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Abstract: Ballasted railway tracks can be modelled using reduced/simplified models composed of 

several layers of discrete components. This paper deals with the two-layer model, which is very 

popular due to its computational efficiency. In order to provide some recommendations for track 

design, it is necessary to identify which set of parameters leads to some irregular/unexpected 

behavior. Such irregularity is investigated at three levels, such as: (i) critical velocity of moving 

constant force; (ii) instability of a single moving mass; (iii) instability of two moving masses. All 

results are presented in dimensionless form to cover a wide range of real parameters. Irregular cases 

are identified by sets of parameters leading to them and then general conclusions are drawn. 

Regarding the method, all results are obtained analytically or semianalytically, where “semi” refers 

to solving the roots of a given polynomial by predefined numerical procedures in symbolic 

software. No numerical integration is involved in all results presented. This means that the results 

are highly accurate and refer to exact values, so any kind of parametric or sensitivity analyses is 

readily possible. 

Keywords: integral transforms; contour integration; ballasted railway track; critical velocity; 

instability of moving inertial objects 

 

1. Introduction 

The two-layer railway track model is widely used by other researchers to approximate several 

phenomena. Here it will be used to identify the set of parameters under which it exhibits irregular 

behavior, i.e., behavior that is not expected. 

In recent decades, a considerable amount of research has been presented in this area, proving 

that it is an area of great interest and still very active thanks to the current trend of decarbonization, 

which require shifting road transport to rail. With this in mind, it is not possible to cover all relevant 

research in this section. Therefore, emphasis will be placed on similar solution techniques, avoiding 

finite and boundary element methods in this review. 

To classify published works, the separation can be done according to structure: finite or infinite; 

or according to moving objects: moving force(s) or moving inertial object(s) like mass(es) or 

oscillator(s) or even simplified vehicle models. After that, the structure can be further divided into 

continuous 2D or 3D, or discrete, which usually consists of several layers. Further separation can 

distinguish fully linear or non-linear behavior. 

When building a literature review, it is customary to start with Frýba's monograph [1], which 

includes several cases mentioned in the previous paragraph. The moving force problem is generally 

much simpler, fully analytical solutions for infinite structures are given in [2-3]. The critical velocity 

is also determined, but in such structures with massless foundations, waves cannot propagate in the 

foundation, so the conclusions are unrealistic. With the base mass included, the results are more 

realistic [4-6]. 

Pioneering works on instability of moving inertial objects include [7-8] for finite beams and 

several moving masses and [9] for infinite. Furthermore, the subject of single moving mass is 
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described in detail in [10-11], where the instability is determined using the D-decomposition method. 

Several moving inertial objects on finite structures have been recently analyzed in [12-14]. Other 

works about infinite structures are also implementing the D-decomposition method together with 

the dynamic Green´s function [15-18] or integral transforms [19-20]. It is commonly assumed that the 

mass is in permanent contact with the beam, [19-20], however, in some works a contact spring is 

introduced, [15-18]. The critical velocity of the moving force is then usually not analyzed. A 

connection with the critical velocity and different approach to identifying instability by tracing the 

instability lines is presented in [21-22]. This approach is also suitable for the problem of two moving 

proximate masses, where a strong dynamic interaction can significantly alter the onset of instability. 

It can also derive the conditions under which the results can be superposed and identify cases where 

the dynamic interaction induces instability at a velocity lower than the lowest critical velocity of the 

moving force. The mentioned approach can be readily extended to moving oscillators. 

Recent works deal with more complicated moving objects or foundation, [23-25]. Further 

extensions going to the large deflections are considered in [26]. The change in stiffness of the Winkler 

foundation introduced with a smooth variation is analyzed in [27-28]. A moving force is applied in 

[27], while a moving oscillator in [28]. A comparison of possible methods for solving similar problems 

is presented in [29]. When inhomogeneity is considered, the moving element method, successfully 

applied in [30-33], or the moving window, [34], should also be mentioned, because they are efficient 

in dealing with such situations. In [33] a computationally efficient and accurate numerical method 

for the dynamic response of a maglev train passing on an "infinitely" long multi-span bridge is 

proposed. The results are validated against test cases from the literature. A novel model for the 

dynamic interaction of the beam with its foundation is introduced in [35]. It is shown that the Winkler 

and Pasternak moduli are not constant but time-dependent because they are influenced by the beam–

foundation interaction. Therefore, they are determined as a part of the solution so as the mass that is 

dynamically activated in the foundation. 

