Altmetrics
Downloads
202
Views
66
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
08 September 2023
Posted:
08 September 2023
You are already at the latest version
Algorithm 1: Pseudo-code of SMA |
1. ; |
2. Initialize slime mould’s random location ; |
3. While ) |
4. Check the bound and determine the fitness ; |
5. ; |
6. ; |
7. as per Eq. (4); |
8. ; |
9. For each search agents |
10. Update location as per Eq. (1); |
11. End For |
12. ; |
13. End While |
14. Return; |
Country | Rank | Number of publications |
---|---|---|
China | 1 | 56 |
India | 2 | 30 |
Egypt | 3 | 6 |
Iran | 3 | 6 |
No | Strategies | References |
---|---|---|
1 | Opposition-based learning | Izci D et al.[30] [31], Lin H et al.[32], Son, P. V. H. et al.[34], Dipak Kumar Patra1 et al.[35], Krishna Gopal Dhal et al.[36], Sharma et al.[37], Liang Xu et al.[38], Sengathir J. et al.[39], Houssein EH et al.[40], AlRassas AM et al.[41], Pawani K et al.[42] |
2 | Chaotic strategy | Rizk-Allah RM et al.[33], Li Yi Fei et al.[43], Yin Shihong et al.[44], Xuebing Cai et al.[45], Yuan L et al.[46], Dhawale D et al.[47], Chen H et al.[48], Zhong C et al.[49], Abid MS et al.[50] , Miao H C et al.[51], Bhadoria A et al.[52], Sarhan S et al.[53], Singh T[54] |
3 | Mutation operator | Lin H et al. [32], Ramin Ghiasi et al.[55],Yin S et al.[56], Deng L et al.[57], Pawani et al.[58], Qiu F et al.[59], Zheng R et al.[60], H. Yang et al.[61], Yang P, et al.[62] |
4 | Lévy flight | Ling Zheng et al.[63], He W et al.[64], Pan JS et al.[65], Qi A et al.[66], Qiu F et al.[67], Jui JJ et al.[68] , Kundu T et al.[69] |
5 | Crossover operator | Rizk-Allah RM et al.[33], Ramin Ghiasi et al.[55], Qiu F et al.[59] , Qi A et al.[66], Ma TX et al. [70] |
6 | Elite strategy | Yuan L et al.[46], Miao H C et al.[51], Sarhan S et al.[53], Kaveh A et al.[74] ,Luo Qifang et al.[80] |
7 | Greedy selection | Liu J et al.[71] , Shubiao Wu et al.[72], Yin S et al.[73] |
8 | Fuzzy | Prabhu, M et al.[75], Al-Kaabi M et al.[76], Yutong G et al.[77] |
9 | Neighborhood search | Yuanfei Wei et al.[78], Zhou X et al.[79] |
10 | Sigmoid function | He W et al.[64], Örnek BN et al.[81] |
11 | Gaussian strategy | Shubiao Wu et al.[72], Ren L et al.[82] |
No | Hybrid algorithms | References |
---|---|---|
1 | Equilibrium optimizer (EO) | Yin S et al.[56], Yin S et al.[73], Yuanfei Wei et al.[78], Luo Qifang et al.[80] |
2 | Differential evolution (DE) | Krishna Gopal Dhal et al.[36], Chen H et al.[48], Qiu F et al.[59] , Shubiao Wu et al.[72] |
3 | Support vector machine (SVM) | Yuheng Guo et al.[94], Gao H et al.[95], Javidan SM et al.[96], Shi B et al.[97] |
4 | Whale optimization algorithm (WOA) | Anji Reddy Vaka et al.[98], Bhandakkar AA et al.[99], Li X et al.[100] |
5 | Simulated annealing (SA) algorithm | Izci D et al. [30], Leela Kumari Ch et al.[101] |
6 | Teaching–learning based optimization (TLBO) | Zhong C et al.[49], Kundu T et al.[69] |
7 | Seagull optimization algorithm (SOA) | Bhadoria A et al.[52],Das G et al.[102], |
8 | Artificial bee colony (ABC) | Ma TX et al. [70], Chen X et al. [103] |
9 | Particle swarm optimization (PSO) | Samantaray S et al. [104] |
10 | Genetic algorithm (GA) | P.P. Chavan et al. [105] |
11 | Evolutionary algorithm (EA) | Chauhan S et al. [106] |
12 | Grey wolf optimization algorithm (GWOA) | Khan AA et al. [107] |
13 | Sine cosine algorithm (SCA) | Örnek BN et al. [81] |
14 | Marine predators algorithm (MPA) | Ewees A.A. et al. [108] |
15 | Gradient-based optimizer (GO) | Ewees A.A.et al. [109] |
16 | Quadratic approximation (QA) | Chakraborty P et al. [110] |
17 | Tournament selection (TS) | Son PV et al. [111] |
18 | Artificial neural network (ANN) | Zhang J et al. [112] |
19 | Moth-flame optimization algorithm (MFOA) | Hussein SN et al. [113] |
20 | Pattern search algorithm (PSA) | Bala Krishna A et al. [114] |
21 | Support vector regression (SVR) | Peng C et al. [115] |
Advantages | Disadvantages |
---|---|
-few parameters to set and simple structure -excellent scalability -superiority for optimization problem -strong exploitation capability -less computational time - adaptive and vibration parameters |
-easily trap in local optimum, low convergent rate and accuracy in face of high-dimensional and multimodal problem -insufficient global search capability -imbalance between exploration and exploitation -few multi-objectives and discrete SMA variants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated