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Abstract: Due to its high power, high efficiency, low pollution, and compact size, permanent magnet
synchronous motors (PMSMs) have been widely used in a variety of fields, including electric
vehicles, aerospace, wind turbines, and marine devices which are used in renewable, sustainable,
and environmentally friendly energy resources. However, in these practical scenarios, the motor
operating conditions are complex and variable. Under high temperatures and high current
conditions, PMSMs may experience demagnetization failures, not only leading to performance
degradation but also inducing unexpected failures of the motors. To reduce the risk of unexpected
losses caused by demagnetization faults and improve the safety and reliability of motor systems, it
is necessary to apply automated monitoring of the magnet flux of the motor's permanent magnets
and achieve real-time diagnosis of early demagnetization faults, ensuring the safe operation of the
motor. This review article tries to summarize the current detecting methods of the automated
monitoring of demagnetization faults in PMSMs. The main online monitoring technologies from
both practical and academic perspectives were summarized and their benefits and challenges have
been reviewed. Finally, the research trends and suggestions for future improvements are provided.
This review article will not only shed light on the origins of the automated monitoring of
demagnetization faults but also help to design highly effective and sustainable permanent magnet
synchronous motors.

Keywords: automated monitoring; permanent magnet synchronous motor; sustainable energy
resources; demagnetization faults

1. Introduction

In the past decades, as the requirement of sustainable development has become the priority due
to the negative environmental impact that has influenced our daily lives, it has placed greater
research interests on exploring renewable and environmentally friendly energy resources. In the
driving technology area, which is the flag to reduce energy consumption, it is critical to design and
develop new materials and new technologies to realize energy-effective motors. With the rapid
development of permanent magnet materials, particularly the performance enhancement of
neodymium iron boron permanent magnets and the gradual reduction in their prices, the application
of highly effective Permanent Magnet Synchronous Machines (PMSM) has been continuously
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increased [1]. In addition, the PMSM's advantages such as simple structure, small size, high
efficiency, large torque, high energy density, and low noise have made it widely applied in various
fields such as electric vehicles, aerospace, and marine industries [2].

However, for the application of electric vehicles, which is the mainstream topic in sustainable
energy consumption, the integrated electric drive systems have limited space for installation, and
thus face the constraints of heat dissipation, especially when it operates under synergistic service
conditions, including startup, braking, acceleration, and deceleration, as well as variable load
conditions. As a result, when the motor runs continuously at high speeds, the internal temperature
of the system keeps increasing, leading to uniform demagnetization faults in the permanent magnets.

In addition to the demagnetization resulting from the high temperature, due to armature
reaction in PMSMs, the direction of the magnetic field generated by the armature current is opposite
to that of the permanent magnets. When the motor runs at a high speed or under heavy loads, the
transient armature current increases rapidly, enhancing the demagnetizing effect of the armature
reaction, which can cause irreversible local demagnetization failure of the permanent magnet
materials. A previous study has predicted and tested the rotor demagnetization of a 0.6 kW (cont.),
9-slot/6-pole fractional-slot concentrated winding (FSCW), and interior PM synchronous machine
under controlled temperature conditions. The experimental testing results of the rotor
demagnetization were compared with the finite element predictions characteristics in a 3-phase
symmetrical short-circuit and single-phase asymmetrical short-circuit. These results confirm that the
properties of the magnet material, such as the magnet thermal coefficients, have significant impacts
on the failure mode of the machine [3].

Another detrimental demagnetization failure originated from the cracks of the permanent
magnet materials during the manufacturing or installation process of the PMSM. The randomly
distributed cracks can also result in local or uniform demagnetization failure when the motor
operates at high speeds or experiences severe collisions [4]. Moreover, the aging phenomenon of the
permanent magnet materials is inevitable with the increasing service life of the motor, which also
governs the demagnetization failure of the motors [5].

The occurrence of demagnetization failure leads to a reduction in the magnetic flux of the
permanent magnet materials, thus decreasing the output electromagnetic torque. Figure 1 illustrates
the dynamic demagnetization process of a PMSM. Under the same load torque conditions, the
decrease in the magnetic flux of the permanent magnets leads to an increase of the stator current,
which induces a higher copper loss in the PMSM, resulting in elevated internal temperatures and
further accelerating the demagnetization process of the permanent magnet materials. Furthermore,
the increase in stator current enhances the demagnetizing effect of the armature reaction magnetic
field, creating a vicious cycle between PMSM demagnetization faults, internal operating temperature,
and the demagnetizing effect of the armature reaction magnetic field [6]. Additionally, the occurrence
of local demagnetization faults in the permanent magnets of a PMSM introduces non-integer
harmonic components in the magnetic flux, which generates corresponding non-integer harmonic
currents in the PMSM's armature. This leads to torque and speed ripples in the motor, directly
affecting the control precision of the PMSM. As a result, it is critical to implement the online
automated monitoring of demagnetization faults in permanent magnet synchronous motors to avoid
severe damage in advance [7].

Therefore, in a practical application, such as electric vehicles, in which safety and reliability are
the priority issues, it is necessary to perform real-time online monitoring of the magnetic flux of the
PMSM's permanent magnets, achieving the real-time diagnosis of initial demagnetization faults, and
further differentiate the demagnetization fault modes. This ensures the safe, reliable, and efficient
operation of electric drive systems in electric vehicles and aerospace motors, reducing the occurrence
of accidents and minimizing economic losses. The core of online monitoring for demagnetization
faults in PMSMs is to find reliable and unique fault features. Moreover, when applied in scenarios
such as electric vehicles and aerospace, it is necessary to identify fault features under non-stationary
operating conditions. According to previous research results, the online monitoring methods for
demagnetization faults in PMSMs can be categorized into two types: the uniform demagnetization
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fault monitoring methods and the local demagnetization fault monitoring methods, depending on
various demagnetization fault modes [8].
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Figure 1. Dynamic demagnetization process of a PMSM.