The two-layer model of the railway track is quite popular and was used to achieve several 

objectives, like e.g. in [36-37]. The three-layer model is more realistic and its applicability to represent 

full finite element models is dealt with in [38] where also the question of the critical velocity of the 

moving force is briefly discussed. Among other recent works on layered models, [39] can be 

mentioned. A very long finite three-layer model is considered in [40]. The modal expansion method 

is applied to a reduced model to increase computational efficiency. A control volume is used to 

reduce the computational domain and the structure is traversed by a multi-body model of the vehicle. 

In this paper, the two-layer model is analyzed from a different point of view. The goal is to 

establish the range of parameters leading to irregular behavior, where by “irregular” it is meant 

“different than expected”. In Section 2, the model is introduced, and these irregular situations are 

described in detail. Furthermore, the range of allowable parameters is identified in Section 3. After 

that, three sections are devoted to three topics where irregularity may occur. Finally, some 

conclusions are drawn in Section 7. 

2. The Model: Governing Equations and Irregular Situations 

The track is modelled as an infinite Euler-Bernoulli beam standing for the rail, supported by 

spring-damper elements representing the rail pads, 
p

k  and p
c , point masses modelling the sleeper 

half-masses 
sM  and supported further by spring-damper elements representing the vertical 

stiffness and damping of all other layers, f
k  and f

c , that is the ballast, sub-ballast and foundation 

and other layers that might be placed below the sleepers. The rail may be subjected to an axial force 

N . The model is shown in Figure 1. 
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Figure 1. The two-layer model of a ballasted railway track subjected to an axial force and traversing 

by two proximate masses acted on by constant vertical forces. 

The equations of motion in fixed coordinates where x  is the spatial coordinate and t  is the 

time, of the model depicted in Figure 1 are  

( ) ( ) ( ), , , , ,
,xxxx xx tt p t t pEIw Nw mw c w u k w u p x t+ + + − + − =  (1) 

( ) ( ), , , , ,
0s tt p t t p f s xx f tM u c w u k w u k u k u c u− − − − + − + =  (2) 

where, in addition to the parameters defined previously, EI  and m  are bending stiffness and 

mass per unit length of the beam, ( ),w x t  and ( ),u x t  are the unknown vertical displacement 

fields of the beam and discrete masses, respectively, and ( ),p x t  means the load. Derivatives are 

denoted by the respective variables in subscripts preceded by a comma. The load is given by 

( ) ( )( ) ( ) ( )( ) ( )1 1 01, 1 2 2 02, 2
, tt ttp x t P M w t x x P M w t x xδ δ= − − + − −  (3) 

where 
1

P  and 
2

P  are the moving forces, 
1

M  and 
2

M  the moving masses, v  is the velocity and 

2 1
d x x= −  is the distance between the moving masses. Without affecting generality too much, all 

parameters are assumed to be distributed to simplify the solution. In Figure 1 there is also a shear 

component 
sk  because the model should have some shear stiffness. Placing it between sleepers is 

not very realistic, but this is immaterial for the analysis. 

In the following, an active point (AP) will be used to spatially locate a moving object on a beam, 

which will be either force or mass with force. The critical velocity (CV) will be used for the critical 

velocity of a moving constant force. In this sense it is a resonance effect because in the undamped 

scenario if the force is moving at its critical velocity, then there is no steady-state solution as it tends 

to infinity. CV indicates the separation between two distinct types of beam shape. Up to the lowest 

CV, approaching the lowest CV from below, the maximum deflection of the steady-state solution is 

reached at the AP. The minimum deflections are significantly lower than the maximum. There is no 

solution for CV and for velocities higher than CV there is zero deflection at AP and equal values for 

maxima and minima across the full beam. Similar properties can be found at higher CVs, in particular 

the most characteristic identification is preserved as a jump to zero deflection at the AP when crossing 

the CV. 

Since the model has two layers, it is expected to have two CVs. By analyzing the equations, one 

or three resonances are found to exist. When there are three, then the arrangement finds that the mean 

value is the so-called false critical velocity (FCV), [v], which means that there is resonance, no steady-

state solution, but the CV properties are not met, and there is also no connection to instability. The 

regular case is therefore the case with three resonances and the irregular case with only one, where 

the lowest CV must be replaced by the so-called pseudocritical velocity (PCV). 
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To access the instability conditions, either for one or two moving masses, instability lines (IL) 

will be traced in the moving mass-velocity plane. This approach is simpler than the D-decomposition 

method used by other authors. It simply means looking for the real mass induced frequency (MIF) 

that solves the characteristic equation in the damped case, since the real MIF always marks the 

separation between the stable and unstable regions. 

In the case of a single moving mass, instability never occurs in the subcritical velocity range, but 

in the case of only one resonance, the PCV must play the role of a lower CV. Only two IL branches 

are expected to exist, tending to infinite moving mass near CV and zero mass for infinite velocity. 

