour situation should be 

avoided in spatial weight matrices as it affects the calculations of the spatial autocorrelation statistics 

in which they participate.   

In these cases, it is more convenient to define neighbourhood matrices based on distance-based 

criteria. These W matrices can be specified in two ways: local and global. 

a) Local which, for each spatial unit, consider as a discrete or local neighbourhood domain, such 

as a given number of k nearest neighbours or a distance radius. As for the k nearest neighbour 

W matrix, its formal definition is the following: {𝑤𝑖𝑗 = 1        ;       𝑑𝑖𝑗 ≤ 𝑑𝑖(𝑘)𝑤𝑖𝑗 = 0       ;       𝑑𝑖𝑗 > 𝑑𝑖(𝑘)  ; ∀𝑖 (2) 

where dij is the distance between i and j and 𝑑𝑖(𝑘) is the distance at which each spatial unit i reaches 

a predetermined number of k nearest neighbours. Hence, in this type of configuration, all spatial units 

have exactly the same number k of spatial neighbours.  

To illustrate the definition of the W matrices based on distances, a point map containing the 

centroids of the main Chilean cities, used in Vallone and Chasco [11] will be used. The R code 

required for the construction of k-nearest neighbour matrices is presented in Table 5. Two libraries 

are required to run this code: "spdep", which is defined as above, and "sf" (see Pebesma et al. [12]). 

The main functions involved in this R code, in addition to those already presented, are 

“st_coordinates", “knearneigh ", “knn2nb”, “nb2listw”, “plot" and “st_centroid". st_coordinates {sf} 

retrieve the coordinates of spatial objects of class sf, sfc or sfg, in a matrix form of n rows and two 

columns for X and Y. knearneigh {spdep} returns a knn object, which is a matrix with the indices of 

points belonging to the set of the k nearest neighbours of each other; if longlat=TRUE, great-circle 

distances are used.5 knn2nb {spdep} converts a knn object returned by the knearneigh function into 

a neighbours list of class nb with a list of integer vectors containing the index number (ID) of the 

neighbour regions. st_centroid {sf} is a geometric operation on a simple feature geometry (sf, sfc and 

sfg spatial objects), returning its centroid, which will be an object of the same class. 

Table 5. R Code: construction of a 5-nearest neighbours W matrix (Figure 7A). 

load("chilean_cities.rdata") 

# The coordinates of the points are extracted. 

coord <- st_coordinates(cities)  

# Calculates the 5 nearest neighbours spatial weight matrix 

w5knn <- knearneigh(coord, k=5, longlat= T) |> knn2nb() 

w5knns<-nb2listw(w5knn, style="W", zero.policy = TRUE) 

# Plots first the map and then the neighbourhood relationship  

plot(cities$geometry) 

plot(w5knn,st_centroid(cities$geometry),col="blue",add=TRUE) 

Figure 7A presents the neighbourhood network corresponding to the W matrix of 5 nearest 

neighbours of the cities in Chile. As can be seen in the south of Chile, the neighbourhood network 

seems somewhat unrealistic as it connects cities that are actually more than 1,400 kilometres away by 

road from each other, as is the case of Puerto Aysén (Region XI) and Punta Arenas (Region XII). 

Another local specification of the spatial weight matrices is based on the determination of a 

neighbourhood distance radius around each geographical unit. For example, the minimum distance 

W matrix considers as radius the minimum distance necessary for all regions or locations to have at 

least one neighbour. It is specified as follows: 

 

5 The great-circle distance is the shortest distance between two points on the surface of a sphere. 
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{𝑤𝑖𝑗 = 1       ;       𝑑𝑖𝑗 < 𝑑𝑚𝑖𝑛𝑤𝑖𝑗 = 0       ;       𝑑𝑖𝑗 > 𝑑𝑚𝑖𝑛  (2)  

for 𝑑𝑚𝑖𝑛 the minimum distance necessary for all geographical units to have at least one neighbour. 

The R code required for the construction of minimum distance neighbour matrices is presented 

in Table 6. 

Table 6. R Code: construction of the minimum distance W matrix (Figure 7B). 

load("chilean_cities.rdata") 

# The coordinates of the points are extracted. 

coord <- st_coordinates(cities) 

# Calculates the neighbourhood of 1 nearest neighbours 

knn1 <- knearneigh(coord) |> knn2nb() 

# Calculates the minimum distance for everybody's connection 

min.dist <- max(unlist(nbdists(knn1,coord)))  

# Generates the W matrix for which w_ij < d_min 

k1 <- dnearneigh(coord, 0, min.dist)  

wdmin <- nb2listw(k1) 

wdmins<-nb2listw(k1, style="W", zero.policy = TRUE) 

# Plots first the map and then the neighbourhood relationship  

plot(cities$geometry) 

plot(wdmin,st_centroid(cities$geometry),col="red", add=TRUE) 

 

  
A) 5-nearest neighbours W matrix B) Minimum distance W matrix 

Figure 7. Neighbourhood network of distance-based W matrices for the Chilean cities. 

The libraries and functions needed to calculate these matrices are the same as in the previous 

cases, except for the functions “max” and “unlist” which are part of the basic R functions. and 
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“nbdists”. max {base} returns the maximum of all the values present in its argument. unlist {base} 

simplifies a list structure to produce a vector which contains all the atomic components (logical, 

integer, real, complex, character and/or raw). nbdists {spdep} returns the Euclidean distances along 

the spatial neighbour links of an object type nb. 

Figure 7B presents the neighbourhood network corresponding to the W matrix of minimum 

distance of the cities in Chile, which according to the integer atomic argument “min.dist” is equal to 
215 km. Therefore, the cities of Puerto Aysén and Punta Arenas no longer appear to be linked in the 

neighbourhood network. Both cities are connected to other neighbouring cities in their respective 

regions, each forming its own urban network. 

a) Global specifications of the spatial weight matrix consider as neighbours of each of the 

geographical units the rest of the units of the system, on a continuous basis, although with 

different weights or values depending on the distance that separates them. For example, the 

inverse distance spatial weight matrix, whose elements are defined as a gravity function is 

defined as follows: 𝑤𝑖𝑗 = 𝑑𝑖𝑗−𝛼 (3)  
for 𝛼 ≥ 0, a friction parameter. 

Although it is a matrix with non-zero elements (except for the main diagonal), from a certain 

distance between points the value of the 𝑤𝑖𝑗  elements will be practically zero. For this reason, a 

distance radius could usually be established to simplify the calculations (e.g., in the case of spatial 

systems with a large number of elements or regions), considering all the units beyond this radius as 

non-neighbours (wij = 0 ). 

Table 7 presents the R code with the process of obtaining the inverse distance spatial weights 

matrix. 

Table 7. R Code: construction of the inverse distance W matrices. 

load("chilean_cities.rdata") 

# The coordinates of the points are extracted. 

coord <- st_coordinates(cities) 

# Calculates the neighbourhood of 5 nearest neighbours 

knn5 <- knearneigh(coord, k=5, longlat= T) |> knn2nb() 

# Calculates the inverse distance of knn5 

dinv_knn5 <- lapply(knn5, function(x) 1/x) 

# Calculates de row-standardized dinv_knn5 matrix 

wdinv_knn5 <- nb2listw(knn5, style="W", zero.policy=TRUE) 

# Obtains, for each unit, the nearest neighbour. 

knn1 <- knearneigh(coord) |> knn2nb() 

# Gets the minimum distance for all units having neighbours 

min.dist <- max(unlist(nbdists(knn1,coord))) 

# Calculates the neighbours in the minimum distance radius 

k1 <- dnearneigh(coord, 0, min.dist) 

# Computes the distances between neighbours in min.dist radius 

dist_dmin <- nbdists(k1, st_coordinates(cities))  

# Calculates the inverse distance of dist_dmin 

dinv_dmin <- lapply(dist_dmin, function(x) 1/x)  

# Calculates de row-standardized dinv_dmin matrix 

wdinv_dmin <- nb2listw(k1, glist=dinv_dmin, style="W") 
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It establishes two types of cut-offs for each spatial unit: firstly, the group of 5 nearest neighbours 

and secondly, the radius of the minimum distance for which all spatial units have at least one 

neighbour. The libraries and functions needed to calculate these matrices are the same as in the 

previous cases, except for the function “lapply”. lapply {base} returns a list of the same length as an 

“x” argument, each element of which is the result of applying a function to the corresponding element 
of “x”. 

Finally, the application of the spatial weights matrix to calculate a spatially lagged variable or 

spatial lag is presented. The spatial lag variable Wy of the variable y is obtained by premultiplying 

the matrix W by that variable, as presented in the following example. 