For uniform demagnetization fault monitoring, one approach is to analyze the change in back
electromotive force (EMF) characteristics of the PMSMs [9]. The demagnetization fault can cause a
decrease in the amplitude and distortion of the back EMF waveform, which can be detected and
analyzed to identify the fault condition [10]. Another method involves monitoring the change in the
air-gap magnetic field distribution of the PMSMs using magnetic field sensors or Hall effect sensors
[11]. The demagnetization fault affects the magnetic field distribution, and deviations from the
normal pattern can indicate the occurrence of a fault. On the other hand, for local demagnetization
fault monitoring, the focus is on detecting and identifying the specific regions or magnets that have
experienced demagnetization [12]. This can be done by analyzing the harmonic components in the
stator current or by using additional sensors, such as flux sensors or magnetic field sensors, to
measure the magnetic field distribution and identify any deviations from the expected pattern.
Additionally, advanced signal processing techniques, such as Fast Fourier Transform (FFT) analysis
or wavelet analysis, can be applied to extract fault-related information from the measured signals
[13].

It is worth noting that to achieve effective demagnetization fault monitoring in non-stationary
operating conditions, advanced signal processing and pattern recognition algorithms are often
employed. These algorithms can adaptively adjust their parameters and criteria to account for
varying operating conditions and ensure accurate fault detection and identification. Overall, the
development of reliable and unique fault feature extraction methods, along with the utilization of
advanced signal processing and pattern recognition techniques, is critical for the successful online
monitoring of demagnetization faults of the PMSMs in electric vehicles.

2. Automated Monitoring of Uniform Demagnetization Faults in PMSMs
2.1. Background

The online monitoring of uniform demagnetization faults starts by detecting the internal
electrical parameters of the motor, such as current, voltage, and magnetic flux, and then establishes
a mathematical model for fault monitoring. By analyzing the mathematical model, specific
parameters related to the magnetic flux, such as the amplitude and distortion of the back
electromotive force (EMF), can be extracted and monitored. The obtained parameter information


https://doi.org/10.20944/preprints202309.0614.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2023 doi:10.20944/preprints202309.0614.v1

enables qualitative analysis and quantitative diagnosis of demagnetization faults. Changes in these
parameters can indicate the occurrence of demagnetization faults in the permanent magnets [14].

Through qualitative analysis, patterns and trends associated with demagnetization faults can be
identified based on the mathematical model. For example, a decrease in the amplitude or distortion
of the back EMF waveform may indicate the presence of a uniform demagnetization fault [15].
Quantitative observation and diagnosis involve comparing the extracted parameter values with
predefined thresholds or reference values. If the values exceed the specified thresholds or deviate
from the expected range, it suggests the presence of a demagnetization fault. To facilitate this process,
real-time monitoring of the electrical parameters within the motor is required [16]. This can be
achieved by using appropriate sensors to measure the currents and voltages in the motor and
employing signal processing techniques to analyze and extract the relevant information.
Additionally, advanced data analysis methods, such as model-based estimation or system
identification, can be utilized to improve the accuracy and reliability of the monitoring system. By
combining the mathematical model of the PMSM with real-time measurements and analysis, it
becomes possible to qualitatively and quantitatively analyze and diagnose uniform demagnetization
faults in the PMSM's permanent magnets [17].

2.2. Recursive Least Squares method

In PMSMs, it's critical to accurately estimate parameters including motor resistance, inductance,
and EMF constant, which are governed by manufacturing tolerances or temperature changes. The
Recursive Least Squares (RLS) method is a mathematical and computational technique used for
parameter estimation and system identification of PMSMs. The RLS method is a valuable tool that
enables real-time parameter estimation and adaptation, contributing to the efficiency and reliability
of PMSM control systems. Different from traditional least squares methods, which require re-
computation of parameters by using all available data points, RLS updates parameter estimates
sequentially as new data and ensures particularly suitable for online applications and control
systems. In addition, RLS allows prompt alignment in the motor's behavior by employing a weighted
least squares approach, where more recent data points can be given a higher weight in the parameter
estimation process. RLS-based parameter estimation has been widely used in PMSM control and
fault detection. It helps improve control performance, efficiency, and fault tolerance by ensuring that
the control algorithm operates with accurate and up-to-date parameter values [18].

To meet the challenges originating from inaccuracies of modeling, a real-time and data-driven
RLS method was used to control the current in a PMSM. The results indicated that the effectiveness
of model predictive controllers is strongly depending on the quality of the utilized models. By using
an RLS-based model to identify and interlock time compensation, the control system can make more
accurate predictions about the system's behavior. This study suggests that the RLS approach is
suitable for self-commissioning applications where the drive system needs to be set up or
commissioned automatically without relying on predefined wide-band models. In particular, this
study presents an advanced control strategy that combines data-driven model identification, timing
compensation, and predictive control to enhance the performance of electric drives, particularly in
scenarios where accurate models are not readily available or when system parameters are variable.
[19].

A novel online method to estimate the complete set of parameters in PMSMs has been developed
by Yu. By introducing an algorithm based on the RLS method, the full range of motor parameters,
including stator resistance, d-axis and g-axis inductances, and flux linkage can be estimated in an a-
[ frame. The simulation and experiment results manifest the effectiveness of the proposed full
parameters estimation algorithms in a-f3 frame during both steady and transient states. Compared
with other algorithms, it was claimed that the proposed method has the merits of faster convergence
rate, less computational cost, and high accuracy [20].