The ILs for lower damping are below those for higher damping and do not cross. Moreover, 

asymptotically, the branches approach CVs better from the left than from the right. Irregular cases 

are characterized by a situation where the IL cross the higher CV. In such a case, there are usually 

more than only two branches and the additional ones can also form closed curves. 

Unfortunately, for the two moving masses, the CVs do not provide any reasonable indication. 

The ILs generally cross both CVs, and there is an infinite number of IL branches whose asymptotes 

are not linked to the CVs. An irregular situation is thus identified as one where instability occurs due 

to dynamic interaction in a subcritical range of velocities. However, since the lower CV or PCV are 

always crossed, the condition must be defined differently. Crossover can occur for unrealistically 

high moving mass and this value will not be lower in the subcritical range. In such a case, it can be 

called regular behavior, because as for one moving mass with realistic value, the instability will 

always occur in the supercritical velocity region. The irregular situation will thus be such that after 

crossing the lower CV, the IL will decrease to realistic masses, which will push the instability into the 

subcritical range of velocities, unlike the single moving mass case where this can never happen. 

It should be noted that IL cannot terminate suddenly, a detailed analysis has shown that there 

is always a continuation until it is closed or reaches an asymptote. The asymptotes are of three 

different kinds: (i) they tend to infinite mass because the real MIF tends to zero; (ii) they tend to 

infinite mass because the other terms tend to zero (this can be seen by the fact that as IF changes 

smoothly, the mass increases infinitely and suddenly jumps to infinite negative values); (iii) they tend 

to zero mass with increasing velocity. 

3. Range of Allowable Values 

The following discussion is provided to define the range of allowable values. As for the rail, the 

range of possible values is quite narrow, basically there are two guide sets of values for the 54E1 and 

60E1 rails, determining the limits on EI  and m . More variability can be attributed to other data. 

They are listed in Table 1 and correspond to the values given in [41-43]. 

Table 1. Range of typical values of the main components of the two-layer model. 

Parameter Approximate range 

EI (MNm2) 4.9 – 6.4 

m  (kg/m) distributed 54 – 60 

sM  (kg) concentrated 40 – 160 [41] 

p
k  (MN/m) concentrated 20 – 5000 [41] 

f
k  (MN/m2) distributed 0.22 – 1000 [42-43] 

The range of allowable parameters is defined with respect to their dimensionless counterpart, 

for which a reference Winkler beam is selected. As moving coordinates will be used, firstly the 

dimensionless moving spatial coordinate is introduced as 

rξ χ=  where r vx t= −  and 4

4

fk

EI
χ =  (4) 

The other values are related to the reference Winkler beam by 
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where for simplicity designations are kept, but all values (except for N ) are assumed as 

longitudinally distributed. 

The decisive parameters are thus 
sµ  and p

κ . Assuming that the sleepers are spaced from 

0.545 m [44] to 0.6 m, which is typical on European railways, this identifies a relatively narrow 

interval for one parameter, ( )1;5.5sµ ∈ , but gives a very large variability for the other parameter, 

( )0.04;40000pκ ∈ . 

There is little data on shear stiffness, so it will be set to zero in most examples. Similarly, the 

normal force when acting in compression will make the model softer, when acting in tension it makes 

the model stiffer, but since this is not the main concern, it will also be set to zero in most examples. 

Regarding the viscous damping coefficients, very different values can be found in the literature, so it 

was decided to directly vary the dimensionless parameters. 

4. Critical Velocity of a Constant Moving Force 

To determine the critical velocity of the moving force, Eq. (1)-(3) are first switched to a moving 

coordinate and changed to a dimensionless form. After removing the time-dependent terms not 

required for the steady-state regime, they read as 

( ) ( ) ( )
1

2

, , , , ,
4 4 8 4 8N p p Pw w w w u w uξξξξ ξξ ξξ ξ ξα η η α κ η δ ξ+ + + − + + − =        (7) 

( ) ( )2

, , , , ,
2 2 0s s p p fu u w u w u u uξξ ξξ ξ ξ ξµ α η η α κ η α− − − + − − − + =         (8) 

Where, besides parameters specified in Eqs. (4)-(6), 

st

w
w

w
=

, st

u
u

w
=

 with 

1

2
st

f

P
w

k

χ
=

, and 
1

1

1

P

P

P
η =

 
(9) 

4
2

4 1f f

ref

k EI k
v

m mχ
= =

, ref

v

v
α =

 
(10) 

Next, the Fourier transform is applied. In transferred space, it is more convenient to write the 

equations in matrix form, which makes it easier to present the analytical solution 

11 2 2

2 2 3

2

0

PD D D W

D D D U

η+ −     
=    − +       

(11) 

where 

( )
4

2 2 2

1
4

N

p
D p p pα η= − −

 
(12) 

( )2
2i p pD p pη α κ= − +  (13) 
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( ) 2 2 2

3
2i 1s f sD p p p pµ α η α η= − − + +  (14) 

and W , U  and p  represent w , u  and ξ  in the Fourier space. Since the CVs should be 

determined without damping, expressions (13) and (14) can be further simplified. 