𝑦 = [   
 12030024060180]   

   ;   𝐖𝑦 = [  
  01 4⁄01 2⁄1 3⁄     1 3⁄01 2⁄1 2⁄1 3⁄     01 4⁄001 3⁄     1 3⁄1 4⁄000     1 3⁄1 4⁄1 2⁄00 ]  

  [   
 12030024060180]   

 = [  
  540 3⁄600 4⁄480 2⁄420 2⁄660 3⁄ ]  

  

= [   
 180150240210220]   

 
 

(4)  

According to the matrix W, the first spatial unit has three neighbours: units 2, 4 and 5. Therefore, 

each element of the first row of the standardised matrix, W*, is 1 3⁄ . The first element of the spatial 

lag variable is equal to 180, which is the average value of the variable 𝑦’s neighbours of the first 

spatial unit: 
(𝑦2+𝑦4+ 𝑦53 = 300+60+1803 = 5403 = 180 = 𝐖∗𝑦1. Therefore, each element 𝑖 of the spatial lag 

variable, 𝐖∗𝑦𝑖 , is a weighted average of the values of the variable 𝑦 in the units neighbouring the 

spatial unit 𝑖. 
2.3. Spatial Autocorrelation Measures 

2.3.1. Moran’s Scatterplot 

A good tool for understanding spatial autocorrelation statistics is the Moran’s scatterplot (see 

Anselin et al. [13]), which relates a variable to what is happening in its environment through its spatial 

lag in a scatter plot. Figure 8 shows this diagram: on the horizontal axis are the values of a variable 

and, on the vertical axis, the values of its respective spatial lag. Therefore, the origin of coordinates 

corresponds to the mean value of both variables.  

 

Figure 8. Moran’s scatterplot. 

This diagram allows the identification of four quadrants: the first quadrant, called "High-High" 

(HH) contains the spatial units with values of both variables higher than the mean value of the 

system. The spatial units located in the third quadrant, "Low-Low" (LL) are the values of the variables 

below the average. Values located in the second and fourth quadrants, "Low-High" (LH) and "High-
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Low" (HL), respectively, are those where the main variable is below/above the mean, with the values 

of their corresponding spatial lag being above/below the mean, respectively. 

The R code with the process of obtaining a Moran’s scatterplot representation is presented in 
Table 8. The only library needed to represent this diagram is "ggplot2". The functions employed, not 

previously presented, are “annotate” and “theme_void”. annotate {ggplot2} adds geometric objects 

(“geoms”) to a plot when their properties are introduced as vectors, which is useful for adding text 
labels (as it is the case here). theme_void {ggplot2} a completely empty theme of the non-data display. 

Table 8. R Code: Moran’s scatterplot (Figure 8). 

ggplot() +  

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 0, ymax = 1), 

fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 0, ymax = 1), 

fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 1, ymax = 2), 

fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 1, ymax = 2), 

fill="white",color="black")+ 

  annotate("text",x=.5,y=.5,label="LL", size=12) + 

  annotate("text",x=1.5,y=1.5,label="HH", size=12) + 

  annotate("text",x=.5,y=1.5,label="LH", size=12) + 

  annotate("text",x=1.5,y=.5,label="HL", size=12) + 

  annotate("text",x=1,y=-.1,label="y", size=12) + 

  annotate("text",x=-.1,y=1,label="Spatial lag of y", size=12, angle=90) + 

 theme_void() 

If the values of the scatterplot are mostly located in the "HH" and "LL" quadrants, it means that 

spatial units with high/low values of the variable (above/below the average) are surrounded by 

spatial units that, on average, also have high/low values of the variable, respectively. This is an 

indication of the existence of positive spatial autocorrelation. If the concentration is in the "LH" and 

"HL" quadrants, it would be indicative of negative spatial autocorrelation: low surrounded by high 

and high surrounded by low, respectively. Using the same distribution rate of Catholic priests used 

in section 2.1 and using a spatial weights matrix defined with the queen criterion, Figure 9 presents 

the corresponding Moran scatterplot. 

The R code with the process of obtaining this Moran’s. scatterplot is presented in Table 9. The 

only library needed to represent this diagram is "spdep". A new function is employed, “moran.plot”. 
moran.plot {spdep} plots a spatial variable data against its spatially lagged values. 

Table 9. R Code: Moran’s scatterplot (Figure 9). 

load("guerry.rdata") 

#Constructs the row-standardized queen contiguity matrix 

wqueens<-poly2nb(guerry, queen=TRUE) |> nb2listw() 

# Moran's scatter plot 

moran.plot(guerry$clergy, wqueens, xlab="PRIESTS RATE", 

           ylab="SPATIAL LAG OF PRIESTS RATE") 
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Figure 9 shows evidence of positive autocorrelation, i.e., French provinces with high/low rates 

of Catholic priests tend to be surrounded by provinces that, on average, also have high/low rates of 

Catholic priests, respectively. The Moran’s scatterplot is only a graphical tool that needs to be 

complemented by more precise statistical measures, such as the Moran's I index of spatial 

autocorrelation. 

 

Figure 9. Moran’s scatterplot of the rate of Catholic priests in the French provinces. 

2.3.2. Global Moran’s I Statistic 

The Moran’s I statistic of spatial autocorrelation is calculated as: 𝐼 = 𝑛𝑆0 ∑ ∑ 𝑤𝑖𝑗𝑧𝑖𝑧𝑗𝑛𝑗=1𝑛𝑖=1∑ 𝑧𝑖2𝑛𝑖=1  (5)  

where n is equal to the number of spatial units in a system, 𝑆0 = ∑ ∑ 𝑤𝑖𝑗𝑛𝑗=1𝑛𝑖=1  is the sum of all the 

elements, wij, of the spatial weights matrix, 𝑧𝑖 = 𝑦𝑖 − 𝑦̅ is a variable 𝑦𝑖  expressed in deviations from 

the mean value (𝑦̅), and the summation over 𝑗 is such that only 𝑖’s neighbouring values (𝑗 ∈ 𝐽𝑖  ; 𝑖 ≠𝑗) are included. 

As can be seen, the second factor of Equation (6) consists of a quotient of the covariance of the 

variable y with its corresponding spatial lag, Wy, in the numerator and, in the denominator, the 

variance of the variable y or the product of the standard deviations of both variables (since both 

values are equal). As for the first factor of Equation (6), it is  equal to unity when the spatial weight 

matrix is row-standardised, since, in these cases, the sum of the weights is always equal to the sample 

size n. Hence, the Moran’s I index can be interpreted as a linear correlation coefficient between a 

variable and its spatial lag, whose values lie within the range [−1,1], so that the sign of the indicator 

coincides with the type of spatial autocorrelation: positive values (𝐼 > 0) are indicative of positive 

spatial autocorrelation and negative values ( 𝐼 < 0 ) are indicative of the existence of negative 

autocorrelation. Unlike what happens with the classical linear correlation coefficient, the complete 

absence of spatial autocorrelation does not correspond to the value zero exactly, except when n tends 

to infinity, but to the expression −1 (𝑛 − 1)⁄ . 

Moran’s I value is usually represented in the Moran scatterplot with the linear regression line. 

For example, in Figure 9, the regression line of the variable y on Wy is plotted, which in this case has 

a positive slope. The higher the degree of spatial autocorrelation in the variable y, the steeper the 

slope of the regression line. In addition, it is possible to calculate the level of statistical significance of 

the Moran’s I value, through a randomisation process, by considering the null hypothesis of no 
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spatial autocorrelation and having as alternative the hypothesis of spatial autocorrelation, both 

positive and negative ([8]). 

The R code with computation of the Moran’s I indicator of the variable rate of Catholic priests 

plotted in Figure 9 is presented in Table 10. The only library needed to represent this diagram is 

"spdep". A new function is employed, “moran.test”. moran.test {spdep} calculates the Moran's I test 

for spatial autocorrelation of a variable using a spatial weights matrix in weights list form. 

Table 10. R Code and results: Moran’s I value and statistical significance level. 

load("guerry.rdata") 

#Constructs the row-standardized queen contiguity matrix 

wqueens<-poly2nb(guerry, queen=TRUE) |> nb2listw() 

# Moran's I and p-value 

moran.test((guerry$clergy), wqueens, randomisation=TRUE, 

           alternative="two.sided") 

##  

##  Moran I test under randomisation 

## data:  (guerry$clergy)   

## weights: wqueens     

## Moran I statistic standard deviate = 6.1632, p-value = 7.13e-10 

## alternative hypothesis: two.sided 

## sample estimates: 

## Moran I statistic       Expectation          Variance  

##       0.421118648      -0.011904762       0.004936422 

The p-value of 7.12 ∙ 10−10 does not allow to accept the null hypothesis of spatial randomness, 

so given that the value of 𝐼 = 0.421 is of positive sign, we can conclude that the variable rate of 

Catholic priests has positive spatial autocorrelation in its provincial distribution in France. 

As indicated in [5], there are variables whose distribution does not allow the null hypothesis of 

no spatial autocorrelation to be rejected. In these cases, it must be checked whether the absence of 

spatial autocorrelation occur globally, across the entire surface of the spatial system, or whether, on 

the contrary, there are certain spatial clusters of similar or dissimilar values locally, in some areas of 

the system. In other words, the spatial autocorrelation effect can occur globally and locally. 

2.3.3. Local Moran’s I Statistics 

The effect of local spatial autocorrelation can be measured from LISA (Local Indicators of Spatial 

Autocorrelation) statistics and maps. LISA statistics are calculated as a decomposition of global 

spatial autocorrelation statistics, such as Moran's I test. In this way, it is possible to know the 

individual contribution of each spatial unit, and its environment, to the formation of the value of the 

global statistic. Moreover, it is possible to obtain, for each individual value and its neighbourhood, 

the level of statistical significance following a randomisation approach, as in the previous case (see 

Chasco [14]). 