Most recently, an updated RLS method, named Long-Term Memory Recursive Least Squares
current estimation, has been developed for Finite-Control-Set Model Predictive Controllers. This
approach can be used to identify the differential inductance and flux linkage maps without additional
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signal injection for online self-commissioning in seconds. By continuously adapting the flux linkage
maps, it ensures precise open-loop torque control by merely using stator resistance as the datasheet.
The results prove the accuracy of the identified model and the superior control performance of the
Finite-Control-Set Model Predictive Controllers during the transient and steady-state operations [21].

Although RLS is a powerful algorithm for parameter estimation and online monitoring, it has
several defects, including computational complexity, memory usage, initialization, sensitivity to
outliers, stability, convergence rate, and adaptability, to nonlinear systems. Engineers and
practitioners should carefully consider these limitations when choosing RLS for monitoring PMSM
and combine them with alternative methods or modifications to address specific application
requirements. Future research in this area should be focused on improving control strategies,
performance optimization, and fault diagnosis methods for electrical machines. These efforts may
contribute to more efficient and reliable systems in various applications, from industrial automation
to renewable energy generation. The first suggestion is to explore methods for extracting physical
parameters from identified models. These parameters could be essential for various analyses and
control strategies. The operating point control could optimize motor performance, energy efficiency,
and responsiveness, and the long-term memory models can provide valuable support during
transient conditions, where traditional control methods may be less effective. Long-term memory
models can capture complex relationships and patterns in data, making them suitable for adaptive
and data-driven control strategies.

2.3. Current or voltage injection estimation

Current or voltage injection estimation is a technique used in the control and estimation of
PMSMs. In this method, a current signal is injected into the motor windings, and the resulting motor
response is analyzed to estimate various parameters, including rotor position, rotor speed, stator
resistance, and the states of the motor. In this method, a current waveform with known frequency
and amplitude is injected into one or more phases of the motor's stator windings. This injected current
perturbs the motor's operation and generates a response in the form of back-EMF and variations in
current and voltage. After carefully measuring and analyzing the response of the injected current, the
current and voltage signal variations and their phase relationships can be obtained. The current
injection estimation provides a non-invasive and efficient method for estimating critical motor
parameters without the need for additional sensors. It can also be implemented during normal motor
operation, making it suitable for online parameter identification and control adjustments. By
accurately estimating rotor position and speed, this sensorless control method can operate PMSMs
without relying on costly and failure-prone position sensors [22].

Accurate parameter identification is imperative for sensorless field-oriented control, as it enables
precise control of the motor. For accurate parameter identification in a high-speed PMSM that can
improve the performance of sensorless field-oriented control, a parameter identification method
based on current injection, which eliminates the need for a low-pass filter in the current controller,
has been developed. This method allows the maintenance of a high control bandwidth for 14,000 rpm
high-speed PMSMs. The estimated parameters are shown to enhance the performance at both low
and high speeds, highlighting the accuracy of the identification process [23].

To ensure a reliable startup of the interior PMSM, an innovative method for the initial estimation
of rotor position has been developed by combining enhanced high-frequency pulse signal injection
with the injection of positive and negative d-axis current biases, shown in Figure 2. Different from
previous methods for detecting the initial rotor position, this method divides the injection and the
field-oriented control periods to eliminate the filters in the high-frequency response current and
fundamental current extracting process. The estimation of magnet polarity has been achieved by the
stimulating of positive and negative d-axis currents. In addition, to determine the rotor magnetic
polarity, the peak values of the d-axis current during the injection period have been accumulated.
The results indicated that the high-frequency pulse voltage signal injection method shows the merit
of a high current control loop bandwidth without filters. More importantly, this method is robust in
magnetic polarity identification and has a wider applicative situation. The effectiveness of the initial
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position estimation method is verified on a 1.5 Kw interior PMSM drive platform. It was claimed that
this approach is beneficial to enhance the reliability of magnet polarity detection and can be applied
to standstill rotors and free-running rotors [24].
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Figure 2. Sequence of improved high-frequency pulse voltage signals injection method with
opposite voltage injection [24].

Current or voltage injection estimation is a valuable tool for monitoring PMSM, but it has
limitations originating from the diagnostic capability, sensitivity to noise, steady-state operation
assumptions, and its ability to detect nonlinearities and specific faults. As a result, it is necessary to
complement this method with other techniques to ensure a comprehensive view of the motor's
condition and performance. The following items should be considered as the future research
challenges:

1. Current and voltage injection estimation may not provide detailed diagnostic information. It
is typically used for estimating resistance and inductance, which are essential but may not capture
more complex issues or faults.

2. The current or voltage injection estimation deals with a steady-state operation, in which the
motors operate under constant speed and load conditions. However, in practical applications, motors
are facing transient and dynamic conditions, and the current and voltage injection may not be suitable
for capturing variations outside steady-state operation. In addition, the current and voltage injections
are sensitive to noise and external disturbances, which can affect the accuracy of parameter
estimation. In noisy environments or with significant disturbances, obtaining accurate parameter
estimates can be challenging.

3. PMSMs exhibit nonlinear behavior, especially when faults occur. The current or voltage
injection methods may not adequately capture these nonlinearities or detect issues related to them.
Although current or voltage injection methods can identify changes in motor parameters, it is hard
to detect rotor faults or winding faults, which require advanced techniques and additional sensors.

2.4. Nonsingular terminal sliding-mode control algorithm

The nonsingular terminal sliding-mode control algorithm weakens the need for an accurate
mathematical model of the PMASMs, making it particularly suitable for systems with uncertain or
time-varying parameters. Unlike traditional control methods that rely on accurate motor models, this
algorithm doesn't require precise mathematical models of the motor system. Instead, it employs a
sliding-mode control approach with a nonsingular terminal condition, ensuring robust and precise
control even in the presence of uncertainties and variations in the motor's parameters. This makes it
an effective method to achieve high-performance control and improve efficiency in PMSM's various
industrial and automotive applications [25].