To analytically determine the critical velocity, it is necessary to find at least one real double p -

root of the determinant of system (11). This means finding a real solution to a system of two 

equations, where the first is the determinant and the second is its derivative with respect to p . The 

determinant can be written as a cubic polynomial with real coefficients for 
2

p p=  and the second 

equation as a quadratic polynomial with real coefficients for p  

( ) ( )( )( )
( ) ( )( )

3 2 2 2 2

2

4 1

4 1 1 4 0

s s s s N p

p s p N p s p p

p p

p

µ α η µ α η η α κ

α κ µ κ η κ η κ κ

− − − + + +

+ + + + + − − =  

(15) 

( ) ( )( )( )
( ) ( )( )

2 2 2 2

2

3 2 4 1

4 1 1 0

s s s s N p

p s p N p s p

p pµ α η µ α η η α κ

α κ µ κ η κ η κ

− − − + + +

+ + + + + − =  

(16) 

In order to express directly 
2α , Eq. (16), multiplied by p , should be subtracted from Eq. (15) 

multiplied by 2. Then 

( )( )
( )

3

2

3

8 4 1

4 1

p s N p s p

p s p s

p p

p p

κ η η κ η κ
α

κ µ κ µ

− − + −
=

+ + −  

(17) 

which is simplified when 0N sη η= =  to 

( )
2

3

8

4 1

p

p s p sp p

κ
α

κ µ κ µ
=

+ + −  
(18) 

Thus, finding the real double p -root is an easy task using predefined root-finding procedures 

in symbolic software such as Maple. Eq (17) or (18) are substituted into Eq. (16), which can for the 

given data p
κ  and 

sµ  be solved for valid p  and consequently p  and α . 

To identify the irregular case means to identify the case where there will not be three resonances, 

but only one. Let us present this analysis for the simpler case of 0N sη η= = . Then after substituting 

Eq. (18) into Eq. (16), a cubic equation is obtained for 
2 4

p p= . Its discriminant is simplified to  

( ) ( ) ( ) ( )2 4
3 3 2 2 3

8 3 3 3 2 12s p p s p p s p p p pµ κ κ µ κ κ µ κ κ κ κ− + − + − − + +  (19) 

The irregular case occurs when expression (19) is negative, which means that there is only one 

real root for 
2 4

p p= . Expression (19) is fourth order polynomial for p
κ  and third order for 

sµ . 

Its analytical solution for 
sµ  as a function of p

κ  to identify the separation between three and one 

resonances is given by 

( )
3

1 1 2 3

3/2
2

1 2

2 9 271
arccos

3 2 3

B B B B

B B
θ

 − + =
 −   

(20) 
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( )21

1 2

2 2
3 cos 1 , 1,2,3

3 3 3
sj

B
B B j j

πµ θ = + − + − = 
   

(21) 

Where 

( )
( )

2

1

3 2

8

p

p p

B
κ

κ κ

−
= −

−  

(22) 

( )
( )

3

2 2

3 3 2

8

p p

p p

B
κ κ

κ κ

− −
=

−  
(23) 

( )
( )

4

3 3

1

8

p

p p

B
κ

κ κ

+
= −

−  

(24) 

The separation of regions with three and only one resonance is shown in Figure 2, where 

irregular stands for single resonance, regular for three resonances and cases falling on the boundary 

have, in fact, two resonances because one of the three resonances is doubled. 

 

Figure 2. Separation of regions with one and three resonances in p
κ -

sµ  plane for the simplified 

case with 0N sη η= = . 

The curve in Figure 2 is obtained by plotting 
3sµ  until 2

p
κ =  and then by 

1sµ  for larger p
κ

. It has an asymptotic tendency to 8
p

κ = , but this is already outside the allowable value of 
sµ . It 

can be observed that 1sµ >  there is always an open interval of p
κ  for which there is only one CV. 

For 1sµ = , there is only a double root 1pκ =  leading to no such interval. And so, one of the three 

resonances is doubled. The same happens when the selection p
κ -

sµ  lies on the curve indicated in 

Figure 2. In these cases, the CV properties are decisive, the FCV is suppressed, and the case can be 

considered as regular. 