The formal expression of the local Moran’s I statistics is the following: 𝐼𝑖 = 𝑧𝑖∑ 𝑧𝑗2𝑛𝑗=1 ∑𝑤𝑖𝑗𝑛
𝑗=1 𝑧𝑗  (6)  

where the values of the variable 𝑧𝑖  are expressed in deviations from the mean, an 𝑗  only 

comprehends 𝑖’s neighbours. For ease of interpretation, the weights 𝑤𝑖𝑗 may be row-standardized, 

and by convention, wij= 0. 
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As demonstrated in Anselin [15], a test for significant local spatial autocorrelation may be 

calculated by taking a conditional randomization approach. In this paper, it is also derived that the 

global 𝐼  indicator can be expressed as an average of the local 𝐼𝑖  statistics, corrected by a 

proportionality factor. Hence, it is possible to identify extreme values of 𝐼𝑖  by, e.g., identifying 

outliers in a box plot, which will indicate the importance of the spatial unit 𝑖 in determining the 

global 𝐼. They are not necessarily statistically significant, but are only similar to the identification of 

outliers, leverage, and influence points in the Moran’s scatterplot (see Figure 9). In the map in Figure 

10 we can find the hot spots (high values) painted in red and the cold spots (low values) painted in 

blue. 

The R code with the process of obtaining the local Moran’s statistics and map is presented in 
Table 11. The libraries needed to represent this diagram are "spdep", "ggplot2", "ggspatial", 

"ggthemes" and "grDevices", which contains functions for graphics devices and support for colours 

and fonts. The functions employed, not previously presented, are “localmoran”, “as.character”, 
“attributes”, “ifelse”, “as.factor”, “c”, “rgb” and “scale_fill_manual”. 

Table 11. R Code: Local Moran’s I statistics and map (Figure 10). 

# Constructs the row-standardized queen contiguity matrix 

wqueens<-poly2nb(guerry, queen=TRUE) |> nb2listw() 

# Computation of the local Moran's statistics 

local_m_Is <- localmoran(guerry$clergy, wqueens) 

# Extract the position of the obs. in the Moran scatterplot 

quad <- as.character(attributes(local_m_Is)$quadr[,1]) 

# Detects the obs. with significant values 

sig <- local_m_Is[,5] <= .1 

cluster <- ifelse(sig == FALSE, "non-significant", 

                  as.character(quad)) |> as.factor() 

# Configures the colors and other attributes of the map 

colors <- c("Low-Low"="blue", "Low-High"=rgb(0,0,1,alpha=0.4), 

            "High-Low"=rgb(1,0,0,alpha=0.4), 

            "High-High"="red", "non-significant"="grey") 

ggplot(guerry)+geom_sf(aes(fill=cluster))+ 

  scale_fill_manual(values = colors, name="Local Moran's Is")+ 

  annotation_scale(location = "tl") + 

  annotation_north_arrow(location = "bl", which_north="true") + 

  theme_map() + 

  theme(legend.position = "bottom") 

localmoran {spdep} computes the local Moran's I statistics for each spatial unit, based on a 

specified spatial weights object, joint to their corresponding returned “z-value” (significance level) 
that may be used as a diagnostic tool. as.character {base} creates a character vector of the specified 

length. attributes {base} returns an object's attribute list, understanding by attribute a set and not a 

vector, i.e., the order of the elements does not matter, but they must have unique names. ifelse {base} 

applies to all the elements of a vector, in a single call, two functions: if {base}, which is used to cause 

an operation to be executed only if a certain condition is met, and else {base}, which is used to state 

what to do in case a condition is not met. as.factor {base} encode a vector as a factor, being the factor 

levels ordered when the argument “ordered” is TRUE. c() {base} returns a vector (a one-dimensional 

array). rgb {grDevices} creates colours corresponding to the given intensities (between 0 and max) of 

the red, green, and blue primaries, the colour specification being referred to the standard sRGB colour 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2023                   doi:10.20944/preprints202309.0413.v1

https://doi.org/10.20944/preprints202309.0413.v1


 17 

 

space (IEC standard 61966). scale_fill_manual {ggplot2} define both colour and fill aesthetic 

mappings. 

 

Figure 10. Moran’s scatterplot of the rate of Catholic priests in the French provinces. 

3. Cross-Section Spatial Econometric Models 

3.1. Modelling Strategies for Spatial Autocorrelation Models 

Spatial cross-sectional models are a particular case of cross-sectional econometric models and, 

as is the case with them, they must be identified before proceeding to their estimation and testing. 

Hence, it is important to follow a specific identification or modelling strategy for spatial models, 

which allows the researcher to know the correct population parameters from the observation of a 

data sample. 

Traditionally, spatial econometrics has solved this problem by assuming that the model 

specification is a priori known, either from an existing economic theory, or from the results obtained 

by the application of an ESDA on the variables of the model, or by applying certain strategies 

consisting of the comparison of several competing models. Within the latter option, we can highlight 

two widely used modelling strategies: the one that goes from the specific (basic model without spatial 

autocorrelation effects) to a general model (with spatially lagged explanatory variables), STG, and 

the one that starts from a general model (the spatial Durbin model) to end up in a simpler spatial 

autocorrelation model or the basic regression model itself without spatial effects, GTS. But, from these 

two previous approaches, it is possible to propose a third hybrid strategy, which considers the good 

properties of the previous ones. 

3.1.1. Anselin’s Specific-To-General Strategy (STG) 

The STG strategy, also known as "classical", was proposed by Anselin ([8]). The starting point of 

this strategy is a basic linear regression model without spatial effects: 𝑦 = 𝛼𝜄𝑛 + 𝐗𝛽 + 𝜀 (7)  
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where 𝑦 is the vector of the dependent variable, of order (𝑛 × 1); 𝑿 is the matrix of explanatory 

variables, of order (𝑛 × 𝑘) ; 𝜄𝑛  is a vector of ones, of order (𝑛 × 1) ; 𝛼, 𝛽  are the set of (𝑘 + 1) 

parameters to be estimated; and 𝜀 is the random disturbance variable, of order (𝑛 × 1), which is 

distributed as 𝜀~𝑁(0, 𝜎𝜀𝑰𝑛), where 𝑰𝑛 is the identity matrix of order 𝑛. This model is estimated by 

the Ordinary Least Squares (OLS) method. Table 12 presents the R code needed to generate the 

results of the OLS estimation of the basic linear regression model. 

Table 12. R Code: OLS estimation of the basic linear regression model. 

load("gdpmap.rdata") 

# OLS estimation of the regression model 

gdp_ols <- lm(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap) 

summary(gdp_ols) 

## 

## Residuals: 

##        Min         1Q     Median         3Q        Max  

## -0.0192207 -0.0043510  0.0003206  0.0040435  0.0216733 

## Coefficients: 

##               Estimate Std. Error t value Pr(>|t|) 

## (Intercept)  3.926e-01  6.216e-03  63.172  < 2e-16 *** 

## LGH85       -3.984e-02  4.246e-03  -9.383 6.19e-16 *** 

## BANK         6.565e-05  1.431e-05   4.588 1.13e-05 *** 

## UNI01        5.107e-04  9.013e-05   5.667 1.06e-07 *** 

## PAT00        4.979e-02  1.989e-02   2.504   0.0137 *   

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 0.006755 on 117 degrees of freedom 

## Multiple R-squared:  0.5849, Adjusted R-squared:  0.5708  

## F-statistic: 41.22 on 4 and 117 DF, p-value: < 2.2e-16 

The following two libraries are required to run this code: "sp" and "stats". The main functions, 

not previously presented, involved in this R code are "lm" and "summary". lm {stats} is used to fit 

linear models, including multivariate ones. summary {base} is used to produce result summaries of 

the results of various model fitting functions. 

