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Abstract: Due to its high power, high efficiency, low pollution, and compact size, permanent magnet 

synchronous motors (PMSMs) have been widely used in a variety of fields, including electric 

vehicles, aerospace, wind turbines, and marine devices which are used in renewable, sustainable, 

and environmentally friendly energy resources. However, in these practical scenarios, the motor 

operating conditions are complex and variable. Under high temperatures and high current 

conditions, PMSMs may experience demagnetization failures, not only leading to performance 

degradation but also inducing unexpected failures of the motors. To reduce the risk of unexpected 

losses caused by demagnetization faults and improve the safety and reliability of motor systems, it 

is necessary to apply automated monitoring of the magnet flux of the motor's permanent magnets 

and achieve real-time diagnosis of early demagnetization faults, ensuring the safe operation of the 

motor. This review article tries to summarize the current detecting methods of the automated 

monitoring of demagnetization faults in PMSMs. The main online monitoring technologies from 

both practical and academic perspectives were summarized and their benefits and challenges have 

been reviewed. Finally, the research trends and suggestions for future improvements are provided. 

This review article will not only shed light on the origins of the automated monitoring of 

demagnetization faults but also help to design highly effective and sustainable permanent magnet 

synchronous motors.  

Keywords: automated monitoring; permanent magnet synchronous motor; sustainable energy 

resources; demagnetization faults 

 

1. Introduction 

In the past decades, as the requirement of sustainable development has become the priority due 

to the negative environmental impact that has influenced our daily lives, it has placed greater 

research interests on exploring renewable and environmentally friendly energy resources. In the 

driving technology area, which is the flag to reduce energy consumption, it is critical to design and 

develop new materials and new technologies to realize energy-effective motors. With the rapid 

development of permanent magnet materials, particularly the performance enhancement of 

neodymium iron boron permanent magnets and the gradual reduction in their prices, the application 

of highly effective Permanent Magnet Synchronous Machines (PMSM) has been continuously 
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increased [1]. In addition, the PMSM's advantages such as simple structure, small size, high 

efficiency, large torque, high energy density, and low noise have made it widely applied in various 

fields such as electric vehicles, aerospace, and marine industries [2]. 

However, for the application of electric vehicles, which is the mainstream topic in sustainable 

energy consumption, the integrated electric drive systems have limited space for installation, and 

thus face the constraints of heat dissipation, especially when it operates under synergistic service 

conditions, including startup, braking, acceleration, and deceleration, as well as variable load 

conditions. As a result, when the motor runs continuously at high speeds, the internal temperature 

of the system keeps increasing, leading to uniform demagnetization faults in the permanent magnets. 

In addition to the demagnetization resulting from the high temperature, due to armature 

reaction in PMSMs, the direction of the magnetic field generated by the armature current is opposite 

to that of the permanent magnets. When the motor runs at a high speed or under heavy loads, the 

transient armature current increases rapidly, enhancing the demagnetizing effect of the armature 

reaction, which can cause irreversible local demagnetization failure of the permanent magnet 

materials. A previous study has predicted and tested the rotor demagnetization of a 0.6 kW (cont.), 

9-slot/6-pole fractional-slot concentrated winding (FSCW), and interior PM synchronous machine 

under controlled temperature conditions. The experimental testing results of the rotor 

demagnetization were compared with the finite element predictions characteristics in a 3-phase 

symmetrical short-circuit and single-phase asymmetrical short-circuit. These results confirm that the 

properties of the magnet material, such as the magnet thermal coefficients, have significant impacts 

on the failure mode of the machine [3].  

Another detrimental demagnetization failure originated from the cracks of the permanent 

magnet materials during the manufacturing or installation process of the PMSM. The randomly 

distributed cracks can also result in local or uniform demagnetization failure when the motor 

operates at high speeds or experiences severe collisions [4]. Moreover, the aging phenomenon of the 

permanent magnet materials is inevitable with the increasing service life of the motor, which also 

governs the demagnetization failure of the motors [5]. 

The occurrence of demagnetization failure leads to a reduction in the magnetic flux of the 

permanent magnet materials, thus decreasing the output electromagnetic torque. Figure 1 illustrates 

the dynamic demagnetization process of a PMSM. Under the same load torque conditions, the 

decrease in the magnetic flux of the permanent magnets leads to an increase of the stator current, 

which induces a higher copper loss in the PMSM, resulting in elevated internal temperatures and 

further accelerating the demagnetization process of the permanent magnet materials. Furthermore, 

the increase in stator current enhances the demagnetizing effect of the armature reaction magnetic 

field, creating a vicious cycle between PMSM demagnetization faults, internal operating temperature, 

and the demagnetizing effect of the armature reaction magnetic field [6]. Additionally, the occurrence 

of local demagnetization faults in the permanent magnets of a PMSM introduces non-integer 

harmonic components in the magnetic flux, which generates corresponding non-integer harmonic 

currents in the PMSM's armature. This leads to torque and speed ripples in the motor, directly 

affecting the control precision of the PMSM. As a result, it is critical to implement the online 

automated monitoring of demagnetization faults in permanent magnet synchronous motors to avoid 

severe damage in advance [7].  

Therefore, in a practical application, such as electric vehicles, in which safety and reliability are 

the priority issues, it is necessary to perform real-time online monitoring of the magnetic flux of the 

PMSM's permanent magnets, achieving the real-time diagnosis of initial demagnetization faults, and 

further differentiate the demagnetization fault modes. This ensures the safe, reliable, and efficient 

operation of electric drive systems in electric vehicles and aerospace motors, reducing the occurrence 

of accidents and minimizing economic losses. The core of online monitoring for demagnetization 

faults in PMSMs is to find reliable and unique fault features. Moreover, when applied in scenarios 

such as electric vehicles and aerospace, it is necessary to identify fault features under non-stationary 

operating conditions. According to previous research results, the online monitoring methods for 

demagnetization faults in PMSMs can be categorized into two types: the uniform demagnetization 
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fault monitoring methods and the local demagnetization fault monitoring methods, depending on 

various demagnetization fault modes [8]. 

 

Figure 1. Dynamic demagnetization process of a PMSM. 

For uniform demagnetization fault monitoring, one approach is to analyze the change in back 

electromotive force (EMF) characteristics of the PMSMs [9]. The demagnetization fault can cause a 

decrease in the amplitude and distortion of the back EMF waveform, which can be detected and 

analyzed to identify the fault condition [10]. Another method involves monitoring the change in the 

air-gap magnetic field distribution of the PMSMs using magnetic field sensors or Hall effect sensors 

[11]. The demagnetization fault affects the magnetic field distribution, and deviations from the 

normal pattern can indicate the occurrence of a fault. On the other hand, for local demagnetization 

fault monitoring, the focus is on detecting and identifying the specific regions or magnets that have 

experienced demagnetization [12]. This can be done by analyzing the harmonic components in the 

stator current or by using additional sensors, such as flux sensors or magnetic field sensors, to 

measure the magnetic field distribution and identify any deviations from the expected pattern. 

Additionally, advanced signal processing techniques, such as Fast Fourier Transform (FFT) analysis 

or wavelet analysis, can be applied to extract fault-related information from the measured signals 

[13]. 

It is worth noting that to achieve effective demagnetization fault monitoring in non-stationary 

operating conditions, advanced signal processing and pattern recognition algorithms are often 

employed. These algorithms can adaptively adjust their parameters and criteria to account for 

varying operating conditions and ensure accurate fault detection and identification. Overall, the 

development of reliable and unique fault feature extraction methods, along with the utilization of 

advanced signal processing and pattern recognition techniques, is critical for the successful online 

monitoring of demagnetization faults of the PMSMs in electric vehicles. 

2. Automated Monitoring of Uniform Demagnetization Faults in PMSMs 

2.1. Background  

The online monitoring of uniform demagnetization faults starts by detecting the internal 

electrical parameters of the motor, such as current, voltage, and magnetic flux, and then establishes 

a mathematical model for fault monitoring. By analyzing the mathematical model, specific 

parameters related to the magnetic flux, such as the amplitude and distortion of the back 

electromotive force (EMF), can be extracted and monitored. The obtained parameter information 
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enables qualitative analysis and quantitative diagnosis of demagnetization faults. Changes in these 

parameters can indicate the occurrence of demagnetization faults in the permanent magnets [14]. 

Through qualitative analysis, patterns and trends associated with demagnetization faults can be 

identified based on the mathematical model. For example, a decrease in the amplitude or distortion 

of the back EMF waveform may indicate the presence of a uniform demagnetization fault [15]. 

Quantitative observation and diagnosis involve comparing the extracted parameter values with 

predefined thresholds or reference values. If the values exceed the specified thresholds or deviate 

from the expected range, it suggests the presence of a demagnetization fault. To facilitate this process, 

real-time monitoring of the electrical parameters within the motor is required [16]. This can be 

achieved by using appropriate sensors to measure the currents and voltages in the motor and 

employing signal processing techniques to analyze and extract the relevant information. 

Additionally, advanced data analysis methods, such as model-based estimation or system 

identification, can be utilized to improve the accuracy and reliability of the monitoring system. By 

combining the mathematical model of the PMSM with real-time measurements and analysis, it 

becomes possible to qualitatively and quantitatively analyze and diagnose uniform demagnetization 

faults in the PMSM's permanent magnets [17].  

2.2. Recursive Least Squares method 

In PMSMs, it's critical to accurately estimate parameters including motor resistance, inductance, 

and EMF constant, which are governed by manufacturing tolerances or temperature changes. The 

Recursive Least Squares (RLS) method is a mathematical and computational technique used for 

parameter estimation and system identification of PMSMs. The RLS method is a valuable tool that 

enables real-time parameter estimation and adaptation, contributing to the efficiency and reliability 

of PMSM control systems. Different from traditional least squares methods, which require re-

computation of parameters by using all available data points, RLS updates parameter estimates 

sequentially as new data and ensures particularly suitable for online applications and control 

systems. In addition, RLS allows prompt alignment in the motor's behavior by employing a weighted 

least squares approach, where more recent data points can be given a higher weight in the parameter 

estimation process.  RLS-based parameter estimation has been widely used in PMSM control and 

fault detection. It helps improve control performance, efficiency, and fault tolerance by ensuring that 

the control algorithm operates with accurate and up-to-date parameter values [18].  

To meet the challenges originating from inaccuracies of modeling, a real-time and data-driven 

RLS method was used to control the current in a PMSM. The results indicated that the effectiveness 

of model predictive controllers is strongly depending on the quality of the utilized models. By using 

an RLS-based model to identify and interlock time compensation, the control system can make more 

accurate predictions about the system's behavior. This study suggests that the RLS approach is 

suitable for self-commissioning applications where the drive system needs to be set up or 

commissioned automatically without relying on predefined wide-band models. In particular, this 

study presents an advanced control strategy that combines data-driven model identification, timing 

compensation, and predictive control to enhance the performance of electric drives, particularly in 

scenarios where accurate models are not readily available or when system parameters are variable. 

[19]. 

A novel online method to estimate the complete set of parameters in PMSMs has been developed 

by Yu. By introducing an algorithm based on the RLS method, the full range of motor parameters, 

including stator resistance, d-axis and q-axis inductances, and flux linkage can be estimated in an α-

β frame. The simulation and experiment results manifest the effectiveness of the proposed full 

parameters estimation algorithms in α-β frame during both steady and transient states. Compared 

with other algorithms, it was claimed that the proposed method has the merits of faster convergence 

rate, less computational cost, and high accuracy [20]. 

Most recently, an updated RLS method, named Long-Term Memory Recursive Least Squares 

current estimation, has been developed for Finite-Control-Set Model Predictive Controllers. This 

approach can be used to identify the differential inductance and flux linkage maps without additional 
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signal injection for online self-commissioning in seconds. By continuously adapting the flux linkage 

maps, it ensures precise open-loop torque control by merely using stator resistance as the datasheet. 