A nonsingular fast terminal sliding mode control was designed to achieve fast and precise
position regulation for a linear PMSM. This mode can achieve a rapid convergence of the position
tracking error. To mitigate the problems posed by lumped disturbances and incomplete state
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information, the authors utilized a high-order super-twisting observer to estimate the missing state
variables, thus enhancing the robustness of the control strategy. By using the Lyapunov stability
theory, the stability of the system was rigorously analyzed, and the results demonstrated that the
system remains stable during operation. Real-time testing results highlight the efficiency of this
approach, making it a valuable contribution to the field of motor control. Although this nonsingular
sliding mode is effective for position tracking, it faces challenges when dealing with lumped
disturbances in the system. These disturbances can result in incomplete system state information and
may lead to chattering in the control signal [26].

To overcome the challenges posed by magnetic saturation effects and the lack of a maximum
torque per ampere control guideline with unmodeled dynamic compensation based on online
excitation level calculation in synchronous reluctance motors, an adaptive non-singular terminal
sliding mode control scheme was developed to face the highly nonlinear and time-varying
parameters. Figure 3 shows the control block diagram of the proposed method. It shows the speed
tracking, current regulators, optimal current angle estimator, and parameters estimator. The main
contributions of this method can be claimed that it can effectively track MTPA operating points, solve
the reference current distribution problem under the influence of nonlinear and time-varying
parameters, and reach the goal of shortening the time to reach the sliding mode surface and reducing
chatter (undesired high-frequency oscillations) near the surface. The experimental results
demonstrated that this control strategy achieves satisfactory dynamic performance and robustness,
despite the nonlinearities and time-varying parameters [27].
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Figure 3. Control block diagram of proposed ANFTSMC system [27].

Although model-free nonsingular terminal sliding-mode control algorithms have potential
benefits, they also face problems such as complex implementation, sensitivity to chattering, and
measurement noise due to the lack of model-based adaptation. As a result, it is hard for it to deal
with the nonlinearities in real-time implementation.

2.5. Sliding mode observer

A sliding mode observer (SMO) combines observer and controller to estimate the critical motor
variables or states in real-time of the PMSM system. SMO has been widely used in various PMSMs,
including electric vehicle propulsion systems, robotics, and renewable energy systems, where
sensorless operation is preferred for higher efficiency and reliability. In this control mode, a robust
control technique is used to guarantee the stability and accuracy of the system even with uncertainties
and disturbances. The key variables include rotor position, rotor speed, and rotor flux, which are
critical for precise motor control, especially in sensorless operations to reduce cost and complexity.
SMO continuously updates its estimation to track the actual values. One of the palpable merits of
SMO is its robustness to system parameter variations, load disturbances, and sensor inaccuracies. It
allows for accurate estimation even under changing operating conditions. SMO not only plays a key
role in sensorless control strategies but also provides accurate estimation of essential variables
without additional sensors, thus reducing cost and increasing reliability [28].
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To enhance the tracking performance of speed controllers in PMSM drive systems, an extended
state observer-based sliding mode observer was designed to handle various disturbances in real-time,
including internal parameter variations and external load changes, based on an upper bound estimate
of the total disturbance. Through this method, the extended state observer's parameters could be
configured according to the desired bandwidth of the observer, and the estimated total disturbance
obtained from the observer was used to continuously update the control law in real-time. The results
indicated an improved speed-tracking performance and robustness against disturbances without
sacrificing the fast dynamic response. The stability of the closed-loop PMSM drive system with the
proposed control is rigorously demonstrated through the Lyapunov theory. Experimental results
from a 200 W salient pole PMSM drive system confirm the practical efficiency of this strategy [29].
Similarly, another study introduces an active disturbance rejection-based sliding-mode current
control to enhance the tracking performance of current controllers in PMSM drive systems when
facing internal disturbances. The schematic demonstration is shown in Figure 4. The results indicated
that the current controller can significantly improve both steady-state and transient current tracking
performance, along with reinforcing the robustness to internal disturbances [30].
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Figure 4. Schematic illustration of an FOC-based PMSM drive system with an SMO [30].

Apart from the state observer-based sliding mode observer and the active disturbance rejection-
based observer, a fuzzy sliding mode observer with a sensorless control strategy was introduced for
PMSMs. This approach built a sliding mode observer that adheres to the Lyapunov stability condition.
Instead of the traditional sign function, in this study, a sigmoid function was developed as the
switching function within the sliding mode observer. The contribution of this study lies in adjusting
the parameters of the sigmoid function in real-time through the established fuzzy rules, which
effectively modifies the convergence characteristics of the sigmoid function to enhance observation
performance. Furthermore, the EMF signals, which were extracted by the sliding mode observer,
have been smoothed by using a back EMF adaptive law. This is beneficial to reduce the chatter and
observation errors of the system. The proposed fuzzy sliding mode observer has been experimentally
verified on a 2kW surface-mounted PMSM vector control platform and validated through a
Matlab/Simulink simulation. Both simulation and experimental results have proved the effectiveness
of this method in tracking changes in rotor speed and position during motor speed reversals [31].

Even though SMO provides an accurate estimation for the online monitoring of PMSMs, from
the perspectives of model mismatch, sensitivity to disturbances and noise, design complexity, limited
fault detection capabilities, limited information about mechanical components, computational load,
and nonlinearities, it is still facing challenges. First, SMOs significantly depend on a mathematical
model of the system to create a sliding surface. If the model used in the observer differs significantly
from the actual motor dynamics due to parameter variations, nonlinearities, or modeling
inaccuracies, the SMO's performance can be degraded, thus leading to inaccurate state estimates. In
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addition, like other nonlinear observers, SMOs are sensitive to disturbances and measurement of
noise. External disturbances or noisy sensor measurements can disrupt the sliding mode behavior
and affect the quality of state estimation.