The code sequences show how to estimate and test the model with a dataset of municipalities 

(NUTS 5) of the urban areas of Spain used in Mella and Chasco [16]. With these data, a model of 

urban economic growth is formulated in which the average rate of change of GDP per capita, in 

logarithms, over the period 1985-2003 (LPGH), is explained as a function of GDP per capita in 1985 

logarithms (LGH85), the rate of change in the number of banking institutions in the period 1985-2003 

(BANK), the percentage of people with secondary and university education out of the population 

aged 16 and over in 2001 (UNI01) and the rate of the number of patents per inhabitant in 2000 

(PAT00). As can be seen, all estimators are statistically significant at least at 99% confidence. The 

model has an explanatory level of 58.49%. 
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In order to test whether the variable of the OLS regression errors is spatially white noise,6 the 

Lagrange Multiplier (LM) tests are calculated on this variable. This basic hypothesis is rejected as 

soon as any of these tests, which are distributed as a Chi-square with 1 degree of freedom (𝜒12), is 

statistically significant. In particular, these tests are focused on a single alternative hypothesis. Thus, 

if the Lagrange multiplier test for the alternative hypothesis of spatially lagged dependent variable 

(LMLAG) is statistically significant instead of the Lagrange multiplier test for the alternative 

hypothesis of residual dependence (LMERR), the model that would best explain the data would be 

the spatial lag model or spatial autoregressive model of order 1 (SAR): 𝑦 = 𝜌𝐖𝑦 + 𝛼𝜄𝑛 + 𝐗𝛽 + 𝜀 (8)  

being 𝜌  a spatial autoregressive parameter to be estimated and 𝑾  a row-standardised spatial 

weight matrix of order (𝑛 × 𝑛). But if it is the LMERR test that is statistically significant, instead of 

the LMLAG, the best model would be the Spatial Error Model (SEM): {𝑦 = 𝛼𝜄𝑛 + 𝐗𝛽 + 𝑢𝑢 = 𝜆𝐖𝑢 + 𝜀         (9)  

where 𝜆 is a spatial autoregressive parameter to be estimated. In this case, it should be noted that 𝑦 = 𝛼𝜄𝑛 + 𝐗𝛽 + (𝜆𝐖𝑢 + 𝜀)  and 𝑢 = 𝑦 − 𝛼𝜄𝑛 − 𝐗𝛽 . Therefore, the SEM would be equivalent to a 

spatial lag model that includes, on the right-hand side of the equation, in addition to the terms of the 

basic model, the spatially lagged dependent variable and the 𝑘  spatially lagged explanatory 

variables as follows: 𝑦 = 𝜆𝐖𝑦 + 𝛼𝜄𝑛 + 𝐗𝛽 − 𝜆𝐖𝐗𝛽 + 𝜀; for 𝜃 = −𝜆𝛽 (10)  
The restriction 𝛾 = −𝜆𝛽 is called the common factor (COMFAC) hypothesis and when it holds, 

this model is called, by Anselin [8], as Spatial Durbin Model (SDM). 

Regarding the LM tests previously presented, it is possible that both are statistically significant 

because, although they are tests oriented towards an alternative spatial hypothesis or model, they are 

also sensitive to the existence of the other type of spatial autocorrelation. In these cases, to decide on 

the most appropriate spatial model, spatial lag (SAR) or SEM, Anselin, Bera, Florax and Yoon [18] 

propose a solution by formulating robust versions of the LMLAG and LMERR tests, the new LMLE 

(a test to spatial lag dependence which is robust to ignored spatial error dependence) and LMEL (a 

test to spatial error robust to ignored spatial lag), respectively. If the values of LMLE > LMEL, the 

spatial lag (SAR) model should be selected, while if LMEL > LMLE, the SEM should be chosen.7 

Table 13 presents the R code needed to generate the results of the computation of the LM test on 

the OLS estimation residuals. The following three libraries are required to run this code: "sp", "stats" 

and "spdep". The main functions, not previously presented, involved in this R code are "coordinates" 

and "lm.LMtest". coordinates {sp} retrieves spatial coordinates from a spatial object of class sp. 

lm.LMtest {spdep} reports the estimates of the LMERR test for error dependence (which is called 

‘LMerr’ by the function), the LMLAG test for a missing spatially lagged dependent variable (‘LMlag’), 
their corresponding robust variants LMEL (‘RLMerr’) and LMLE (‘RLMlag’), respectively, and a 

 

6 In the context of spatial regression models, it is not recommended to use the Moran's I to test for 

the presence of spatial autocorrelation in the residuals, because the rejection of the null hypothesis of 

no spatial autocorrelation does not provide additional information about the model under the 

alternative hypothesis. Moreover, as demonstrated by Anselin and Rey ([17]) this test was shown to 

be very sensitive to misspecification errors, such as non-normality or heteroscedasticity. 

7 These robust tests are widely used, although according to Mur and Angulo [19] they do not seem 

to be so. necessary. Indeed, as they demonstrated with a Monte Carlo experiment, if the values 

LMLAG > LMERR, it will always be given that LMLE > LMEL, and vice versa. In other words, 

according to these authors, when the LMLAG and LMERR tests are statistically significant, it would 

be sufficient to compare their values, without the need to calculate their corresponding robust tests. 
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SARMA test, which is test for a mixed residual spatial autoregressive process (SAR) and a spatial 

moving average (SMA). 

The LMLAG and LMERR tests are both highly significant, so the null hypothesis of no spatial 

autocorrelation must be rejected with more than 99% confidence. Additionally, of the robust tests, it 

is only possible to reject the null hypothesis for LMEL (not for LMLE). Therefore, according to the 

classic modelling strategy, the most appropriate specification for this model would be the SEM. 

Table 13. R Code: LM tests on the OLS estimation residuals. 

load("gdpmap.rdata") 

#Constructs the row-standardized minimum distance matrix 

coord <- coordinates(gdpmap) 

knn1 <- knearneigh(coord) |> knn2nb() 

min.dist <- max(unlist(nbdists(knn1,coord)))  

k1 <- dnearneigh(coord, 0, min.dist)  

dmin <- nb2listw(k1) 

dmins <-nb2listw(k1,style="W") # W: Row-standardized 

# OLS estimation of the regression model 

gdp_ols <- lm(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap) 

## LM tests 

lm.LMtests(gdp_ols, dmins, test="all")  

##  

##  Lagrange multiplier diagnostics for spatial dependence 

## data:   

## model: lm(formula = LPGH ~ LGH85 + BANK + UNI01 + PAT00, data = gdpmap) 

## weights: dmins 

## LMerr = 21.641, df = 1, p-value = 3.288e-06 

## LMlag = 6.944, df = 1, p-value = 0.00841 

## RLMerr = 14.715, df = 1, p-value = 0.0001251 

## RLMlag = 0.017854, df = 1, p-value = 0.8937 

## SARMA = 21.659, df = 2, p-value = 1.981e-05 

Since the spatial lag model (SAR) includes as an explanatory variable the spatially lagged 

endogenous variable (𝑾𝑦) referred to the same moment in time as the dependent variable (𝑦), a 

situation of simultaneity or contemporaneous dependence arises. Therefore, its estimation by OLS 

produces bias, inefficiency, and inconsistency in the estimators. As for the SEM, due to the 

heteroskedastic form of the variance and covariance matrix of the random disturbance 𝑢 , its 

estimation by the OLS method results in inefficient, although consistent, estimators. Due to the 

problems of OLS in these spatial models, estimation by the Maximum Likelihood (ML) method in 

the case of normality in the OLS error variable is recommended as more appropriate (see Anselin [8], 

chap. 6). 

Table 14 presents the R code needed to generate the results of the ML estimations of the spatial 

lag (SAR) model and the SEM. The following four libraries are required to run this code: "sp", "stats", 

"spdep" and "tseries".  

The main functions, not previously presented, involved in this code are "jarque.bera.test”, 

"lagsarlm" and "errorsarlm". jarque.bera.test {tseries} tests the null of normality for a variable using 

the Jarque-Bera test statistic). lagsarlm {spatialreg} provides ML estimation of spatial lag (SAR) 

models and SDM. errorsarlm {spatialreg} provides a ML estimation of SEM. 
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Table 14. R Code: ML estimation of the spatial lag (SAR) model and the SEM. 

load("gdpmap.rdata") 

# Constructs the row-standardized minimum distance matrix ‘dmins’ (like in Table

 13) 

# JB normality test on the OLS residuals 

gdp_ols <- lm(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap) 

jarque.bera.test(gdp_ols$res) 

## 

## X-squared = 5.0298, df = 2, p-value = 0.08087 

## 

# ML estimation of the SAR model 

gdp_sar <- lagsarlm(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap, listw=dmins) 

# ML estimation of the SEM 

gdp_err <- errorsarlm(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap, listw=dmins, 

                      tol.solve=1e-16) 

# Output of the SEM ML estimation 

## Call: errorsarlm(formula = LPGH ~ LGH85 + BANK + UNI01 + PAT00, data = 

gdpmap,  

##     listw = dmins, tol.solve = 1e-16) 

## 

## Residuals: 

##         Min          1Q      Median          3Q         Max  

## -1.7697e-02 -3.6030e-03  3.1832e-05  3.7508e-03  2.1121e-02  

## Type: error  

## 

## Coefficients: (asymptotic standard errors)  

##                Estimate  Std. Error z value  Pr(>|z|) 

## (Intercept)  3.9282e-01  6.7922e-03 57.8342 < 2.2e-16 

## LGH85       -3.9828e-02  4.5709e-03 -8.7134 < 2.2e-16 

## BANK         6.7328e-05  1.3820e-05  4.8718 1.106e-06 

## UNI01        5.2750e-04  8.7403e-05  6.0352 1.587e-09 

## PAT00        2.9814e-02  1.8091e-02  1.6480   0.09936 

##  

## Lambda: 0.57331, LR test value: 12.96, p-value: 0.00031815 

## Asymptotic standard error: 0.12688 

##     z-value: 4.5187, p-value: 6.222e-06 

## Wald statistic: 20.419, p-value: 6.222e-06 

## Log likelihood: 445.6128 for error model 

## ML residual variance (sigma squared): 3.813e-05, (sigma: 0.006175) 

## Number of observations: 122  

## Number of parameters estimated: 7  

## AIC: NA (not available for weighted model), (AIC for lm: -866.27) 
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In Table 13, the LM tests on the OLS residuals showed the existence of spatial aucorrelation in 

the residuals and recommended the estimation of a SEM to correct for this problem. In Table 14, the 

Jarque-Bera test cannot reject the null hypothesis of normality of the OLS error terms with more than 

95% confidence, so it is possible to estimate the SEM by the ML method. For this reason, only the 

results of this estimation in their entirety are presented in Table 14. 