The results prove the accuracy of the identified model and the superior control performance of the 

Finite-Control-Set Model Predictive Controllers during the transient and steady-state operations [21]. 

Although RLS is a powerful algorithm for parameter estimation and online monitoring, it has 

several defects, including computational complexity, memory usage, initialization, sensitivity to 

outliers, stability, convergence rate, and adaptability, to nonlinear systems. Engineers and 

practitioners should carefully consider these limitations when choosing RLS for monitoring PMSM 

and combine them with alternative methods or modifications to address specific application 

requirements. Future research in this area should be focused on improving control strategies, 

performance optimization, and fault diagnosis methods for electrical machines. These efforts may 

contribute to more efficient and reliable systems in various applications, from industrial automation 

to renewable energy generation. The first suggestion is to explore methods for extracting physical 

parameters from identified models. These parameters could be essential for various analyses and 

control strategies. The operating point control could optimize motor performance, energy efficiency, 

and responsiveness, and the long-term memory models can provide valuable support during 

transient conditions, where traditional control methods may be less effective. Long-term memory 

models can capture complex relationships and patterns in data, making them suitable for adaptive 

and data-driven control strategies. 

2.3. Current or voltage injection estimation 

Current or voltage injection estimation is a technique used in the control and estimation of 

PMSMs. In this method, a current signal is injected into the motor windings, and the resulting motor 

response is analyzed to estimate various parameters, including rotor position, rotor speed, stator 

resistance, and the states of the motor. In this method, a current waveform with known frequency 

and amplitude is injected into one or more phases of the motor's stator windings. This injected current 

perturbs the motor's operation and generates a response in the form of back-EMF and variations in 

current and voltage. After carefully measuring and analyzing the response of the injected current, the 

current and voltage signal variations and their phase relationships can be obtained. The current 

injection estimation provides a non-invasive and efficient method for estimating critical motor 

parameters without the need for additional sensors. It can also be implemented during normal motor 

operation, making it suitable for online parameter identification and control adjustments. By 

accurately estimating rotor position and speed, this sensorless control method can operate PMSMs 

without relying on costly and failure-prone position sensors [22]. 

Accurate parameter identification is imperative for sensorless field-oriented control, as it enables 

precise control of the motor. For accurate parameter identification in a high-speed PMSM that can 

improve the performance of sensorless field-oriented control, a parameter identification method 

based on current injection, which eliminates the need for a low-pass filter in the current controller, 

has been developed. This method allows the maintenance of a high control bandwidth for 14,000 rpm 

high-speed PMSMs. The estimated parameters are shown to enhance the performance at both low 

and high speeds, highlighting the accuracy of the identification process [23]. 

To ensure a reliable startup of the interior PMSM, an innovative method for the initial estimation 

of rotor position has been developed by combining enhanced high-frequency pulse signal injection 

with the injection of positive and negative d-axis current biases, shown in Figure 2. Different from 

previous methods for detecting the initial rotor position, this method divides the injection and the 

field-oriented control periods to eliminate the filters in the high-frequency response current and 

fundamental current extracting process. The estimation of magnet polarity has been achieved by the 

stimulating of positive and negative d-axis currents. In addition, to determine the rotor magnetic 

polarity, the peak values of the d-axis current during the injection period have been accumulated. 

The results indicated that the high-frequency pulse voltage signal injection method shows the merit 

of a high current control loop bandwidth without filters. More importantly, this method is robust in 

magnetic polarity identification and has a wider applicative situation. The effectiveness of the initial 
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position estimation method is verified on a 1.5 Kw interior PMSM drive platform. It was claimed that 

this approach is beneficial to enhance the reliability of magnet polarity detection and can be applied 

to standstill rotors and free-running rotors [24]. 

 

Figure 2. Sequence of improved high-frequency pulse voltage signals injection method with 

opposite voltage injection [24]. 

Current or voltage injection estimation is a valuable tool for monitoring PMSM, but it has 

limitations originating from the diagnostic capability, sensitivity to noise, steady-state operation 

assumptions, and its ability to detect nonlinearities and specific faults. As a result, it is necessary to 

complement this method with other techniques to ensure a comprehensive view of the motor's 

condition and performance. The following items should be considered as the future research 

challenges: 

1. Current and voltage injection estimation may not provide detailed diagnostic information. It 

is typically used for estimating resistance and inductance, which are essential but may not capture 

more complex issues or faults. 

2. The current or voltage injection estimation deals with a steady-state operation, in which the 

motors operate under constant speed and load conditions. However, in practical applications, motors 

are facing transient and dynamic conditions, and the current and voltage injection may not be suitable 

for capturing variations outside steady-state operation. In addition, the current and voltage injections 

are sensitive to noise and external disturbances, which can affect the accuracy of parameter 

estimation. In noisy environments or with significant disturbances, obtaining accurate parameter 

estimates can be challenging. 

3. PMSMs exhibit nonlinear behavior, especially when faults occur. The current or voltage 

injection methods may not adequately capture these nonlinearities or detect issues related to them. 

Although current or voltage injection methods can identify changes in motor parameters, it is hard 

to detect rotor faults or winding faults, which require advanced techniques and additional sensors. 

2.4. Nonsingular terminal sliding-mode control algorithm 

The nonsingular terminal sliding-mode control algorithm weakens the need for an accurate 

mathematical model of the PMASMs, making it particularly suitable for systems with uncertain or 

time-varying parameters. Unlike traditional control methods that rely on accurate motor models, this 

algorithm doesn't require precise mathematical models of the motor system. Instead, it employs a 

sliding-mode control approach with a nonsingular terminal condition, ensuring robust and precise 

control even in the presence of uncertainties and variations in the motor's parameters. This makes it 

an effective method to achieve high-performance control and improve efficiency in PMSM's various 

industrial and automotive applications [25]. 