2.6. Luenberger observer

Luenberger observer, also called Luenberger state observer, is a control method applied in
PMSM to estimate the unmeasurable internal states or variables of PMSM, including rotor position,
rotor flux, and rotor speed. These variables are hard to measure directly but extremely critical for
motor control. By developing a mathematical model, Luenberger observer can describe the evolution
process of the internal states. Subsequently, by combining this model with the available
measurements, the states' current values can be estimated by the Luenberger observer by feeding
back into the motor control system, allowing the controller to make real-time adjustments based on
the estimated states. Luenberger observers can provide accurate state estimation with the presence
of disturbances and inaccuracies. It is robust to measure noise and uncertainties in the motor model
and operates in real-time, continuously updating its estimation as new measurements without
additional sensors [32].

To overcome the limitations of substantial computational requirements and steady-state current
errors in the presence of parameter mismatches, a low-complexity, three-vector-based model
predictive current control method with reduced steady-state current errors for the PMSM drive
system has been developed. The optimal voltage vector combination is selected to relieve the
computational burden associated with the three-vector-based model. To mitigate steady-state current
errors stemming from parameter mismatches, a Luenberger observer is incorporated to estimate the
collective disturbance caused by parameter mismatches and unmodeled dynamics. The estimated
disturbance is then used for compensation within the model. The testing results indicated that the
three-vector-based low complexity model predictive current control can reduce the computational
complexity without sacrificing the dynamic and static performance. This method not only can reduce
the steady-state current error resulting from the parameter mismatch and unmodelled dynamics, but
also improve the robustness against parameter variation [33].

To reduce the impact of external load disturbances, a load torque Luenberger observer is
developed to mitigate the slow response speed and the chattering phenomenon in the general sliding
mode control of PMSMs. This strategy is designed to enhance the ability to withstand external
interference. An experimental platform for a PMSM is established to evaluate the performance of the
proposed control strategy and the effectiveness of the observer, and the block diagram of the control
system is shown in Figure 5. The experimental results demonstrate that the load torque Luenberger
observer excels at accurately estimating the actual load torque and tracking the motor's real speed.
Furthermore, the global fast terminal sliding mode control strategy substantially enhances the
motor's response speed and bolsters the system's robustness [34].
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Figure 5. PMSM control system block diagram [34].
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Although the Luenberger observer is a powerful tool to estimate the states of PMSMs, it has
limitations related to model dependency, sensitivity to parameter variations, limited fault detection
capabilities, convergence and stability concerns, computational complexity, sensitivity to noise, and
limited information about mechanical components.

1. Luenberger observers rely on a mathematical model of the system to estimate the states. For
the PMSMs, the accuracy of the observer is highly dependent on the accuracy of the motor model
used. Any discrepancies between the model and the actual motor behavior can lead to inaccurate
state estimates. PMSMs can experience variations in parameters over time due to factors like
temperature changes, aging, and manufacturing tolerances. The Luenberger observer may not adapt
well to these parameter variations and can result in inaccurate state estimates if the model parameters
are not updated. While the Luenberger observer can estimate the states of a motor, it is primarily a
state estimation technique and may not be well-suited for detecting specific motor faults or anomalies.
Fault detection typically requires additional techniques and sensors.

2. The Luenberger observer's convergence and stability depend on the eigenvalues of the
system's dynamic matrix. If the eigenvalues are poorly conditioned or close to the imaginary axis, the
observer may converge slowly or exhibit instability, especially in the presence of measurement noise.
The Luenberger observer involves solving a set of differential equations in real time, which can be
computationally intensive, especially for high-dimensional systems or systems with complex
dynamics. This can be a limitation in real-time applications with limited computational resources.

3. Accurate initial state estimates are crucial for the Luenberger observer to provide reliable
estimates. If the initial state estimates are far from the true values, it may take some time for the
observer to converge to the correct estimates, leading to inaccuracies during the transient phase. Like
any state estimation technique, the Luenberger observer is sensitive to measurement noise. In practice,
sensor noise can degrade the accuracy of state estimates, particularly when measurements are noisy
or corrupted. The Luenberger observer primarily focuses on estimating the electrical states of the
motor, such as rotor flux and stator currents. It may not provide detailed information about
mechanical components, such as bearings or load-related issues.

2.7. Model reference adaptive system observer

Model Reference Adaptive System (MRAS) observers are suitable for sensorless control of
PMSMs in electric vehicles, industrial machinery, robotics, and renewable energy systems. MRAS
observers are designed to be robust to disturbances, noise in measurements, and variations in motor
parameters. They provide reliable state or parameter estimates under various operating conditions.
Similar to the sliding mode observers, the primary purpose of the MRAS observer is to estimate
unmeasurable states or parameters, such as rotor position, rotor speed, and rotor flux of the PMSM.
MRAS observers can adjust their internal model or reference to minimize the error between the
estimated states and the actual measurements. This adaptation enables them to handle varying
operating conditions and load changes. MRAS observers use a reference model that represents the
expected behavior of the PMSM under nominal conditions. The discrepancies between the model and
the actual system are compensated through adaptation, allowing the observer to provide accurate
estimates even in the presence of model uncertainties. MRAS observers are less sensitive to variations
in motor parameters and load conditions compared to traditional observers, making them well-suited
for applications where these factors may change dynamically. The estimated states or parameters
generated by the MRAS observer are typically used as feedback in the motor control system. This
feedback allows the controller to adjust the control signals in real time based on the estimated states,
enabling precise motor control [35].

To monitor the position and speed of a PMSM, an MRAS approach was developed by
considering the error between actual and estimated rotor position values. A state equation for the
PMSM was formulated within the synchronous d-q reference frame. This frame relies on the
estimated speed and the nominal parameters of the PMSM. Figure 6 presents the scheme of the block
diagrams of the sensorless control system. The primary contribution of this approach is the MRAS
adaptation scheme, which aims to estimate the rotor position and speed while minimizing the errors
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between the derivatives of d-q axis currents of the real system and the model system. Experimental
results demonstrate strong performance and accurate speed-tracking capabilities when compared to
the sliding mode observer under various speed and load torque conditions [36].
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Figure 6. Scheme of the MRAS and the overall block diagrams of the sensorless control
system [36].