According to the STG strategy, the SEM is the model which best fits the data generation process. 

The value of the spatial autoregressive parameter 𝜆 = 0.57331 has no interpretation, unlike the 

spatial autoregressive 𝜌 parameter, which is estimated in the spatial lag model (SAR). In fact, it is 

called by Anselin and Rey as a "nuisance" parameter and, therefore, no inference is performed for it 

([17]). All estimators of the model are statistically significant although, with respect to the estimation 

of the basic model (Table 12), the estimator of the patent variable is only significant for a confidence 

level above 90%. In the case of the ML estimates, the R2, as a measure of goodness of fit, is not 

presented, but rather the ML and information criteria (Akaike and AIC). 

The modelling strategy proposed by Anselin and Rey ([17]) is presented in Figure 11. 

 

Figure 11. Classic STG strategy for identifying spatial autocorrelation models. 

When the OLS estimation errors follow a non-normal distribution, the spatial lag model (SAR) 

should be estimated by the Spatial Two-Stage Least Squares method (S2SLS) which, in the version 

of Kelejian and Robinson [20], consists of using the spatially lagged exogenous variables of several 

orders of contiguity as instruments of the spatially lagged endogenous variable, resulting in a 

consistent, though not very efficient, autoregressive estimator (𝜌̂). 

As for the SEM, Arraiz, Drukker, Kelejian and Prucha [21] present an estimation by the General 

Method of Moments (GMM), building on the initial proposal made by Kelejian and Prucha [22]. 

Although, given that the estimators are unbiased and consistent, it is also considered acceptable to 

estimate the SEM by OLS by performing robust inference of the variance-covariance matrix of the 

estimators by the KP-HET method proposed by Kelejian and Prucha [23], which takes into account 

the joint existence of heteroscedasticity and spatial autocorrelation in the regression errors. 

Table 15 presents the R code needed to generate the results of the STSLS and GMM estimations 

of the spatial lag (SAR) model and the SEM, respectively. The following three libraries are required 

to run this code: "sp", "spdep" and "spatialreg". 

The main functions, not previously presented, involved in this R code are ""stsls" and 

"GMerrorsar". stsls {spatialreg} fits a spatial lag model (SAR) by STSLS. GMerrorsar {spatialreg} fits 

a SEM by the Kelejian and Prucha’s GMM. 
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Table 15. R Code: Other estimations of the spatial lag (SAR) model and the SEM. 

load("gdpmap.rdata") 

# Constructs the row-standardized minimum distance matrix ‘dmins’ (like in Table

 13) 

# STSLS estimation of the SAR model 

gdp_tsls <- stsls(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap, listw=dmins) 

# GMM estimation of the SEM 

gdp_GMerr <- GMerrorsar(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap, listw=dmins, 

                        returnHcov=FALSE, method="nlminb", verbose=TRUE) 

3.1.2. LeSage’s General-To-Specific Strategy (GTS) 

The second strategy, GTS, is to start from the most general spatial autocorrelation model 

possible. According to Manski [24], this general model is the one that includes the three possible types 

of spatial interaction, endogenous (𝑾𝑦), exogenous (𝑾𝑿) and unobserved (𝑾𝑢) effects: {𝑦 = 𝜌𝐖𝑦 + 𝛼𝜄𝑛 + 𝑿𝛽 + 𝐖𝐗𝜃 + 𝑢𝑢 = 𝜆𝑾𝑢 + 𝜀                                        (11)  

where 𝜃 is a vector of 𝑘 spatial autoregressive parameters. The problem with this Manski’s model 

is that, as the author demonstrates, it is impossible to identify its parameters. Therefore, it is necessary 

to reduce the three types of spatial interaction to two, which gives rise to three possible general sub-

models of spatial autocorrelation. First, if we exclude the spatial endogenous effect (𝜌 = 0), we obtain 

the so-called, by LeSage and Pace [25], Spatial Durbin Error Model (SDEM): {𝑦 = 𝛼𝜄𝑛 + 𝑿𝛽 + 𝐖𝐗𝜃 + 𝑢𝑢 = 𝜆𝑾𝑢 + 𝜀                         (12)  

Secondly, if what is excluded is the spatial exogenous effect ((𝜃 = 0), the SARAR model or 

Kelejian-Prucha’s model is obtained, as it was proposed by these authors ([22])8: {𝑦 = 𝜌𝐖𝑦 + 𝛼𝜄𝑛 + 𝑿𝛽 + 𝑢𝑢 = 𝜆𝑾𝑢 + 𝜀                      (13)  

Finally, if the spatial unobserved effect is excluded, we obtain the unconstrained Spatial Durbin 

Model (SDM), where the constraint presented in Equation (11) do not hold; that is, when 𝜃 ≠ −𝜆𝛽. 

Hence: 𝑦 = 𝜌𝐖𝑦 + 𝛼𝜄𝑛 + 𝐗𝛽 + 𝐖𝐗𝜃 + 𝜀 (14)  
As with the SAR model, the presence of the spatial lag of the dependent variable on the right-

hand side of the equation does not result in OLS estimators with good properties, so this model must 

be estimated by ML. 

This is the general model proposed by LeSage and Pace [25] as a starting point for the GTS 

modelling strategy.9 The SDM model fulfils the identifiability condition by including two of the three 

possible types of spatial interaction, endogenous and exogenous effects, and thus includes all 

spatially lagged explanatory variables. In this way, a possible bias in the estimators caused by the 

omission of any relevant spatial variable is avoided. 

Additionally, LeSage and Pace demonstrated that if this model also had residual spatial 

autocorrelation problems, the omission of the spatially lagged error variable would lead to 

 

8 For a more complete summary of the specification, estimation and testing of this and other models 

proposed by these authors, see Chasco [26]. 

9 Although in section 2.2 of their book, LeSage and Pace present the SDM as the Anselin's restricted 

model ([8]), from chapter 2 forward, they call the unrestricted SDM as simply ‘SDM’. Therefore, from 
here onwards, when we say SDM, we will refer to the unconstrained SDM. 
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inefficiency, but not to bias in the estimators. The SDM model likewise has the property of nesting 

several models, from the basic model without spatial effects to the SAR and SEM spatial 

autocorrelation models (when the COMFAC hypothesis is satisfied), as well as the so-called, by 

LeSage and Pace [25], Spatial Lag of X (SLX) model, firstly called “mixed regressive-spatial cross-

regressive model” by Florax and Folmer [27]. 𝑦 = 𝛼𝜄𝑛 + 𝐗𝛽 + 𝐖𝐗𝜃 + 𝜀 (15)  
This model can be estimated by the OLS method since, if the explanatory variables are 

exogenous, their corresponding spatial lags will also be exogenous. In addition, the SLX model has 

two more good properties: on the one hand, it is more flexible to estimate or parameterise the W 

matrix and, on the other hand, it has better properties to capture spatial spillover effects when no 

clear theoretical model is available to support the inclusion of the endogenous spatial interaction 

effect (𝐖𝑦), as shown by Halleck Vega and Elhorst [28]. 

The modelling strategy proposed by LeSage and Pace ([25]) is presented in Figure 12. 

 

Figure 12. LeSage and Pace’s GTS strategy for identifying spatial autocorrelation models. 

Table 16 presents the R code needed to generate the results of the ML estimation of the SDM 

model. The following three libraries are required to run this code: "sp", "spdep" and "spatialreg". In 

this case, there are no new functions. 

In the output, the estimation results highlight the contrast between the high statistical 

significance of the model's explanatory variables and the low significance of their corresponding 

spatial lags. The only exception is the variable of patents per capita and its corresponding spatially 

lagged variable, for which both estimated coefficients are highly significant, especially in the case of 

the latter. 

However, the lack of statistical significance of the spatial autoregressive coefficient 𝜌̂ (p-value: 

0.40193) is striking, raising doubts about the suitability of this identification as the most appropriate 

for the model. Finally, the function also calculates an LM test on the residuals of this regression, which 

is not significant, demonstrating the non-existence of spatial autocorrelation in the residuals (see 

Anselin and Rey [17] for further information about this LM test). 