A nonsingular fast terminal sliding mode control was designed to achieve fast and precise 

position regulation for a linear PMSM. This mode can achieve a rapid convergence of the position 

tracking error. To mitigate the problems posed by lumped disturbances and incomplete state 
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information, the authors utilized a high-order super-twisting observer to estimate the missing state 

variables, thus enhancing the robustness of the control strategy. By using the Lyapunov stability 

theory, the stability of the system was rigorously analyzed, and the results demonstrated that the 

system remains stable during operation. Real-time testing results highlight the efficiency of this 

approach, making it a valuable contribution to the field of motor control. Although this nonsingular 

sliding mode is effective for position tracking, it faces challenges when dealing with lumped 

disturbances in the system. These disturbances can result in incomplete system state information and 

may lead to chattering in the control signal [26]. 

To overcome the challenges posed by magnetic saturation effects and the lack of a maximum 

torque per ampere control guideline with unmodeled dynamic compensation based on online 

excitation level calculation in synchronous reluctance motors, an adaptive non-singular terminal 

sliding mode control scheme was developed to face the highly nonlinear and time-varying 

parameters. Figure 3 shows the control block diagram of the proposed method. It shows the speed 

tracking, current regulators, optimal current angle estimator, and parameters estimator. The main 

contributions of this method can be claimed that it can effectively track MTPA operating points, solve 

the reference current distribution problem under the influence of nonlinear and time-varying 

parameters, and reach the goal of shortening the time to reach the sliding mode surface and reducing 

chatter (undesired high-frequency oscillations) near the surface. The experimental results 

demonstrated that this control strategy achieves satisfactory dynamic performance and robustness, 

despite the nonlinearities and time-varying parameters [27]. 

 

Figure 3. Control block diagram of proposed ANFTSMC system [27]. 

Although model-free nonsingular terminal sliding-mode control algorithms have potential 

benefits, they also face problems such as complex implementation, sensitivity to chattering, and 

measurement noise due to the lack of model-based adaptation. As a result, it is hard for it to deal 

with the nonlinearities in real-time implementation. 

2.5. Sliding mode observer 

A sliding mode observer (SMO) combines observer and controller to estimate the critical motor 

variables or states in real-time of the PMSM system. SMO has been widely used in various PMSMs, 

including electric vehicle propulsion systems, robotics, and renewable energy systems, where 

sensorless operation is preferred for higher efficiency and reliability. In this control mode, a robust 

control technique is used to guarantee the stability and accuracy of the system even with uncertainties 

and disturbances. The key variables include rotor position, rotor speed, and rotor flux, which are 

critical for precise motor control, especially in sensorless operations to reduce cost and complexity. 

SMO continuously updates its estimation to track the actual values. One of the palpable merits of 

SMO is its robustness to system parameter variations, load disturbances, and sensor inaccuracies. It 

allows for accurate estimation even under changing operating conditions. SMO not only plays a key 

role in sensorless control strategies but also provides accurate estimation of essential variables 

without additional sensors, thus reducing cost and increasing reliability [28]. 
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To enhance the tracking performance of speed controllers in PMSM drive systems, an extended 

state observer-based sliding mode observer was designed to handle various disturbances in real-time, 

including internal parameter variations and external load changes, based on an upper bound estimate 

of the total disturbance. Through this method, the extended state observer's parameters could be 

configured according to the desired bandwidth of the observer, and the estimated total disturbance 

obtained from the observer was used to continuously update the control law in real-time. The results 

indicated an improved speed-tracking performance and robustness against disturbances without 

sacrificing the fast dynamic response. The stability of the closed-loop PMSM drive system with the 

proposed control is rigorously demonstrated through the Lyapunov theory. Experimental results 

from a 200 W salient pole PMSM drive system confirm the practical efficiency of this strategy [29]. 

Similarly, another study introduces an active disturbance rejection-based sliding-mode current 

control to enhance the tracking performance of current controllers in PMSM drive systems when 

facing internal disturbances. The schematic demonstration is shown in Figure 4. The results indicated 

that the current controller can significantly improve both steady-state and transient current tracking 

performance, along with reinforcing the robustness to internal disturbances [30]. 

 

Figure 4. Schematic illustration of an FOC-based PMSM drive system with an SMO [30]. 

Apart from the state observer-based sliding mode observer and the active disturbance rejection-

based observer, a fuzzy sliding mode observer with a sensorless control strategy was introduced for 

PMSMs. This approach built a sliding mode observer that adheres to the Lyapunov stability condition. 

Instead of the traditional sign function, in this study, a sigmoid function was developed as the 

switching function within the sliding mode observer. The contribution of this study lies in adjusting 

the parameters of the sigmoid function in real-time through the established fuzzy rules, which 

effectively modifies the convergence characteristics of the sigmoid function to enhance observation 

performance. Furthermore, the EMF signals, which were extracted by the sliding mode observer, 

have been smoothed by using a back EMF adaptive law. This is beneficial to reduce the chatter and 

observation errors of the system. The proposed fuzzy sliding mode observer has been experimentally 

verified on a 2kW surface-mounted PMSM vector control platform and validated through a 

Matlab/Simulink simulation. Both simulation and experimental results have proved the effectiveness 

of this method in tracking changes in rotor speed and position during motor speed reversals [31]. 

Even though SMO provides an accurate estimation for the online monitoring of PMSMs, from 

the perspectives of model mismatch, sensitivity to disturbances and noise, design complexity, limited 

fault detection capabilities, limited information about mechanical components, computational load, 

and nonlinearities, it is still facing challenges. First, SMOs significantly depend on a mathematical 

model of the system to create a sliding surface. If the model used in the observer differs significantly 

from the actual motor dynamics due to parameter variations, nonlinearities, or modeling 

inaccuracies, the SMO's performance can be degraded, thus leading to inaccurate state estimates. In 
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addition, like other nonlinear observers, SMOs are sensitive to disturbances and measurement of 

noise. External disturbances or noisy sensor measurements can disrupt the sliding mode behavior 

and affect the quality of state estimation. 