To enhance the motor's performance in standstill and low-speed operating regions, a
straightforward and robust approach for sensorless control of a surface mount PMSM drive was
developed based on an electromagnetic torque-based MRAS speed estimator, combined with a
cascaded pseudo derivative feedback controller. In this approach, a small signal model was
employed to analyze the stability and sensitivity of the estimator. The testing results indicated that
the estimator remains stable in a wide range of speed regions, and exhibits robustness against
uncertainties in machine parameters. To further confirm the benefits of this approach, the estimator
was implemented on a 1.5-kW laboratory prototype PMSM drive using an ALTERA Cyclone II field
programmable gate array (FPGA). The experimental results further affirmed the efficacy of the
method under various test conditions in a wide and adjustable speed range, including low-speed
regions and standstill conditions [37].

MRAS algorithm faces difficulties in designing the adaptive law to ensure the simultaneous
convergence of multiple parameters and determining control parameters. The Extended Kalman
Filter algorithm incorporates noise factors and effectively reduces the influence of system noise on
identification results, thereby improving identification accuracy.

2.8. Kalman filter

Kalman filter is a recursive algorithm, meaning it continually updates its estimation based on
new measurements. It is beneficial to mitigate the defects of the MRAS observer in PMSMs. The block
diagram is shown in Figure 7. As can be seen from this figure, the Kalman filter can be used to
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estimate unmeasurable states or parameters within the motor system, such as rotor position and
speed. This adaptability is particularly valuable in real-time applications like motor control. In
PMSMs, it can integrate measurements from various sensors, such as encoders, resolvers, and current
sensors, to provide a more accurate and robust estimation of motor states. The Kalman Filter
leverages a mathematical model, which predicts the expected behavior of the PMSM system, given
the current state and control inputs. It minimizes the error between the predicted state (based on the
model) and the measured state (based on sensor readings) by adjusting the filter's gain. This
minimization process optimally balances the contributions of the model and measurements to
improve estimation accuracy. The filter can account for various sources of noise, including sensor
noise and process noise. This makes it suitable for applications where measurements are subject to
uncertainty and variability. Kalman Filters are computationally efficient, making them well-suited
for embedded systems and applications with limited computational resources [38].
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Figure 7. Block diagram of Kalman filter [39].

A novel approach was proposed to detect partial demagnetization faults in running PMSMs
under nonstationary conditions. This method was developed based on tracking the characteristic
orders of the stator current by using the Vold-Kalman Filter, in which the amplitude of these fault
characteristic orders was used as an indicator. The proposed method has been experimentally
assessed and demonstrated outstanding performance in detecting partial demagnetization faults in
PMSMs under various speed and load conditions. [40]:

For diagnosing single and multiple open-switch faults in three-phase PMSM drives, a real-time
estimation was tested based on three-phase motor currents with three Kalman filters. In this method,
the residual signals were analyzed by comparing the differences between the measured and
estimated stator currents for each phase. The averaged normalized residual signals were defined as
diagnostic criteria, which were used to identify the presence of open-switch faults, locate the faulty
switches, and distinguish open-switch faults from the current sensor, for detecting open-switch
faults. The main advantages of this method are the fast detection times, robustness to measurement
noises and errors, and the ability to handle load variations. It can be applied in both closed-loop and
open-loop PMSM drives, and act as a subroutine in the drive control unit without requiring
additional hardware. The effectiveness of the proposed method has been verified through extensive
simulations and hardware-in-the-loop experiments by using a 1.5 kW PMSM and a low-cost
microprocessor technology. The testing results indicated that, although the execution time is
relatively long, this KF-based method can serve as an efficient and reliable approach for diagnosing
open-switch faults in PMSM drives, making it a valuable tool for maintenance and fault detection in
motor control systems [41].

To reduce the execution time of the Kalman Filter estimator but no sacrificing the accuracy for
sensorless control of PMSMs, an Extended Kalman Filter was applied along with an ARM Cortex-M3
microcontroller. This study implemented various optimization levels to relieve the arithmetic
calculation burden. Through these optimizations, the execution time of the Extended Kalman Filter
estimator was significantly reduced from 260.4 us to 37.7 us, while maintaining the accuracy. By
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exploring the relationship between the frequency of Kalman gain, covariance matrices, and the rotor
electrical frequency, the simulations and experimental results confirmed the effectiveness of these
techniques in achieving accurate and efficient sensorless real-time control of PMSMs in resource-
constrained environments [39].

While Kalman Filter is a powerful tool for state estimation and monitoring, a few concerns,
including the model dependency, sensitivity to model errors, initialization challenges, sensitivity to
nonlinearities, computational complexity, measurement noise, limited fault detection capabilities,
difficulty in handling parameter variability, limited information about mechanical components, and
challenges with multimodal noise distributions, should be considered before the practical
applications. First, the Kalman filter is significantly dependent on a mathematical model that
describes the system's dynamics. If the model cannot represent the motor's behavior accurately due
to parameter variations, nonlinearities, or modeling inaccuracies, the filter's performance can be
compromised, thus sacrificing the accuracy of the estimation. Second, accurate initialization is critical
for the Kalman filter to provide reliable state estimation. If the initial state estimation is far from the
actual state, the filter may converge, thus leading to inaccuracies during the transient phase. In
addition, the standard Kalman filter is designed for linear systems, it may not perform well when
dealing with highly nonlinear motor behaviors or abrupt changes in dynamics. Third, Kalman filters
are computationally intensive, especially for high-dimensional systems or systems with complex
dynamics. Therefore, in real-time monitoring systems with limited computational resources, it could
be confined. Finally, the Kalman filter faces the challenges of rapid or significant changes in motor
parameters, such as sudden load variations, especially with the unimodal Gaussian distributions for
process and measurement noise, achieving accurate state estimates during such transient conditions
can be difficult.