As can be seen in Figure 12, the decision on the most appropriate model for the data generating 

process, according to this GTS strategy, requires the calculation of several Likelihood Ratio (LR) tests, 

which will be discussed in more detail in the next section, where we will present a hybrid strategy, 

which combines the two strategies seen so far: STG and GTS. 
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Table 16. R Code: ML estimation of the SDM. 

load("gdpmap.rdata") 

# Constructs the row-standardized minimum distance matrix (like in Table 13) 

# ML estimation of the SDM 

gdp_sdm <- lagsarlm(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap, listw=dmins, 

                    type="mixed") 

summary(gdp_sdm) 

## 

## Residuals: 

##         Min          1Q      Median          3Q         Max  

## -0.01641172 -0.00300317 -0.00034465  0.00309880  0.02128742  

## Coefficients: (asymptotic standard errors)  

##                Estimate  Std. Error z value  Pr(>|z|) 

## (Intercept)  3.4167e-01  8.1083e-02  4.2138 2.511e-05 

## LGH85       -4.2636e-02  4.6043e-03 -9.2602 < 2.2e-16 

## BANK         6.8636e-05  1.3429e-05  5.1112 3.202e-07 

## UNI01        5.3610e-04  8.5042e-05  6.3040 2.901e-10 

## PAT00        4.6891e-02  1.8237e-02  2.5712 0.0101356 

## lag.LGH85   -9.2796e-03  1.3781e-02 -0.6733 0.5007253 

## lag.BANK    -3.2110e-06  4.3915e-05 -0.0731 0.9417113 

## lag.UNI01   -3.7962e-05  2.4924e-04 -0.1523 0.8789439 

## lag.PAT00    3.1468e-01  9.4438e-02  3.3322 0.0008617 

##  

## Rho: 0.17621, LR test value: 0.70253, p-value: 0.40193 

## Asymptotic standard error: 0.19735 

##     z-value: 0.8929, p-value: 0.37191 

## Wald statistic: 0.79726, p-value: 0.37191 

## Log likelihood: 452.4774 for mixed model 

## ML residual variance (sigma squared): 3.5084e-05, (sigma: 0.0059232) 

## Number of observations: 122  

## Number of parameters estimated: 11  

## AIC: -882.95, (AIC for lm: -884.25) 

## LM test for residual autocorrelation 

## test value: 0.90182, p-value: 0.3423 

3.1.3. Elhorst’s Hybrid Strategy 

Based on the two previous approaches, Elhorst [29] proposes a hybrid strategy, which takes into 

account the good properties of both proposals. For this reason, this strategy will be the one we select 

as the most suitable for identifying spatial autocorrelation models. As presented in Figure 13, the 

Elhorst’s hybrid strategy starts, like the STG strategy, with the OLS estimation of a basic model 
without spatial effects. The error variable of this regression is analysed with the LMLAG and LMERR 

tests, to check whether they are white noise. At this point, it may happen that one of the tests is 

statistically significant or that none of them is. Firstly, if any of the LM tests is significant, it is 

recommended to select the SDM model, as proposed by the GTS strategy. 
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The ML estimation of this model allows the likelihood ratio (LR), whose distribution follows a 

Chi-square with 𝑘 degrees of freedom (𝜒𝑘2), to be used to test the null hypotheses H0(𝜃 = 0) and H0(𝜃 = −𝜌 ∙ 𝛽) . If the second (COMFAC) hypothesis cannot be rejected, the SDM should be 

simplified to a spatial lag (SAR) model, provided that the LMLAG > LMERR tests. If the first 

hypothesis cannot be rejected, the SEM should be selected, provided that LMERR > LMLAG tests. If 

there is no agreement between the results of the LR test and the LM tests, then the SDM would be the 

model that best describes the data. 

Secondly, if after the OLS estimation of the basic model none of the LM tests is statistically 

significant, then the basic model would have to be re-estimated as an SLX model, including all 

spatially lagged exogenous variables or a subset of them, in order to test the null hypothesis H0(𝜃 =0). If this hypothesis cannot be rejected, the basic model should be chosen as the one that best 

describes the data, i.e., there would be no evidence of the need for spatial autocorrelation effects to 

explain the dependent variable. But if, on the contrary, the hypothesis H0(𝜃 = 0) can be rejected, the 

SDM model would have to be estimated to test, again, the null hypothesis H0(𝜌 = 0) . If this 

hypothesis can be rejected, the selection would be the SDM; on the contrary, it should be settled that 

a model with spatially lagged independent variables (complete or parsimonious SLX) only suffices. 

 

Figure 13. Elhorst’s hybrid strategy for identifying spatial autocorrelation models. 

Additionally, Halleck Vega and Elhorst [28] introduced the SLX model into the model selection 

process as a new SDM’s nested model (like in Figure 12), recommending its choice when the null 

hypothesis H0(𝜌 = 0) cannot be rejected. This addition may lead to differences in the final model 

selected, as will be seen below. 

Table 17 presents the R code needed to compute the LM and LR tests necessary to determine the 

best model specification according to the Elhorst’s hybrid strategy. The following four libraries are 
required to run this code: "sp", "stats", "spdep" and "spatialreg". The main functions, not previously 

presented, involved in this R code are "lmSLX" and  "LR.Sarlm". lmSLX {spatialreg} fits a SLX 

model, i.e., an OLS model augmented with the spatially lagged regressor variables. LR.Sarlm 

{spatialreg} is a function which provides a likelihood ratio test. 

As seen in the results of the classical strategy (Table 13), the LM tests on the OLS residuals are 

both statistically significant, with LMLAG < LMERR. Therefore, the SEM was identified as the most 

appropriate specification for the urban growth model. However, according to Elhorst's hybrid 

strategy, the significance of any or all of the LM tests involves estimating the SDM and then 

comparing it with the LR tests of their corresponding more restricted nested models. In his first 

version in 2010 [29], Elhorst proposes to compare the SDM with the spatial lag model (SAR) and the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2023                   doi:10.20944/preprints202309.0413.v1

https://doi.org/10.20944/preprints202309.0413.v1


 27 

 

SEM. As can be seen in Table 17, the null hypothesis of the fulfilment of the COMFAC hypothesis, H0(𝜃 = −𝜌 ∙ 𝛽), and the null hypothesis of H0(𝜃 = 0) must be rejected. In other words, the most 

appropriate specification for the model is the SDM. However, if SLX is incorporated into the 

comparison of rival models, which is what Elhorst does in his second formulation in 2015 [28], the 

null hypothesis H0(𝜌 = 0) cannot be rejected. Therefore, the more appropriate specification for the 

data-generating process would be the SLX model, rather than the SDM. 10  Specifically, a more 

parsimonious SLX model is selected that only includes, as explanatory variables, the spatially lagged 

variables that are statistically significant, as shown in the last rows of the Table 17. 

Table 17. R Code: Elhorst’s hybrid model specification strategy. 

load("gdpmap.rdata") 

# OLS estimation of the basic model  (like in Table 12) 

# Constructs the row-standardized minimum distance matrix (like in Table 13) 

# LM tests on the OLS model residuals (like in Table 13) 

# ML estimation of the SDM (like in Table 16) 

# ML estimation of the SAR model (like in Table 14) 

# ML estimation of the SEM (like in Table 14) 

# OLS estimation of the SLX model 

gdp_slx <- lmSLX(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap, listw=dmins) 

# LR tests on SDM and its nested models 

LR.Sarlm(gdp_sdm, gdp_sar) # SDM vs. SAR 

## Likelihood ratio = 21.37, df = 4, p-value = 0.0002674 

LR.Sarlm(gdp_sdm, gdp_err) # SDM vs. SEM (COMFAC) 

## Likelihood ratio = 13.729, df = 4, p-value = 0.008211 

LR.Sarlm(gdp_sdm, gdp_slx) # SDM vs. SLX 

## Likelihood ratio = 0.70253, df = 1, p-value = 0.4019 

# OLS estimation of a parsimonious SLX model 

gdp_slx2 <- lmSLX(LPGH~LGH85+BANK+UNI01+PAT00, data=gdpmap, listw=dmins, 

                 Durbin=~LGH85+PAT00) 

Therefore, the selection of the most appropriate final model is still an open question since, as we 

have seen, the outcome depends on the modelling strategy adopted. In the proposed example of 

urban growth in Spain, if the Anselin’s classical STG strategy is followed, the selected model would 

be the SEM. According to the original proposal of Elhorst's hybrid strategy, the proposed model 

would be the SDM. Finally, according to Elhorst's second proposal, and also LeSage and Pace's GTS 

strategy, the model finally selected would be the SLX. 

All these models must be estimated by the OLS and ML methods to be able to use the LR as a 

testing tool, although it should be noted that spatial autocorrelation models can also be estimated 

with Bayesian methodology using the Markov Chains Monte Carlo (MCMC) approach, as explained 

in LeSage and Pace [25], chapter 5. 

To conclude this section on the identification of true data generation process of a dependent 

variable, it must be said that there is still a long way to go to create a method that considers not only 

the existence of the spatial autocorrelation effect, but also spatial heterogeneity, as shown by Debarsy 

and Le Gallo [30]. Spatial heterogeneity can manifest itself in various forms, such as diversity of 

coefficients or of the functional relationships themselves in various locations or groups of locations 

 

10 The application of these results to the GTS strategy presented in Figure 12 also leads to this result: 

that the SLX model is the most appropriate model to explain urban economic growth data in Spain. 
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(spatial regimes), spatial clustering, hierarchical structures, etc. But this is a topic that will not be dealt 

with in this paper. 