2.6. Luenberger observer 

Luenberger observer, also called Luenberger state observer, is a control method applied in 

PMSM to estimate the unmeasurable internal states or variables of PMSM, including rotor position, 

rotor flux, and rotor speed. These variables are hard to measure directly but extremely critical for 

motor control. By developing a mathematical model, Luenberger observer can describe the evolution 

process of the internal states. Subsequently, by combining this model with the available 

measurements, the states' current values can be estimated by the Luenberger observer by feeding 

back into the motor control system, allowing the controller to make real-time adjustments based on 

the estimated states. Luenberger observers can provide accurate state estimation with the presence 

of disturbances and inaccuracies. It is robust to measure noise and uncertainties in the motor model 

and operates in real-time, continuously updating its estimation as new measurements without 

additional sensors [32].  

To overcome the limitations of substantial computational requirements and steady-state current 

errors in the presence of parameter mismatches, a low-complexity, three-vector-based model 

predictive current control method with reduced steady-state current errors for the PMSM drive 

system has been developed. The optimal voltage vector combination is selected to relieve the 

computational burden associated with the three-vector-based model. To mitigate steady-state current 

errors stemming from parameter mismatches, a Luenberger observer is incorporated to estimate the 

collective disturbance caused by parameter mismatches and unmodeled dynamics. The estimated 

disturbance is then used for compensation within the model. The testing results indicated that the 

three-vector-based low complexity model predictive current control can reduce the computational 

complexity without sacrificing the dynamic and static performance. This method not only can reduce 

the steady-state current error resulting from the parameter mismatch and unmodelled dynamics, but 

also improve the robustness against parameter variation [33]. 

To reduce the impact of external load disturbances, a load torque Luenberger observer is 

developed to mitigate the slow response speed and the chattering phenomenon in the general sliding 

mode control of PMSMs. This strategy is designed to enhance the ability to withstand external 

interference. An experimental platform for a PMSM is established to evaluate the performance of the 

proposed control strategy and the effectiveness of the observer, and the block diagram of the control 

system is shown in Figure 5. The experimental results demonstrate that the load torque Luenberger 

observer excels at accurately estimating the actual load torque and tracking the motor's real speed. 

Furthermore, the global fast terminal sliding mode control strategy substantially enhances the 

motor's response speed and bolsters the system's robustness [34]. 

 

Figure 5. PMSM control system block diagram [34]. 
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Although the Luenberger observer is a powerful tool to estimate the states of PMSMs, it has 

limitations related to model dependency, sensitivity to parameter variations, limited fault detection 

capabilities, convergence and stability concerns, computational complexity, sensitivity to noise, and 

limited information about mechanical components.  

1. Luenberger observers rely on a mathematical model of the system to estimate the states. For 

the PMSMs, the accuracy of the observer is highly dependent on the accuracy of the motor model 

used. Any discrepancies between the model and the actual motor behavior can lead to inaccurate 

state estimates. PMSMs can experience variations in parameters over time due to factors like 

temperature changes, aging, and manufacturing tolerances. The Luenberger observer may not adapt 

well to these parameter variations and can result in inaccurate state estimates if the model parameters 

are not updated. While the Luenberger observer can estimate the states of a motor, it is primarily a 

state estimation technique and may not be well-suited for detecting specific motor faults or anomalies. 

Fault detection typically requires additional techniques and sensors. 

2. The Luenberger observer's convergence and stability depend on the eigenvalues of the 

system's dynamic matrix. If the eigenvalues are poorly conditioned or close to the imaginary axis, the 

observer may converge slowly or exhibit instability, especially in the presence of measurement noise. 

The Luenberger observer involves solving a set of differential equations in real time, which can be 

computationally intensive, especially for high-dimensional systems or systems with complex 

dynamics. This can be a limitation in real-time applications with limited computational resources. 

3. Accurate initial state estimates are crucial for the Luenberger observer to provide reliable 

estimates. If the initial state estimates are far from the true values, it may take some time for the 

observer to converge to the correct estimates, leading to inaccuracies during the transient phase. Like 

any state estimation technique, the Luenberger observer is sensitive to measurement noise. In practice, 

sensor noise can degrade the accuracy of state estimates, particularly when measurements are noisy 

or corrupted. The Luenberger observer primarily focuses on estimating the electrical states of the 

motor, such as rotor flux and stator currents. It may not provide detailed information about 

mechanical components, such as bearings or load-related issues. 

2.7. Model reference adaptive system observer 

Model Reference Adaptive System (MRAS) observers are suitable for sensorless control of 

PMSMs in electric vehicles, industrial machinery, robotics, and renewable energy systems. MRAS 

observers are designed to be robust to disturbances, noise in measurements, and variations in motor 

parameters. They provide reliable state or parameter estimates under various operating conditions. 

Similar to the sliding mode observers, the primary purpose of the MRAS observer is to estimate 

unmeasurable states or parameters, such as rotor position, rotor speed, and rotor flux of the PMSM. 

MRAS observers can adjust their internal model or reference to minimize the error between the 

estimated states and the actual measurements. This adaptation enables them to handle varying 

operating conditions and load changes. MRAS observers use a reference model that represents the 

expected behavior of the PMSM under nominal conditions. The discrepancies between the model and 

the actual system are compensated through adaptation, allowing the observer to provide accurate 

estimates even in the presence of model uncertainties. MRAS observers are less sensitive to variations 

in motor parameters and load conditions compared to traditional observers, making them well-suited 

for applications where these factors may change dynamically. The estimated states or parameters 

generated by the MRAS observer are typically used as feedback in the motor control system. This 

feedback allows the controller to adjust the control signals in real time based on the estimated states, 

enabling precise motor control [35].  

To monitor the position and speed of a PMSM, an MRAS approach was developed by 

considering the error between actual and estimated rotor position values. A state equation for the 

PMSM was formulated within the synchronous d-q reference frame. This frame relies on the 

estimated speed and the nominal parameters of the PMSM. Figure 6 presents the scheme of the block 

diagrams of the sensorless control system. The primary contribution of this approach is the MRAS 

adaptation scheme, which aims to estimate the rotor position and speed while minimizing the errors 
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between the derivatives of d-q axis currents of the real system and the model system. Experimental 

results demonstrate strong performance and accurate speed-tracking capabilities when compared to 

the sliding mode observer under various speed and load torque conditions [36]. 