Two cases are chosen as an example for the regular situation: 1sµ = , 0.36pκ =  and for the 

irregular one: 1.1sµ = , 0.6
p

κ = . Figure 3 shows the results of the parametric analysis for the 

validation of the CVs. For better clarity, the scale does not start at 0α = . In the regular case, Figure 

3a), it can be seen that the analytically determined values for the resonances: 0.681; 0.707 and 0.913 

indicate CV, FCV and CV as predicted. In the irregular case, Figure 3b), it is observed that the only 

analytically determined value of 0.996 is the higher CV and the lower CV is replaced by the PCV with 

value of 0.692.  

pκ

sµ

regular

irregular
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d) 

Figure 3. Results of parametric analysis: a) three resonances; b) one resonance; c) and d) three 

resonances but one of them is doubled. In the legend: “max” maximum displacement over the entire 

beam; “min” minimum displacement over the entire beam; “AP” deflection at the active point. 

Other cases also shown in Figure 3 concern the situations at the boundary of the domain shown 

in Figure 2, i.e., when one of the roots is double. Figure 3c) is for 1sµ =  and 1
p

κ =  which 

corresponds to the case where the interval of irregular cases is collapsed to a single value, proving 

that the CV is suppressed by the FCV (both equal to 0.707) and the case is irregular with a unique CV 

of 1.125. The same happens in the case in Figure 3d) for 3sµ =  and 0.125
p

κ = , which correspond 

to the lower end of the irregular case interval, which also proves that the CV is suppressed by the 

FCV (both equal to 0.553) and the case is irregular with a unique CV of 0.658. 

This analysis is consistent with correspondence with finite beams according to [45]. As explained 

in [39], CV corresponds to local minima in the resonant velocity plot, FCV to a local maximum, and 

the double root to the inflection point. 

In conclusion, it can be said that these irregular cases only mean that the first peak in the 

displacements is not found by solving the resonances and the PCV must be determined by parametric 

analysis. This is important for two reasons, firstly, CV does not provide relevant information about 

the lowest velocity where there is excessive vibration, secondly, when it comes to instability, PCV 

plays the role of a lower CV and therefore must be known to draw correct conclusions on the 

instability of moving inertial objects. In addition, PCV can be well-pronounced like in Figure 3b), or 

not. Additionally, PCV may be well pronounced as in Figure 3b) or not. When it is barely visible, 

extreme values are not always reached in the same α , and PCV determination is therefore 

ambiguous. 

Additionally, it can be remarked that a very good estimate of the lower CV is provided by 

extension of the classical formula by considering stiffnesses in series and summing the masses, i.e., 

by 

( )( )
41 2

1 1

p

CV

p s

κ
α

κ µ
=

+ +  

(25) 

which is valid for higher p
κ , approximately for 100

p
κ > . This condition in fact means that for 

these values 
1CVα  is practically independent on p

κ  and thus 

1

1

1
CV

s

α
µ

≈
+  

(26) 

α

w

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2023                   doi:10.20944/preprints202309.0750.v1

https://doi.org/10.20944/preprints202309.0750.v1


 10 

 

can also be used, which is actually exactly valid for 1sµ =  and any value of p
κ , except for irregular 

case with 1
p

κ = , when this value is FCV. 

5. Instability of One Moving Mass  

To solve the problem of instability of a single moving mass, the previously omitted time 

dependent terms must be included back, thus, Eqs. (7)-(8) are now given by 

( )
( ) ( ) ( )

1 1

2

, , , , , , , , ,

,

4 4 4 8 8

4 8 4

N p

p P M

w w w w w w w u u

w u w

ξξξξ ξξ ξξ ττ ξτ τ ξ τ ξ

ττ

η α α η α α

κ η η δ ξ

+ + + − + − − +

+ − = −

        

  
(27) 

( ) ( )
( ) ( )

2

, , , , , , ,

, , ,

2 2

2 0

s p

p s f

u u u w w u u

w u u u u u

ττ ξτ ξξ τ ξ τ ξ

ξξ τ ξ

µ α α η α α

κ η η α

− + − − − +

− − − + + − =

      

       

(28) 

Where 

ref
v tτ χ=

, 
1

1

M

M

m

χη =
 

(29) 

In the solution method the Laplace transform must be applied first and then the Fourier one. 