3.2. Interpretation of the Estimators of Spatial Autocorrelation Models 

Only in spatial autocorrelation models where the endogenous effect (𝐖𝑦) is not present in the 

right-hand side of the model, can the estimated coefficients (𝛽̂) be interpreted directly, as in the basic 

model without spatial effects, because the reduced form coincides with the structural form. Of the 

specifications presented above, this would be the case for the basic OLS model, the SDEM and the 

SLX model. That is, the marginal effect of a change in the value of a continuous explanatory variable 

for a given location coincides with the value of the estimator corresponding to that variable: 𝜕𝑦𝑖𝜕𝑥𝑖,𝑘 = 𝛽𝑘 (16)  

In all other cases, the correct interpretation of the estimators involves first moving from the 

structural form to the reduced form. Thus, for example, in the spatial lag (SAR) model of Equation 

(9) the reduced form would be (under certain invertibility conditions): 𝑦 = (𝐈 − 𝜌𝐖)−1(𝛼𝜄n + 𝐗𝛽 + 𝜀) (17)  
The term (𝐈 − 𝜌𝐖)−1 is called the spatial multiplier and, using the potential expansion, can 

also be expressed as follows: (𝐈 − 𝜌𝐖)−1 = 𝐈 + 𝜌𝐖 + 𝜌2𝐖2 + 𝜌3𝐖3 + ⋯ (18)  
If this new expression is used in Equation (18), for the conditional mean, the value of 𝑦 at a 

given location 𝑖 is a function not only of the value of the explanatory variables at that location, but 

also the value of the explanatory variables at neighbouring locations (through the term 𝜌𝐖𝐗𝛽), of 

the value of the explanatory variables at neighbours’ neighbours (through the term 𝜌2𝐖𝟐𝐗𝛽), etc. E(𝑦|𝐗) = 𝐗𝛽 + 𝜌𝐖𝐗𝛽 + 𝜌2𝐖2𝐗𝛽 + 𝜌3𝐖3𝐗𝛽 + ⋯ (19)  
Therefore, if we restrict our analysis to the relationship between the variable 𝑦 as a whole and 

a given variable 𝑥𝑘 of the matrix 𝐗, the marginal effect of a change in all the values of the column 

vector 𝑥𝑘 on all the values of 𝑦 would be as follows: 𝜕𝑦𝜕𝑥𝑘′ = 𝜕(𝑥𝑘𝛽𝑘 + 𝜌𝐖𝑥𝑘𝛽𝑘 + 𝜌2𝐖2𝑥𝑘𝛽𝑘 + 𝜌3𝐖3𝑥𝑘𝛽𝑘 + ⋯)𝜕𝑥𝑘′  (20)  

Unlike the marginal effect obtained for the basic model (Equation 17), the result of this 

expression does not refer to a given location 𝑖, but to all of them as a whole, and it is not a scalar (𝛽𝑘) 

either, but a matrix of order 𝑛 × 𝑛. If we now calculate the effect of discrete changes in the elements 

of 𝑥𝑘 on the values of 𝑦: Δ𝑦 = (Δxk)𝛽𝑘 + 𝜌𝐖(Δ𝑥𝑘)𝛽𝑘 + 𝜌2𝐖2(Δ𝑥𝑘)𝛽𝑘 + 𝜌3𝐖3(Δxk)𝛽𝑘 + ⋯ (21)  
As can be seen in the right-hand side of the equation, the total effect on the values of the 

dependent variable and of changes in the values of an explanatory variable, 𝑥𝑘, is the result of a direct 

effect (first summand) plus an indirect effect from the spatial multiplier (remaining summands). 

From this expression, two types of analysis can be distinguished, one particular and the other general. 

First, Anselin and Rey [17] analyse the particular case of the total effect produced by a unit 

change of 𝑥𝑘, in all the locations at the same time, on each and every value of 𝑦, which would be 

equal to a scalar, 𝛽𝑘 (1 − 𝜌)⁄ . This is the result of a direct effect (𝛽𝑘) plus an indirect effect driven by 

the spatial multiplier, (𝛽𝑘 ∙ 𝜌 (1 − 𝜌)⁄ ). As explained by these authors, this expression can be used to 

simulate the total effects of certain changes in an explanatory variable on all the observations of the 

dependent variable. 

Second, LeSage and Pace [25] present the more general case of the effects caused by the change 

in the value of "one" location, 𝑗, of the variable 𝑥𝑘 on "another" location, 𝑖, of the variable 𝑦. Here, 

each effect is no longer a scalar, but a complete matrix, 𝑆𝑘(𝐖)𝑖𝑗 , of order 𝑛 × 𝑛 . That is, each 

explanatory variable 𝑥𝑘  in the model will have its own full matrix of impacts on the dependent 

variable. 
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S𝑘(𝐖)𝑖𝑗 = 𝜕𝑦𝑖𝜕𝑥𝑗𝑘′ = (𝐈n − 𝜌𝐖)−1𝛽𝑘 (22)  

In this case, we can also distinguish between direct and indirect effects. The direct effect would 

be the effect caused by changes in the value of 𝑥𝑘 , at location 𝑖 on the value of 𝑦 at that same 

location 𝑖. These effects constitute the values of the main diagonal of the matrix S𝑘(𝐖)𝑖𝑖. The indirect 

effect is constituted by the rest of the values of the matrix S𝑘(𝐖)𝑖𝑗, which would be the "feedback 

loops" in which the value of 𝑥𝑘, in a location 𝑗 affects the value of 𝑦 in location 𝑖, and vice versa, 

being possible longer runs in which the effect in one location could reach the last observation 𝑛 of 

the spatial system, and then go back to the starting point. For example, the value of S𝑘(𝐖)11 would 

mean the direct effect of a change in the value of variable 𝑥𝑘  at location 1 (x1,k) on the value of 

variable 𝑦 at location 1 (𝑦1), while the value of S𝑘(𝐖)13would be the indirect effect of a change in 

the value of variable 𝑥1,𝑘  on the value of variable 𝑦 at location 2 (y_2). In the rows, the matrix S𝑘(𝐖)𝑖𝑗  has the effects of 𝑥𝑘  from each location 𝑖  "to" every one of the locations 𝑗 , while the 

columns represent the effect on each location 𝑗 "from" every one of the locations 𝑖. 
Since it is not possible to construct an inferential process for all impacts in the matrix S𝑘(𝐖)𝑖𝑗, 

LeSage and Pace propose to make the inference on the mean value of the direct and total effects, 

extracting the indirect effects by difference: M̅(𝑘)d𝑖𝑟𝑒𝑐𝑡 = tr[S𝑘(𝐖)] 𝑛⁄  M̅(𝑘)total = 𝜄𝑛′ S𝑘(𝐖)𝜄𝑛 𝑛⁄  M̅(𝑘)indirect = M̅(𝑘)total − M̅(𝑘)direct (23)  

In LeSage and Pace [25], chapter 2, the same process for the more complex SDM are laid out. 

Therefore, the interpretation of the coefficients in spatial autocorrelation models is not always 

equivalent to the coefficient estimated by the regression, 𝛽̂, and it is first necessary to express the 

model in its reduced for to identify the correct mathematical expression. Moreover, it is also typical 

of some of these models that, in addition to the direct effect caused by unit variations in the 

independent variables on the dependent variable, in each observation, there is an indirect or spillover 

effect from variations in neighbouring units. Therefore, each explanatory variable produces a total 

effect on the explanatory variable that is the sum of the two previous ones. As explained by Halleck 

Vega and Elhorst [28], the spillover effect cannot be observed in some spatial dependence models, 

such as the SEM (Table 18). The spillover effect is also absent in the basic OLS model because of the 

implicit assumption that outcomes for different observations are independent of each other. In a 

similar way to that used by the authors, we present these effects, for the models used in this paper: 

Table 18. Direct and spillover effects corresponding to different model specifications. 

Spatial model Direct effect Indirect/spillover effect 

Basic OLS model (Equation 8) 𝒚 = 𝜶𝜾𝒏 + 𝐗𝜷 + 𝜺 
𝛽̂ 0 

SEM (Equation 10) 𝒚 = 𝜶𝜾𝒏 + 𝐗𝜷 + 𝝀𝐖𝒖 + 𝜺 
𝛽̂ 0 

SLX model (Equation 16) 𝒚 = 𝜶𝜾𝒏 + 𝐗𝜷 + 𝐖𝐗𝜽 + 𝜺 
𝛽̂ 𝜃̂ 

Spatial lag (SAR) model (Equation 9) 𝒚 = 𝝆𝐖𝒚 + 𝜶𝜾𝒏 + 𝐗𝜷 + 𝜺 

Mean 

diagonal elements: (I − 𝜌̂𝐖)−1𝛽̂ 

Mean 

off-diagonal elements: (I − 𝜌̂𝐖)−1𝛽̂ 

SDM (Equation 15) 𝒚 = 𝝆𝐖𝒚 + 𝜶𝜾𝒏 + 𝐗𝜷 + 𝐖𝐗𝜽 + 𝜺 

Mean 

diagonal elements: (I − 𝜌̂𝐖)−1(𝛽̂ + 𝐖𝜃̂) 

Mean 

off-diagonal elements: (I − 𝜌̂𝐖)−1(𝛽̂ + 𝐖𝜃̂) 

Source: Elaborated from Halleck Vega and Elhorst [28], Table 1. 
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Table 19 presents the R code needed to calculate the direct, indirect, and total effect matrices, as 

well as the inference and the impact matrix of an explanatory variable for the SDM model, in the case 

of the model of urban economic growth in Spain. The following four libraries are required to run this 

code: : "sp", " spdep", " spatialreg" and "coda", which provides functions for summarizing and plotting the 

output from Markov Chain Monte Carlo (MCMC) simulations. The main functions, not previously 

presented, involved in this R code are "as_dgRMatrix_listw", "trW", "set.seed", "impacts", 

"HPDinterval", "rep", "names", "matrix" "diag" and "solve". 