 

 

Figure 6. Scheme of the MRAS and the overall block diagrams of the sensorless control 

system [36]. 

To enhance the motor's performance in standstill and low-speed operating regions, a 

straightforward and robust approach for sensorless control of a surface mount PMSM drive was 

developed based on an electromagnetic torque-based MRAS speed estimator, combined with a 

cascaded pseudo derivative feedback controller. In this approach, a small signal model was 

employed to analyze the stability and sensitivity of the estimator. The testing results indicated that 

the estimator remains stable in a wide range of speed regions, and exhibits robustness against 

uncertainties in machine parameters. To further confirm the benefits of this approach, the estimator 

was implemented on a 1.5-kW laboratory prototype PMSM drive using an ALTERA Cyclone II field 

programmable gate array (FPGA). The experimental results further affirmed the efficacy of the 

method under various test conditions in a wide and adjustable speed range, including low-speed 

regions and standstill conditions [37]. 

MRAS algorithm faces difficulties in designing the adaptive law to ensure the simultaneous 

convergence of multiple parameters and determining control parameters. The Extended Kalman 

Filter algorithm incorporates noise factors and effectively reduces the influence of system noise on 

identification results, thereby improving identification accuracy.  

2.8. Kalman filter  

Kalman filter is a recursive algorithm, meaning it continually updates its estimation based on 

new measurements. It is beneficial to mitigate the defects of the MRAS observer in PMSMs. The block 

diagram is shown in Figure 7. As can be seen from this figure, the Kalman filter can be used to 
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estimate unmeasurable states or parameters within the motor system, such as rotor position and 

speed. This adaptability is particularly valuable in real-time applications like motor control. In 

PMSMs, it can integrate measurements from various sensors, such as encoders, resolvers, and current 

sensors, to provide a more accurate and robust estimation of motor states. The Kalman Filter 

leverages a mathematical model, which predicts the expected behavior of the PMSM system, given 

the current state and control inputs. It minimizes the error between the predicted state (based on the 

model) and the measured state (based on sensor readings) by adjusting the filter's gain. This 

minimization process optimally balances the contributions of the model and measurements to 

improve estimation accuracy. The filter can account for various sources of noise, including sensor 

noise and process noise. This makes it suitable for applications where measurements are subject to 

uncertainty and variability. Kalman Filters are computationally efficient, making them well-suited 

for embedded systems and applications with limited computational resources [38]. 

 

Figure 7. Block diagram of Kalman filter [39]. 

A novel approach was proposed to detect partial demagnetization faults in running PMSMs 

under nonstationary conditions. This method was developed based on tracking the characteristic 

orders of the stator current by using the Vold-Kalman Filter, in which the amplitude of these fault 

characteristic orders was used as an indicator. The proposed method has been experimentally 

assessed and demonstrated outstanding performance in detecting partial demagnetization faults in 

PMSMs under various speed and load conditions. [40]: 

For diagnosing single and multiple open-switch faults in three-phase PMSM drives, a real-time 

estimation was tested based on three-phase motor currents with three Kalman filters. In this method, 

the residual signals were analyzed by comparing the differences between the measured and 

estimated stator currents for each phase. The averaged normalized residual signals were defined as 

diagnostic criteria, which were used to identify the presence of open-switch faults, locate the faulty 

switches, and distinguish open-switch faults from the current sensor, for detecting open-switch 

faults. The main advantages of this method are the fast detection times, robustness to measurement 

noises and errors, and the ability to handle load variations. It can be applied in both closed-loop and 

open-loop PMSM drives, and act as a subroutine in the drive control unit without requiring 

additional hardware. The effectiveness of the proposed method has been verified through extensive 

simulations and hardware-in-the-loop experiments by using a 1.5 kW PMSM and a low-cost 

microprocessor technology. The testing results indicated that, although the execution time is 

relatively long, this KF-based method can serve as an efficient and reliable approach for diagnosing 

open-switch faults in PMSM drives, making it a valuable tool for maintenance and fault detection in 

motor control systems [41]. 

To reduce the execution time of the Kalman Filter estimator but no sacrificing the accuracy for 

sensorless control of PMSMs, an Extended Kalman Filter was applied along with an ARM Cortex-M3 

microcontroller. This study implemented various optimization levels to relieve the arithmetic 

calculation burden. Through these optimizations, the execution time of the Extended Kalman Filter 

estimator was significantly reduced from 260.4 μs to 37.7 μs, while maintaining the accuracy. By 
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exploring the relationship between the frequency of Kalman gain, covariance matrices, and the rotor 

electrical frequency, the simulations and experimental results confirmed the effectiveness of these 

techniques in achieving accurate and efficient sensorless real-time control of PMSMs in resource-

constrained environments [39]. 

While Kalman Filter is a powerful tool for state estimation and monitoring, a few concerns, 

including the model dependency, sensitivity to model errors, initialization challenges, sensitivity to 

nonlinearities, computational complexity, measurement noise, limited fault detection capabilities, 

difficulty in handling parameter variability, limited information about mechanical components, and 

challenges with multimodal noise distributions, should be considered before the practical 

applications. First, the Kalman filter is significantly dependent on a mathematical model that 

describes the system's dynamics. If the model cannot represent the motor's behavior accurately due 

to parameter variations, nonlinearities, or modeling inaccuracies, the filter's performance can be 

compromised, thus sacrificing the accuracy of the estimation. Second, accurate initialization is critical 

for the Kalman filter to provide reliable state estimation. If the initial state estimation is far from the 

actual state, the filter may converge, thus leading to inaccuracies during the transient phase. In 

addition, the standard Kalman filter is designed for linear systems, it may not perform well when 

dealing with highly nonlinear motor behaviors or abrupt changes in dynamics. Third, Kalman filters 

are computationally intensive, especially for high-dimensional systems or systems with complex 

dynamics. Therefore, in real-time monitoring systems with limited computational resources, it could 

be confined. Finally, the Kalman filter faces the challenges of rapid or significant changes in motor 

parameters, such as sudden load variations, especially with the unimodal Gaussian distributions for 

process and measurement noise, achieving accurate state estimates during such transient conditions 

can be difficult. 