Initial conditions are assumed to be homogeneous. The following definition is used for the Laplace 

transform 

( ) ( )
0

, , e
q

F q f d
τξ ξ τ τ

∞
−= ∫

 
(30) 

to keep its formalism, but iq q=  will be used in the following with q  designating the 

frequency. In the transformed space the equations can be again written in a matrix, formally the same 

as Eq. (11) except for the right-hand side 

( )1

1

2

1 2 2

2 2 3

2
0,i

i

0

P

M
D D D W q W q

q
D D D U

η
η

 
+ − +     =    − +     

 



 

(31) 

and also 

( ) ( )
4

2 2

1
,

4
N

p
D p q q p pα η= − − −

 
(32) 

( ) ( )2
, 2i p pD p q q pη α κ= − +  (33) 

( ) ( ) ( )2 2

3
, 2i 1s f sD p q q p q p pµ α η α η= − − + − + +  (34) 

which indicate that all occurrences in Eq. (12)-(14) with pα−  switched to q pα− . 

In Eq. (31) there is still ( )0,iW q  which must be solved for. For this, first, Eq. (31) is solved 

for ( ), iW p q . 
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( )
( ) ( ) ( )

( ) ( )

( )1

1

2

2 3

1

2 3

21
,i 0, i

, , i
,

, ,

P

MW p q q W q
D p q D p q q

D p q
D p q D p q

η
η

 
= + 

 +
+



 

(35) 

Now, one can perform the inverse Fourier transform to get back the Laplace image, by assuming 

0ξ = , first: 

( ) ( )
( )

1

1

2

2 0,
0, i

i 2 0,

P

M

K q
W q

q q K q

η
π η

=
−


 

(36) 

Where 

( )
( ) ( ) ( )

( ) ( )

i

2 3

1

2 3

e d
,

, ,
,

, ,

p
p

K q
D p q D p q

D p q
D p q D p q

ξ

ξ
∞

−∞

=
+

+

∫
 

(37) 

and finally 

( ) ( )
( )

1

1

2

2 ,
,

i 2 0,

P

M

K q
W q

q q K q

η ξ
ξ

π η
=

−
  (38) 

where without losing generality ( ), iW qξ  was switched by ( ),W qξ . 

Final response in time domain is obtained by the inverse Laplace transform, which in most cases 

can be well-approximated by sum of residues as a result of contour integration. 

However, this paper is concerned with identification of intervals of velocities where the mass 

movement is unstable, namely, identification of irregular cases. As an example of regular, that is, 

expected behavior, a case with 1sµ =  and 300
p

κ =  is selected. According to the previous 

section, this case has three resonances, calculated as CV1=0.707; FCV=1.899; CV2=4.573. Without 

involving the D-decomposition method, instability lines can be directly calculated by tracing the real 

induced frequency. This simply means to find real q  that fulfils the characteristic equation 

( )2
2 0, 0M q K qπ η− =  (39) 

where subscript 1 is removed for simplicity. Because 
Mη  must be real, this implies finding q  for 

which ( )0,K q  is real and thus the full analysis is kept within the real domain. In regular cases, 

instability lines are formed by two branches, as demonstrated in Figure 4. First branch is delimited 

by CV1 and CV2, tending to infinite 
Mη . The second branch approaches CV2 from the left where 

tend to infinite 
Mη  and the other end tend to zero 

Mη  at infinite α . FCV is ignored by instability 

lines. 
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Figure 4. ILs for a regular case with 1sµ =  and 300
p

κ = . Different colours stand for different 

damping levels with 0.01
p f

η η= =  and 0.05
p f

η η= = . 

With decreasing damping, instability lines are getting closer to CVs. From Figures 4 and 5 it can 

be concluded that while the left sides of both branches are already quite close to CVs, so the decrease 

in damping had not much influence, the right part of the first branch is highly affected by damping. 

The first branch never crosses CV1 or PCV in regular cases, thus instability always occurs in the 

supercritical velocity range. 

 

Figure 5. Real MIFs linked to the ILs from Figure 4. 

The irregular cases are identified by the fact that CV2 is crossed by one of the branches and there 

can be a third branch, sometimes closed. By parametric analysis within the ranges of allowable 

parameters it was proven that irregular cases only occur for p
κ  on and bellow the line in Figure 6. 

The curve in Figure 6 does not look smooth because the step in p
κ  was selected as 0.01 and for 

sµ  

as 0.1, thus the line would turn to be smoother by finer steps. 

α

q

α

Mη
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Figure 6. Separation of regular and irregular regions in 
sµ - p
κ  plane for the simplified case with 

0N sη η= = . 

As an example, one case selected from the irregular region: 1.1sµ =  and 0.6
p

κ =  is 

discussed in further text. First ILs are presented in Figure 7 showing the crossings of CV. This case is 

in fact irregular from the point of view of moving force, thus PCV is plotted in Figure 7 showing that 

the role of the lower CV is fully fulfilled. 