2.9. Adaptive inertia weight particle swarm optimization algorithm

The adaptive inertia weight particle swarm optimization (AIWPSO) algorithm is a specialized
optimization technique aimed at enhancing the performance and efficiency of PMSMs. This method
extends the conventional Particle Swarm Optimization (PSO) approach to handle the intricate and
ever-changing optimization challenges inherent in PMSM control and design. In the realm of PMSMs,
AIWPSO is employed to tune a range of factors, including motor parameters, control strategies, and
efficiency enhancements. One of its key benefits is its ability to dynamically strike a balance between
exploration and exploitation during the optimization process. This adaptability empowers the
algorithm to effectively navigate the solution space, rendering it particularly well-suited for
optimizing PMSMs operating under variable conditions and system parameters. Consequently, its
adaptive nature equips it to address the intricacies of PMSMs, ultimately contributing to superior
motor performance and efficiency, even when grappling with dynamic and uncertain factors in
motor design and control [42—44].

Cheng Yong introduced an approach for the online identification of electrical and mechanical
parameters in PMSM by using an adaptive inertia weight particle swarm optimization algorithm
based on logical functions. Compared with traditional complex and inefficient methods for
parameter identification, the authors leverage a logistic function-based adaptive inertia weight
particle swarm optimization algorithm to achieve precise online identification of both electrical and
mechanical parameters in PMSMs. The experimental results proved the algorithm's ability to
accurately identify key motor parameters in real time. This approach sheds light on how to realize a
faster convergence with improved accuracy [45].

Recently, an enhanced optimization technique, named as hybrid particle swarm optimization
algorithm was designed to address the parameter optimization challenges in the development of a
servo system in PMSMs. This algorithm incorporates a unique directional mutation operation applied
to the particles within the optimization process. This operation involves fixing the positions of
specific particles to enhance their search capability in remote regions. To complement the directional
mutation operation, the algorithm also refines the formula used for updating particle velocities. The
servo system itself features a speed control mechanism based on biological intelligence regulation
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and a position controller with feedforward compensation. The servo system uses the is = 0 strategy in
field-oriented control, as shown in Figure 8. The main contribution of this study can be claimed as
follows. First, a directional mutation operation was presented to increase the searching ability to
select remote regions. Second, a linear decreasing strategy of inertia weight and a modified velocity
updating formula were developed to control the convergence process. Third, the biological
intelligence controller and the feedforward compensation strategy were implemented in the speed
and position servo system to enhance the steady state and dynamic performance. Finally, the
algorithm can solve complex parameter setting and coordination problems of the designed

controllers [46].
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Figure 8. Structural diagram of the swarm optimization algorithm [46].

It is no doubt that the AIWPSO has great potential to be used for online monitoring of PMSMs,
however, it has defects due to the confinement of computational intensity, search space size, lack of
physical insights, constraint handling, initialization sensitivity, handling noisy data, lack of real-time
adaptation, limited fault detection capabilities, convergence to local optima, and challenges in
handling nonlinearities. The following aspects could be considered as the future research trends:

1. AIWPSO can be computationally intensive, especially when facing a complex optimization
process. In real-time monitoring applications, in which quick responses are required, the heavy
computational load of AIWPSO is quite challenging, especially when the motor system is high-
dimensional or involves complex dynamics. In these high-dimensional parameter spaces, it is hard
for the AIWPSO to explore and search such vast parameter spaces efficiently, leading to slow
convergence and suboptimal solutions. Furthermore, due to the AIWPSO being a model-free
optimization technique, the lack of physical insights is a limitation when compared to model-based
techniques that utilize known system dynamics.

2. AIWPSO is primarily an optimization tool and may not inherently provide fault detection
capabilities. When facing noise or measurement errors during the online monitoring process,
AIWPSO finds it hard to present accurate parameter estimation or control policies without
incorporating additional complexity, due to the lack of robust to noisy input, especially the innate
nonlinear behaviors when faults occur. Furthermore, AIWPSQO is typically not well-suited for real-
time adaptation or control adjustments. The optimization process may take considerable time,
making AIWPSO less suitable for applications that require rapid responses to changing motor
conditions. The accuracy of the AIWPSO can be sensitive to the initial parameter settings. Weak
initializations will result in suboptimal or premature convergent solutions.
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2.10. Artificial Intelligence Algorithms

The method of online monitoring for uniform demagnetization faults in PMSMs based on
artificial intelligence algorithms involves the use of machine learning and data analysis techniques
for fault detection and diagnosis. This method utilizes machine learning algorithms and data analysis
techniques to learn and recognize the characteristic patterns of demagnetization faults from a large
amount of data, enabling real-time monitoring and automatic identification of such faults. In this
approach, a significant amount of operational data is collected, including parameters such as current,
voltage, speed, and temperature. Appropriate feature extraction techniques, such as spectral features,
time-domain features, and statistical features, are applied to extract useful information from the data.
Machine learning algorithms such as support vector machines (SVM), neural networks (NN),
decision trees (DT), and deep learning are then employed to train and model the extracted features.
Once the training is complete, the system can collect real-time data from the PMSM and input it into
the trained model for fault detection and diagnosis. The model utilizes the learned patterns to
determine the presence of local demagnetization faults and provides corresponding diagnostic
results [47-49].