Table 19. R Code: Effects, inference and a variable impact matrix of a SDM. 

load("gdpmap.rdata") 

# Constructs the row-standardized minimum distance matrix (like in Table 13) 

# ML estimation of the SDM (like in Table 16) 

# Calculation of effects for SDM model (LeSage & Pace) 

set.seed(1234) # Simulations for the inferential process 

gdpsdm_impacts <- impacts(gdp_sdm, tr=trMat, R=1000) 

summary(gdpsdm_impacts, zstats=TRUE, short=TRUE) 

HPDinterval(gdpsdm_impacts, choice="direct") 

HPDinterval(gdpsdm_impacts, choice="indirect") 

HPDinterval(gdpsdm_impacts, choice="total") 

plot(gdpsdm_impacts, choice="direct") 

plot(gdpsdm_impacts, choice="indirect") 

plot(gdpsdm_impacts, choice="total") 

plot(gdpsdm_impacts, trace=TRUE, density=FALSE, choice="direct") 

plot(gdpsdm_impacts, trace=TRUE, density=FALSE, choice="indirect") 

plot(gdpsdm_impacts, trace=TRUE, density=FALSE, choice="total") 

# Calculation of the impact matrix for the variable LGH85 

clear.pr <- rep(NA, dim(gdpmap)[1]) 

names(clear.pr) <- gdpmap$MUNICIPIO 

svec <- rep(0,dim(gdpmap)[1]) 

eye <- matrix(0,nrow=dim(gdpmap)[1],ncol=dim(gdpmap)[1]) 

diag(eye) <- 1 

for(i in 1:length(clear.pr)){ 

  cvec <- svec  

  cvec[i] <- 1 

  res <- solve(eye - gdp_sar[["rho"]]*Wsp) %*% 

cvec*gdp_sar[["coefficients"]][["LGH85"]] 

  clear.pr[i] <- res[i] 

} 

mult <- solve(eye - gdp_sar[["rho"]]*Wsp) 

deriv.LGH85 <- solve(eye - 

gdp_sar[["rho"]]*Wsp)*gdp_sar[["coefficients"]][["LGH85"]] 

as_dgRMatrix_listw {spatialreg} converts a weights list to a sparse matrix class object. trW 

{spatialreg} is used to prepare a vector of traces of powers of a spatial weight matrix. set.seed {base} 

is the recommended way to specify seeds. impacts {spatialreg} calculates the impacts for spatial lag 
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(SAR) and SDM. HPDinterval {coda} Create Highest Posterior Density (HPD) intervals for the 

parameters in MCMC sample. rep {base} replicates elements of vectors and lists. names {base} gets 

or sets the names of an object. matrix {base} creates a matrix from the given set of values. diag {base} 

extract or replace the diagonal of a matrix or construct a diagonal matrix. solve {base} solves a system 

of equations. 

The output of the calculation of the effects for the SDM model is presented in Table 20. 

Table 20. Output of the effects and inference of the SDM of urban growth in Spain. 

## Impact measures (mixed, trace): 

##              Direct      Indirect         Total 

## LGH85 -4.285846e-02 -2.016259e-02 -6.302105e-02 

## BANK   6.875336e-05  1.066622e-05  7.941958e-05 

## UNI01  5.368490e-04  6.784563e-05  6.046946e-04 

## PAT00  5.116346e-02  3.877536e-01  4.389171e-01 

##        

## Simulated standard errors 

##             Direct     Indirect        Total 

## LGH85 4.430020e-03 1.144304e-02 0.0111533399 

## BANK  1.295476e-05 5.361165e-05 0.0000541133 

## UNI01 8.414860e-05 2.931461e-04 0.0002956689 

## PAT00 1.824064e-02 9.927590e-02 0.1044755706 

##        

## Simulated z-values: 

##          Direct   Indirect     Total 

## LGH85 -9.722559 -1.8058825 -5.714514 

## BANK   5.292804  0.1470840  1.412822 

## UNI01  6.386995  0.2694986  2.084964 

## PAT00  2.837808  3.9729278  4.270658 

##        

## Simulated p-values: 

##       Direct     Indirect   Total      

## LGH85 < 2.22e-16 0.070937   1.1002e-08 

## BANK  1.2045e-07 0.883066   0.157708   

## UNI01 1.6918e-10 0.787546   0.037073   

## PAT00 0.0045424  7.0995e-05 1.9490e-05 

Table 20 shows that the model estimates are -practically all- statistically significant and, except 

in the case of the LGH85 variable, they are positive. The negative sign of the coefficient of LGH85 

demonstrates the existence of income convergence in the group of large Spanish cities. The total 

impact of a 10% growth in GDP per capita in a city in the initial period (1985) implied a fall in the 

average rate of change of GDP per capita in the period 1985-2003 of -0.63% in that city. This impact 

is the sum of the direct effect caused by the growth of GDP per capita in the city itself (-0.43), which 

is the direct effect, and the indirect effect coming from the growth of GDP per capita in the rest of the 

cities (-0.20). Additionally, the total effect of the growth of 1 patent per inhabitant led to a growth of 

GDP per capita in the period of 0.44%, of which 0.05% came from the growth of patents per capita in 
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the city itself (direct effect) and the remaining 0.39% was caused indirectly by the growth of patents 

in the rest of the cities. 

4. Conclusions 

This paper introduces the spatial component in econometric estimation and, in particular, the 

spatial dependence effect inherent in some of the variables involved in the modelling process, first, 

the spatial structure of the data is observed from maps, and the Moran’s spatial autocorrelation 

indicator is presented. Then, the spatial weights matrix is constructed under different specifications. 

Finally, the taxonomy of spatial econometric models is shown, the hybrid specification strategy is 

presented, and the interpretation of the estimated coefficients ends. 
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Appendices 

A.1. R Code: Spatial Autocorrelation Patterns (Figure 4) 

# Spatial autocorrelation patterns 

library(ggplot2) 

library(gridExtra) 

positive <- ggplot() +  

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 0, ymax = 1),fill="black",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 0, ymax = 1),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 0, ymax = 1),fill="black",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 0, ymax = 1),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 0, ymax = 1),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 1, ymax = 2),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 1, ymax = 2),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 2, ymax = 3),fill="black",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 2, ymax = 3),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 2, ymax = 3),fill="black",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 4, ymax = 5),fill="white",color="black")+ 

  annotate("text",x=1.5,y=-.4,label="Positive",size=6)+ 

  theme_void() 

negative <- ggplot() +  

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 0, ymax = 1),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 0, ymax = 1),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 0, ymax = 1),fill="white",color="black")+ 
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  geom_rect(aes(xmin = 3, xmax = 4, ymin = 0, ymax = 1),fill="black",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 0, ymax = 1),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 1, ymax = 2),fill="white",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 1, ymax = 2),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 2, ymax = 3),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 2, ymax = 3),fill="black",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 3, ymax = 4),fill="black",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 3, ymax = 4),fill="black",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 3, ymax = 4),fill="black",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 4, ymax = 5),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 4, ymax = 5),fill="black",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 4, ymax = 5),fill="white",color="black")+ 

  annotate("text",x=1.5,y=-.4,label="Negative",size=6)+ 

  theme_void() 

random <- ggplot() +  

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 0, ymax = 1),fill="black",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 0, ymax = 1),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 0, ymax = 1),fill="white",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 0, ymax = 1),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 0, ymax = 1),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 1, ymax = 2),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 1, ymax = 2),fill="white",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 1, ymax = 2),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 1, ymax = 2),fill="black",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 2, ymax = 3),fill="black",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 2, ymax = 3),fill="black",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 2, ymax = 3),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 3, ymax = 4),fill="black",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 3, ymax = 4),fill="white",color="black")+ 

  geom_rect(aes(xmin = 0, xmax = 1, ymin = 4, ymax = 5),fill="black",color="black")+ 

  geom_rect(aes(xmin = 1, xmax = 2, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 2, xmax = 3, ymin = 4, ymax = 5),fill="white",color="black")+ 

  geom_rect(aes(xmin = 3, xmax = 4, ymin = 4, ymax = 5),fill="black",color="black")+ 

  geom_rect(aes(xmin = 4, xmax = 5, ymin = 4, ymax = 5),fill="white",color="black")+ 

  annotate("text",x=1.5,y=-.4,label="Random",size=6)+ 

  theme_void() 

grid.arrange(positive,negative,random,ncol=3 
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