 

Figure 7. ILs for 1.1sµ =  and 0.6
p

κ =  and four levels of damping as indicated in the legend. 

Mη

α

pκ

sµ

regular

irregular
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Figure 8. Real MIFs linked to the ILs from Figure 7. 

The level of damping is indicated in the legend. It is considered that both values are equal 

p f
η η= . For 

6
1 10p fη η −= = ⋅  and 

4
1 10p fη η −= = ⋅  there are three IL branches from which one 

of them is closed. This is not very clear from Figure 7, because the closed branch is overlayed for these 

two levels of damping. The other two branches have similar behavior as in the regular cases. For 

0.01
p f

η η= =  the closed branch is broken and there are only two IL branches. The first one is 

regular and the second one crosses CV. For 0.05
p f

η η= =  there are also only two branches, but 

both of them cross CV and have no similarity with regular behavior. 

6. Instability of Two Moving Masses 

When two masses are traversing the beam, the only difference with respect to the previous 

analysis is the right-hand side of Eq. (27) which reads as  

( ) ( ) ( ) ( )
1 1 2 2, ,

4 2 4 2P M P Mw w dττ ττη η δ ξ η η δ ξ− + − −    (40) 

with additional parameters introduced as 
2

2

1

P

P

P
η = , 

2

2

M

M

m

χη =  and d dχ= . 

Solution steps can follow the same pattern as before which allows to conclude that the 

characteristic equation is now 

( )( ) ( )( )
( ) ( )

1 2

1 2

2 2

4

2 0, 2 0,

4 , , 0

M M

M M

q K q q K q

q K d q K d q

π η π η

η η

− −

− − = 
 (41) 

which for 0d =  reduces to the characteristic equation of 
1 2M M M

η η η= + , as expected.  

To simplify the following analysis, it is assumed that 
1 2M M M

η η η= =  and 
1 2P P P

η η η= = . Eq. 

(41) is not so straightforward for tracing ILs as was Eq. (39), but it is quadratic for 
Mη , so it can be 

solved for 
Mη  and then two conditions for finding real MIFs can be specified as  

α

q
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( ) ( ) ( ), , 0,K d q K d q K q− −   or 

( ) ( ) ( ), , 0,K d q K d q K q− +   (1) 
 

Thus, if one of these functions is real for real q , then the corresponding 
Mη  can be computed 

from the associated root, and then negative values are discarded. 

After detailed analysis, it can be concluded that when two moving masses are considered, then 

CVs or PCVs are not respected. Any combination of allowable parameters creates situations where 

CV1 or PCV are crossed and thus instability occurs in the subcritical velocity range, and also the 

higher CVs do not serve to indicate the position of the asymptotes. 

To identify irregular cases, it is necessary to state when the instability occurs in the subcritical 

velocity range for a realistic 
Mη . In railway applications, mass and moving force are not linked by a 

mass-to-weight relation. Owing to the primary and secondary suspensions, it is a bit ambiguous what 

mass should be used in such simplified case. It could be 10t as a typical force transmitted by one 

wheel or just 880kg which is the wheel mass. Since the value of χ  can vary between 0.3 to 2.7m-1, 

according to Table 1, then the range for 
Mη  is 50 – 497 for 10t and 4.5 – 44 for 880kg. It will then be 

used 100Mη =  as a limit value. 

To avoid tracking ILs for all possible cases, the analysis is performed by identifying crossings 

with a specific MIF value. In fact, only values as low as 0.1-0.15 are worth studying. Thus, 
sµ  was 

stepped by 0.1, p
κ  by 2, real MIF by 0.01 and d  by 0.25 starting at 1. The level of damping was 

selected as 0.05
p f

η η= = . The tested region was specified by α  spanning from 0 to the lower 

CV. The obtained results are presented graphically in Figure 9.  

 

a) 

Mη

pκ ←

α

pκ ←

pκ ←
pκ ←
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b) 

c) 

Figure 9. Identification of irregular cases for two moving masses: a) 1.25d = ; b) 1.5d = ; c) 

1.75d = . The numbers in the legend indicate 
sµ , starting pκ  and q , respectively. The arrow 

Mη

α

pκ ←
pκ ←

pκ →

pκ →

pκ →

pκ →

Mη

α

pκ →pκ →

pκ →

pκ ←pκ ←
pκ ←

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2023                   doi:10.20944/preprints202309.0750.v1

https://doi.org/10.20944/preprints202309.0750.v1


 17 

 

indicates the direction of p
κ  increase. For better clarity single values are indicated by markers. 

Additional letter “S” indicates that this branch is starting without terminating the instability region. 