An artificial intelligence algorithm for detecting inter-turn short-circuit faults in PMSMs was
proposed by using machine learning techniques. In this study, the machine learning technique was
leveraged to enable the early detection of minor inter-turn short-circuit faults, facilitating the timely
replacement of faulty motors. Additionally, the machine learning technique was applied to
distinguish minor, moderate, and severe faults, and thus guide appropriate maintenance actions. By
using Support Vector Machines and Convolutional Neural Networks for training the diagnostic
model, experimental data were collected from laboratory tests. It was found that the SVMs could
optimize training by selecting relevant features based on the PMSM mathematical model, while the
CNNs were data-driven and typically required more extensive datasets for effective training. Both
methods exhibit impressive accuracy, but the SVMs achieve this accuracy with significantly less data,
demonstrating the advantages of a model-aided machine learning approach [50].

Model Predictive Control (MPC) has gained significant popularity as a control technique for
motor drives due to its exceptional dynamic performance. Constant Switching Frequency MPC (CSF-
MPC) is a variation of MPC that offers the benefits of MPC while maintaining a constant switching
frequency. However, selecting the appropriate weighting factors for the cost function in CSF-MPC
can be a challenging task. To address this challenge, a specific Artificial Neural Network was
optimized by using a genetic algorithm. The objective of this study is to automate and expedite the
selection of optimal weighting factors for CSE-MPC in PMSM drives powered by a three-level T-type
inverter. The methodology involves gathering key performance metrics such as Total Harmonic
Distortion (THD) and switching frequency error through simulation. These data were utilized to train
and evaluate the algorithm. It was claimed that the trained model can automatically and accurately
select the optimal weighting factors, aiming to minimize the THD and error under various operating
conditions [8].

The Al-based approach offers high accuracy and robustness, capable of adapting to different
operating conditions and fault modes; however, there are challenges in using Al algorithms for online
monitoring of local demagnetization faults. Sufficient training data and appropriate feature selection
are necessary to ensure the accuracy and reliability of the model. Additionally, the design and
optimization of the algorithm need to consider real-time performance and computational complexity.
The robustness and generalizability of the model also require thorough validation and testing. With
the continuous development and improvement of Al technology, the Al-based method for online
monitoring of local demagnetization faults is expected to find widespread applications in industrial
practice, providing more effective solutions for motor fault diagnosis and maintenance. Due to the
rapid development and the advantages of artificial intelligence algorithms, as well as their reduced
dependency on motor parameters and mathematical-physical models, an increasing number of
research studies have focused on fault diagnosis in the field. Al-based diagnostic methods involve
the collection and processing of appropriate signals to extract fault feature vectors from the motor.
Then, using the autonomous learning and predictive capabilities of artificial intelligence, the methods
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diagnose and identify the motor fault modes. However, this approach requires extensive training and
involves significant computational complexity. Implementing diagnostic methods based on artificial
intelligence algorithms can be challenging.

3. Concluding Remarks, challenges, and future trends

Automated monitoring of demagnetization faults in PMSMs is a complex task that involves
addressing challenges related to early fault detection, data collection, complexity of data, noise and
interference, modeling, temperature effects, complex operating conditions, fault classification, real-
time implementation, integration with control systems, maintenance planning, and cost
considerations. Successfully overcoming these challenges requires a multidisciplinary approach,
combining expertise in electrical engineering, signal processing, data analysis, and industrial
maintenance practices. The following areas might be considered as the future research focus to solve
the above-mentioned problems.

1. In most cases, demagnetization faults are slowly developed, and their effects may not be
immediately apparent in motor performance or monitoring data. As a result, detecting
demagnetization faults at an early stage is crucial for preventing further damage and ensuring motor
reliability.

2. Gathering the necessary data for monitoring demagnetization faults requires specialized
sensors and data acquisition systems capable of measuring magnetic properties and temperature
variations within the motor. The data generated by sensors for monitoring demagnetization faults
can be complex and high-dimensional. Analyzing and interpreting this data in real-time can be
computationally intensive and may require advanced signal-processing techniques.

3. Sensor measurements may be susceptible to noise and electromagnetic interference, which
can impact the accuracy of demagnetization fault detection algorithms. Filtering out noise while
preserving relevant information is a non-trivial task. Demagnetization faults are often associated with
temperature increases in the magnets. Monitoring and interpreting temperature variations within the
motor are critical but challenging tasks, as temperature sensors may not be uniformly distributed or
easily accessible.

4. Developing accurate models for PMSMs and establishing baseline data for normal operation
are essential for detecting deviations caused by demagnetization. Model-based approaches require a
thorough understanding of motor behavior and parameter variations.

5. Identifying the specific type and extent of demagnetization (e.g., partial or complete) can be
difficult. Developing algorithms capable of classifying and quantifying the severity of
demagnetization is essential for maintenance decisions. Real-time monitoring and decision-making
are critical for preventing further damage. Implementing real-time demagnetization fault detection
algorithms can be resource-intensive and require fast computational platforms.

In conclusion, automated monitoring of uniform demagnetization faults in PMSMs represents a
vital component of modern motor maintenance and reliability strategies. Uniform demagnetization
faults, which occur due to temperature variations or mechanical stress, gradually weaken the
permanent magnet materials in the motors. This degradation will lead to efficiency reduction of
motors, increasing energy consumption, and potentially catastrophic failures. To tackle this issue,
automated monitoring systems must be developed to continuously assess the health conditions of
PMSMs. These systems employ a combination of sensors, data analysis algorithms, and real-time
monitoring techniques. In this review article, typical automated monitoring methods, including the
recursive least squares method, current or voltage injection estimation, nonsingular terminal sliding-
mode control algorithm, sliding mode observer, Luenberger observer, model reference adaptive
system observer, Kalman filter, adaptive inertia weight particle swarm optimization algorithm, and
artificial intelligence algorithm, were summarized. The main contributions and defects of these
methods were analyzed and the future research trends were discussed as well. It is beneficial to
manufacture highly effective and sustainable permanent magnet synchronous motors.
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