2.9. Adaptive inertia weight particle swarm optimization algorithm 

The adaptive inertia weight particle swarm optimization (AIWPSO) algorithm is a specialized 

optimization technique aimed at enhancing the performance and efficiency of PMSMs. This method 

extends the conventional Particle Swarm Optimization (PSO) approach to handle the intricate and 

ever-changing optimization challenges inherent in PMSM control and design. In the realm of PMSMs, 

AIWPSO is employed to tune a range of factors, including motor parameters, control strategies, and 

efficiency enhancements. One of its key benefits is its ability to dynamically strike a balance between 

exploration and exploitation during the optimization process. This adaptability empowers the 

algorithm to effectively navigate the solution space, rendering it particularly well-suited for 

optimizing PMSMs operating under variable conditions and system parameters. Consequently, its 

adaptive nature equips it to address the intricacies of PMSMs, ultimately contributing to superior 

motor performance and efficiency, even when grappling with dynamic and uncertain factors in 

motor design and control [42–44]. 

Cheng Yong introduced an approach for the online identification of electrical and mechanical 

parameters in PMSM by using an adaptive inertia weight particle swarm optimization algorithm 

based on logical functions. Compared with traditional complex and inefficient methods for 

parameter identification, the authors leverage a logistic function-based adaptive inertia weight 

particle swarm optimization algorithm to achieve precise online identification of both electrical and 

mechanical parameters in PMSMs. The experimental results proved the algorithm's ability to 

accurately identify key motor parameters in real time. This approach sheds light on how to realize a 

faster convergence with improved accuracy [45].  

Recently, an enhanced optimization technique, named as hybrid particle swarm optimization 

algorithm was designed to address the parameter optimization challenges in the development of a 

servo system in PMSMs. This algorithm incorporates a unique directional mutation operation applied 

to the particles within the optimization process. This operation involves fixing the positions of 

specific particles to enhance their search capability in remote regions. To complement the directional 

mutation operation, the algorithm also refines the formula used for updating particle velocities. The 

servo system itself features a speed control mechanism based on biological intelligence regulation 
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and a position controller with feedforward compensation. The servo system uses the id = 0 strategy in 

field-oriented control, as shown in Figure 8. The main contribution of this study can be claimed as 

follows. First, a directional mutation operation was presented to increase the searching ability to 

select remote regions. Second, a linear decreasing strategy of inertia weight and a modified velocity 

updating formula were developed to control the convergence process. Third, the biological 

intelligence controller and the feedforward compensation strategy were implemented in the speed 

and position servo system to enhance the steady state and dynamic performance. Finally, the 

algorithm can solve complex parameter setting and coordination problems of the designed 

controllers [46]. 

 

Figure 8. Structural diagram of the swarm optimization algorithm [46]. 

It is no doubt that the AIWPSO has great potential to be used for online monitoring of PMSMs, 

however, it has defects due to the confinement of computational intensity, search space size, lack of 

physical insights, constraint handling, initialization sensitivity, handling noisy data, lack of real-time 

adaptation, limited fault detection capabilities, convergence to local optima, and challenges in 

handling nonlinearities. The following aspects could be considered as the future research trends: 

1. AIWPSO can be computationally intensive, especially when facing a complex optimization 

process. In real-time monitoring applications, in which quick responses are required, the heavy 

computational load of AIWPSO is quite challenging, especially when the motor system is high-

dimensional or involves complex dynamics. In these high-dimensional parameter spaces, it is hard 

for the AIWPSO to explore and search such vast parameter spaces efficiently, leading to slow 

convergence and suboptimal solutions. Furthermore, due to the AIWPSO being a model-free 

optimization technique, the lack of physical insights is a limitation when compared to model-based 

techniques that utilize known system dynamics. 

2. AIWPSO is primarily an optimization tool and may not inherently provide fault detection 

capabilities. When facing noise or measurement errors during the online monitoring process, 

AIWPSO finds it hard to present accurate parameter estimation or control policies without 

incorporating additional complexity, due to the lack of robust to noisy input, especially the innate 

nonlinear behaviors when faults occur. Furthermore, AIWPSO is typically not well-suited for real-

time adaptation or control adjustments. The optimization process may take considerable time, 

making AIWPSO less suitable for applications that require rapid responses to changing motor 

conditions. The accuracy of the AIWPSO can be sensitive to the initial parameter settings. Weak 

initializations will result in suboptimal or premature convergent solutions. 
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2.10. Artificial Intelligence Algorithms 

The method of online monitoring for uniform demagnetization faults in PMSMs based on 

artificial intelligence algorithms involves the use of machine learning and data analysis techniques 

for fault detection and diagnosis. This method utilizes machine learning algorithms and data analysis 

techniques to learn and recognize the characteristic patterns of demagnetization faults from a large 

amount of data, enabling real-time monitoring and automatic identification of such faults. In this 

approach, a significant amount of operational data is collected, including parameters such as current, 

voltage, speed, and temperature. Appropriate feature extraction techniques, such as spectral features, 

time-domain features, and statistical features, are applied to extract useful information from the data. 

Machine learning algorithms such as support vector machines (SVM), neural networks (NN), 

decision trees (DT), and deep learning are then employed to train and model the extracted features. 

Once the training is complete, the system can collect real-time data from the PMSM and input it into 

the trained model for fault detection and diagnosis. The model utilizes the learned patterns to 

determine the presence of local demagnetization faults and provides corresponding diagnostic 

results [47–49]. 