The graphs in Figure 9 are limited on the top by 100Mη = , as concluded before, and on the left 

by the lower CV or PCV, which varies with p
κ  and cannot therefore be directly indicated in these 

graphs. In Figure 9a) there are only starting crossings, implying the beginning of a larger unstable 

region with a higher degree of instability, but for lower 
sµ , these values are quite close to the lower 

CV. In Figure 9b) and c) there are always two crossings, meaning that they delimitate unstable 

interval and after that stability is recovered. This also means that in such cases the rate of instability 

is generally low, lower than in the region with starting branch. No irregular situation was found for 

1d =  or higher 
sµ  than indicated in Figure 9. For simplicity higher values than 300

p
κ =  were 

not tested because the tendency is predictable as for such higher values, the crossings are slowly 

increasing, as obvious from the fact, that the points in graphs are getting closer for constant step in 

p
κ . 

To conclude, the case with 1sµ =  and 300
p

κ = , which was regular for one moving mass and 

now is irregular is further tested with 0.05
p f

η η= =  and for 1;1.25;1.5;1.75d = . All ILs are 

plotted until 10α =  to cover also the region beyond the higher CV. Results of this analysis are 

presented in Figures 10 and 11. In Figure 10a), α  is limited by 1.1, which is more realistic. However, 

to show how complicated ILs can be, how the number of asymptotes is affected by d  and how the 

relation to CVs and PCV is not fulfilled, also higher range is shown in Figure 10b) and c), for different 

scale of 
Mη . These graphs should be accompanied by the associated real MIFs, which are reported 

separately for each d  in Figure 11. 

 

a) 

Mη

α
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b) 

c) 

Figure 10. ILs for case characterized by 1sµ = , 300
p

κ =  and 0.05
p f

η η= = : a)-c) parts 

correspond to different scale of α  and 
Mη . 

It is worthwhile to compare Figure 10 with Figure 9. If the limit of 100Mη =  is imposed, it can 

be concluded that for 1.5d =  and 1.75d =  there is an unstable interval in subcritical velocity 

range. Crossings with discrete q  reported in Figure 9 do not indicate the minimum 
Mη , but it can 

be extrapolated. For 1d =  there is not value lower than 100Mη =  is subcritical velocity range and 

Mη

α

α

Mη
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for 1.25d =  there is only a starting branch, with values relatively close to the lower CV. It should 

also be mentioned that by increasing the level of damping, the situation becomes generally worse, 

[21-22]. 

 

a) 

b) 

q

α

q

α
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c) 

d) 

Figure 11. Real MIFs linked to the ILs from Figure 10: a) 1d = ; b) 1.25d = ; c) 1.5d = ; d) 

1.75d = . 

7. Conclusions 

This paper presents a detailed analysis of a two-layer model for a ballasted railway track. The 

analysis focused on irregular situations, identified separately for one constant moving force and 

associated CV, and for one or two moving masses and associated instability velocity intervals, 

identified by ILs. All results were presented in dimensionless form, mostly analytically or semi-

analytically, but without any numerical integration or discretization. 

Irregular cases related to CV mean only determination of PCV by parametric analysis. Then at 

this value there is no real resonance, but an increase in displacements is verified and also the role of 

PCV in instability issues is preserved. Therefore, this irregularity only requires a different approach 

in determining the relevant values without suggestions for the railway design. 

Regarding the instability of a single moving mass, it was concluded that irregular cases occur 

throughout the allowable range of 
sµ , but only at low values of pκ , corresponding to a strong 

q

α

q

α
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foundation and soft rail pads. However, even this irregularity does not imply any recommendation. 

It just means that the higher CV is not playing the expected role. So, it can affect instability at very 

high velocities, which are avoided anyway in real scenarios. An important conclusion is that 

instability never occurs in the subcritical velocity range, considering the role of PCV. 

Therefore, the cases to avoid involve only two moving proximate masses. However, not only the 

values of 
Mη  causing instability in the subcritical velocity range are important here, but also how 

deep these values are located there. Another fact is the rate of instability, generally lower in short 

closed intervals of instability and higher at the beginning of a larger, possibly semi-infinite interval. 

The distance between the masses also plays a role. It can certainly be concluded that 1.5d =  and 

1.75d =  may represent cases to be avoided when 
sµ  is low, corresponding to light sleepers such 

as wooden or similar. In addition, 1.25d =  is also to be avoided, even if the velocity values are not 

so low, but the rate of instability is expected to be higher. There is no indication that a lower value 

implies a worse case, except perhaps for 
sµ . As for d , this is not true because 1d =  is not included 

in the irregular cases identified in Figure 9. Regarding to p
κ , this is also not true because, as 

indicated in the legend of Figure 9, the starting p
κ  value of several lines is quite high. 
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