An artificial intelligence algorithm for detecting inter-turn short-circuit faults in PMSMs was 

proposed by using machine learning techniques. In this study, the machine learning technique was 

leveraged to enable the early detection of minor inter-turn short-circuit faults, facilitating the timely 

replacement of faulty motors. Additionally, the machine learning technique was applied to 

distinguish minor, moderate, and severe faults, and thus guide appropriate maintenance actions. By 

using Support Vector Machines and Convolutional Neural Networks for training the diagnostic 

model, experimental data were collected from laboratory tests. It was found that the SVMs could 

optimize training by selecting relevant features based on the PMSM mathematical model, while the 

CNNs were data-driven and typically required more extensive datasets for effective training. Both 

methods exhibit impressive accuracy, but the SVMs achieve this accuracy with significantly less data, 

demonstrating the advantages of a model-aided machine learning approach [50]. 

Model Predictive Control (MPC) has gained significant popularity as a control technique for 

motor drives due to its exceptional dynamic performance. Constant Switching Frequency MPC (CSF-

MPC) is a variation of MPC that offers the benefits of MPC while maintaining a constant switching 

frequency. However, selecting the appropriate weighting factors for the cost function in CSF-MPC 

can be a challenging task. To address this challenge, a specific Artificial Neural Network was 

optimized by using a genetic algorithm. The objective of this study is to automate and expedite the 

selection of optimal weighting factors for CSF-MPC in PMSM drives powered by a three-level T-type 

inverter. The methodology involves gathering key performance metrics such as Total Harmonic 

Distortion (THD) and switching frequency error through simulation. These data were utilized to train 

and evaluate the algorithm. It was claimed that the trained model can automatically and accurately 

select the optimal weighting factors, aiming to minimize the THD and error under various operating 

conditions [8]. 

The AI-based approach offers high accuracy and robustness, capable of adapting to different 

operating conditions and fault modes; however, there are challenges in using AI algorithms for online 

monitoring of local demagnetization faults. Sufficient training data and appropriate feature selection 

are necessary to ensure the accuracy and reliability of the model. Additionally, the design and 

optimization of the algorithm need to consider real-time performance and computational complexity. 

The robustness and generalizability of the model also require thorough validation and testing. With 

the continuous development and improvement of AI technology, the AI-based method for online 

monitoring of local demagnetization faults is expected to find widespread applications in industrial 

practice, providing more effective solutions for motor fault diagnosis and maintenance. Due to the 

rapid development and the advantages of artificial intelligence algorithms, as well as their reduced 

dependency on motor parameters and mathematical-physical models, an increasing number of 

research studies have focused on fault diagnosis in the field. AI-based diagnostic methods involve 

the collection and processing of appropriate signals to extract fault feature vectors from the motor. 

Then, using the autonomous learning and predictive capabilities of artificial intelligence, the methods 
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diagnose and identify the motor fault modes. However, this approach requires extensive training and 

involves significant computational complexity. Implementing diagnostic methods based on artificial 

intelligence algorithms can be challenging. 

3. Concluding Remarks, challenges, and future trends 

Automated monitoring of demagnetization faults in PMSMs is a complex task that involves 

addressing challenges related to early fault detection, data collection, complexity of data, noise and 

interference, modeling, temperature effects, complex operating conditions, fault classification, real-

time implementation, integration with control systems, maintenance planning, and cost 

considerations. Successfully overcoming these challenges requires a multidisciplinary approach, 

combining expertise in electrical engineering, signal processing, data analysis, and industrial 

maintenance practices. The following areas might be considered as the future research focus to solve 

the above-mentioned problems. 

1. In most cases, demagnetization faults are slowly developed, and their effects may not be 

immediately apparent in motor performance or monitoring data. As a result, detecting 

demagnetization faults at an early stage is crucial for preventing further damage and ensuring motor 

reliability.  

2. Gathering the necessary data for monitoring demagnetization faults requires specialized 

sensors and data acquisition systems capable of measuring magnetic properties and temperature 

variations within the motor. The data generated by sensors for monitoring demagnetization faults 

can be complex and high-dimensional. Analyzing and interpreting this data in real-time can be 

computationally intensive and may require advanced signal-processing techniques. 

3. Sensor measurements may be susceptible to noise and electromagnetic interference, which 

can impact the accuracy of demagnetization fault detection algorithms. Filtering out noise while 

preserving relevant information is a non-trivial task. Demagnetization faults are often associated with 

temperature increases in the magnets. Monitoring and interpreting temperature variations within the 

motor are critical but challenging tasks, as temperature sensors may not be uniformly distributed or 

easily accessible. 

4. Developing accurate models for PMSMs and establishing baseline data for normal operation 

are essential for detecting deviations caused by demagnetization. Model-based approaches require a 

thorough understanding of motor behavior and parameter variations. 

5. Identifying the specific type and extent of demagnetization (e.g., partial or complete) can be 

difficult. Developing algorithms capable of classifying and quantifying the severity of 

demagnetization is essential for maintenance decisions. Real-time monitoring and decision-making 

are critical for preventing further damage. Implementing real-time demagnetization fault detection 

algorithms can be resource-intensive and require fast computational platforms. 

In conclusion, automated monitoring of uniform demagnetization faults in PMSMs represents a 

vital component of modern motor maintenance and reliability strategies. Uniform demagnetization 

faults, which occur due to temperature variations or mechanical stress, gradually weaken the 

permanent magnet materials in the motors. This degradation will lead to efficiency reduction of 

motors, increasing energy consumption, and potentially catastrophic failures. To tackle this issue, 

automated monitoring systems must be developed to continuously assess the health conditions of 

PMSMs. These systems employ a combination of sensors, data analysis algorithms, and real-time 

monitoring techniques. In this review article, typical automated monitoring methods, including the 

recursive least squares method, current or voltage injection estimation, nonsingular terminal sliding-

mode control algorithm, sliding mode observer, Luenberger observer, model reference adaptive 

system observer, Kalman filter, adaptive inertia weight particle swarm optimization algorithm, and 

artificial intelligence algorithm, were summarized. The main contributions and defects of these 

methods were analyzed and the future research trends were discussed as well. It is beneficial to 

manufacture highly effective and sustainable permanent magnet synchronous motors.  
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